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The transverse momentum (pT) spectrum and nuclear modification factor (RAA) of reconstructed jets in 
0–10% and 10–30% central Pb–Pb collisions at √sNN = 2.76 TeV were measured. Jets were reconstructed 
using the anti-kT jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, 
utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet pT spectra are 
reported in the pseudorapidity interval of |ηjet| < 0.5 for 40 < pT, jet < 120 GeV/c in 0–10% and for 
30 < pT, jet < 100 GeV/c in 10–30% collisions. Reconstructed jets were required to contain a leading 
charged particle with pT > 5 GeV/c to suppress jets constructed from the combinatorial background in 
Pb–Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb–
Pb collisions had a negligible effect on the RAA. The nuclear modification factor RAA was found to be 
0.28 ± 0.04 in 0–10% and 0.35 ± 0.04 in 10–30% collisions, independent of pT, jet within the uncertainties 
of the measurement. The observed suppression is in fair agreement with expectations from two model 
calculations with different approaches to jet quenching.

© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Discrete formulations of Quantum Chromodynamics (QCD) pre-
dict the existence of a cross-over transition from normal nu-
clear matter to a new state of matter called the Quark–Gluon 
Plasma (QGP), where the partonic constituents, quarks and glu-
ons, are deconfined. The QGP state is expected to exist at energy 
densities above 0.5 GeV/fm3 and temperatures above 160 MeV [1], 
which can be reached in collisions of heavy-ions at ultra-relativistic 
energies. The existence of the QGP is supported by the observa-
tions reported by experiments at the Relativistic Heavy Ion Collider 
(RHIC) [2–5] and at the Large Hadron Collider (LHC) [6–17].

One way to characterize the properties of the QGP is to use 
partons from the hard scattering of the partonic constituents in the 
colliding nucleons as medium probes. Hard scattering is expected 
to occur early in the collision evolution, producing high transverse 
momentum (pT) partons, which propagate through the expanding 
medium and eventually fragment into jets of hadrons.

Due to interactions of the high-pT partons with the medium, 
the energy of the partons is reduced compared to proton–proton 
(pp) collisions due to medium-induced gluon radiation and col-
lisional energy loss (jet quenching) [18,19]. The production cross 
section of the initial hard scattered partons is calculable using 
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perturbative QCD (pQCD), and the contribution from the non-
perturbative hadronization can be well calibrated via jet measure-
ments in pp collisions.

Jet quenching has been observed at RHIC [20–29] and at the 
LHC [8,16,17,30–41] via the measurement of inclusive hadron and 
jet production at high pT, di-hadron angular correlations and the 
dijet energy imbalance. In all cases, the measured observable is 
found to be strongly modified in central heavy-ion collisions rel-
ative to pp collisions, when compared to expectations based on 
treating heavy-ion collisions as an incoherent superposition of in-
dependent nucleon–nucleon collisions.

Measurements of the jet kinematics are expected to be more 
closely correlated to the initial parton kinematics than measure-
ments of high-pT hadrons. Jets are usually reconstructed by group-
ing measured particles within a given distance, e.g. a cone with 
radius R . The interaction with the medium can result in a broad-
ening of the jet shape, a softening of the jet fragmentation [42]
leading to an increase of out-of-cone gluon radiation [43] with re-
spect to jets reconstructed in pp collisions [17]. Therefore, for a 
given jet resolution parameter R and a fixed initial parton energy, 
the energy of jets reconstructed in heavy-ion collisions is expected 
to be smaller than those reconstructed in pp collisions.

Jet measurements in heavy-ion collisions are challenging since a 
single event can have multiple, possibly overlapping, jets from in-
dependent nucleon–nucleon scatters, as well as combinatoric “jets” 
from the large, partially correlated and fluctuating background of 
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low transverse momentum particles. Consequently, jet reconstruc-
tion in heavy-ion collisions requires a robust jet-signal definition, 
and a procedure to correct for the presence of the large back-
ground and its associated region-to-region fluctuations [44].

The results reported in this letter are from lead–lead (Pb–Pb) 
collision data at an energy per nucleon pair of 

√
sNN = 2.76 TeV

recorded by the ALICE detector in 2011. Charged particles are re-
constructed with the Inner Tracking System (ITS) and the Time 
Projection Chamber (TPC) down to pT of 0.15 GeV/c. Neutral par-
ticles, excluding neutrons and K 0

L s, are reconstructed with the 
Electromagnetic Calorimeter (EMCal) down to a transverse en-
ergy of the EMCal clusters of 0.3 GeV. For jet reconstruction, we 
followed the approach applied in Refs. [45,46], where the aver-
age energy density of the event was subtracted from the signal 
jets on a jet-by-jet basis, and the detector and background ef-
fects were corrected on an ensemble basis via an unfolding proce-
dure. The signal jets were obtained using the anti-kT jet algorithm 
[47] with a resolution parameter of R = 0.2 in the pseudorapid-
ity range of |ηjet| < 0.5. Signal jets were required to contain at 
least one charged particle with pT > 5 GeV/c. The corrected jet 
pT spectra and nuclear modification factors (RAA) are reported for 
40 < pT, jet < 120 GeV/c in 0–10% and for 30 < pT, jet < 100 GeV/c
in 10–30% central Pb–Pb collisions and the corrected jet pT spec-
trum for 20 < pT, jet < 120 GeV/c in pp collisions at 

√
s = 2.76 TeV

from 13.6 nb−1 recorded in 2011. The RAA is compared to expec-
tations from two jet quenching model calculations with different 
approaches, described later, in order to test the sensitivity of the 
observable to the energy density via the centrality dependence, 
and to the parton energy scale via the momentum dependence.

2. Experimental setup

For a complete description of the ALICE detector and its perfor-
mance see Refs. [48] and [49], respectively. The analysis presented 
here relies mainly on the ALICE tracking system and EMCal, both 
of which are located inside a large solenoidal magnet with field 
strength 0.5 T.

The tracking system consists of the ITS, a high-precision six-
layer silicon detector system with the inner layer at 3.9 cm and 
the outer at 43 cm from the center of the detector, and the TPC 
with a radial extent of 85–247 cm, provides up to 159 indepen-
dent space points per track. The two innermost layers of the ITS 
consist of the Silicon Pixel Detector (SPD), which provides two lay-
ers of silicon pixel sensors at radii 3.9 cm and 7.6 cm from the 
beam axis and covers the full azimuth over |η| < 2 and |η| < 1.4, 
respectively. The combined information of the ITS and TPC can 
determine the momenta of charged particles from low momen-
tum (pT ≈ 0.15 GeV/c) to high momentum (pT ≈ 100 GeV/c) in 
|η| < 0.9 and full azimuth.

The EMCal is a Pb-scintillator sampling calorimeter, which cov-
ers 107 degrees in azimuth and |η| < 0.7. It consists of 10 super-
modules with a total of 11 520 individual towers each covering an 
angular region �η × �ϕ = 0.014 × 0.014 which are read out by 
avalanche photodiodes.

The data were recorded in 2011 for Pb–Pb collisions at 
√

sNN =
2.76 TeV using a set of triggers based on the hit multiplicity 
recorded by the VZERO detector, which consists of segmented scin-
tillators covering the full azimuth over 2.8 < η < 5.1 (VZERO-A) 
and −3.7 < η < −1.7 (VZERO-C).

3. Data analysis

A total of 11.5M (15 μb−1) and 5.7M (3.7 μb−1) events with 
VZERO multiplicities corresponding to 0–10% and 10–30% most 
central events were selected using the centrality determination as 

described in Ref. [50]. The accepted events, reconstructed as de-
scribed in Ref. [51], were required to have a primary reconstructed 
vertex within 10 cm of the center of the detector.

Reconstructed tracks were required to have at least 3 hits in the 
ITS used in the fit to ensure adequate track momentum resolution 
for jet reconstruction. For tracks without any hit in the SPD, the 
primary vertex location was used in addition to the TPC and ITS 
hits for the momentum determination of the track. This reduced 
the azimuthal dependence of the track reconstruction efficiency 
due to the non-uniform SPD response, without creating track col-
lections with drastically differing momentum resolutions. Accepted 
tracks were required to be measured with 0.15 < pT < 100 GeV/c
in |η| < 0.9, and to have at least 70 TPC space-points and no less 
than 80% of the geometrically findable space-points in the TPC. The 
tracking efficiency was estimated from simulations of the detector 
response using GEANT3 [52] with the HIJING [53] event genera-
tor as input. In 0–10% collisions, it is about 56% at 0.15 GeV/c, 
about 83% at 1.5 GeV/c and then decreases to 81% at 3 GeV/c, after 
which it increases and levels off to about 83% at above 6.5 GeV/c. 
In 10–30% collisions, the tracking efficiency follows a similar pT
dependence pattern, with absolute values of the efficiency that 
are 1 to 2% higher compared to 0–10% collisions. The momen-
tum resolution δpT/pT, estimated on a track-by-track basis using 
the covariance matrix of the track fit, is about 1% at 1.0 GeV/c
and about 3% at 50 GeV/c. Tracks with pT > 50 GeV/c were only 
a small contribution to the inclusive jet population considered in 
this analysis, for example only 20% of the jets with pT, jet larger 
than 100 GeV/c were found to contain a track above 50 GeV/c.

EMCal cells with a calibrated response of more than 50 MeV 
were clustered prior to inclusion in the jet finder by a clustering 
algorithm which required each cluster to only have a single local 
maximum [49]. Interactions of slow neutrons or highly ionizing 
particles in the avalanche photodiodes create clusters with large 
apparent energy, but anomalously small number of contributing 
cells, and are removed from the analysis. A non-linearity correc-
tion, derived from electron test beam data, of about 7% at 0.5 GeV 
and negligible above 3 GeV, was applied to the clusters’ energies. 
The energy resolution obtained from electron test beam data is 
about 15% at 0.5 GeV and better than 5% above 3 GeV.

Unlike electrons and photons, which deposit their full energy 
in the EMCal via electromagnetic showering, charged hadrons de-
posit energy in the EMCal, mostly via minimum ionization, but 
also via nuclear interactions which generate hadronic showers. 
To avoid double counting, the energy deposited in the EMCal by 
charged particles that were already reconstructed as tracks, the 
clusters’ energies were corrected by the following procedure [54]: 
All tracks with pT > 0.15 GeV/c were propagated to the aver-
age cluster depth within the EMCal, and then associated to clus-
ters with ET > 0.15 GeV within the window |�η| < 0.015 and 
|�ϕ| < 0.025. Tracks were always matched to their nearest clus-
ter, while clusters were allowed to have multiple track matches. 
Clusters with matched tracks were corrected for charged particle 
contamination by removing the fraction f = 100% of the sum of 
the momenta of all matched tracks from the cluster energy, as 
done in [54]. Clusters with ET > 0.30 GeV after this correction 
were used in this analysis.

The collection of tracks and corrected EMCal clusters was then 
assembled into jets using the anti-kT or the kT algorithms in the 
FastJet package [55] with a resolution parameter of R = 0.2. Only 
those jets that were at least R away from the EMCal boundaries 
of |η| < 0.7 and 1.4 < φ < π , and thus fully contained within the 
EMCal acceptance, were kept in the analysis which limits the ef-
fect of the acceptance boundaries on the measured jet spectrum. 
Jets reconstructed by the anti-kT algorithm were used to quantify 
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signal jets, while jets reconstructed by the kT algorithm were used 
to quantify the contribution from the underlying event.

The signal spectrum formed from the reconstructed jets is af-
fected by the contribution from the underlying event. In order 
to suppress the contribution of the background to the measure-
ment of the jet energy, we followed the approach described in 
Refs. [45,46], which addresses the average additive contribution 
to the jet momentum on a jet-by-jet basis. The underlying back-
ground momentum density was estimated event-by-event using 
the median of praw

T, jet/Ajet, where praw
T, jet is the uncorrected energy 

and Ajet is the area of jets reconstructed with the kT algorithm. 
Due to the limited acceptance of the EMCal, ρch, the median of 
the event-by-event momentum density distribution obtained from 
charged jets (i.e. jets reconstructed from tracks only) in 

∣
∣ηjet

∣
∣ < 0.5

and full azimuthal acceptance was used. Then, ρscaled was de-
termined by scaling ρch using a centrality-dependent factor. This 
factor is obtained from a parametrization of the measurement of 
the charged-to-neutral energy ratio, using tracks and corrected 
clusters in the EMCal acceptance. In 0–10% central Pb–Pb colli-
sions, the average charged background momentum density was 
〈ρch〉 ≈ 110 GeV/c. After scaling to include the neutral component 
we obtained 〈ρscaled〉 ≈ 190 GeV/c, which corresponds to an aver-
age contribution of the underlying event of about 24 GeV/c in a 
cone of R = 0.2. In 10–30% central Pb–Pb collisions 〈ρscaled〉 de-
creases to ≈ 130 GeV/c. For every signal jet reconstructed with 
the anti-kT algorithm, the background density scaled by the area 
of the reconstructed signal jet was subtracted from the recon-
structed transverse momentum of the signal jet according to 
preco

T, jet = praw
T, jet − ρscaled · Ajet.

Region-to-region background fluctuations lead to a smearing of 
the reconstructed jet energy. Their magnitude was estimated as 
described in Refs. [45,46] in two different ways: (1) by taking 
the scalar sum of the pT of all particles found in a cone ran-
domly placed in the event, referred to as random-cone method, 
and (2) embedding a single particle in the event and inspecting 
the anti-kT jet that contains that embedded particle, referred to as 
embedded track method. The first method does not rely on any 
assumptions about the structure of the background itself and gives 
approximately the same background fluctuation as embedding a 
track with infinite momentum for anti-kT jets. The second method 
should be able to reproduce the background as seen by the anti-kT
algorithm more directly. The background fluctuations were quan-
tified by δpT = pcone

T − ρscaled · π R2 for the random-cone method, 
and δpT = preco

T, jet − pprobe
T for the embedded-track method with a 

minimum of pprobe
T = 10 GeV/c for the pT of the embedded track. 

Above 10 GeV/c the resulting δpT distribution does not depend on 
the pT of the embedded particle. The δpT distributions for the two 
methods in the 10% most central collisions are shown in Fig. 1 for 
pprobe

T = 60 GeV/c. The two methods appear to provide the same 
quantitative response to the background fluctuations, with only 
marginal differences mainly due to small jet area fluctuations in 
the embedding track method. The widths of the δpT distributions 
are about 6 GeV/c. The left-hand side (LHS) of the distribution is 
Gaussian-like and is dominated by soft particle production. To de-
termine its width, the distributions were fitted recursively with 
a Gaussian function in the range [μLHS − 3σ LHS, μLHS + 1

2 σ LHS]
using the mean and width of the δpT distribution as starting val-
ues for σ and μ. The LHS width is about 5 GeV/c in 0–10% and 
about 3.5 GeV/c in 10–30% events. The right-hand side has addi-
tional contributions from hard scattering processes, and the result-
ing non-Gaussian tail at high δpT is due to overlapping jets. The 
random-cone method was used as the baseline in this analysis for 
creating the response matrix used in unfolding, while the single 

Fig. 1. The δpT distribution for R = 0.2 with the random-cone and the embedded-
track methods in the 10% most central events, with pprobe

T = 60 GeV/c for the 
embedded-track method.

particle embedding method was used to study the sensitivity of 
the results to the method.

Additionally, signal jets were required to contain a charged 
track with a transverse momentum of at least 5 GeV/c and a min-
imum background subtracted preco

T, jet of 30 GeV/c for 0–10% and of 
20 GeV/c for 10–30% most central events, which roughly corre-
sponds to 5σ of the δpT distribution, in order to suppress the con-
tribution of combinatorial jets, i.e. from jets reconstructed mainly 
from upward fluctuations of the soft-particle background.

Both the average background and the background fluctuations 
are averaged over all possible orientations of the event plane, 
namely it is assumed that the signal jet sample being analyzed 
is isotropically distributed with respect to the event plane. How-
ever, the jet sample may show some degree of correlation with 
the event plane, both for physical reasons (e.g. path length depen-
dence of jet energy loss) or as a result of the cuts applied in the 
analysis (most notably the requirement on the leading hadron pT). 
Since the background is also correlated with the event plane due 
to flow (v2) [10], a question may arise about the validity of this 
approach. Upper limits on the magnitude of these effects have 
been estimated by using random cones biased towards the event 
plane, either by requiring the presence of a 5 GeV/c track or by 
weighting the distribution using an upper limit on the jet v2 of 
0.1. In both cases, the upper limits on the shift of the jet energy 
scale (JES) were found to be smaller than 0.1 GeV/c.

4. Unfolding

The measured jet spectra are distorted by the response of the 
detectors used in the measurement and the background fluctu-
ations in the underlying event. To correct for these effects we 
used an “unfolding” procedure, as described in Ref. [46]. The cor-
rected distribution ptrue

T, jet and the measured distribution preco
T, jet are 

related by a convolution through the response matrix RMtot =
RMbkg × RMdet, where RMdet parametrizes the detector response 
and RMbkg the background fluctuations. The unfolding procedure 
operates under the assumption that preco

T, jet = RMtot × ptrue
T, jet. Both 

background fluctuations and the detector response to jets are uni-
form within the η and ϕ acceptances, which is a precondition for 
the factorized approach used in building RMtot.

The detector response for jet reconstruction was obtained us-
ing pp events simulated with the PYTHIA 6 [56] event generator 
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(tune A [57]). Jets were reconstructed both at “generator level” 
and at “detector level” using the anti-kT algorithm. Generator-level 
simulations utilized only prompt particles originating from the col-
lision (with cτ < 1 cm), directly from the event generator output, 
without accounting for detector effects; detector-level simulations 
also included a detailed particle transport and detector response 
simulation based on GEANT3 [52] with the detector response set to 
the Pb–Pb configuration. During detector-level jet reconstruction, 
an additional pT-dependent tracking inefficiency was introduced 
in order to account for the larger inefficiency due to the larger oc-
cupancy effects in central Pb–Pb events compared to pp events. 
Occupancy effects have been estimated comparing the tracking 
performance in PYTHIA and HIJING simulations, which represent 
pp and Pb–Pb events [53]. The occupancy effects in central HIJING 
events are larger for pT < 0.5 GeV/c where the efficiency is about 
4% lower compared to PYTHIA, and then levels off to about 2% 
lower for pT > 2 GeV/c. In semi-central HIJING events, occupancy 
effects on the tracking efficiency amount to no more than 2% at 
low pT and about 1% for pT > 2 GeV/c. Other than this tracking 
efficiency correction, the detector response to jets was assumed to 
be the same in Pb–Pb events as in the PYTHIA simulated pp colli-
sions.

The generator-level and detector-level jets were matched based 
on the Euclidean distance between their jet axes in pseudorapid-
ity and azimuthal angle. It was ensured that the matching opera-
tion is bijective: each generator-level jet was matched to at most 
one detector-level jet [46]. Every matched jet pair corresponds to 
an entry in the detector response matrix, RMdet. An unmatched 
generator-level jet represents a jet that was not reconstructed, and 
this distribution was used to determine the jet reconstruction effi-
ciency. In 0–10% Pb–Pb events, the detector jet reconstruction effi-
ciency was found to be 90% at 40 GeV/c and 95% above 70 GeV/c, 
limited mainly by the track reconstruction efficiency of the leading 
charged particle. As described above, at detector level the con-
stituent cut was 150 MeV/c for tracks, and 300 MeV for clusters 
after the cluster energy is corrected for charged particle energy 
contamination. However, at generator level no such cut is applied, 
and hence the reconstructed jets are corrected to a constituent 
charged particle momentum of 0 MeV/c and to a constituent clus-
ter energy of 0 MeV in the unfolding process. A net negative shift 
of the JES at detector level was obtained, which originates mainly 
from tracking inefficiency and unreconstructed particles, such as 
neutrons and K 0

L , though the subtraction procedure for energy de-
posits by charged particles in the EMCal and missing secondary 
particles from weak decays contribute to the shift [54]. The JES 
correction applied through the response matrix is about 23% at 
ptrue

T, jet of 40 GeV/c and 29% at 120 GeV/c independent of central-
ity.

The RMbkg matrix was constructed row-by-row by taking the 
δpT distribution and shifting it along the preco

T, jet axis by the amount 
ptrue

T, jet corresponding to each row (Toeplitz matrix). This matrix 
construction method assumes that the response of the jet spec-
trum to background fluctuations is independent of the jet momen-
tum.

The pT-dependence of the jet momentum resolution σ(preco
T, jet)/

ptrue
T, jet is different for the background and detector contributions 

[46]. The contribution from background fluctuations is dominant 
at low ptrue

T, jet and is proportional to 1/ptrue
T, jet, whereas the contribu-

tion from detector effects is fairly constant with ptrue
T, jet. The cross-

over between the two contributions happens at ptrue
T, jet ≈ 30 GeV/c. 

The combined jet momentum resolution is about 23% at ptrue
T, jet of 

40 GeV/c and 20% at 120 GeV/c for 0–10% collisions, while it is 
24% at ptrue

T, jet of 30 GeV/c and 20% at 100 GeV/c for 10–30%.

Two unfolding algorithms with different regularization proce-
dures were used for correcting the measured jet spectrum: the χ2

minimization method [58] with a log–log-regularization and the 
generalized Singular Value Decomposition (SVD) method [59], as 
implemented in RooUnfold [60], which was used for the default 
value of the data points. The measured spectrum used as an in-
put to the unfolding was in the range 30 < pT, jet < 120 GeV/c
for 0–10% and 20 < pT, jet < 100 GeV/c for 10–30% collisions. 
A smoothed version of the measured spectrum was used as the 
prior, so that the statistical fluctuations within the data were not 
magnified in the unfolding process. The regularization parameter 
used for SVD unfolding is k = 5. The value of k is chosen such 
that it corresponds to the d vector magnitude of 1, and Pearson 
coefficients which do not show a large variation in the correlation 
between neighboring pT bins.

The corrected jet spectra are reported for 40 < pT, jet <

120 GeV/c in 0–10%, and for 30 < pT, jet < 100 GeV/c in 10–30% 
where the efficiency due to these kinematic cuts is high, approx-
imately 90%. It was verified that the cut on the reconstructed jet 
pT has a negligible effect in the reported pT region of the final re-
sult, as long as the requirement on the leading charged track pT is 
at least 5 GeV/c. If this threshold is reduced, the cut on the mini-
mum reconstructed jet pT becomes crucial for unfolding stability.

The analysis procedures in the 10% most central collisions were 
tested with two different Monte Carlo (MC) models, where events 
were constructed by embedding jets into a soft background. The 
first test verified the robustness of the unfolding framework with 
the inclusion of fake “jets” that are clustered from the soft back-
ground, which did not originate from a hard process. The second 
model tested the assumption that the background and detector re-
sponses can be factorized.

In the first model, the soft background of both charged and 
neutral particles was modeled with 3100 < Ntracks < 5150 where 
the particle transverse momenta were taken from a Boltzmann dis-
tribution with a temperature of 550 MeV. This model created a 
fluctuating background similar to that of the 0–10% Pb–Pb data; 
e.g. the background fluctuations, as estimated via the δpT distri-
butions, coincide within few percent. Jets were reconstructed at 
generator level in PYTHIA-only events and at detector level, with 
the added background. The first model validated the background 
subtraction technique, and in particular the stability of the unfold-
ing method against the contribution from the residual combinato-
rial background. In the second model, the background was taken 
from real 0–10% Pb–Pb events. The charged particle correction for 
the EMCal clusters was applied after embedding. Only jets with 
at least 1 GeV/c of transverse momentum coming from the em-
bedded PYTHIA event were selected for the test. This is needed 
to reject the signal from hard scatterings in the data, but also 
removes most of the combinatorial jets from the Pb–Pb underly-
ing event. The second model was used to test the validity of the 
charged particle correction applied to the EMCal clusters, in par-
ticular in the interplay between the underlying event and the jets. 
It also validates certain aspects of the corrections applied for the 
background fluctuations, e.g. the unsmearing of the jet pT due to 
background fluctuations or the overlap with low momentum jets. 
Background tracks and clusters could be matched to jet tracks and 
clusters or vice versa, so that the correction for charged particle 
contamination could potentially cause an over-subtraction that is 
not corrected for in the unfolding procedure. These Monte Carlo 
tests showed that the analysis procedures outlined above, includ-
ing unfolding, recovered the input spectrum within the statistical 
and systematic uncertainties of the models.
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Fig. 2. The spectra of R = 0.2 jets with a leading track requirement of 5 GeV/c in 
0–10% and 10–30% most central Pb–Pb collisions scaled by 1/Ncoll and in inelastic 
pp collisions at √sNN = 2.76 TeV. The uncertainties on the normalization are about 
11% for the Pb–Pb data from the uncertainty on Ncoll and about 8% for the pp data 
from the total inelastic cross section.

Table 1
Summary of systematic uncertainties for 0–10% most central collisions. The first col-
umn is the uncertainty at the minimum pmin

T, jet of 40 GeV/c, the second column is 
the uncertainty at the maximum pmax

T, jet of 120 GeV/c. The minimum and maximum 
columns give the extreme, and the last column gives the average systematic uncer-
tainty over the entire pT range. The total correlated uncertainty was calculated by 
adding the components in quadrature, while the shape uncertainty was calculated 
as the σ of the different variations (see text for details).

Category Relative uncertainty (%)

pmin
T, jet pmax

T, jet Min. Max. Avg.

Tracking efficiency 7.7 11.3 7.3 11.3 8.8
Track momentum resolution 1.0 1.0 1.0 1.0 1.0
Charged particle correction 0.7 2.7 0.7 6.4 3.7
EMCal clusterizer 3.2 1.8 0.1 3.2 1.4
EMCal response 4.4 4.4 4.4 4.4 4.4
Background fluctuations 3.9 2.7 2.3 3.9 2.8
Jet raw pT cuts 2.6 6.7 1.5 6.7 3.6
Combinatorial jets 0.3 0.5 0.0 0.5 0.2

Total correlated uncertainty 10.6 14.5 10.6 14.5 12.0

Unfolding method 0.1 10.0 0.1 15.5 6.6
SVD reg. param. k = 4 3.6 11.7 2.4 11.7 6.0
SVD reg. param. k = 6 7.2 2.7 1.5 8.8 5.3
Prior choice 1 1.9 4.0 0.2 4.0 1.6
Prior choice 2 2.1 1.4 0.1 2.1 0.9

Total shape uncertainty 3.8 7.2 2.7 7.4 5.3

5. Results

The unfolded jet spectra in 0–10% and 10–30% central collisions 
are displayed in Fig. 2. To compare the spectra with the spectrum 
measured in pp collisions, the yield is divided by the number of bi-
nary collisions, which is Ncoll = 1501 ±167 for 0–10% and 743 ±79
for 10–30% collisions, as estimated from a Glauber MC calcula-
tion [50].

The systematic uncertainties on the jet spectrum are summa-
rized in Table 1 for the 0–10% centrality class. For the 10–30% 
centrality class the corresponding uncertainties differ, on average, 
by 2% or less. The systematic uncertainties were divided into two 
categories: correlated uncertainties and shape uncertainties. The 
correlated uncertainties result dominantly from uncertainties on 
the JES, such as the uncertainty of the tracking efficiency, that will 
shift the entire jet spectrum in one direction, whereas the shape 

uncertainties are related to the unfolding and can distort the slope 
of the spectrum.

The dominant correlated uncertainty on the jet spectrum of 
about 9% arises from the uncertainty on the tracking efficiency. 
It is estimated by varying the tracking efficiency by 5% in deter-
mining RMdet and unfolding the spectrum. The uncertainty due 
to the correction procedure for the charged particle double count-
ing in the EMCal of about 4% was determined by varying f from 
100% to 30% in both the measured spectrum and the RMdet. The 
determination of the uncertainties from other EMCal response re-
lated uncertainties as EMCal energy scale, EMCal energy resolution, 
and EMCal non-linearity is outlined in [54] and combined leads to 
an uncertainty of 4.4%. The uncertainty arising from the choice of 
the EMCal clustering algorithm is determined by using a different 
clusterizing method, that forms fixed-size clusters from 3 × 3 tow-
ers. For the background fluctuations, the response matrix RMbkg
was constructed with the single-track embedding method for de-
termining δpT, as discussed above. To estimate the sensitivity of 
the unfolding to the raw jet pT selection, the pT range of input 
spectra is varied by extending the range at both the low and high 
ends by ±5 GeV/c. The influence of combinatorial jets, estimated 
by varying the low edge of the unfolded spectrum from 0 to up 
to 10 GeV/c was found to be negligible. Since all sources of uncer-
tainty are independent, each contribution is added in quadrature to 
obtain the final correlated uncertainty of 10.6% to 14.5% as listed in 
Table 1. The uncertainty on the JES is 2.4% to 3.2% and can be ob-
tained by dividing the uncertainties listed in Table 1 by 4.5, where 
the exponent n = 4.5 was obtained by fitting a power law to the 
measured spectrum.

The shape uncertainty is dominated by the regularization used 
in the unfolding and can be divided into two components: the 
method by which the solution is regularized, e.g. χ2 instead of 
the SVD unfolding, and the variation of the regularization process 
within a given method. The regularization is done by adding a 
penalty term in the χ2 method and by ignoring the components 
of the SVD decomposition that are dominated by statistical fluctua-
tions. For the SVD method, the regularization k factor is an integer 
value and thus can only be varied in integer steps. The uncertainty 
related to the choice of the prior is estimated by varying the expo-
nent of the power law function extracted from the reconstructed 
spectrum by ±0.5, which is used to construct the prior. The un-
certainty related to the choice of the prior is estimated by varying 
the exponent n = 4.5 by ±0.5 to scale the prior. The differences 
in the unfolded spectrum with these variations are summarized in 
Table 1. These variations in the regularization strategy are com-
bined assuming that they constitute independent measurements. 
The final shape uncertainty is thus obtained by summing them in 
quadrature and dividing by the square root of the number of vari-
ations.

The jet spectrum in pp collisions was measured in the same 
way as reported in Ref. [54], but with the 5 GeV/c leading charged 
particle requirement necessary for the Pb–Pb analysis. The result-
ing spectrum normalized per inelastic pp collision is shown in 
Fig. 2. In order to determine the effect of the leading track re-
quirement in pp collisions, the ratio of the jet spectra with a 
5 GeV/c leading track requirement (the biased jet sample), over 
the spectrum of jets without a leading track requirement (the in-
clusive jet sample) with resolution parameter R = 0.2 is shown in 
Fig. 3. Systematic uncertainties in the ratio were evaluated by re-
moving the uncertainties that are correlated between the spectra 
obtained with and without the cut on the leading particle. As can 
be seen in Fig. 3, for pT, jet above 50 GeV/c more than 95% of all 
reconstructed jets have at least one track with a pT greater than 
5 GeV/c. PYTHIA tune A (but also other common tunes like the 
Perugia tunes [57]) accurately describes the measured ratio.
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Fig. 3. Ratio of the jet spectrum with a leading track pT > 5 GeV/c over the inclusive 
jet spectrum for R = 0.2 in pp collisions at √s = 2.76 TeV.

The influence of the leading track requirement in the Pb–Pb 
measurement, nominally set to 5 GeV/c was tested by varying it 
by 40%, i.e. reducing it to 3 and increasing it to 7 GeV/c, and 
with the more extreme values of 0 and 10 GeV/c. The ratios of jet 
spectra with the different leading track pT biases, after all correc-
tions, are shown in Fig. 4 for R = 0.2 jets in 0–10% central Pb–Pb 
collisions at 

√
sNN = 2.76 TeV. The corrections to these different 

jet spectra were done using the same unfolding procedure as the 
nominal spectrum with leading track pT bias of 5 GeV/c, with a 
slightly modified response matrix which accounts for the differ-
ent biases. Since the unfolding procedure weakens the correlation 
between the statistical fluctuations of the jet spectra with differ-
ent leading track requirements, the statistical uncertainties have 
been added in quadrature in the ratio. The systematic shape un-
certainty is due to the unfolding procedure, and has been treated 
as completely uncorrelated in the ratio. The correlated uncertainty 
is primarily due to the uncertainty on the JES, which is highly cor-
related between the various spectra. The systematic variations in 
the unfolding procedure have been applied consistently for both 
the denominator (with a leading track pT > 5 GeV/c) and the nu-
merators (with a 0, 3, 7 and 10 GeV/c leading track bias), and 
the resulting difference in the ratios has been taken as a system-
atic uncertainty. The jet spectra with leading track requirements 
of 3 and 0 GeV/c are consistent with the baseline measurement 

with a 5 GeV/c requirement. The unfolding is not as stable as with 
a 5 GeV/c requirement, which leads to a larger systematic uncer-
tainty due to the unfolding correction procedure, especially for the 
inclusive spectrum. All measurements of the ratio of jet spectra 
with different leading track biases, particularly those with a higher 
leading track pT requirement than the nominal, are well described 
by PYTHIA 6 (tune A), within one sigma of the uncertainties or 
less.

The nuclear modification factor, RAA, is defined as the ratio of 
the jet spectrum in Pb–Pb divided by the spectrum in pp colli-
sions scaled by Ncoll . It is constructed such that RAA equals unity 
if there is no net nuclear modification of the spectrum in Pb–Pb 
collisions as compared to an incoherent superposition of indepen-
dent pp collisions. The resulting RAA of jets with a 5 GeV/c leading 
track requirement for R = 0.2 in the 0–10% and 10–30% central 
Pb–Pb collisions is reported in Fig. 5. The systematic and statistical 
uncertainties from the Pb–Pb and pp measurements (see Fig. 2) 
are added in quadrature. The resulting uncertainty on the nor-
malization is from scaling the pp cross section with the nuclear 
overlap TAA = 23.5 ± 0.87 mb−1 for 0–10% and 11.6 ± 0.60 mb−1

for 10–30% collisions. As can be seen, jets in the measured pT, jet
range are strongly suppressed. The average RAA in both 0–10% 
and 10–30% central events was found to have a negligible pT, jet
dependence. In the 10% most central events, combining the sta-
tistical and systematic uncertainty in quadrature, the average RAA
is found to be 0.28 ± 0.04. The suppression is smaller in mag-
nitude in the 10–30% central events, leading to an average RAA
of 0.35 ± 0.04. These results qualitatively agree with the suppres-
sion obtained from measurements using charged-particle jets [46], 
though the jet energy scale is not the same in both cases, and so a 
direct comparison is not possible. Furthermore, the results are con-
sistent with the RAA reported by ATLAS for R = 0.4 jets scaled by 
the ratio of the yields with the different resolution parameters in 
different pT, jet bins [36,41].

In order to interpret the results and move to a more quantita-
tive understanding of jet quenching mechanisms, a comparison of 
the measured RAA in 0–10% central collisions to calculations from 
two different models is also shown in Fig. 5. The first model, Ya-
JEM [61], uses a 2 + 1D hydrodynamical calculation and a Glauber 
MC for the initial geometry, as well as a LO pQCD calculation to 
determine the outgoing partons. Parton showers are modified by 
a medium-induced increase of the virtuality during their evolu-
tion through the medium. The Lund model in PYTHIA is used for 
hadronization into final state particles. The kinematics of the vir-
tual partons in the evolving partonic shower were modified with 
a parameter related to the two transport coefficients, q̂ and ê, that 
describes how strongly a parton of a given momentum couples to 
Fig. 4. Ratios of jet spectra with different leading track pT requirements (“0 over 5”, “3 over 5”, “7 over 5” and “10 over 5”) for R = 0.2 jets in 0–10% Pb–Pb collisions at √
sNN = 2.76 TeV. The solid black lines represent predictions from PYTHIA.
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Fig. 5. RAA for R = 0.2 jets with the leading track requirement of 5 GeV/c in 0–10% (left) and 10–30% (right) most central Pb–Pb collisions compared to calculations from 
YaJEM [61] and JEWEL [62]. The boxes at RAA = 1 represent the systematic uncertainty on TAA.
the medium. The parameter was fixed so that the model accurately 
describes the RAA for charged hadrons at 10 GeV/c [17], but no 
additional changes were made for the prediction of the jet RAA. 
The second model, JEWEL [62], takes a different approach in the 
description of the parton–medium interaction by giving a micro-
scopical description of the transport coefficient, q̂. Essentially each 
scattering of the initial parton with medium partons is computed 
and the average over all scatters determines q̂. JEWEL uses a com-
bination of Glauber and PYTHIA to determine the initial geometry, 
a 1D Bjorken expansion for the medium evolution, and PYTHIA 
for hadronization into final state particles. The transverse medium 
density profile in JEWEL is proportional to the density of wounded 
nucleons combined with a 1D Bjorken expansion for the time evo-
lution. Hard scatters are generated according to Glauber collision 
geometry, and suffer from elastic and radiative energy loss in the 
medium, including a Monte Carlo implementation of LPM interfer-
ence effects. PYTHIA is used for the hadronization of final state 
particles. Despite their different approaches, both calculations are 
found to reproduce the jet suppression. YaJEM, however, exhibits a 
slightly steeper increase with jet pT than the data. The calculated 
χ2 are 1.690 for YaJEM and 0.368 for JEWEL, obtained by com-
paring the models with the data. Additional measurements will be 
needed in order to further constrain the models, such as measuring 
the jet suppression relative to the event plane angle, which would 
require a more accurate modeling of the path-length dependence 
of jet quenching.

6. Summary

The transverse momentum (pT) spectrum and nuclear modi-
fication factor (RAA) of jets reconstructed from charged particles 
measured by the ALICE tracking system and neutral energy mea-
sured by the ALICE Electromagnetic Calorimeter are measured with 
R = 0.2 in the range of 40 < pT, jet < 120 GeV/c for 0–10% and 
in 30 < pT, jet < 100 GeV/c for 10–30% most central Pb–Pb colli-
sions at 

√
sNN = 2.76 TeV were measured. The jets were required 

to contain at least one charged particle with pT > 5 GeV/c. The 
effect of this requirement on the reported RAA was evaluated by 
the ratios of the jet spectra with the 5 GeV/c to no requirement 
compared to expectations on PYTHIA, and found not to have an 
observable effect within the uncertainties of the measurement. Jets 
with 40 < pT, jet < 120 GeV/c are strongly suppressed in the 10% 
most central events, with RAA about 0.28 ± 0.04, independent of 
pT, jet within the uncertainties of the measurement. The suppres-
sion in 10–30% events is 0.35 ± 0.04, slightly less than in the most 

central events. The observed suppression is in fair agreement with 
expectations from two jet quenching model calculations.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the out-
standing performance of the LHC complex. The ALICE Collaboration 
gratefully acknowledges the resources and support provided by 
all Grid centers and the Worldwide LHC Computing Grid (WLCG) 
collaboration. The ALICE Collaboration acknowledges the follow-
ing funding agencies for their support in building and running 
the ALICE detector: State Committee of Science, World Federation 
of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho 
Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fi-
nanciadora de Estudos e Projetos (FINEP), Fundação de Amparo à 
Pesquisa do Estado de São Paulo (FAPESP); National Natural Sci-
ence Foundation of China (NSFC), the Chinese Ministry of Educa-
tion (CMOE) and the Ministry of Science and Technology of China 
(MSTC); Ministry of Education and Youth of the Czech Republic; 
Danish Natural Science Research Council, the Carlsberg Founda-
tion and the Danish National Research Foundation; The European 
Research Council under the European Community’s Seventh Frame-
work Programme; Helsinki Institute of Physics and the Academy 
of Finland; French CNRS–IN2P3, the ‘Region Pays de Loire’, ‘Region 
Alsace’, ‘Region Auvergne’ and CEA, France; German Bundesmin-
isterium fur Bildung, Wissenschaft, Forschung und Technologie 
(BMBF) and the Helmholtz Association; General Secretariat for Re-
search and Technology, Ministry of Development, Greece; Hungar-
ian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and Na-
tional Office for Research and Technology (NKTH); Department of 
Atomic Energy and Department of Science and Technology of the 
Government of India; Istituto Nazionale di Fisica Nucleare (INFN) 
and Centro Fermi – Museo Storico della Fisica e Centro Studi e 
Ricerche “Enrico Fermi”, Italy; MEXT Grant-in-Aid for Specially Pro-
moted Research, Japan; Joint Institute for Nuclear Research, Dubna; 
National Research Foundation of Korea (NRF); Consejo Nacional 
de Cienca y Tecnologia (CONACYT), Direccion General de Asun-
tos del Personal Academico (DGAPA), México, Amerique Latine 
Formation academique–European Commission (ALFA–EC) and the 
EPLANET Program (European Particle Physics Latin American Net-
work); Stichting voor Fundamenteel Onderzoek der Materie (FOM) 
and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek 



8 ALICE Collaboration / Physics Letters B 746 (2015) 1–14

(NWO), Netherlands; Research Council of Norway (NFR); National 
Science Centre of Poland; Ministry of National Education/Institute 
for Atomic Physics and Consiliul Naţional al Cercetării Ştiinţifice–
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