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Abstract Source code authorship attribution is the

task of determining who wrote a computer program,

based on its source code, usually when the author is

either unknown or under dispute. Areas where this can

be applied include software forensics, cases of software

copyright infringement, and detecting plagiarism. Nu-

merous methods of source code authorship attribution

have been proposed and studied. However, there are no

known easily-accessible and user-friendly programs that

perform this task. Instead, researchers typically develop

software in an ad hoc manner for use in their studies,

and the software is rarely made publicly available. In

this paper, we present a software tool called ASAP (A

Source Code Authorship Program), which is suitable

to be used by either the layperson or the expert. An au-

thor can be attributed to individual documents one at
a time, or complex authorship attribution experiments

can easily be performed on large datasets. In this paper,

the interface and implementation of the ASAP tool is

presented, and the tool is validated by using it to repli-

cate previously-published authorship attribution exper-

iments.

Keywords authorship attribution · source code ·
software forensics · plagiarism detection · software
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1 INTRODUCTION AND BACKGROUND

Authorship attribution is simply “the task of deciding

who wrote a document” [1]. It is applied often to natu-

ral language documents. Phraseology and stylistic fea-

tures such as word usage, word frequency, word length,

blend usage, n-grams, etc., are used to determine the

style in which a document is written. Documents of

known authorship are used for training, and the train-

ing results are then used to attribute authors to doc-

uments whose author isn’t known. Zhao and Zobel [1]

provide a review and comparison of many methods of

authorship attribution of natural language documents.

If authorship attribution is simply deciding who wrote

a document, then “source code authorship attribution”

is the task of deciding who wrote a document containing
source code. Numerous methods of source code author-

ship attribution have been proposed [2–14], and many

of these methods have been further studied, improved,

and compared [15–20]. A comprehensive review of these

methods is omitted here for the sake of brevity, but the

reader is encouraged to consult the references as desired

or needed. Authorship attribution of object code is also

possible, but much more difficult and less reliable. Hen-

drikse [21] provides a detailed study of different meth-

ods of authorship attribution of object code and the

effects of obfuscation on such methods.

This paper presents ASAP (A Source Code Author-

ship Program), which is a tool specifically for source

code authorship attribution. It is capable of perform-

ing “one-off” authorship tasks, in which the user simply

needs to determine the authorship of a single document.

It is also capable of performing batch authorship tasks,

in which the user has an entire collection of documents

to attribute. Finally, it is capable of performing complex

authorship attribution experiments, in which the user
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identifies a directory that contains the data repository

over which a k-fold cross validation or a leave-one-out

cross validation experiment can be performed. Each of

these use cases will be discussed later in this paper.

There are no other known tools whose sole and spe-

cific purpose is to perform source code authorship attri-

bution tasks. The ASAP tool implements two state-of-

the-art methods [22] of source code authorship attribu-

tion: SCAP [2] and Burrows [3]. There are no other

known tools that implement these specific methods.

The ASAP tool is meant to be accessible, but powerful,

suitable for both the expert and the layperson.

There are tools that perform authorship attribu-

tion of natural language documents, such as NeoNeuro

(neoneuro.com) and JStylo [23]. These tools analyze

documents by searching for and extracting stylistic fea-

tures like those previously mentioned (word usage, word

frequency, etc.) to try to attribute authors to docu-

ments of unknown authorship. Unlike ASAP, both of

these tools are meant to attribute authors to natural

language documents rather than source code. NeoNeuro

is a proprietary commercial product whose underlying

algorithms are largely unknown. While JStylo is open-

source, it is meant purely for attribution of naturual

language documents. Its analyses are based on features

such as sentence length, word choice, and grammatical

structure, most of which would not be applicable in a

source code scenario. Furthermore, the end purpose of

the JStylo tool is not authorship attribution. Rather,

the primary purpose is to circumvent authorship at-

tribution. Indeed, the end goal of the authors of the

JStylo tool was to protect the anonymity of authors by

creating a tool that would provide advice to authors on

how to change their writing style to thwart authorship

attribution attempts [23].

There are also tools that perform general machine

learning and data mining tasks, such as scikit-learn [24]

and Weka [25]. These tools provide a vast array of func-

tionality including classification, clustering, regression,

and visualization. They implement algorithms such as

support vector machines (SVM), k-nearest neighbors

(knn), random forests, C4.5 decision trees, spectral clus-

tering, and myriad other machine learning algorithms.

These tools can be powerful. However, they are also ex-

cessive and inaccessible to the non-expert. The input

data must be put into a proprietary format, and de-

scribed as a finite set of features. The user must not

only know and specify which general approach to use

(e.g., classification, regression, or clustering), but the

specific algorithm must also be specified (e.g., naive

Bayes, multi-layer perceptron, or Hoeffding tree). These

tools are meant to be very broad in their potential ap-

plications, and they are targeted specifically for experts

and researchers.

The task of detecting copied code, sometimes re-

ferred to as clone code detection, is similar but dis-

tinct from source code authorship attribution. Detect-

ing when students copy their programs in a classroom

setting, for example, can be approached by determining

whether any two programs within a collection of sub-

mitted programs are similar to each other, where all

of the programs in the collection are supposed to have

addressed the same problem. In other words, the pro-

grams being compared are supposed to be functionally

equivalent or at least functionally very similar to each

other. While related, this is different from the prob-

lem of source code authorship attribution, which is to

determine whether a program is stylistically similar to

programs known to have been written by a particu-

lar author, where the programs being compared ad-

dress entirely different problems. The programs being

compared, from a functional standpoint, are completely

unrelated. There are many tools that are meant to de-

tect copied code in a programming classroom, including

JPlag [26] and MOSS [27].

Tools also exist that are meant to detect plagiarism,

such as SNITCH [28] and Turnitin (turnitin.com). How-

ever, these tools are meant primarily for natural lan-

guage documents rather than source code. Again, while

this is certainly a related problem, it is not equivalent

to the problem of authorship attribution. The goal in

this other case is not to determine the author of a doc-

ument. Rather, the goal is to identify snippets of text

within a document that are similar to snippets of text

that can be found elsewhere in other documents.

Therefore, we believe the ASAP tool is unique. Its

scope is limited to authorship attribution of source code.

It is suitable for both experts and non-experts. Unlike

sophisticated machine learning workbenches, it requires

no training or preparation to use. It is user-friendly and

accessible. It takes plain source files as input, rather

than proprietary data files. No data cleaning, prepro-

cessing, or feature extraction is required prior to per-

forming authorship tasks. It implements two state-of-

the-art methods, SCAP and Burrows, that are not im-

plemented in any other off-the-shelf, ready-to-use tool.

Although the ASAP tool currently incorporates only

these two methods, it was designed and implemented

to be extensible so that additional methods could be

added in the future. Because the tool has incorporated

the SCAP and Burrows method specifically, these meth-

ods will be briefly described here.
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1.1 SCAP Method

In the SCAP method [2] of source code authorship at-

tribution, a profile is created for every author that is a

candidate to have written the program of unknown au-

thorship, which will henceforth be known as the query

program. The author profile is known as the Source

Code Author Profile (SCAP). To determine the author

of a query program, the program is compared using a

similarity measure known as SPI to all of the available

author profiles. The author whose profile is most similar

to the query program is attributed to be its author.

In the SCAP method, both the programs and the

author profiles are represented as n-grams. The n-grams

are encoded at the byte level, which means that ev-

ery byte contained in the source file is included in the

n-grams, even hidden control characters. The scheme

is completely language-agnostic; nothing in the SCAP

method relies on features of the programming language

used to write the source code.

An author profile is created by concatenating to-

gether all of the programs written by that author. The

concatenated programs are represented as byte-level n-

grams. The frequency of each n-gram is stored in a

table. It is this table of frequencies that becomes the

profile for that author. Only the L-most frequently oc-

curring n-grams are retained in the table, so that L is

referred to as the profile length.

The Simplified Profile Intersection (SPI) is the sim-

ilarity measure used to compare a query program to

the author profiles. The SPI is simply the number of

n-grams that an author profile and a program have in

common:

|PA ∩ PP | (1)

where PA represents the author profile and PP rep-

resents the program profile (i.e., the set of n-grams that

occur in that program). So, it is ultimately the author

who often uses the n-grams that appear in the query

program that is attributed to be its author.

1.2 Burrows Method

The general approach used in the Burrows method [3]

is quite similar to the one used in the SCAP method.

To determine the author of a program, that program is

considered to be a query. The query program is com-

pared using a similarity measure to all of the programs

in the dataset. The author of the most-similar program

is considered the author of the query program. So, in

essence, it is the author who wrote the program that is

most similar to the query program that is attributed to

be the author. Note that this approach can be clearly

distinguished from the SCAP approach in that author

profiles are not used at all. The query program is com-

pared to each program in the dataset one at a time.

The author of the program that is found to be most

similar is then attributed to be the author of the query

program.

The Burrows method also uses n-grams to represent

programs. However, those n-grams are not byte-level.

Rather, they are token-based and very much language-

specific. Features that are considered significant are se-

lected for each programming language. Programming

language features such as keywords, identifiers, whites-

pace, literal values, and operators are used. Programs

are scanned, only those tokens deemed as significant are

retained, and those tokens are used to create n-grams.

The Burrows method uses the Okapi BM25 similar-

ity metric [29]. This metric was selected after it was

determined to be the most effective through empiri-

cal testing. The metric, used in some search engines,

is meant to calculate the likelihood that a document is

relevant to the information need expressed in the query.

The metric is calculated as follows [3,29]:

Okapi(Q,Dd) =
∑
t∈Q

wt
(k1 + 1)fd,t
K + fd,t

(k3 + 1)fq,t
k3 + fq,t

(2)

wt = ln
N − ft + 0.5

ft + 0.5
(3)

K = k1

(
(1− b) +

bWd

WD

)
(4)

where Q is the query document, Dd is the document

that the query is being compared to, t is a term in

the query that also appears in the document, N is the

number of total documents in the collection, Wd is the

document length, WD is the average document length in

the collection, ft is the frequency of the term within the

collection, fd,t is the frequency of the term within the

document, and fq,t is the frequency of the term within

the query. The recommended values for the parameters

are k1 = 1.2, k3 = 1000, and b = 0.75. In the Burrows

method, the recommended values for k1 and b are used,

while k3 is set to 1010.

2 ASAP USER INTERFACE

The ASAP tool is organized into two parts: a front-

end and a back-end. The front-end is a GUI that is

meant to be user-friendly and accessible. The back-end

is a command-line interface that performs all of the ac-

tual processing. The GUI is meant to provide an easy-

to-use interface for all of the fundamental authorship
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Fig. 1 The ASAP GUI

attribution activities that a user might want to per-

form. However, if the GUI is found to be insufficient for

whatever reason, then the GUI can be bypassed and

the command-line interface can be called directly. This

could be useful, for example, if the user wishes to create

a batch script in order to easily and repeatedly process

a sequence of commands that might be specific to that

user’s purpose.

This section will discuss the ASAP tool from a user’s

perspective, and will be organized into three parts. The

first part will discuss the front-end GUI. The second

part will discuss the back-end command-line interface.

The third part will discuss installation issues. A sub-

sequent section will discuss the tool’s software from a

design and implementation perspective.

2.1 The Front-End

The ASAP GUI is shown in Fig. 1. The GUI is par-

titioned into three main areas. The first area, in the

upper-left-hand position of the window, allows the user

to select the type of query or experiment to execute.

The second area, in the upper-right-hand position of

the window, allows the user to pick which method of

authorship attribution to execute (either SCAP or Bur-

rows) along with any parameters that are specific to

whichever method is picked. The third area, in the bot-

tom of the window, is a text area where the output is

displayed.

2.1.1 Use Case #1: Single document query

If the user wishes to attribute an author to a single

document, then the “Query” tab should be selected, as

shown in Fig. 1. In this case, there are three additional

selections to be made: the query document, the training

directory, and the output directory.

The query document is the source file whose author

is presumably unknown. It is this file to which an author

will be attributed.

The training directory should contain samples from

all of the candidate authors. Inside the training direc-

tory, there should be a folder for each candidate author,

and samples from each author should be placed inside

those folders respectively. For example, say we have

three candidate authors: Alice, Bob, and Carol. The

training directory should respectively have three fold-

ers called Alice, Bob, and Carol; and all of the known

work from each author should be stored inside each of

those respective folders.

The output directory should be an empty folder

where the output files will be stored. Any intermedi-

ate files that are generated, as necessitated by the at-

tribution method, will also be stored in this folder. For

example, in the SCAP method, a profile for each author

will be created. Those profiles will be stored inside the

specified output folder.

Once the query selections have been made, the user

will click the Query button in order to finally execute

the query. The tool will generate a command-line state-
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ment based on the selections made by the user, which

will be sent to the back-end to be executed. As the

query executes, a verbose read-out of the results will

be displayed in the text area at the bottom of the win-

dow. The final line of output will indicate which author

was attributed to have written the query document.

Resulting data will also be saved to a spreadsheet. By

clicking the Open Spreadsheet button, the spreadsheet

will open allowing the user to view it.

The output from an example query is shown in Fig. 2.

In this example, a document known to have been writ-

ten by AuthorA is selected as the query document.

There are three candidate authors: AuthorA, AuthorB,

and AuthorC. The SCAP method is used to perform the

query. The output text area shows the training phase,

where the author profiles are created. Then it shows

output from the query phase, where the query docu-

ment is compared to each author profile. Finally, it in-

dicates that AuthorA is indeed the matching author.

After the query has completed execution, the Open

Spreadsheet button will become active. If the user clicks

this button, then a spreadsheet will open containing

data that was collected from the query. The spread-

sheet generated by the example query is shown in Fig. 3.

Each candidate author is listed, along with the author’s

similarity score. (Remember that the similarity score

indicates how similar the query document is to the re-

spective author’s profile.) In this case, the query docu-

ment was most similar to AuthorA’s profile, therefore

AuthorA was attributed to be its author.

2.1.2 Use Case #2: Default split experiment

If the user wishes to attribute an author to many doc-

uments all at once or if the user wishes to perform an

authorship attribution experiment where the data has

already been segmented into training data and test-

ing data, then the “default split” experiment should be

chosen. For this option, the test directory and train-

ing data must be specified. Both directories should be

organized in the same manner as described in the pre-

vious subsection. That is, each directory should contain

folders that correspond to the candidate authors. Each

candidate author’s folder will contain samples written

by that author. The samples contained inside the spec-

ified training directory will be used for training, while

the samples contained inside the specified test direc-

tory will be used for testing. Once those selections have

been made, the user will click the Experiment button

in order to finally execute the experiment.

Once the Experiment button has been clicked, the

experiment will proceed. Training will first be performed

using the specified training data. Then each document

in the test folder will be attributed and checked for cor-

rectness. The overall accuracy will be reported both as

a ratio (e.g. “3 out of 3 files were correctly attributed”)

and as a percentage. Experiment data will also be col-

lected and stored in a spreadsheet, which can be viewed

by clicking the Open Spreadsheet button. (Note that if

this option is being used to attribute an author to sev-

eral documents at once rather than to perform an ex-

periment, then the reported accuracy can be ignored.

Each document will be attributed an author, which is

all that will be relevant to the user.)

An example execution of a “default split” experi-

ment is shown in Fig. 4. In the output text area, the

user can follow the progress of the experiment as it

proceeds. Fig. 5 shows the corresponding spreadsheet

that is generated. Each test document is listed, show-

ing the actual author of the document along with the

attributed author. Finally, the attribution accuracy is

given.

2.1.3 Use Case #3: K-fold cross validation experiment

In a k-fold cross validation experiment, only a single

dataset is specified. The dataset folder should be or-

ganized as usual: each candidate author should have

a folder, where that author’s samples are stored. A k

value is also specified. The k value specifies the number

of segments (or “folds”) that the data should be split

into. Each of the k segments is then used, in turn, as the

test data while the remaining folds are used for train-

ing. For example, say we choose three folds, then the

data will be randomly split into three segments. The

first segment will be used for testing while the remain-

ing two folds will be used for training. Then the second

segment will be used for testing with the remaining two

folds used for training. Finally the third segment will

be used for testing with the other two used for train-

ing. The accuracy will be measured as a percentage of

documents correctly attributed across all the folds. The

point of cross validation is to maximize the number of

test cases, while avoiding overfitting, in order to esti-

mate the general accuracy of the method.

After the dataset folder and the k value are selected,

the user will click the Experiment button, and the ex-

periment will proceed. As usual, the output text area

will show the results as the experiment proceeds. The

accuracy will be reported for each individual segment,

and finally the overall accuracy will be displayed. The

data will also be collected into a spreadsheet, which can

be opened by clicking the Open Spreadsheet button.

Fig. 6 and Fig. 7 show spreadsheet data from an

example execution, where there are five candidate au-

thors and three folds. The first tab of the spreadsheet
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Fig. 2 Output from an example query

Fig. 3 Spreadsheet data from an example query

contains the overall aggregate results across all the folds

(see Fig. 7), and the test results of each fold is reported

in its own tab (see Fig. 6).

In this example, the overall accuracy was 90.6% with

29 file out of 32 correctly attributed. The attribution

accuracy of each individual author in the dataset is also

reported. (See Fig. 6.) For each fold, each file in the fold

is listed, along with the actual author of the document

as well as the similarity score for each author. The high-

est similarity score for each file is highlighted. In this

example, ten out of eleven files in the fold were cor-

rectly attributed. The single file that was incorrectly

attributed barely missed. The highest similarity score

was 107, while the correct author had a similarity score

of 105. (See Fig. 6.)

2.1.4 Use Case #4: Leave-one-out cross validation
experiment

A leave-one-out cross validation experiment is basically

a special case of the k-fold cross validation, where the

k value is equal to the total number of documents in

the dataset. In other words, each file is individually se-

lected (one at a time) for testing while all the remaining

files are used for training. This maximizes both the size

of the training set for each query as well as the total

number of test cases, while still avoiding overfitting.

In this type of experiment, the user only has to spec-

ify the dataset folder. The results are reported in the

output text area as the experiment proceeds with the

overall accuracy finally reported at the end. The results

are also compiled in a spreadsheet, which can be opened

by clicking the Open Spreadsheet button. The first tab

of the spreadsheet will contain the overall aggregate re-

sults across the entire dataset, and the test results of

each individual author will be reported in its own tab.

The format of the spreadsheet is not dissimilar to that



ASAP: A Source Code Authorship Program 7

Fig. 4 An example execution of a “default split” experiment

Fig. 5 Spreadsheet data from an example “default split” ex-
periment

of the k-fold cross validation, an example of which is

shown in Fig. 6 and Fig. 7.

2.1.5 The built-in authorship attribution methods

As previously noted, the ASAP tool contains two built-

in methods of authorship attribution: SCAP and Bur-

rows. (See Sect. 1.1 and Sect. 1.2 for an overview of

these methods.) In the upper-right-hand position of the

GUI, the user is allowed to pick which method of au-

thorship attribution to use (either SCAP or Burrows)

along with any parameters that are specific to the se-

lected method. The user selects the method by simply

clicking on the corresponding tab, and whichever tab is

active when the query is executed will be the method

used.

When a tab is selected, the parameters associated

with that method of attribution can be specified. Both

the SCAP and Burrows methods utilize n-gram repre-

sentations of programs. Therefore, for both methods,

the value for n must be selected. In SCAP, the n value

represents the number of bytes contained in each n-

gram. In Burrows, the n value represents the number

of tokens contained in each n-gram.

In the SCAP method, the parameter L represents

the profile length. Recall that the number of times each

n-gram is used by an author is stored in a table, and it

is this table that becomes the profile for that author.

But only the L-most frequently occurring n-grams are

retained in the table, such that L is referred to as the

profile length.

In the Burrows method, only features of a program-

ming language that are considered significant are used

in the n-gram representation of programs. Features are

used such as keywords, identifiers, literal values, and

operators. The features that are considered significant

are dependent upon the programming language, and

determining which features are considered to be signif-

icant has been a topic of research [17]. For that reason,
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Fig. 6 Data from a single fold of an example k-fold cross validation experiment

Fig. 7 Aggregate data from an example k-fold cross valida-
tion experiment

the user is allowed to select which features to use. The

list of features should be stored in a plain text file, and

that file is then selected in the GUI. Two feature files

are distributed with the ASAP tool: one set of features

for the Java programming language and another set of

features for C++. These files can be freely modified by

the user, or the user is free to select a different file al-

together containing an entirely different set of features.

2.2 The Back-End

The ASAP back-end is a command-line interface, im-

plemented in Perl. The main Perl script that is to be

executed is Asap.pl, so to launch the application the

following command must be issued:

perl Asap.pl

Without any additional flags the program’s help

text will be displayed. The first line of help text is as

follows:

Mode not specified (-train|-query|-

experiment).

This means that the ASAP back-end requires a flag

indicating the mode of operation: train, query, or ex-

periment. Without this mode-of-operation flag, the pro-

gram cannot proceed. Additional flag options will vary,

depending upon which mode the program is operat-

ing in. In other words, the options available in train-

ing mode will be different than the options available in

query mode, and those options will be different than

the options available in experiment mode.

Typically, the user will want to perform a single doc-

ument query or perform an experiment. In the case of

a single document query, training must be performed

first. So, to do a single document query, the user will

first run in training mode, and then execute the query in

query mode. Additional queries can be executed with-

out re-training, so long as the training data does not

change. If the training data does indeed change, then

the user must re-execute in training mode before any
additional queries can be made. In the case of an ex-

periment, training does not have to be done separately.

The timing and nature of training will vary based on

the parameters of the experiment itself. Therefore, any

necessary training is automatically performed as needed

while the experiment itself is executing.

2.2.1 Training Mode

The script is executed in Training Mode as follows:

perl Asap.pl -train (-scap|-burrows) (-

inputdir=<directory >) (-outputdir=<

directory >) [-n=<natural number >] [-

tokenfile=<file >]

The user must select the method of authorship at-

tribution being used:

-scap: Use SCAP method

-burrows: Use Burrows method
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The user must select the input directory containing

the training data, and the output directory where any

intermediate and output files will be stored:

-inputdir=<directory >: Location of training

data

-outputdir=<directory >: Location to store

output files

The n-gram size and token file location only need

to be specified when using the Burrows method only

(note that n-grams are not generated during the train-

ing phase of the SCAP method, so the n-gram size is

not necessary during training when using SCAP):

-n=<natural number >: Specifies n-gram size

-tokenfile=<file >: Specifies the file

containing the list of feature tokens

Here is an example of a training command when

using the SCAP method:

perl Asap.pl -train -scap -inputdir=

my_input_data -outputdir=train_results

Here is an example of a training command when

using the Burrows method:

perl Asap.pl -train -burrows -inputdir=

my_input_data -outputdir=train_results -

n=6 -tokenfile=JavaTokens.txt

2.2.2 Query Mode

The script is executed in Query Mode as follows:

perl Asap.pl -query (-scap|-burrows) (-

inputdir=<directory >) (-doc=<file >) [-

report=<file >] [-n=<natural number >] [-L

=<natural number >]

First, the user must select the method of author-

ship attribution being used. Next, the user must select

the directory containing the training results. (Note that

the query input folder will be the same as the training

output folder. In other words, the output of the train-

ing phase becomes the input to the query phase.) The

query document must also be specified:

-inputdir=<directory >: Location of files

created during training

-doc=<file >: Query document whose author is

to be attributed

If an Excel spreadsheet is desired, then the name

and location of the spreadsheet must be specified. If no

spreadsheet is desired, then this flag should simply be

omitted:

-report=<file >: Specifies Excel file to

store results (optional)

The n-gram size and profile length only need to be

specified when using the SCAP method only (if using

Burrows, the n-gram size and token file were specified

previously during training and do not need to be re-

peated for the query):

-n=<natural number >: Specifies n-gram size

-L=<natural number >: Specifies profile

length

Here is an example of a query command when using

the SCAP method, where a spreadsheet is not created:

perl Asap.pl -query -scap -inputdir=

train_results -doc=example.java -n=6 -L

=2000

Here is an example of a training command when

using the Burrows method, where a spreadsheet is cre-

ated:

perl Asap.pl -query -burrows -inputdir=

train_results -doc=example.java -report=

results.xls

2.2.3 Experiment Mode

The script is executed in Experiment Mode as follows:

perl Asap.pl -experiment (-scap|-burrows)

[...]

First, the user must select the method of authorship

attribution being used. If performing a default split

experiment, then the test directory and training direc-

tory must be specified:

-testdir=<directory >: Location of testing

data

-trainingdir=<directory >: Location of

training data

If performing a k-fold cross validation experi-
ment, then the dataset directory and k value must be

specified:

-inputdir=<directory >: Location of dataset

-k=<natural number >: Number of folds

If performing a leave-one-out cross validation

experiment, then only the dataset directory must be

specified (and the k value should simply be omitted):

-inputdir=<directory >: Location of dataset

Finally, the parameters required by the authorship

attribution method must be specified. The n value must

be specified for both SCAP and Burrows. The profile

length L must be specified only if using SCAP, while

the token file must be specified only if using Burrows.

Here is an example of a “default split” experiment

command using the SCAP method:

perl Asap.pl -experiment -scap -testdir=

my_test_data -trainingdir=

my_training_data -n=6 -L=2000 -report=

results.xls -verbose
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Here is an example of a k-fold cross validation ex-

periment command using the Burrows method:

perl Asap.pl -experiment -burrows -inputdir=

my_dataset -k=3 -n=6 -tokenfile=

JavaTokens.txt -report=results.xls

v e r b o s e

Here is an example of a leave-one-out cross valida-

tion experiment command using the SCAP method:

perl Asap.pl -experiment -scap -inputdir=

my_dataset -n=6 -L=2000 -report=results.

xls -verbose

2.3 Installation

The ASAP front-end is Java-based and the back-end is

Perl-based. Therefore, the Java Runtime Environment

(JRE) and a Perl interpreter must be installed in order

to use it. (Note that the ASAP tool itself is operating

system independent. As long as both Java and Perl are

installed on the system, then the ASAP tool should

work.) A JRE is typically installed on most systems by

default, so the user will likely not have to install it. If,

however, it does indeed need to be installed, then it can

be obtained at Oracle’s Java Download page:

http ://www.oracle.com/technetwork/java/

javase/downloads/

If the user has not already installed a Perl inter-

preter, then one will likely need to be installed. We

recommend ActivePerl, which is free to install and use

for non-commercial use. ActivePerl can be downloaded

at ActiveState’s Perl Download page:

https ://www.activestate.com/activeperl/

downloads/

After Perl itself has been installed, several Perl li-

braries that are used by ASAP will also need to be

installed. To do this, open a command prompt. (In

Windows, this can be done by typing “cmd” into the

Windows search field.) At the command prompt the

following commands will need to be executed:

PPM install dmake

cpan App:: cpanminus

cpanm Spreadsheet :: WriteExcel

cpanm -f Text:: Ngrams

cpanm -f FFI::Raw

cpan IPC::Cmd

After Java and Perl have been installed, the ASAP

tool itself will need to be installed. The installation is

trivial. In fact, it is entirely self-contained, so no true

installation is required at all. The user merely needs

to download the ASAP folder to any location on the

target computer. The ASAP folder can be obtained and

downloaded from the following GitHub repository:

https :// github.com/ASAP -Project/ASAP

Once the folder has been downloaded, the GUI can

be launched by clicking on the ASAP.jar file inside

the src folder. The command-line back-end can be exe-

cuted by running the Asap.pl script, which can also be

found inside the src folder. Please refer to the previous

sections of this paper for detailed information about

running both the GUI and the command-line interface.

3 SOFTWARE DESIGN AND

IMPLEMENTATION

The ASAP front-end was implemented using the Java

programming language, and the ASAP back-end was

implemented using Perl. These languages were chosen

for several reasons. Primarily, they are both interpreted

languages, and the Java interpreter is installed on most

systems by default. As interpreted languages, they are

system independent. Any system with a Java and Perl

interpreter installed can run the ASAP tool. In this

section, the software design and implementation of both

the front-end and back-end will be discussed.

3.1 Perl Back-end

The back-end of the ASAP tool does essentially all of

the work. All of the processing is done by the back-

end, while the GUI front-end is just a shell. The GUI

provides a user-friendly interface to collect user input.

That input is then used to form a command that is

sent to the back-end for processing. Whatever output

is generated by the back-end is then displayed to the

user via the GUI.

As already noted, the back-end is implemented in

Perl. Perl was used for a number of reasons. One of the

language’s major strengths is text processing, which is

fundamentally what most authorship attribution tasks

consist of. Second, there is a Perl library called “Text::

Ngrams” that does n-gram processing. Finally, previous

authorship attribution researchers set a precedent by

using Perl in their studies [2,15,18,20].

The source code for the back-end consists of nine

total files: the main script called Asap.pl, six general-

purpose supporting modules (Anonymize, Console, Di-

rectory, File, Report, and Validate), and two modules

that implement the built-in authorship attribution meth-

ods (Burrows and Scap).

The Anonymize module strips what are referred to

as C++ and C-style comments as well as string literal

values from source files. C++ comments begin with a

double slash (//), while C comments begin with /* and
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end with */. String literal values are enclosed in double-

quotation marks. The Console module handles console

messaging. The tool has several print settings: verbose,

quiet, and debug. In quiet mode, only messages that

are deemed “required” are printed. In verbose mode,

all messages that would be relevant at all to the user

are printed. In debug mode, all verbose messages are

printed plus messages that would only be useful to a

code developer. The module also provides a mechanism

for printing and handling warning and error messages.

The Directory module reads and deletes folders. The

File module reads and writes files. The Report mod-

ule provides a mechanism for tracking data from queries

and experiments, and reporting on that data in the form

of a spreadsheet. Finally, the Validate module per-

forms much of the processing necessary for cross val-

idation, such as segmenting the dataset into folds for

k-fold cross validation experiments.

The Asap.pl file contains the main script. This is

the script that is executed when issuing a command

at the command-line. It reads the command-line argu-

ments, and issues errors and help messages when the

commands are ill-formed. If the commands and param-

eters are indeed well-formed, then this is the script that

calls the appropriate methods in the supporting mod-

ules in order to actually perform the respective query

or experiment based on the parameters specified.

Finally, the Burrows and Scap modules contain code

to implement the Burrows and SCAP methods of au-

thorship attribution, respectively. Each of these mod-

ules contain three primary functions: train, query, and

experiment. The train function takes an input direc-

tory and an output directory as parameters in addition

to any other parameters that are specific to that par-

ticular method of authorship attribution. The query

function takes the query document as a parameter, as

well as the training input directory and the query out-

put directory. (Note that the input directory for the

query will always be the output directory that was gen-

erated from the training. In other words, a query can’t

be executed until training has happened first. The out-

put of the training phase will always be the input to the

query phase.) Finally, the experiment function will

take the test directory, training directory, input direc-

tory, and k-value as parameters. The type of experiment

that will be executed will depend upon which of these

parameters are defined. If the test directory and train-

ing directory are defined (but not the input directory

or k-fold size), then a “default split” experiment will be

executed. If the k-fold size and input directory are de-

fined, then a k-fold cross validation will be performed.

If the input directory is defined (but not k-fold size),

then a leave-one-out cross validation will be performed.

In addition to these three functions, both the Burrows

and Scap modules contain other supporting functions

that are specific to each particular method.

If any additional methods of authorship attribution

are added to the ASAP tool in the future, then a module

will be created specifically for that new method. It must

contain the three functions, as described above (train,

query, and experiment). The Asap.pl file must also be

modified to accept parameters that are necessary to

execute that particular method. None of the other code

would be touched. In that way, the back-end software

can be considered easily extensible.

3.2 Java Front-end

As noted before, most of the processing is done by the

back-end, while the GUI front-end is just a shell. The

GUI provides a user-friendly interface to collect user

input. That input is then used to form a command that

is sent to the back-end for processing. Whatever output

is generated by the back-end is then displayed to the

user via the GUI.

The GUI is implemented in Java. Java was chosen

primarily for cross-platform compatibility. No installa-

tion by the user is required, because Java is pre-installed

on most systems. The code is compiled into a single ex-

ecutable jar file, making it easy to distribute. It is also

easy for the user to execute.

The GUI was visually designed using the NetBeans

IDE, so the vast majority of the code was auto-generated

by the IDE. The main file is AsapGUI.java, which

literally contains the main method in addition to all

of the auto-generated code. The Java Swing toolkit

was used to create the GUI. The AsapGUI class ex-

tends JFrame. The JFrame contains 3 components

of primary interest: two tabbed panes called query Ex-

periment Tabbed Pane and methodTabbedPane (whose

data type is JTabbedPane), and a text area called re-

sults Text Area (whose data type is JTextArea). The

query Experiment Tabbed Pane appears in the upper-

left-hand area of the GUI and allows the user to select

whether to perform a query or experiment, along with

the associated parameters. The methodTabbedPane ap-

pears in the upper-right-hand area of the GUI and al-

lows the user to select which method of authorship at-

tribution to use, along with the associated parameters.

The resultsTextArea is used to display the output of

the query or experiment as it is being executed.

Other classes that are used are listener classes that

act as event handlers. These classes listen for relevant

events, such as text being entered into a text field, and

respond accordingly. The majority of the Java code is
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used to simply set up the GUI and event handling,

so there is very little of interest to discuss. Once the

Query or Experiment button is clicked, the run Pro-

gram Button Action Performed event-handler method

is executed. In this method, the values from the perti-

nent text fields and sliders are read, based on the tabs

that are active, and a Perl command is constructed ac-

cordingly. After the Perl command is constructed, it

is executed using the exec method from the Runtime

class. (The Runtime class is a class found in the stan-

dard Java library in the java.lang package.) The exec

method is used to issue a system command that runs

in a separate process.

When the back-end command is executed, a new

thread is launched that listens to the input stream as-

sociated with the process that is running that com-

mand. As input is read from that input stream, it is

immediately displayed in the results text area. In this

way, the output that is generated while the Perl com-

mand is executing is, in turn, displayed in real-time

in the GUI’s text area. The class that handles this is

called StreamGobbler, which extends the Thread class.

When the Perl command is issued using the Runtime

class’s exec method, a StreamGobbler object is created

and executed as well. So, as a Perl command executes,

there are 3 processes/threads that run in parallel: the

GUI application, the Perl command, and a thread that

reads the output from the Perl command and updates

the GUI’s text area accordingly.

To add an additional method of authorship attribu-

tion to the ASAP GUI, a corresponding JPanel com-

ponent would need to be created that contains what-

ever GUI components are necessary to allow the user

to specify all of the relevant parameters associated with

that method (such as text fields, sliders, etc.). That

panel would then be added as a tab to the method

Tabbed Pane. The run Program Button Action Per-

formed method would also need to be updated, so that

when the Query/Experiment button is clicked, the nec-

essary GUI components would be inspected in order to

build a proper Perl command that would then be exe-

cuted.

4 TOOL VALIDATION

To validate the ASAP tool, experiments were replicated

whose results have been previously published [15–17],

and the results generated by the tool were compared

to the previously-reported results. The studies being

replicated were chosen because the dataset used in the

studies was consistent and easily attainable, the studies

utilized the Burrows and SCAP methods of authorship

attribution (which the ASAP tool supports), and the

experimental methodologies used were clearly described

making them ideal for replication.

The dataset consisted of 7,231 total files. It con-

sisted of files written in C++ and Java, and it consisted

of open-source programs and programs that accompany

programming textbooks. Therefore, the dataset could

be categorized into four segments: (1) open-source pro-

grams written in C++, (2) open-source programs writ-

ten in Java, (3) textbook programs written in C++,

and (4) textbook programs written in Java. The dataset

consisted of programs written by a total of 30 authors

(15 open-source authors and 15 textbook authors). The

open-source programs were collected from the Planet

Source Code website (planet-source-code.com) using a

procedure established by Burrows [18]. The textbook

programs were collected from the websites of textbook

publishers and authors, as described by Tennyson [15].

There were a total of 12 experiments conducted. All

of the experiments utilized a leave-one-out cross valida-

tion approach. The Burrows method was used once on

each segment of data, which accounts for four of the ex-

periments. The SCAP method was used twice on each

segment of data, which accounts for eight of the experi-

ments. The reason the SCAP method was used twice is

because it was executed on both an anonymized version

of the source files as well as the original, unmodified

version of the source files. Many authorship attribu-

tion experiments are performed on “anonymized” ver-

sions of source files. These anonymized versions have

all comments and string literals stripped from them.

There are two reasons why this is sometimes done: (1)

to hide the identities in cases where human subjects

were used to collect the data and (2) to make the exper-

iments more realistic by eliminating names and other

explicitly-identifying information that might potentially

be found inside comments and string literals. There was

no need to execute the Burrows method twice, because

it inherently anonymizes the source files. Neither com-

ments nor string literals are used as tokens in the Bur-

rows method, so they are inherently stripped. Using

anonymized files with the Burrows method would al-

ways yield identical results to using non-anonymized

files, so there was no need to execute it twice for each

segment of data.

Note that although a total of 12 experiments were

conducted, only 6 sets of values are reported. In the

original studies being replicated, the results of each

individual experiment were not reported. The results

were combined by programming language. So, the re-

ported values are as follows: (1) combined results from

the open-source and textbook C++ programs using the

Burrows method, (2) combined C++ results using the

SCAP method, (3) combined anonymized C++ results
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Table 1 Results reported from original studies that are being
replicated

Method NumFiles Correct Percent

C++ Burrows 3655 3263 89.3%
SCAP (Anonymized) 3655 3339 91.4%
SCAP (Unmodified) 3655 3505 95.9%

Java Burrows 3576 3163 88.5%
SCAP (Anonymized) 3576 3242 90.7%
SCAP (Unmodified) 3576 3367 94.2%

TOTAL Burrows 7231 6426 88.9%
SCAP (Anonymized) 7231 6581 91.0%
SCAP (Unmodified) 7231 6872 95.0%

Table 2 Results of replicated studies

Method NumFiles Correct Percent T-Test

C++ Burrows 3655 3264 89.3%
SCAP (Anonymized) 3655 3289 90.0%
SCAP (Unmodified) 3655 3481 95.2% 0.818

Java Burrows 3576 3164 88.5%
SCAP (Anonymized) 3576 3222 90.1%
SCAP (Unmodified) 3576 3349 93.7% 0.886

TOTAL Burrows 7231 6428 88.9%
SCAP (Anonymized) 7231 6511 90.0%
SCAP (Unmodified) 7231 6830 94.5% 0.848

using the SCAP method, (4) combined Java results us-

ing Burrows, (5) combined Java results using SCAP,

and (6) combined anonymized Java results using SCAP.

The results from the original experiments [15–17]

are shown in Tab. 1. The results from our replication

of those experiments are shown in Tab. 2. With our

results, we also show the p-value from a t-test. We are

comparing the set of results from each programming

language to determine if they are significantly different

from the original results. As can be seen, the p-value

is well above the typical 0.05 threshold for each group.

Therefore, the results are not significantly different.

In addition to showing that the results are not sig-

nificantly different, we further want to show that the

results are indeed statistically similar. For this purpose,

we use the cosine similarity metric. We represent the re-

sults of the original study as a 6-feature vector contain-

ing the six accuracy values reported above. The repli-

cated results are also represented as a 6-feature vector.

The resulting cosine similarity is 0.99999, where the

maximum possible similarity value is 1, indicating that

the replicated results are indeed statistically similar.

While we have shown that the replicated results are

statistically similar to the original results, one might no-

tice by manually comparing the SCAP results, that the

replicated results have a slightly lower accuracy across

all groups. Some variation is expected, especially in the

SCAP method. The order that the authors’ files are

concatenated together will cause some variation. The

profile length L will cause even greater variation. For

example, let’s say that the profile length is set to 100

and that the last n-gram in the profile occurred only

once. Typically, there are numerous n-grams that are

used only once by an author. However, since the pro-

file length is set to 100, exactly 100 n-grams must be

retained. The cut-off becomes arbitrary. Some of the n-

grams that appear only once will be retained, while oth-

ers will not. Also, ties can occur when multiple authors

achieve the same maximum similarity score for a par-

ticular file, which causes ambiguity. The way in which

these ties are handled in an experimental scenario is

also ambiguous. We suspect that the consistency with

which our results are lower is due to an implementa-

tion detail such as this. Perhaps, in the original study,

in cases of a tie involving the correct author, it was

considered to be a correct attribution. In our study, it

was not. That would explain the slight, but consistent,

lower results reported from our study.

The smallest segment of data used in the replicated

experiments is the collection of anonymized open-source

C++ programs, which consists of 521 files. Using ei-

ther attribution method, it takes less than 10 seconds

to perform training and execute a single query on this

data. To perform a complete leave-one-out cross vali-

dation experiment, it takes less than 2 minutes. (Recall

that a leave-one-out experiment requires training to be

performed and a query to be executed as many times

as there are files in the dataset.) The largest segment

of data is the C++ textbook programs, which consists

of 3,134 files. Using this data, a single training/query

takes around 30 seconds, while a complete leave-one-

out experiment takes approximately 15 minutes. Note

that this benchmarking was done informally, and not

performed in a well-controlled environment. A desktop

computer was used with a 64-bit 3.3 GHz Intel i5 pro-

cessor with 8 GB of RAM running Windows 7. We have

no basis to compare these times to the original studies,

because the times were not reported in those studies.

5 CONCLUSION AND FUTURE WORK

In this paper, we’ve presented ASAP (A Source Code

Authorship Program), which is a tool that can perform

tasks related to authorship attribution of source code.

The tool is suitable for the expert or the layperson. An

author can be attributed to an individual source file, or

complete authorship attribution experiments can easily

be performed using k-fold cross validation or leave-one-

out cross validation techniques. A user-friendly GUI is

provided for common tasks, or the back-end can be

called directly at the command-line by the user or through

batch scripts, as needed. The tool incorporates two state-

of-the-art methods of source code authorship attribu-

tion: SCAP and Burrows. The software was designed
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so that additional methods can be added as enhance-

ments in the future. The tool was validated by recre-

ating previously-published studies of authorship attri-

bution, where the results generated by the tool were

statistically similar to the results reported in the pre-

vious studies.

In the future, the tool could be expanded to in-

clude additional methods of source code authorship at-

tribution. After additional methods have been added,

a polling system could be incorporated. The user could

select which methods to include in the poll, and when

a query is made each of the selected methods could be

used to generate the result. Methods of that attribute

authors to other types of documents, such as object

code or even natural language documents, could poten-

tially be incorporated. The software could be enhanced

to be even more extensible, making it easier to incor-

porate additional methods. The tool’s code could be

refactored, and potentially incorporate aspect-oriented

programming.

While these and other improvements could certainly

be made, we believe the ASAP tool as it currently

stands could be a valuable asset to several different

userbases. Researchers in areas related to authorship

attribution, individuals in software forensics, those in-

volved in cases of software copyright infringement, and

those who teach programming classes could all use the

tool for their own purposes. We believe the ASAP tool

can fill a need in all of these potential user communities.
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