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Diffusing Wild Type and Sterile Mosquitoes in an Optimal Control Setting

K. Renee Fistera, Maeve L. McCarthy1,∗, Seth F. Oppenheimerb

aDepartment of Mathematics & Statistics, Murray State University, Murray KY 42071
bDepartment of Mathematics & Statistics, Mississippi State University

Abstract

This paper develops an optimal control framework to investigate the introduction of sterile type mosquitoes
to reduce the overal moquito population. As is well known, mosquitoes are vectors of disease. For instance
the WHO lists, among other diseases, Malaria, Dengue Fever, Rift Valley Fever, Yellow Fever, Chikungunya
Fever and Zika. [http://www.who.int/mediacentre/factsheets/fs387/en/] The goal is to establish the existence
of a solution given an optimal sterilization protocol as well as to develop the corresponding optimal control
representation to minimize the infiltrating mosquito population while minimizing fecundity and the number
of sterile type mosquitoes introduced into the environment per unit time. This paper incorporates the diffusion
of the mosquitoes into the controlled model and presents a number of numerical simulations.

Key words. Partial differential equations, Optimal control, sterile mosquitoes.
AMS subject classifications (2000). 35L45, 35L50, 92D30.

1. Introduction

This paper develops a model for the controlled release of sterile insects into an environment where there
is an existing population of wild insects. We will do this under the assumption that the fitness and diffusion
rates of the two populations are the same. We will also consider the effect of controlling fecundity by altering
the environment in such a way that breeding rate is reduced. This could be done by reducing the locations
for breeding though removing sources of standing water and of using larvicide or ovacide. We will not model
the use of broad spectrum insecticides because these would also kill our sterilized insects. There has been
success in using traps for male insects along with sterile insect release [20], however, we will not consider
this third control method in this paper. We note that this work is a generalization of our previous work [14]
which did not consider dispersion and spatial variation. Our language in this section follows that of our earlier
paper closely.

The importance of controlling mosquito populations is hard to overstate. It is well known that such
diseases as yellow fever, dengue fever, epidemic polyarthritis, Rift Valley fever, Ross River Fever, St. Louis
encephalitis, West Nile virus, Japanese encephalitis, LaCross encephalitis, Zika, and malaria are carried and
transmitted by mosquitoes, [15, 30, 34, 35, 38, 45, 47, 48].

This paper considers a model that can applied to many insects, including mosquitoes. Optimal control
theory is then applied with a variety of cost functionals to find the best strategy for reducing insect population
at minimal cost.

The sterile insect technique was introduced by Knipling [19, 20]. The insects are sterilized by irradiation
or the application of chemical agents and released to mate with the wild insects. It was used successfully
for the screw worm in the late 1950s and early 1960s and great hope was held for using the technique for
the control of mosquito populations [21]. Unfortunately, experiments that were carried out with mosquitoes
during the same period met with less success. For a discussion of the experimental work in this area see
[5, 11, 32, 44].

A number of authors have developed mathematical models of the interaction between sterile and wild
mosquitoes, [4, 19, 24, 37]. Recently, models using differences equations, have been developed [27]. Other
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work considers, as we do, Holling-II type response in population dynamics [6]. Some sterile release models
have been explicitly connected to particular diseases [8, 9, 46]. Dumont and Tchuenche [8] consider pulsed
sterile release and demonstrate through equilibrium analysis and simulations that frequent small bursts of
sterile insects are more effective than larger less frequent releases. An approach by Thome et al. developed in
[46] attempts to apply optimal control to both breeding rates and the rate of introduction of sterile mosquitoes.
No bounds have been imposed on the control(s) in any of this work which may be not be realistic biologically.

The use of transgenic insects was developed after the sterile insect technique. Insects carrying a dominant
lethal gene are introduced into the population. Alphey et al. [2, 3] provide many details of the use of both of
these techniques. Models that described the interactions of wild and transgenic mosquitoes include those by
Li [25, 26] and Diaz et al. [7]. Optimal control methods are applied to the rate of introduction of transgenic
mosquitoes by Rafikov et al. [39, 40]. We will not use transgenic mosquitoes in our model.

For a different partial differential equations model for the dynamics of sterile insect release see Alford
[1].

It is our hope that by developing new bounded control models for this technique, we may find strategies
that will make it more effective.

1.1. The model

We are particularly interested in Li’s model of the release of transgenic mosquito populations [26] which
we modified in our earlier paper to model the release of sterile mosquitoes. Although our focus is on sterile
mosquitoes, we will follow the approach in the referenced paper for the model we develop here because it
captures the features we seek to incorporate.We start by concentrating on the local dynamics. We consider
a population of wild mosquitoes, W , and a population of sterilized mosquitoes, S. If R (W,S) is the birth
rate of the wild mosquitoes and dW (W,S) and dS (W,S) are the death rates of the the wild population and
sterilized population respectively, we obtain

dW

dt
= W (R (W,S)− dW (W,S))

dS

dt
= −SdS (W,S) +B (t)

where B is the release rate of sterile mosquitoes. We will assume the death rate has a constant component
and a component that increases with total population density. Thus we will have

dW (W,S) = M +K (W + S)

dS (W,S) = M +K (W + S)

where the equality of the constants is an implicit assumption of equal fitness between the wild population and
the sterilized population. We now turn our attention to the birthrate, R(W,S).

Continuing to follow the approach in [26] and our earlier paper [14],we let c(W,S, t) be the number of
matings that occur per unit time. Therefore, we can expect that the number of matings of wild type to wild
type will be

R(W,S) = c(W,S, t)
W

W + S

This will give us

dW

dt
= W

(
c(W,S, t)

W

W + S
−M −K (W + S)

)
dS

dt
= −S (M +K (W + S)) +B (t)

Let us consider a couple of choices for the function c(W,S, t). When the total population is large, we
expect that mosquitoes will have no difficulty finding a mate, giving us c(W,S, t) as a function only of
time, A(t) which is the product of such factors as the likelihood of a mating producing eggs, the (fixed)
proportion of the population that is female, the likelihood that an appropriate place can be found so that
when the eggs are laid they will hatch, and so on. A(t) can be reduced through the application of larvicide or
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insecticide, the clearing of breeding sites, etc. Henceforth, we will generally refer to such habitat modification
as the application of larvicide, with the understanding that habitat modification can have other features. The
function A(t) will serve as a control as well as B, since we are assuming we can take action to reduce the
amount of suitable real estate for successful egg laying. This gives the following model

dW

dt
= W

(
A(t)W

W + S
−M −K (W + S)

)
dS

dt
= −S (M +K (W + S)) +B (t)

When the population is relatively small, we expect the law of mass action to be pertinent with c(W,S, t) =
A(t) (W + S) where the function A (t) is similar to the function A(t) described above. This gives us

dW

dt
= W (A(t)W −M −K (W + S))

dS

dt
= −S (M +K (W + S)) +B (t)

We are particularly interested in a function that can capture the dynamics of both large and small popu-
lations simultaneously. We seek a functional form that will lead to approximately the models above. Once
again, we follow the work of Li [26] and our previous work [14], and choose a Holling-II-type functional
response, [17]. Fixing a positive constant ε > 0, we set

c (W,S) = A
W + S

ε+W + S

giving us

dW

dt
= W

(
AW

ε+W + S
−M −K (W + S)

)
dS

dt
= −S (M +K (W + S)) +B (t)

We are now ready to add in diffusion terms under the assumption that both the wild type and sterile mosquitoes
diffuse with constant D. Henceforth, we assume all functions are functions of space and time.

∂W

∂t
= D4W +W

(
AW

ε+W + S
−M −K (W + S)

)
(1)

∂S

∂t
= D4S − S (M +K (W + S)) +B (x, t)

We now rescale in order to make the mathematical analysis more tractable, letting w = W
ε and s = S

ε .

ε
∂w

∂t
= εD4w + εw

(
Awε

ε+ εw + εs
−M −Kε (w + s)

)
ε
∂s

∂t
= εD4s− εs (M +Kε (w + s)) +B (x, t)

Setting κ = D, α = A, µ = Mε, η = Kε, β (x, t) = B(x,t)
ε yields our final model,

∂w

∂t
= κ4w + ε

(
αw

1 + w + s
− µ− η (w + s)

)
(2)

∂s

∂t
= κ4s− s (µ+ η (w + s)) + β (t) . (3)

where the initial conditions are
w(x, 0) = w0, s(0) = s0
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and the controls are bounded with M1,M2, N1, N2 ≥ 0 such that

M1 ≤ α(t) ≤M2, N1 ≤ β(t) ≤ N2.

The rest of this paper is organized as follows. In section 2, we establish existence results for the PDE
model. In section 3, we obtain the existence of an optimal control pair (α, β) for our objective functionals.
In section 4, we derive optimality conditions that characterize the optimal control pair. In section 5 we
implement numerical simulations using parameters for Anopheles gambiae. Finally, in section 6, we provide
discussion of our results and their implications for the optimal control of mosquito populations.

2. Discussion of Model

We investigate the dimensionless model with w(x, t) and s(x, t) representing the density of the wild type
mosquitoes and the sterile type, respectively. The mosquitoes are governed by a reaction-diffusion equation
system in the domain Q = Ω× (0, T ) with x ∈ Ω and finite T as follows:

∂w

∂t
= κ∆w + w

[
αw

1 + w + s
− (µ+ η (w + s))

]
(4)

∂s

∂t
= κ∆s− s (µ+ η (w + s)) + β (x, t) (5)(

w (x, 0)
s (x, 0)

)
=

(
w0 (x)
s0 (x)

)
for x ∈ Ω (6)(

∇w (x, t) · ν
∇s (x, t) · ν

)
= −

(
w (x, t)
s (x, t)

)
for x ∈ ∂Ω and t > 0 (7)

Here ν is the unit outward normal on ∂Ω and we are using homogeneous Robin conditions.
We first develop continuity and ellipticity conditions for our bilinear form and then prove that this system

has a unique positive bounded solution. We have our solution set such that (w, s) ∈ W ×W where W =
L2
(
(0, T );H1(Ω)

)
.

2.1. Existence of Solutions

We start by considering the linear operator on
(
L2 (Ω)

)2
.

L

(
w (x)
s (x)

)
=

(
κ∆w − µw
κ∆s− µs

)
(
∇w (x) · ν
∇s (x) · ν

)
= −

(
w (x)
s (x)

)
for x ∈ ∂Ω

Notice that this is diagonal. If we can show that one coordinate generates a analytic semigroup on L2 (Ω)
then the diagonal operator will generate an analytic semigroup on the product space. We use the following
from Showalter’s book [42].

Theorem 2.1. Let V andH be Hilbert spaces for which the identityH ↪→ V is continuous. Let a : V ×V →
C be sesquilinear and satisfy there are two constants 0 < c ≤ K so that

1. |a (w, v)| ≤ ||w||V ||v||V for all w and v in V (continuity)
2. Re a (v, v) ≥ c ||v||2V for all v in V (V elliptic).

Proof. Define
D (A) {w ∈ V : |a (w, v)| ≤ Kw |v|H , v ∈ V }

where Kw depends only on w and let A, a linear function from D (A) to H , be given by

(Aw, v)H = a (w, v) , w ∈ D (A) , v ∈ V.
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Then D (A) is dense in H and −A generates an analytic semigroup on H .
We will define H = L2 (Ω) and V = W 1,2 (Ω). Our form is

a (w, φ) =

∫
Ω

κ∇w · ∇φ+ µwφdx+

∫
∂Ω

wφdx

We start with continuity. We use the trace theorem thatW 1,2 (Ω) embeds continuously, hence boundedly,
into L2 (∂Ω) with bound we will call KT .

|a (w, φ)| ≤
∫

Ω

κ |∇w| |∇φ|+ µ |w| |φ| dx+

∫
∂Ω

|w| |φ| dx

Applying Hölder’s inequality and the fact that for real numbers a and b, ab ≤ 1
2

(
a2 + b2

)
we have the above

is bounded by
κ ||∇w||H ||∇φ||H + µ ||w||H ||φ||H + ||w||L2(∂Ω) ||φ||L2(∂Ω)

Since each of ||∇w||H , ||w||H , and ||w||L2(∂Ω) is bounded by a positive multiple of ||w||V we have estimate
1.

To see estimate 2,

a (w,w) =

∫
Ω

κ∇w · ∇w + µw2dx+

∫
∂Ω

w2dx

≥
∫

Ω

κ∇w · ∇w + µw2dx

≥ min (κ, µ) ||w||V

and we have the function −A defined in theorem A of Showalter, [42], generates an analytic semigroup on
L2 (Ω). Now let’s show that this operator A and D (A) are what we want.

Let φ be any compactly supported infinitely differentiable function on Ω. For an u in D (A) there is a
constant Kw so that

Ku ||φ||H ≥ |a (w, φ)|

=

∣∣∣∣∫
Ω

κ∇w · ∇φ+ µwφdx+

∫
∂Ω

wφdx

∣∣∣∣
=

∣∣∣∣∫
Ω

−κ∆wφ+ µwφdx

∣∣∣∣
=

∣∣∣∣∫
Ω

(−κ∆w + µw)φdx

∣∣∣∣
where we have used the definition of distributional derivative. Seeing that−κ∆w+µw defines a continuous
linear functional on H , we get that−κ∆w+µw ∈ H and thus ∆w ∈ H . Let φ be any compactly supported
infinitely differentiable function on Ω and B on D(A) by Bw = −κ∆w + µw. Then

(Aw, φ)− (Bw, φ) = a (w, φ)− (Bw, φ)

= 0

Since C∞0 (Ω) is dense in H , we have that A = B. Finally, let w ∈ D (A) and let φ be any infinitely
differentiable function on Ω. Then

0 = a (w, φ)− (Aw, φ)

=

∫
Ω

κ∇w · ∇φ+ µwφdx+

∫
∂Ω

wφdx−
∫

Ω

−κ∆wφ+ µwφdx

=

∫
Ω

κ∇w · ∇φ+ µwφdx+

∫
∂Ω

wφdx−
(∫

∂Ω

−κ∂w
∂ν

φdx+

∫
Ω

κ∇w · ∇φ+ µwφdx

)
=

∫
∂Ω

wφ+ κ
∂w

∂ν
φdx
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Since φ was arbitrary and we have

D (A) =

{
w ∈W 1,2 (Ω) : ∆w ∈ L2 (Ω) , κ

∂w

∂ν
= −w on ∂Ω

}
.

the diagonal operator L is exactly what we want. We now define

g (w, s) =

[
w
[

αw
1+w+s − η (w + s)

]
−sη (w + s)

]

We fix some large positive number M and define

g (w, s) = g
(
min

(
w+,M

)
,min

(
s+,M

))
This function g (w, s) does map L2 (Ω) × L2 (Ω) into itself and is Lipschitz. Thus, for each (w0, s0) ∈

L2 (Ω)× L2 (Ω), the initial value problem

∂

∂t

[
w
s

]
= L

[
w
s

]
+ g (w, s)[

w
s

]
(·, 0) =

[
w0

s0

]
(·)

has a unique mild solution. We may now bootstrap to observe that the solution is continuous[
w
s

]
(·, t)

in t and thus so is g (w(·, t), s(·, t)) which implies that[
w
s

]
(·, t)

is Hölder continuous in t, Pazy, chapter 4 theorem 3.1, [36] and thus so is g (w(·, t), s(·, t)) which implies
that [

w
s

]
(·, t)

is a classical solution by Pazy, chapter four corollary 3.3, [36].
We will now prove upper and lower bounds that show that the original function g may be used with

nonnegative essentially bounded (w0, s0) and yields nonnegative essentially bounded solutions.
We define two functions

ρk (t) =


0 t ≤ 0
kt t ∈

(
0, 1

k

)
1 t ≥ 1

k

It is easy to see that this Lipschitz function satisfies

ρk (t)→ sgn+
0 (t) as k →∞

We define

σk (t) =

∫ t

0

ρk (τ) dτ

and we similarly observe that
σk (t)→ t+ as k →∞

We now observe that
min

(
w+,M

)
ρk (−w) = 0
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Thus

wtρk (−w) = κ∆wρk (−w)− µwρk (−w)

+ min
(
w+,M

) [ αmin (w+,M)

1 + min (w+,M) + min (s+,M)

−η
(
min

(
w+,M

)
+ min

(
s+,M

))]
ρk (−w)

= κ∆wρk (−w)− wρk (−w)

Thus
wtρk (−w) = κ∆wρk (−w)− µwρk (−w) .

Integrating over Ω gives us

− ∂

∂τ

∫
Ω

σk (−w) dx =

∫
Ω

κ∆wρk (−w)− µwρk (−w) dx

≥
∫

Ω

κ∆wρk (−w) dx

Where we have used µwρk (−w) ≤ 0. Thus

− ∂

∂τ

∫
Ω

σk (−w) dx ≥
∫

Ω

κ∆wρk (−w) dx

=

∫
∂Ω

κ
∂w

∂ν
ρk (−w) dS +

∫
Ω

κ ||∇w||2 κ{x∈(0, 1k )}dx

≥
∫
∂Ω

κ
∂w

∂ν
ρk (−w) dS

=

∫
∂Ω

−wρk (−w) dS

≥ 0

Thus ∫
Ω

σk (−w (x, t)) dx ≤
∫

Ω

σk (−w0 (x, t)) dx

= 0.

Moreover,
w (x, t) ≥ 0 a.e. x and all t ≥ 0.

Note that since since w (·, t) ∈ D (A) for t > 0, the inequality will hold everywhere. A similar, but easier,
argument gives positivity for s.

We now assume that w and s are non negative and define

g (w, s) = g (min (w,M) ,min (s,M))

We now obtain boundedness for s. We again take our equation for s and multiply by ρk (s−R) and
require that M > R. In any practical application there will be a maximum value for β (x, t) we let both R
and µR be larger than this maximum and ||w0||∞ . We observe that ρk (s−R), w and s are all non negative
and compute

stρk (s−R) = κ∆sρk (s−R)− µsρk (s−R) + β (x, t)

−η (min (s,M) (min (w,M) + min (s,M)) ρk (s−R))

≤ κ∆sρk (s−R) + β (x, t) ρk (s−R)
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We may now integrate over Ω to obtain

∂

∂t

∫
Ω

σk (s−R) dx ≤
∫

Ω

κ∆sρk (s−R)− µsρk (s−R) dx+

∫
Ω

β (x, t) ρk (s−R) dx

=

∫
∂Ω

κ
∂s

∂ν
ρk (s−R) ds−

∫
Ω

κ ||∇s||2 κ{s∈(0, 1k )}dx

−
∫

Ω

µsρk (s−R) dx+

∫
Ω

β (x, t) ρk (s−R) dx

≤
∫
∂Ω

−uρk (s−R) ds+

∫
Ω

β (x, t) dx

≤ −
∫

Ω

µsρk (s−R) dx+

∫
Ω

β (x, t) ρk (s−R) dx

≤ −
∫

Ω

µsρk (s−R) dx+

∫
Ω

µRρk (s−R) dx

≤ −
∫

Ω

µ (s−R) ρk (s−R) dx

≤ 0

Hence ∫
Ω

σk (s (x, t)−R) dx ≤
∫

Ω

σk (s0 (x)−R) dx

Letting k →∞ and using the Lebesgue dominated convergence theorem yields∫
Ω

(s (x, t)−R)
+
dx ≤

∫
Ω

(s0 (x)−R)
+
dx

= 0

and s ≤ R.
We now do the (easier) case of w. We multiply by ρk (w −R) , where

R > max

{
α

η
, ||w0||∞

}
and require that M > R. Note that (α− ηs) ρk (s−R) ≤ 0 for all real s and, since M > R,

(α− ηmin (s,M)) ρk (s−R) ≤ 0.

Thus

wtρk (w −R) = κ∆wρk (w −R)− µwρk (w −R)

+ min (w,M)

[
αmin (w,M)

1 + min (w,M) + min (s,M)

−η
(
min

(
w+,M

)
+ min

(
s+,M

))]
ρk (w −R)

≤ κ∆wρk (w −R) + min (w,M)
[
α− η

(
min

(
w+,M

))]
ρk (w −R)

≤ κ∆wρk (w −R)

We may now integrate over Ω and obtain

∂

∂t

∫
Ω

σk (w (x, t)−R) dx ≤
∫

Ω

κ∆wρk (w −R)

=

∫
∂Ω

κ
∂w

∂ν
ρk (w −R) ds−

∫
Ω

κ ||∇w||2 κ{w∈(0, 1k )}dx

≤
∫
∂Ω

−wρk (w −R) ds

≤ 0
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Thus ∫
Ω

σk (w (x, t)−R) dx ≤
∫

Ω

σk (w0 (x)−R) dx

Letting k →∞ and using the Lebesgue dominated convergence theorem yields∫
Ω

(w (x, t)−R)
+
dx ≤

∫
Ω

(w0 (x)−R)
+
dx

= 0

and w ≤ R.

Theorem 2.2. The original system (4-7)

∂w

∂t
= κ∆w + w

[
αw

1 + w + s
− (µ+ η (w + s))

]
∂s

∂t
= κ∆s− s (µ+ η (w + s)) + β (x, t)(

w (x, t)
s (x, t)

)
=

(
w0 (x)
s0 (x)

)
for x ∈ Ω(

∇w (x, t) · ν
∇s (x, t) · ν

)
= −

(
w (x, t)
s (x, t)

)
for x ∈ ∂Ω and t > 0

has a unique positive classical solution which is bounded in L∞ (Ω) × L∞ (Ω) whenever the initial pair is
nonnegative and bounded in L∞ (Ω)× L∞ (Ω).

Since we have the existence for the solution for the mosquito system for all time, we can investigate the
optimal control strategy associated with different objective functional subject to the original system (2)-(3).

3. Existence of Optimal Controls

In this section and for the remainder of the paper, we use wt instead of ∂w
∂t for partial derivatives with

respect to time.
In the discussion of the existence of an optimal control pair, we consider the variational form of our

original system for w, s, φ, ψ ∈W in the following sense with Γ = ∂Ω× (0, T ).∫ T

0

〈wt, φ〉 dt+ κ

∫ T

0

∫
Ω

∇w∇φ dx dt =

∫ T

0

∫
Ω

w

[
αw

1 + w + s
− (µ+ η (w + s))

]
φdx dt−

∫
Γ

wφ ds (8)

and∫ T

0

〈st, ψ〉 dt+ κ

∫ T

0

∫
Ω

∇s∇ψ dx dt =

∫ T

0

∫
Ω

{−s (µ+ η (w + s)) + β (x, t)}ψdx dt−
∫

Γ

sψ ds

(9)

where 〈, 〉 inner product is the duality between
(
H1(Ω)

)∗
and H1(Ω).

3.1. Objective Functional
In order to seek an optimal control, we need to define an admissible control set, A.
A = {(α, β) ∈ (L∞(Q))2 | M1 ≤ α(x, t) ≤ M2 and N1 ≤ β(x, t) ≤ N2 a.e. in Q}. We seek to

minimize the objective functional, J(α, β) over A where

J(α, β) =

∫
Q

{K1w +K2s+
1

2
(K3α

2 +K4β
2)} dx dt,

so that the density of the wild and transgenic type mosquitoes are minimized along with the nonlinear cost
associated with the control of the fecundity term, α(x, t) and the release rate of the sterile mosquitoes, β(x, t).

9



The different terms have different associated weights Ki for i = 1, ...4 that represent environmental factors
and monetary weights of the cost of the control program.

To proceed with the optimal control development, we need to obtain the existence of the optimal control
pair that minimizes the aforementioned functional.

Theorem 3.1. There exists and optimal control pair in A that minimizes the functional J(α, β).

Proof. Since the state variables and the controls are bounded below, we have that

inf
(α,β)∈A

{J(α, β)|(α, β) ∈ A} <∞.

There exists a minimizing sequence (αn, βn) ∈ A such that

lim
n→∞

J(αn, βn) = inf
(α,β)∈A

{J(α, β)|(α, β) ∈ A}.

By the existence and uniqueness of a solution of the state system in Theorem 2.2, we can define

wn = w(αn, βn) and sn = s(αn, βn)

for each n. Using the weak formulations to the state system as noted in equations (8) - (9) for wn and sn, we
develop estimates in order to discuss convergence of our sequences. With appropriate test functions in the
weak formulations, we obtain

∫ t

0

〈wnt , wn〉 dt+ κ

∫ t

0

∫
Ω

|∇wn|2 + |∇sn|2 dx dt =

∫ t

0

∫
Ω

wn
[

αnwn

1 + wn + sn
− (µ+ η (wn + sn))

]
wndx dt

−
∫

Γ

(wn)2 ds−
∫

Γ

(sn)2 ds+

∫ t

0

∫
Ω

{−sn (µ+ η (wn + sn)) + βn (x, t)}sndx dt.

(10)

We note that ∫ t

0

〈wnt , un〉 dt =
1

2

∫
Ω

{{wn(x, t)}2 − {w0(x, t)}2} dx. (11)

Since (µ+ η(wn + sn)) > 0,
∫

Γ
{(wn)2 + (sn)2} ds ≥ 0, and that wn solution is bounded, then with using

the bounds on the controls, we have

1

2

∫
Ω

{(wn)2 + (sn)2} dx+ κ

∫ t

0

∫
Ω

|∇wn|2 + |∇sn|2 dx dt

≤ 1

2

∫
Ω

{w0(x, t)}2 + {s0(x, t)}2 dx+M3

∫ t

0

∫
Ω

(wn)2dx dt+N2

∫ t

0

∫
Ω

sndx dt,

(12)

whereM3 depends onN = M2 and the bound of wn. Next, we use Cauchy’s inequality onN2

∫ t
0

∫
Ω
sndx dt

so that we can bound this term by a term involving the square of sn and a constant N3 depending on N2 and
the bound of the domain. Using the aforementioned Cauchy estimate, we see that the first integral term in the
estimate (12) is bounded as∫

Ω

{(wn)2 + (sn)2} dx ≤ N3 +

∫
Ω

{w0(x, t)}2 + {s0(x, t)}2 dx+M4

∫ t

0

∫
Ω

{(wn)2 + (sn)2}dx dt, (13)

where M4 = 2M3 + 1. We apply Gronwall’s Theorem to the inequality (13) and receive∫
Ω

{(wn)2 + (sn)2} dx ≤ eM4T {N3 +

∫
Ω

{w0(x, t)}2 + {s0(x, t)}2 dx.} (14)
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Using the Gronwall estimate and the estimate in (13), we see that the estimate in (12) becomes

sup
0≤t≤T

{
∫

Ω

[
(wn)2 + (sn)2

]
dx+ 2κ

∫ t

0

∫
Ω

|∇wn|2 + |∇sn|2 dx dt}

≤
∫

Ω

[
{w0(x, t)}2 + {s0(x, t)}2

]
dx+N3 +M4

∫ t

0

∫
Ω

{(wn)2 + (sn)2}dx dt

≤ C1e
M4T {N3 +

∫
Ω

{w0(x, t)}2 + {s0(x, t)}2 dx,

where C1 depends on M4 and T .
In order to obtain our result, we need to pass to the limit in the (wn, sn) partial differential equation

system. From the estimates and embedding theory, we find the necessary convergences. Specifically, we can
extract subsequences since wn and sn are bounded in W such that wn ⇀ w∗ and sn ⇀ s∗ in W . Addition-
ally, we see that wnt and snt lie in a bounded subset in L2((0, T ); (H1(Ω))∗). Hence, wnt ⇀ w∗t and likewise
for snt . Using a Sobolev Embedding Theorem from Li and Yong [50], we know that L2((0, T ); (H1(Ω))
compactly embeds into L2(Ω × (0, T )). Also, if 0 < ε < 1

2 , then L2((0, T ); (H1(Ω)) also embeds into
L2((0, T ); (H

1
2 +ε(Ω)). With these two embeddings and using a comparison result in Simon [43], we

have that wn → w∗ and sn → s∗ in W and in L2((0, T ); (H
1
2 +ε(Ω)). By the continuous mapping of

H
1
2 +ε(Ω) → L2(∂Ω), we have that wn → w∗ in L2((0, T );L2(∂Ω)) and similarly for sn. Moreover,

since αn and βn are L∞ bounded, there are subsequences αn and βn such that αn → α∗ and βn → β∗ in
L2((0, T );L2(∂Ω)).

These convergences allow for us to pass to the limit in the weak formulation of the system (8-9). We
find that (w∗, s∗) is a weak solution associated with the control pair (α∗, β∗). Lastly, we use the lower
semicontinuity of the functional J(α, β) with respect to weak convergences and recall, for example, that

lim
n→∞

∫
Q

(αn)2dx dt ≥
∫
Q

(α∗)2dx dt

to obtain that

J(α∗, β∗) =

∫
Q

{K1w
∗ +K2s

∗ +
1

2
K3(α∗)2 +

1

2
K4(β∗)2dx dt

≤ lim
n→∞

∫
Q

{K1w
n +K2s

n +
1

2
K3(αn)2 +

1

2
K4(βn)2dx dt

≤ lim
n→∞

J(αn, βn) ≤ min
(α,β)∈A

J(α, β).

Hence, we have that (α∗, β∗) is an optimal control pair that minimizes J(α, β).

4. Optimality conditions

To derive the representations of an optimal control pair, we must differentiate the functional with respect
to the control pair. In order to accomplish this, we develop a linearized system referred to as a sensitivity
system. This system is analyzed by considering the weak formulation of the system (4-5) with the controls
augmented in a given direction. The mapping of the optimal control pair into the solution pair is differentiable
as a directional derivative and converges to functions that satisfy a linearized system. Through the use of the
sensitivity system we can determine the corresponding adjoint equations and then determine the optimality
system that is composed of the state system coupled with the adjoint system along with the representations
of the controls.
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Theorem 4.1. The mapping (α, β) ∈ A → (w(α, β), s(α, β)) ∈ W ×W is differentiable in the following
sense:

w(α, β + εh)− w(α, β)

h
⇀ ψ1 in W

s(α, β + εh)− s(α, β)

h
⇀ ψ2 in W

w(α+ εl, β)− w(α, β)

l
⇀ φ1 in W

s(α+ εl, β)− s(α, β)

l
⇀ φ2 in W

(15)

as ε → 0 for any (α, β) ∈ A and (h, l) ∈ (L∞)2 such that (α + εl, β + εh) ∈ A for small ε. Also,
(ψ1, ψ2) and (φ1, φ2) satisfy

∂ψ1

∂t
= κ∆ψ1 +

αw

(1 + w + s)2
[2ψ1 + wψ1 − wψ2 + 2sψ1]− ψ1µ (16)

− η (2wψ1 + wψ2 + sψ1)

∂ψ2

∂t
= κ∆ψ2 − ψ2µ− η (sψ1 + wψ2 + 2sψ2) + h (17)

∂φ1

∂t
= κ∆φ1 +

αw

(1 + w + s)2
[2φ1 + wφ1 − wφ2 + 2sψ1]− φ1µ (18)

− η (2wφ1 + wφ2 + sφ1)− lw2

1 + w + s
∂φ2

∂t
= κ∆φ2 − φ2µ− η (sφ1 + wφ2 + 2sφ2) (19)

ψ1 (x, 0)
ψ2 (x, 0)
φ1 (x, 0)
φ2 (x, 0)

 =


0
0
0
0

 for x ∈ Ω (20)


∇ψ1 (x, t) · ν + ψ1 (x, t)
∇ψ2 (x, t) · ν + ψ2 (x, t)
∇φ1 (x, t) · ν + φ1 (x, t)
∇φ2 (x, t) · ν + φ2 (x, t)

 =


0
0
0
0

 for x ∈ ∂Ω and t > 0 (21)

In order to obtain the necessary convergences, we utilize the weak form of the original system and obtain
estimates similar to the procedure taken in the proof of the existence of an optimal control pair. For the details
of a similar argument, we refer the reader to Fister and McCarthy [13] and Lions [28].

To derive the optimality system and to determine the characterizations of our controls, we must analyze
the associated adjoint equations in addition to the associated adjoint operator for the system (ψ1, ψ2) and
(φ1, φ2). First, we define

L1w = wt − κ∆w and
L2s = wt − κ∆s.

For ease in notation, we define a matrix M as

M =

( −αw
(1+w+s)2 [2 + w + 2s] + µ+ 2ηw αw

(1+w+s)2 + η(w + s)

ηs µ+ η(w + 2s)

)
. (22)
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From our sensitivity Theorem 4.1, we can rewrite the equations in matrix notation. For example,

L
(
ψ1

ψ2

)
=

(
L1ψ1 − αw

(1+w+s)2 [2ψ1 + wψ1 − wψ2 + 2sψ1] + ψ1µ+ η (2wψ1 + wψ2 + sψ1)

L2ψ2 + ψ2µ+ η (sψ1 + wψ2 + 2sψ2)

)
=

(
L1ψ1

L2ψ2

)
+M

(
ψ1

ψ2

)
=

(
0
h

)
. (23)

With the same operator L1 and the matrix, M , we see that

L
(
φ1

φ2

)
=

(
lw2

(1+w+s)

0

)
. (24)

In order to devise the appropriate adjoint system, we let (p, q) be the associated adjoint variable to our
original system. To determine the optimality system, we recognize that

L∗
(
p
q

)
=

(
K1

K3

)
, (25)

where the terms in the right hand matrix of the above equation are the partial derivatives of the integrand of
the objective functional J(α, β) with respect to u and then with respect to w. Additionally, the operator L∗1
is the dual of operator L1 as

L∗1p = −pt − κ∆p. (26)

Therefore, we have that

L∗
(
p
q

)
=

(
L∗1p
L∗1q

)
+MT

(
p
q

)
,

in which MT is the transpose of the matrix M .
Using the notation just defined, we can now determine the characterizations of the optimal control pair,

which will be denoted (α∗, β∗).

Theorem 4.2. Given (α, β) ∈ A and the corresponding solutions (w, s), there exists an adjoint pair (p, q) ∈
W ×W satisfying

L∗1p = K1 +

(
αw(2 + w + 2s)

(1 + w + s)2
− µ− 2ηw

)
p− ηsq (27)

L∗1q = K2 −
(
αw(2 + w + 2s)

(1 + w + s)2
− η(w + s)

)
p− (ν + η(w + 2s)) q

p(x, T ) = q(x, T ) = 0 for x ∈ Ω and

∇p (x, t) · ν + p (x, t) = ∇q (x, t) · ν + q (x, t) = 0 on ∂Ω× (0, T ).

and

α∗ = min

(
max

(
N1,

−pw2

K3(1 + w + s)

)
, N2

)
β∗ = min

(
max

(
M1,

q

K4

)
,M2

)
Proof. For clearer understanding, we provide the proof associated with the characterization of the control α.
A similar argument produces the control representation for β∗. We suppose that (α, β) is an optimal control
and (w, s) is its corresponding solution pair. We assume that (α + εl, β) ∈ A for ε > 0 with associated
solution (wε, sε) where wε = w(α+ εl, β) and sε = s(α+ εl, β). By a similar argument as in the existence
proof for the solution, Theorem 2.2, we can obtain the existence of solutions to the system denoted in (27).
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Furthermore, work by Ladyzhenskaya et al. [22] and by Evans [10] provide existence proofs for similar state
and adjoint systems.

We consider the directional derivative of J(α, β) with respect to α in the direction of l. Since the min-
imum value of J(α, β) is obtained, we assume it occurs at (α, β). Note that we are omitting the asterisk
notation for simplicity. Through integration by parts, we use the relationship that

L∗
(
p
q

)
= L

(
φ1

φ2

)
. (28)

Therefore,

0 ≤ lim
ε→0+

J(α+ εl, β)− J(α, β)

ε

= lim
ε→0+

1

ε

∫
Q

(
K1wε +K2sε +

1

2
K3(α+ εl)2 +

1

2
K4β

2 −K1w −K2s−
1

2
K3α

2 − 1

2
K4β

2

)
dx dt

=

∫
Q

(K1φ1 +K2φ2 +K3αl) dx dt

=

∫
Q

(
(φ1, φ2)

(
K1

K2

)
+K3αl

)
dx dt

=

∫
Q

(
(p, q)L∗

(
p
q

)
+K3αl

)
dx dt

=

∫
Q

(
(p, q)L

(
φ1

φ2

)
+K3αl

)
dx dt

=

∫
Q

(
(p, q)

(
lw2

(1+w+s)

0

)
+K3αl

)
dx dt

=

∫
Q

l

(
pw2

(1 + w + s)
+K3α

)
dx dt

(29)

By standard optimality techniques [23, 28], we find that

α∗ = min

(
max

(
M1,

−pw2

K3(1 + w + s)

)
,M2

)
.

Using a similar discussion with varying β in the direction of h, we see that

β∗ = min

(
max

(
N1,

q

K4

)
, N2

)
.

The optimality system that is comprised of our state system (4-5) coupled with the adjoint system (27)
through the characterization of an optimal control pair (α∗, β∗) and is denoted by the following system:
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∂w

∂t
= κ∆w + w

[
α∗w

1 + w + s
− (µ+ η (w + s))

]
(30)

∂s

∂t
= κ∆s− s (µ+ η (w + s)) + β∗

−∂p
∂t

= κ∆p+K1 +

(
α∗w(2 + w + 2s)

(1 + w + s)2
− µ− 2ηw

)
p− ηsq

−∂q
∂t

= κ∆q +K2 −
(
α∗w(2 + w + 2s)

(1 + w + s)2
− η(w + s)

)
p− (µ+ η(w + 2s)) q

w(x, 0) = w0(x) and s(x, 0) = s0(x) for x ∈ Ω

p(x, T ) = q(x, T ) = 0 for x ∈ Ω

∇w (x, t) · ν + w (x, t) = ∇s (x, t) · ν + s (x, t) = 0 for x ∈ ∂Ω and t > 0

∇p (x, t) · ν + p (x, t) = ∇q (x, t) · ν + q (x, t) = 0 on ∂Ω× (0, T )

α∗ = min

(
max

(
M1,

−pw2

K3(1 + w + s)

)
,M2

)
β∗ = min

(
max

(
N1,

q

K4

)
, N2

)
.

We recognize that the uniqueness of the optimality solution, (30), will grant uniqueness of our optimal
control pair since an optimal control pair and associated state and adjoint solutions satisfy the system (30).
Moreover, the adjoint system (27) has corresponding final time conditions (transversality conditions) while
the state system (4-5) has initial time conditions. Hence, the adjoint and state systems have opposite time
orientations. Uniqueness of the optimal control pair can be determined but it is found for small final time, T.
We reference Fister [12] and a text by Lenhart and Workman [23] for details for the proof of the following
stated theorem.

Theorem 4.3. For T sufficiently small, the weak solution to the optimality system (30) is unique.

5. Numerical Simulations

For the numerical simulations discussed below, we set the parameter values based on a literature review
for Anopheles gambiae, an African mosquito known to carry malaria. In our original model (1), A represents
the number of matings per day. Therefore 1/A is the number of days to reproduce from egg to adult. M
represents the adult mosquito death rate and so 1/M is the number of days as an adult. Lutambi et al., [29],
Holsetein [18], and Service [41] provide an analysis of the life cycle that allows us to approximate 1/A ≈ 11
days. Midega et al., [31], gives M ≈ 0.05 days. According to Lutambi et al, [29] and [31], the diffusion rate
can be estimated from daily flight ranges of 200− 400 m/day which yields D ≈ 0.126− 0.503km2/day. We
set this to be D = 0.2km2/day. K represents the density dependent death rate and is given by Lutambi et al.
[29] as K = 0.05/mosq/day. The parameters are summarized in Table 5.

Original Parameter Value for Anopheles gambiae Transformed Parameter Transformed value
D 0.2 κ = D 0.2

A 0.09 α = A 0.09

M 0.05 µ =Mε 0.05ε

K 0.05 η = Kε 0.05ε

Table 1: Parameter values for Anopheles gambiae

By minimizing the objective functional

J(α, β) =

∫
Q

{K1w +K2s+
1

2
(K3α

2 +K4β
2)} dx dt,
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we seek to simultaneously reduce the fecundity of the wild mosquitoes by minimizing the nonlinear cost α2

of the Holling II reproductive term α for the wild mosquitoes, the nonlinear cost of β2 of the rate β at which
the sterile mosquitoes are being introduced, the total number of wild mosquitoes w present over the time
inverval [0, T ], and the total number of sterile mosquitoes s present over the time interval [0, T ]. We note that
a value of α = 0 maximizes the impact of the larvicide by eliminating all growth of the wild mosquitoes w.
Recall that here, and throughout the paper, we generally refer to habitat modification techniques as the use of
larvicide. Recall that α and β satisfy the bounds M1 ≤ α(x, y, t) ≤ M2, N1 ≤ β(x, y, t) ≤ N2. We give
equal priority to each of the terms in the objective functional and set Ki = 1 for i = 1, . . . , 4.

We note that the parameter ε is a measure of the density required for a constant mating rate. For small
values of ε, the law of mass-action dominates the model and we are considering the case where c(W,S) ≈
A(W + S). For larger values of ε, we are considering the constant mating case where c(W,S) ≈ A.

In the optimality system (30), we note that the model equations move forward in time from an initial
condition, while the adjoint equations move backward in time from a final condition. Typically, this type
of problem is solved using an algorithm developed by Hackbusch [16] and recommended by Lenhart and
Workman [23]. The algorithm generally converges only for small values of T. In order to allow the non-
controlled system to reach equilibrium, we needed to run the simulations for larger T values. As a result
we chose an alternative approach to the system that we found in literature related to the software COMSOL.
Rather than treat the PDEs as separate equations that move forward and backward in time, we transform
the coupled optimality system in the space-time cylinder to an elliptic system in three dimensional space,
[33, 49].

Working in xy space and letting z = t, our dimensionless optimality system becomes:

wz − κ (wxx + wyy)− w
[

α∗w

1 + w + s
− (µ− η (w + s))

]
= 0 (31)

sz − κ (sxx + syy)− s (µ+ η (w + s)) = β∗

−pz − κ (pxx + pyy)−
(
α∗w(2 + w + 2s)

(1 + w + s)2
− µ− 2ηw

)
p+ ηsq = K1

−qz − κ (qxx + qyy) +

(
α∗w(2 + w + 2s)

(1 + w + s)2
+ η(w + s)

)
p+ (µ+ η(w + 2s)) q = K2

w(x, y, 0) = w0(x, y) and s(x, y, 0) = s0(x, y) for (x, y) ∈ Ω

p(x, y, T ) = q(x, y, T ) = 0 for (x, y) ∈ Ω

∇xyw (x, y, z) · ν + w (x, y, z) = ∇xys (x, y, z) · ν + s (x, y, z) = 0 on ∂Ω× (0, T )

∇xyp (x, y, z) · ν + p (x, y, z) = ∇xyq (x, y, z) · ν + q (x, y, z) = 0 on ∂Ω× (0, T )

α∗ = min

(
max

(
M1,

−pw2

K3(1 + w + s)

)
,M2

)
β∗ = min

(
max

(
N1,

q

K4

)
, N2

)
.

This is an elliptic system on a cylinder Ω × (0, T ). We solve this numerically using COMSOL, a finite-
element software.

5.1. CASE 1: ε = 0.01

The parameter ε is a measure of the density required for a constant mating rate. For this small value of ε,
the law of mass-action dominates the model and we are considering the case where c(W,S) ≈ A(W + S).

5.1.1. No larvicide with no sterile mosquito release
We begin by considering the interaction of wild and sterile mosquitoes in the absence of larvicide, α =

A = 0.09 and without additional release of sterile insects, β = 0. In this case J(α, β) =
∫
Q
{w+ 1

2α
2} dx dt,

which amounts to minimizing the total number of mosquitoes in the absence of control variables. Horizontal
and vertical slices are shown of the xyt cylinder for 0 ≤ x2 + y2 ≤ 1, 0 ≤ t ≤ 5.. For both the wild
and sterile mosquito populations, the population can be seen to decay over time. We note that the sterile
population decays more rapidly.
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5.1.2. No larvicide with sterile mosquito release
We now allow sterile mosquito release in the absence of larvicide, α = 0.09 and N1 ≤ β ≤ N2. We

note that in Figure 3, we can see that the wild mosquito population decreases quite rapidly. In Figure 4, we
see that the sterile mosquito population decreases more slowly, because the sterile release continues for some
time as shown in Figure 5.

5.1.3. Larvicide with no sterile mosquito release
We now allow the use of larvicide in the absence sterile mosquito release, M1 ≤ α ≤ M2 and β = 0.

We set M2 = A = 0.09 to reflect the maximum number of matings per day before reducing it via optimal
control. The control α∗ attains the lower bound M1 = 0.01 and in Figures 6 and 7, we see that both the wild
and the sterile mosquito populations are eliminated through maximal use of larvicide slightly more rapidly
thatn in the case where α = 0.09.

5.1.4. Mixture of strategies
We now allow sterile mosquito release with the use of larvicide, M1 ≤ α ≤ M2 and N1 ≤ β ≤ N2.

In Figures 8 and 9, we see that the wild mosquito populations are gradually eliminated. With continual
introduction of the sterile mosquitoes, their population will stabilize. The larvicide control α∗ attains the
lower bound 0.01 and the sterile release control β∗ gradually decays to zero as shown in Figure 10. Note
that there is not much difference between this case and the case with no larvicide and with sterile mosquito
release.

5.2. CASE 2: ε = 10

For this larger value of ε, we are considering the constant mating case where c(W,S) ≈ A. The wild
and sterile mosquito populations decay much more repidly for this model than for the small ε case. This is
because the contribution of the mating term is smaller. All plots in this section are over the interval 0 ≤ t ≤ 2.

5.2.1. No larvicide with no sterile mosquito release
Once again, we consider the interaction of wild and sterile mosquitoes in the absence of larvicide, α =

A = 0.09 and without additional release of sterile insects, β = 0. In practice, we minimize the total number
of mosquitoes in the absence of control variables. Horizontal and vertical slices are shown of the xyt cylinder
for 0 ≤ x2 + y2 ≤ 1, 0 ≤ t ≤ 2. For both the wild and sterile mosquito populations, the population can be
seen to decay over time much more rapidly than for ε = 0.01, see Figures 11 and 12. We note that the sterile
and wild populations decay at comparable rates in this case.

5.2.2. No larvicide with sterile mosquito release
We now allow sterile mosquito release in the absence of larvicide, α = 0.09 and N1 ≤ β ≤ N2. We note

that in Figures 13 and 14, we can see that the wild and sterile mosquito populations decrease quite rapidly. In
Figure 15, the optimal sterile release peaks midway through the time interval before returning to zero once
the wild an sterile populations have been eliminated.

5.2.3. Larvicide with no sterile mosquito release
5.2.4. Mixture of strategies

We now allow sterile mosquito release with the use of larvicide, M1 ≤ α ≤ M2 and N1 ≤ β ≤ N2. In
Figures 18 and 19, we see that both the wild and sterile mosquito populations are eliminated more quickly
than in the small ε case. The larvicide control α∗ attains the lower bound 0.01 and the sterile release control
β∗ starts close to zero, increases to approximately 0.4 and the decreases to zero again as shown in Figure 20.
The fundamental difference between this case and the small ε case is that the sterile release β does not need
to persist because the wild and sterile mosquito populations have already been eliminated.
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6. Discussion

This paper describes an optimal control approach to mosquito population reduction in the presence of
diffusion. It is an extension of our previous work [14]. We model the reproductive term using a Holling-
II functional response, [17, 26], and we note this allows us to simultaneously model the mating dynamics
of both small and large populations. We have demonstrated that it is possible, through optimal choices of
larvicide use (or habitat modification) and/or sterile insect release, to eliminate the wild mosquito population.
The effect of the parameter ε is subtantial. For larger value of ε, we are considering the constant mating
case where c(W,S) ≈ A, while for small ε values, we consider the case where c(W,S) ≈ A(W + S). The
wild and sterile mosquito populations decay much more rapidly for this model for large values of ε, i.e. the
constant mating case.

Overall, our findings are that if larvicide is allowed, it should be used at a maximal level α∗ = M1, and
that a combination of the techniques leads to a more rapid elimination of the wild mosquito population. We
note that other authors have found similar results using other models [2, 7, 8, 9, 46]. Dumont and Tcheuenche
[8] found that the R0 of a disease could be reduced through a combination of periodic sterile insect release
and habitat modification. By capturing the dynamics of both large and small mosquito populations, we can
get a sense of whether larvicide or sterile insect release is best for each situation. Our numerical results
suggest that a combination of both strategies is optimal when they are comparably weighted in the objective
functional.
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Figure 1: Wild Mosquitoes, ε = 0.01 with bounds α(t) = 0.09, β(t) = 0, initial conditions w0 = 5, s0 = 5. The horizontal plane is
the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 5].

.
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Figure 2: Sterile Mosquitoes, ε = 0.01 with bounds α(t) = 0.09, β(t) = 0, initial conditions w0 = 5, s0 = 5. The horizontal plane
is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 5].

Figure 3: Wild Mosquito population ε = 0.01 with α(t) = 0.09, 0 ≤ β(t) ≤ 1, initial conditions w0 = 5, s0 = 5. The horizontal
plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 5].
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plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 2].

Figure 15: Optimal sterile mosquito release β∗ for ε = 10 with α(t) = 0.09, 0 ≤ β(t) ≤ 1, initial conditions w0 = 5, s0 = 5. The
horizontal plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 2].
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Figure 16: Wild Mosquito population ε = 10 with bounds 0.01 ≤ α(t) ≤ 0.09, β(t) = 0, initial conditions w0 = 5, s0 = 5. The
horizontal plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 2].

Figure 17: Sterile Mosquito population ε = 10 with bounds 0.01 ≤ α(t) ≤ 0.09, β(t) = 0, initial conditions w0 = 5, s0 = 5. The
horizontal plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 2].

Figure 18: Wild Mosquito population ε = 10 with bounds 0.01 ≤ α(t) ≤ 0.09, 0 ≤ β(t) ≤ 1, initial conditions w0 = 5, s0 = 5.
The horizontal plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 5].
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Figure 19: Sterile Mosquito population ε = 10 with bounds 0.01 ≤ α(t) ≤ 0.09, 0 ≤ β(t) ≤ 1, initial conditions w0 = 5, s0 = 5.
The horizontal plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 5].

Figure 20: Optimal sterile mosquito release β∗ for ε = 10 with bounds 0.01 ≤ α(t) ≤ 0.09, 0 ≤ β(t) ≤ 1, initial conditions
w0 = 5, s0 = 5. The horizontal plane is the xy−plane on the unit circle and the vertical is the t−direction for times t = [0, 5].
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