University of Missouri, St. Louis IRL @ UMSL

Undergraduate Research Symposium

UMSL Undergraduate Works

4-26-2019

Knot Groups of Torus Knots

Alexander H. Galindo University of Missouri-St. Louis, ahghyc@mail.umsl.edu

Follow this and additional works at: https://irl.umsl.edu/urs

Part of the Mathematics Commons

Recommended Citation

Galindo, Alexander H., "Knot Groups of Torus Knots" (2019). *Undergraduate Research Symposium*. 3. https://irl.umsl.edu/urs/3

This Poster is brought to you for free and open access by the UMSL Undergraduate Works at IRL @ UMSL. It has been accepted for inclusion in Undergraduate Research Symposium by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Knot Groups of Torus Knots

Presenter: Alexander Galindo (Department Math/CS, UMSL) Adviser: Dr. Ronald Dotzel (Department Math/CS, UMSL)

What is a knot?	What is a group?	What is the fundamental group?	How can we tell if a knot is really just the unknot?
A Knot is an embedded circle in 3-dimensional space. In general it resembles a, possibly, tangled piece of string with the ends joined. A knot is "trivial" if it can be	A Group is a nonempty set together with a binary, associative operation. It must also contain an "identity element" and each element of the group must have an inverse.	 For any subset C of 3-dimensional space we can define the "Fundamental Group". This is a group constructed in such a way as to faithfully reflect some of the essential geometric features of the subset C. For example, if C has some holes in it. The fundamental group is the set of equivalence classes of closed paths or loops in C, two loops being "equivalent" if there is a "homotopy" which carries one loop to the other (intuitively, one loop can be distorted 	The "complement of the knot" is 3- space minus the knot. Think of it a huge block of wood that has a "worm-hole" bored through it. An invariant of the knot is the fundamental group of the complement. The fundamental group of the unknot is "isomorphic" (ie. has the same structure) to the integers. This is a "free group" on one generator. A "torus knot" is a knot which can be drawn on the surface known as a torus (think inner tube). A torus knot winds a number of times in the longitudinal direction and a number of times in the meridinal
unraveled without cutting it. Two examples are pictured below.	Example 1: A group is the set of integers under addition. The identity element is "0" and the inverse of an integer n is $-n$, because $n+(-n) = 0$.		
	Example 2: The "integers mod m", $\{0, 1, 2,, m-1\}$ under the operation of "addition mod m". For instance if m = 6, then $3 + 5 = 2$, $5 + 5 = 4$ (i.e we take the remainder after the sum is	or morphed into the other without leaving the subset). The binary operation is "path addition", wherein the sum of two paths is simply the path resulting from following first one path then the other. The inverse of	direction. The fundamental group of a torus knot which winds p times around the longitude and q times around the meridian is a free group on two generators and subject to the single relation. Since this group is decidedly not isomorphic to the
Typical Knot Two Unknots	divided by m). Again 0 is the identity and the inverse of k is <i>m</i> - <i>k</i> .	an equivalence class is the equivalence class of the "reverse" of a path in the original class. The identity element is the equivalence class of the "constant path" (which never leaves its base point).	integers torus knots are not unknots.

Torus Knots