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Saturation and competing pathways in four-wave mixing in rubidium

E. Brekke∗ and N. Swan
St. Norbert College, Department of Physics, De Pere, WI 54115

(Dated: August 28, 2018)

We have examined the frequency spectrum of the blue light generated via four-wave mixing in a
rubidium vapor cell inside a ring cavity. At high atomic density and input laser power, two distinct
frequency components separated by 116±4 MHz are observed, indicating competing four-wave mix-
ing channels through the 6p3/2 hyperfine states. The dependence of the generated light on excitation
intensity and atomic density are explored, and indicate the primary process has saturated. This
saturation results when the excitation rate through the 6p state becomes equal to the rate through
the 5p state, giving no further gain with atomic density while a quadratic intensity dependence
remains.

I. INTRODUCTION

Nonlinear optical processes can result in a wide range
of phenomena in atomic media. Four-wave mixing in
particular has drawn considerable interest in the areas of
single photon sources [1], quantum information and slow
light [2, 3], Rydberg states [4, 5], the transfer of orbital
angular momentum [6, 7], and frequency up-conversion.

Frequency up-conversion through parametric four-
wave mixing has now been demonstrated in a number
of environments, including near resonant cw excitation
in rubidium [8–11] and cesium [12], and pulsed or cw
excitation far detuned from the intermediate state [13–
15]. Extensive work has been done to understand the fre-
quency characteristics [16–18], observe the infrared emis-
sion [19, 20], and examine competing pathways and pro-
cesses [21–23].

In this paper we examine the parametric four-wave
mixing process in the regime where saturation of the pri-
mary channel occurs due to interference between alter-
nate excitation pathways. This results in a limit to the ef-
fectiveness of higher atomic densities and a reduced gain
with input intensity. In addition, the saturation of the
primary channel leads to four-wave mixing on an alter-
nate pathway through different excited hyperfine states,
resulting in two distinct frequency peaks in the blue light
separated by 116 ± 4 MHz in 87Rb. The onset of satu-
ration and its dependence on excitation parameters can
play a large role in the resulting frequency converted
light.

II. EXPERIMENTAL METHOD AND SETUP

Our experimental setup is schematically illustrated in
Fig. 1. A single extended cavity diode laser (ECDL) at
778 nm excites the two photon 5s1/2 → 5d5/2 transition
in rubidium. The frequency control and tapered amplifier
system have been described previously [15]. Amplified
spontaneous emission and four-wave mixing in rubidium
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result in generated beams at 5.23 µm and 420 nm. The
relevant energy levels are shown in Fig. 2.
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FIG. 1. A simplified version of the experimental setup. A
single ECDL laser on the 5s1/2 → 5d5/2 transition is ampli-
fied and focused through a Rb cell inside a ring cavity. The
resulting 420 nm light is sent into a 1.5 GHz FSR Fabry-Perot
cavity.

The use of a ring cavity as described in [24] allows us to
attain blue powers in excess of 100 µW. At these power
levels saturation, power broadening, and competition be-
tween four-wave mixing pathways should play a signifi-
cant role. An amplified photodiode measures blue power
generated, while a scanning Fabry-Perot cavity with FSR
1.5 GHz is used to examine the frequency characteristics
of the resulting blue light.

III. COMPETING TRANSITION

During the excitation process, the excitation laser is
typically locked to the 5s1/2 F = 2 → 5d5/2 F=4 tran-
sition, which has the highest coupling strength among
the 5d5/2 hyperfine states. Only one 420 nm frequency
mode is observed at low excitation rates and atomic den-
sities, corresponding to four-wave mixing along the 5d5/2
F=4→ 6p3/2 F=3→ 5s1/2 F=2 path. However, as the
generated power increases, a second frequency mode is
observed in the 420 nm light, as shown in Fig. 3.
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FIG. 2. Energy levels involved in the four-wave mixing pro-
cess in 87Rb. Two-photon excitation is accomplished using a
single 778 nm ECDL on the 5s1/2 → 5d5/2 transition detuned
1 THz from the 5p state. The resulting process produces co-
herent and collimated beams at 5.23 µm and 420 nm. The
primary four-wave mixing path goes through the 6p3/2 F=3
state, with a competing path through the 6p3/2F=2 state.

We have examined the dependence of this secondary
peak on atomic density, excitation intensity, and detun-
ing. The spectrum of the 420 nm light in the Fabry-Perot
interferometer is shown in Fig. 3a for a variety of atomic
densities. Here excitation occurs on resonance with a cir-
culating intensity of 2x1014 W

m2 . As density increases, the
primary peak ceases to increase in power, while a second
peak appears and continues to grow, changing the rela-
tive size of the peaks. At high densities, the power at the
primary peak even decreases, suggesting the importance
of absorption inside the cell.

In order to minimize the effect of absorption, the blue
spectrum were taken while the excitation process was
detuned -600 MHz from the 5s1/2 F = 2 → 5d5/2 F=4
transition. As has been shown previously [18], this results
in the detuning of the 420 nm beam. Figure 3b shows the
resulting spectra for a variety of densities. Here the same
general trends are confirmed, with growth of the primary
peak slowing relative to the secondary peak, while the
effect of absorption is minimized.

Fitting the Fabry-Perot peaks allowed us to determine
the width of the peaks and their separation. The separa-
tion between the peaks was consistent for a large range of
densities and intensities at 116±4 MHz. Our ring cavity
has a FSR of 500 MHz, so this spacing is not related to
cavity modes. We hypothesize that the secondary peak is
caused by an alternate hyperfine path for the four-wave
mixing process [9]. At the high temperatures of the cell,
a large number of atoms would have the correct velocity
to have the 5d5/2 F=3 state Doppler shifted into reso-
nance. This state could then decay to the 6p3/2 F=2
state, resulting in a different blue frequency during the
final step. The relevant hyperfine levels are shown in
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FIG. 3. Frequency spectrum of the 420 nm light for a variety
of atomic densities. a) Excitation on resonance with the 5s1/2
F = 2 → 5d5/2 F=4 transition. b) Excitation detuned -600
MHz from the 5s1/2 F = 2 → 5d5/2 F=4 transition. The
appearance of a second peak at -116 MHZ from the primary
peak becomes significant at high densities, and continues to
grow while the primary peak growth slows.

Fig. 2. In addition to the 87 MHz shift for the 6p hy-
perfine states, there is a Doppler shift of generated light.
In order to have the excitation light on resonance with
the 5d5/2 F=3 state, the 778 nm excitation laser must
Doppler shift 14.5 MHz. Since the Doppler shift of the
blue is 1.85 times this [18], the total frequency shift ex-
pected would result in a separation between the peaks of
113.8 MHz.

To verify the source of separation between the peaks,
we replaced the 87Rb cell with a cell containing natural
isotope abundances, and examined the light generated
from 85Rb. Here we measured the separation between
the peaks to be 68 ± 11, where the separation was not
as precisely determined as the peaks were more difficult
to resolve. Using the same logic for Doppler shifted ex-
citation of the 5s1/2 F = 3 → 5d5/2 F=4 transition and
decay through the 6p1/2 F=3 state, we would expect a
separation of 47.9 MHz.

The theoretical values for the separation between
peaks is in good agreement with our experimental mea-
surements for 87Rb, suggesting the origin of the sec-
ondary peak is from competition along a different hy-
perfine level path. For 85Rb, the separation between
peaks is smaller as expected, but the value here is not
in agreement with theory and more precise data will be
needed. Additionally, the length of the 85Rb cell required
a non-ideal cell placement in the ring cavity, which may
have resulted in increased absorption. Even for detuned
excitation, the effects of absorption in the cell are not



3

eliminated, and this may effect the perceived center of
the blue peaks. It has been observed [25] that the orien-
tation of the cell and reflected beams can play a crucial
role in the four-wave mixing process as well. The 5.23 µm
beam does not leave our cell, but in the future the ex-
amination of the infrared spectrum could provide further
insight into the mechanism for the competing frequency.

IV. SATURATION PROCESS

The dependence of the power in the primary peak on
atomic density suggests the four-wave mixing process be-
gins to saturate. To further consider the mechanism of
saturation, the spectrum of the 420 nm light was also
measured for a variety of circulating intensities for a con-
stant density of 2.7x1014 m−3, and shown in Fig. 4. Here,
a different trend between the peaks is observed, as the rel-
ative size of the secondary peak remains fairly consistent
over a wide range of intensities. The power produced on
the primary peak continues to increase, revealing a dif-
ferent dependence than that observed for atomic density.
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FIG. 4. Frequency spectrum of the 420 nm light for a va-
riety of excitation laser intensities for excitation -600 MHz
detuned from the 5s1/2 F = 2→ 5d5/2 F=4 transition. Here
the ratio between the primary and secondary peak remains
approximately constant.

To further understand the saturation process, we con-
sider the interference of two alternate excitation path-
ways [13]. As the blue and infrared fields grow, a second
two-photon pathway along the 5s1/2 → 6p3/2 → 5d5/2
path interferes with the original four-wave mixing exci-
tation. When the two excitation rates along these paths
become equal, the rate of blue production will be the
same as that of blue absorption, and blue light will no
longer increase as the density increases. This saturation
point is given by

Ω01Ω12

∆1
=

Ω03Ω32

∆3
, (1)

where Ωab is the Rabi frequency between two states,
and ∆a is the detuning from state a. For the excita-
tion scheme used here, the very large detuning from the
5p state means that the process can approach saturation
even for µW level blue powers. The detuning from the 6p
state is not directly controlled in the parametric process,
so the photons through the 6p state are near-resonance,

and the two-photon excitation is limited by the width of
the 6p state. The number of photons for the infrared and
blue are identical, which allows the saturation condition
to be written in terms of the dipole moments, detunings,
and wavelengths involved as

P420 =

√
λ32
λ03

µ01µ12

µ03µ32

∆3

∆1
P778. (2)

The saturation process would then still result in an
increased blue output as the input light increases. This
is further shaped by the linewidth of the 5s1/2 → 6p3/2
transition, as the 420 nm light produced in this process
is sufficient to cause power broadening. In the limit of
420 intensities much higher than the saturation intensity,
the linewidth will go as

√
P420. Putting this into Eqn. 2,

we see that the power at 420 nm is expected to scale as
the square of the input power in the saturated and power
broadened regime.
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FIG. 5. a) The blue power is measured as a function of the
atomic density in the cell, showing the output power reaches
a maximum level as density continues to increase. b) The
blue power is measured as a function of the excitation laser
intensity, showing a continued growth even in the high power
regime. Both of these are consistent with expectations in the
saturated regime.

The light at the focus of the cavity inside the rubidium
cell has a waist of 22 µm, meaning that only 1 µW of blue
power would give a width of 3.4 MHz. For the powers
obtained here, linewidths in the range of 20 to 50 MHz
were seen. These linewidths are dominated by power
broadening, but when the blue light is near resonance
the linewidth is further shaped by the absorption of this
light through the cell. It has previously been observed
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that the implementation of a ring cavity resonant with
the resulting blue light can both increase the generated
power and dramatically reduce the linewidth below the
power broadened values. [26]

The dependence of the generated 420 nm light on both
atomic density and excitation power is shown in Fig. 5.
This can now be explained in terms of the saturation pro-
cess. As the blue power generated increases, the rate of
blue generation via FWM can become equal to the rate of
absorption of blue light for two photon excitation. This
would result in no further increase in generated blue light
with increasing density, but a continued dependence on
the original excitation rate. In Fig. 5a the growth in
blue power ceases at high densities, suggesting this sat-
uration point has been reached. As Fig. 5b shows, blue
power continues to grow with input intensity. Both of
these trends are consistent with expectations of gener-
ated power in the regime where the excitation rate along
the 6p path has become equal to the original excitation
rate along the 5p path.

V. DISCUSSION AND OUTLOOK

We have investigated the frequency spectrum and sat-
uration characteristics of 420 nm light generated through

parametric four-wave mixing in rubidium vapor. Power
produced along the primary pathway saturates when the
rate for excitation along the 5s1/2 → 6p3/2 → 5d5/2 be-
comes comparable to the 5s1/2 → 5p3/2 → 5d5/2 path-
way. For the two-photon excitation far detuned from the
5p state, the rates along these two paths can become
equal for µWs of blue light. At this point higher densi-
ties do not result in further blue light production, though
a quadratic dependence on excitation intensity remains.

Under low power conditions, the four-wave mixing pro-
cess results in a single generated frequency, but as sat-
uration approaches a second peak becomes increasingly
significant. It is likely that though originally dominated
by excitation to the 5d5/2 F=4 state, an alternate four
wave mixing path through the 5d5/2 F=3→ 5p3/2 F=2
becomes increasingly important as the primary transition
saturates.

The onset of saturation will be delayed by smaller de-
tunings from the 5p state, such as in the near resonant
two-step process. It could also be delayed by controlling
the detuning of the resulting light from the 6p state, per-
haps by seeding the four-wave mixing process [22]. Care
in the selection of excitation parameters is necessary to
limit the effects of competing channels and ensure the
generation of single frequency beams in these systems.
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