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Instability of flux flow and production of vortex-antivortex pairs by current-driven
Josephson vortices in layered superconductors

Ahmad Sheikhzada* and Alex Gurevich†

Department of Physics and Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529, USA

(Received 18 February 2019; revised manuscript received 15 May 2019; published 26 June 2019)

We report numerical simulations of the nonlinear dynamics of Josephson vortices driven by strong dc
currents in layered superconductors. Dynamic equations for interlayer phase differences in a stack of coupled
superconducting layers were solved to calculate a drag coefficient η(J ) of the vortex as a function of the
perpendicular dc current density J . It is shown that Cherenkov radiation produced by a moving vortex causes
significant radiation drag increasing η(v) at high vortex velocities v and striking instabilities of driven Josephson
vortices moving faster than a terminal velocity vc. The steady-state flux flow breaks down at v > vc as the
vortex starts producing a cascade of expanding vortex-antivortex pairs evolving into either planar macrovortex
structures or branching flux patterns propagating both along and across the layers. This vortex-antivortex pair
production triggered by a rapidly moving vortex is most pronounced in a stack of underdamped planar junctions
where it can occur at J > Js well below the interlayer Josephson critical current density. Both vc and Js were
calculated as functions of the quasiparticle damping parameter, and the dc magnetic field was applied parallel
to the layers. The effects of vortex interaction on the Cherenkov instability of moving vortex chains and lattices
in annular stacks of Josephson junctions were considered. It is shown that a vortex driven by a current density
J > Js in a multilayer of finite length excites self-sustained large-amplitude standing waves of magnetic flux,
resulting in temporal oscillations of the total magnetic moment. We evaluated a contribution of this effect to the
power W radiated by the sample and showed that W increases strongly as the number of layers increases. These
mechanisms can result in nonlinearity of the c-axis electromagnetic response and contribute to THz radiation
from the layered cuprates at high dc current densities flowing perpendicular to the ab planes.

DOI: 10.1103/PhysRevB.99.214512

I. INTRODUCTION

The physics of current-driven Josephson (J) vortices [1,2]
and its manifestations in flux flow oscillators [3–5], THz
radiation sources [6–9], nanoscale superconducting structures
for digital memory [10,11], current transport through grain
boundaries [12–14] in superconducting polycrystals, and ra-
diofrequency superconducting cavities for particle accelera-
tors [15], have been areas of active experimental and theoret-
ical investigations. Particularly, the dynamics of J vortices in
layered superconductors have attracted much attention since
the discoveries of cuprate and iron-based superconductors,
which exhibit an intrinsic Josephson effect between weakly
coupled ab planes [16–19]. Numerical simulations of stacks of
Josephson junctions (JJs) have revealed instabilities of sliding
Josephson vortex lattices [20–22] that affect the power of
coherent THz radiation from single-crystal BSCCO mesas
[22–27]. New imaging tools have probed vortices at nanome-
ter scales and revealed hypersonic vortices moving much
faster than the velocity of superfluid condensate [28].

It has usually been assumed that a driven vortex preserves
its identity as a topological defect no matter how fast it moves,
because instability of a vortex would violate the fundamental
conservation of the winding number n = ±1 in the super-
conducting order parameter � = � exp(inχ ). One of the out-
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standing questions is whether this topologically protected sta-
bility of a moving vortex remains preserved at any current be-
low the depairing limit, or whether there is a terminal velocity
above which a uniformly moving vortex cannot exist. As far as
the Josephson vortices are concerned, numerical simulations
of long underdamped junctions [29], planar JJ arrays [30–32]
and a few coupled JJs [33–37] and discrete sine-Gordon
systems [38,39] have shown that there is indeed a terminal
velocity vc above which uniform motion of a vortex driven
by a dc current breaks down due to Cherenkov radiation.
The Cherenkov radiation of a vortex moving with a constant
velocity v is characteristic of high-Jc JJs or arrays of coupled
JJs in which the phase velocity of electromagnetic waves
vp(k) decreases as the wave number k increases [40–45], so
that the Cherenkov condition v > vp(k) can be more easily
satisfied at short wavelengths. The resulting Cherenkov wake
behind a moving J vortex causes a significant radiation drag in
addition to the conventional quasiparticle viscous drag [34]. It
turns out that the steady-state motion of a J vortex in which
the Lorentz force is balanced by the viscous and radiation
drag forces can only be sustained at v < vc. A vortex moving
with a velocity v > vc starts producing a cascade of expanding
vortex-antivortex (V-AV) pairs that form dynamic dissipative
patterns [29,32]. Such a resistive transition can occur at cur-
rent densities J > Js, which can be well below the critical
current density of the interlayer junction J0. Generation of
V-AV pairs by a moving vortex pertains to a broader issue of
stability of driven topological defects that can destroy global
long-range order in a way similar to the crack propagation
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resulting from the pileup of dislocations of opposite polarity
[46]. Such a process was observed in simulations of vortices
in long JJs and planar JJ arrays where driven vortices cause
propagating phase cracks in superconducting long-range order
[29,32].

The question of whether a fast Josephson vortex can initiate
the V-AV pair production in layered superconductors is of
interest to the theory of nonlinear flux flow of vortices along
the ab planes in high-Tc cuprates and pnictides or artificial
multilayer structures. For instance, revealing the material
parameters that control the values of vc and Js is essential for
understanding the high-field electromagnetic response along
the c axis. Another issue pertains to dynamic dissipative
structures that appear due to the V-AV chain reaction trig-
gered by a single moving vortex. The nonlinear dynamics of
these structures and their effect on the radiation and other
electromagnetic properties of layered superconductors are
of particular interest. The Cherenkov instability of vortices
at high velocities is facilitated in underdamped interlayer
junctions, as characteristic of highly anisotropic Bi-based
cuprates, which can thus be testbeds for the experimental and
theoretical investigations of these issues.

The effects of Cherenkov radiation on a current-driven
vortex in a few coupled junctions [33–37] or structural insta-
bilities of driven vortex lattices and their manifestations in the
THz radiation sources [20–22] have been thoroughly investi-
gated. Yet little is known about the dynamics of macrovortex
flux structures resulting from the V-AV pair production caused
by a driven J vortex in multilayered superconductors. In this
work we address this issue, including a nonlinear vortex
viscosity controlled by the Ohmic and radiation drag, and the
factors determining the terminal velocity vc and the threshold
critical current density Js at which the steady-state flux flow
breaks down. We investigate spontaneous generation of V-AV
pairs by a moving vortex at v > vc, and we show that they
result in macrovortex structures spreading both along and
across the layers. It turns out that in a stack of underdamped
JJs of finite length, the V-AV pair production caused by
a vortex shuttle excites large-amplitude standing waves of
magnetic flux, giving rise to oscillations in the total magnetic
moment and magnetodipole radiation from the sample. In
our simulation, we used the well-established equations that
describe J vortices in layered superconductors modeled as a
stack of planar JJs coupled by inductive currents and charging
effects [40–45].

The paper is organized as follows. Section II specifies the
geometry of the problem and the equations used in numerical
simulations. In Sec. III we discuss Josephson plasmons and
conditions of Cherenkov radiation in layered superconductors.
Section IV contains the results of our calculations of a non-
linear drag coefficient, terminal velocity, and critical current
density of the Cherenkov instability Js for a single vortex. It
is shown that the production of V-AV pairs at J > Js results
in branching dynamic patterns and macrovortex structures. In
Secs. V and VI we address the effects of vortex interaction on
the Cherenkov instability of moving vortex chains and lattices
in annular JJ stacks. In Sec. VII we consider the dynamics
of bouncing macrovortices and self-sustained flux standing
waves of large amplitude excited by a V-AV shuttle in a JJ
stack of finite length. The contribution of this effect to the

FIG. 1. Stack of intrinsic Josephson junctions (yellow) between
superconducting layers (blue).

power W radiated by the JJ stack and a strong increase of W
with the number of layers are addressed. The conclusions and
broader implications of our results are presented in Sec. VIII.

II. COUPLED SINE-GORDON EQUATIONS

Consider vortices in a stack of long JJs between supercon-
ducting layers shown in Fig. 1. The dynamics of the phase
difference θl (x, t ) across the lth junction, and the magnetic
field Bl (x, t ) parallel to the layers, can be described by the
coupled sine-Gordon equations [6,23,40–45]

(1−α�d )θ ′′
l = (1−ζ�d )[(1−α�d ) sin θl +β+ηθ̇l +θ̈l ], (1)

Bl = (1 − ζ�d )−1θ ′
l . (2)

Here �d fl ≡ fl+1 + fl−1 − 2 fl is the lattice Laplacian, the
prime and overdot denote partial derivatives with respect to
the dimensionless coordinate x/λc and time ωJt , respectively,
ωJ = c/

√
εcλc is the Josephson plasma frequency, c is the

speed of light, εc is the dielectric constant along the z axis,
λc is the magnetic-field penetration depth along the layers
(B parallel to the ab planes in cuprates), and B is measured in
units of φ0/2πsλc, where φ0 is the flux quantum. The viscous
drag coefficient η and the dimensionless current β are defined
by

η = σcλc

ε0
√

εcc
, β = J

J0
, (3)

where J is the density of a uniform bias current flowing across
the layers, J0 is the critical current density of the junctions,
σc is the interlayer quasiparticle conductivity, and ε0 is the
vacuum permittivity. The dimensionless damping parameter
η in BSCCO crystals is typically �0.005–0.05 [45,47]. The
parameters α and ζ in Eq. (1) quantify charge and inductive
coupling of the layers, respectively,

α = εcl2
TF

/
s2, ζ = (λab/s)2. (4)

Here lTF is the Thomas-Fermi screening length along the lay-
ers, λab is the magnetic-field penetration depth for B parallel
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to the c axis, and s is the spacing between the superconducting
layers. For a BSCCO crystal with the anisotropy parameter
� ≡ λc/λab ∼ 500, λab ∼ 400 nm, λc ∼ 200 μm, and s =
1.5 nm, ζ ∼ 105 is much larger than the typical value of
α ∼ 1. In this case the term α�d , which describes deviations
from charge neutrality in Eq. (1), can be neglected [45], so
that Eq. (1) reduces to

θ ′′
l = (1 − ζ�d )(sin θl + β + ηθ̇l + θ̈l ). (5)

In this work, we performed numerical simulations Eq. (5)
using the method of lines [48,49]. Charging effects were
neglected, unless specified otherwise.

III. CHERENKOV RADIATION AND INSTABILITY

Josephson vortices described by Eq. (5) have two length
scales along the xy planes: the length of the Josephson core
λJ ≡ �s and the magnetic penetration depth λc determining
the scale of circulating currents along the stack. Equation (1)
also describes small-amplitude waves δθ ∝ eikxx+iqz−iωt

[40,45]. If the number of layers N → ∞, linearization of
Eq. (1) with respect to δθ around the uniform current state
sin θ0 = −β yields the following dispersion relation ω(kx, q)
for the Josephson plasma waves (in the original units):

ω(kx, q) = �(kx, q) − iηωJ

2
, (6)

�2 =
[

(1+αq )
√

1−β2− η2

4

]
ω2

J +
[

1 + αq

1 + ζq

]
(kxci )

2, (7)

αq = 4α sin2 qs

2
, ζq = 4ζ sin2 qs

2
, (8)

where ci = λcωJ = c/
√

εc is the speed of light in the dielec-
tric layers. At η → 0 and kx = q = 0, Eqs. (6)–(8) yield ω =
ωJ (1 − β2)1/4, but at λckx 
 1 the frequency of the Josephson
plasmon ω(kx, q) = c̃(q)kx depends linearly on the in-plane
wave number kx. Here the longitudinal phase velocity ω/kx =
c̃(q) depends on the z-component q of the wave vector:

c̃(q) = ci

[
1 + 4α sin2(qs/2)

1 + 4ζ sin2(qs/2)

]1/2

. (9)

For a stack of N junctions, Eqs. (6)–(8) with qn = πn/

(N + 1)s and n = 0, 1, . . . , N describe N + 1 branches of
plasma waves [45]. In the case of ζ 
 α characteristic of the
layered cuprates, c̃ decreases strongly as q increases, from c̃ =
ci at q = 0 to c̃ = ci/2

√
ζ � ci at q = π/s. Thus, the plasma

wave with alternating θl in the z direction has the minimum
phase velocity cs = ci/2

√
ζ = cs/2λab

√
εc corresponding to

the Swihart velocity in a single junction [1]. These features
of �(kx, q) give rise to Cherenkov radiation produced by a
moving vortex [6,50–52].

Cherenkov radiation occurs if the velocity v of a vortex
exceeds the minimum phase velocity �(kx )/kx of the Joseph-
son plasmons. As follows from Eq. (9), the condition v >

c̃(q) at (kxλc)2 
 1 and ζ 
 1 is first satisfied if v > cs at
q = π/s. For instance, Fig. 2 shows the Cherenkov radiation
cone behind a moving vortex obtained by numerical simula-
tions of Eq. (1).

FIG. 2. Color map of Cherenkov radiation cone in the magnetic
field Bl (x) produced by a vortex moving uniformly in the middle
layer in a stack of N = 101 junctions. Here Bl (x) is obtained by
simulations of Eqs. (1) with β = 0.25, ζ = 71 111, α = 1, η = 0.05,
and B0 = φ0/2πsλc. Only solutions for 15 neighboring junctions
above and below the vortex are shown. Note that Lz = Ns ∼ 10−3λc

so the vortex is strongly elongated along the x direction.

IV. SINGLE VORTEX

A. Laterally infinite stack

In this section, we present results of simulations of Eq. (5)
describing vortices in a stack of N = 21 junctions with
η = 0.05. The solution of Eq. (5) for a stationary vortex in
the middle layer is shown in Fig. 3. As the bias current β

increases, the vortex velocity v(β ) controlled by the drag of
quasiparticle currents and radiational forces increases. Here
the viscous drag dominates at small β for which the driving
Lorentz force is balanced by the Ohmic friction due to dis-
sipative quasiparticle currents in the moving vortex [53]. At

-0.02 -0.01 0 0.01 0.02

x/
c

-1

0

1

2

3

4

5

6

7

l(x
)

l = 1
l = 10
l = 11

FIG. 3. Phase profile of a static vortex in the middle junction
(l = 11) and θl (x) induced by the vortex on the layers with l = 10
and 1. Here θl (x) are symmetric with respect to the central layer.
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FIG. 4. Phase profiles of a single vortex propagating along the
middle junction (l = 11) and the trailing tail of Cherenkov radiation
produced on the neighboring junctions (l = 1 and 10) calculated
from Eq. (5) at β = 0.615 and η = 0.05.

β � 0.075, the velocity exceeds the threshold, v > cs, at
which the vortex starts radiating Cherenkov waves. As β

increases further, the amplitude and the wavelength of this
Cherenkov wake increase and radiation spreads across the
neighboring junctions. Figures 4 and 5 show the calcu-
lated phase and field profiles around the moving vortex at
β = 0.615.

Using the solutions for θl (x, t ), we calculated the steady-
state velocity of the vortex v(β ) as a function of the driving
current β at different values of η. The so-obtained curves
v(β ) shown in Fig. 6 have two distinct parts corresponding
to different mechanisms of vortex drag. At small currents, the
vortex velocity is limited by the quasiparticle viscous drag

FIG. 5. A color map of the magnetic field in the vortex moving
along the central junction calculated from Eq. (2) at β = 0.615 and
η = 0.05. Here Cherenkov radiation behind the vortex manifests
itself as color ripples. Since Lz ∼ 10−4λc, the vortex is strongly
elongated along the x direction.

0 0.2 0.4 0.6 0.8 1
 = J/J

0

0

0.2

0.4

0.6

0.8

1

v/
2c

s

 = 0.01
 = 0.05
 = 0.1
 = 0.5

FIG. 6. Stationary velocities of a vortex moving along the central
JJ as a function of the bias current at different η. The instability
occurs at the end points of the curves. The sharp change in the slope
of v(β ) at η � 1 indicates the transition from the Ohmic to radiation
vortex drag.

dv/dβ ∝ η−1 and v(β ) increases sharply with β if η � 1.
The kink in the v(β ) curve at intermediate β occurs at the
onset of Cherenkov radiation above which the slope of v(β )
decreases as the radiation friction takes over [6,54] and v(β )
becomes weakly dependent on the dissipative term in Eq. (5).
At η � 1, the radiation friction dominates at practically all
β, significantly reducing v(β ), which exceeds the Cherenkov
threshold. As η increases, the kink separating the Ohmic and
Cherenkov vortex drag regions of v(β ) gets less pronounced.
All v(β ) curves have the end points at β = βs and v = vc

beyond which Eq. (5) no longer has solutions for uniformly
moving vortices. Figure 7 shows the calculated critical cur-
rent βs and the corresponding terminal vortex velocity vc

as functions of the damping parameter η. For underdamped
junctions, Js(η) is well below J0 and increases monotonically
with η, approaching J0 at η > 1. In turn, the terminal velocity
increases from vc ≈ 1.35cs at η � 1 to vc ≈ 1.85cs at η = 1.
A similar behavior of v(β ) and vc was obtained previously by
Goldobin et al. [34] in numerical simulations of two and three
inductively coupled planar JJs.

At β > βs in Eq. (5), the moving vortex starts sponta-
neously generating V-AV pairs, which spread both along and
across the JJ stack. For instance, at η = 0.05 this process starts
at βs � 0.62 and vc ≈ √

2cs. Such vortex splitting instability
in a layered superconductor turned out to be similar to that
of a driven vortex in a single JJ described by equations of
nonlocal Josephson electrodynamics [29]. This mechanism
is illustrated by Fig. 8, which shows that a critical nucleus
being in the unstable π -phase state with 5π/2 < θ < 7π/2
forms behind the vortex moving along the central layer where
the maximum of Cherenkov radiation wake θl (x, t ) reaches
the threshold value θc ≈ 8.6. As β increases, the amplitude
and the width of this π -phase domain grow, and eventually it
splits, triggering a cascade of V-AV pairs that expand along
the middle junction. In turn, the V-AV pairs in the middle
junction induce V-AV pairs on the neighboring junctions,
which then start splitting and propagating along the layers
and across the stack. This process produces an expanding
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FIG. 7. The threshold instability current (a) and the terminal
velocity (b) as functions of η calculated for ζ = 71 111.

chain of macrovortices that spread across the entire stack, the
macrovortices of positive polarity accumulating at one edge of
the stack while macrovortices of negative polarity accumulate
at the other edge, as shown in Fig. 9. A simulation video of
this process is available in Ref. [55].

The dynamics of the V-AV pair production caused by a
single moving vortex, and the subsequent formation of the ex-
panding macrovortex structure, does not change qualitatively
as the number of layers increases above N = 21 used in the
simulations described above. For instance, our simulations
for a stack with N = 101 have shown that the V-AV pair
production starts at β = 0.625, which is very close to the
instability current of a vortex in a stack with 21 junctions.
Thus, the results obtained for N = 21 can be representative
of the BSCCO crystal mesas with N ∼ 1000, consistent with
the conclusion of Ref. [52] that the behavior of vortices
would become independent of the thickness of the stack if
N > λab/s ∼ 200.

B. Annular stack

To investigate how the vortex dynamics changes by impos-
ing the periodic boundary conditions, we consider an annular

-0.1 -0.05 0 0.05 0.1 0.15
x/

c

5

10

15

20

11
(x

,t)

t = 0
t = 70
t = 83

FIG. 8. Initial stages of generation of V-AV pairs by a vortex
moving along the central junction (top panel), and snapshots of
field distribution solutions showing the two-dimensional growth of
instability for junctions with l = 9, 10, and 11 at three differ-
ent times (bottom panel). The results are calculated at η = 0.05,
ζ = 71 111, and β = 0.62.

stack in which

θl (x = −L/2) = θl (x = L/2) + 2nπ,

θ ′
l (x = −L/2) = θ ′

l (x = L/2), (10)

where n = n f − na is the difference between the number of
fluxons (n f ) and antifluxons (na) on the lth layer, and L is the
circumference of the stack along the x direction. In our simu-
lations we choose L = λc 
 λJ , in which case the structure of
a static vortex in the annular stack at β = 0 is nearly identical
to the vortex in the infinite stack shown in Fig. 3. If a transport
current flows across the annular stack, a vortex moving along
the central junction radiates Cherenkov waves in a way similar
to that shown in Fig. 4. Likewise, the vortex starts producing
V-AV pairs at a critical value β = βs that is very close to βs for
the laterally infinite stack considered above. The initial stages
of the V-AV pair production spreading both along and across
the junctions proceed as they do in the infinite stack, resulting
in expanding piles of vortices and antivortices. However, in
the annular JJ stack, the propagating macrovortices of oppo-
site polarity eventually collide and partly annihilate as they go
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FIG. 9. Cross-sectional view of the field distribution profiles in
the stack after the instability (top panel, t = 125) along with a
closeup view of giant vortices moving to the left (bottom panel,
t = 225). Similar macrovortices with opposite polarity form at the
other side of the stack (as shown in the top panel).

through each other. The transient solution then evolves into
a chaotically oscillating distribution of θl (x, t ) resulting in
unidirectional traveling waves of magnetic field with nearly
constant amplitudes in each junction, as shown in Fig. 10.
Eventually these traveling electromagnetic waves on different
layers become more synchronized, as shown in Fig. 11.

Imposing the boundary condition θ1 = θN models a peri-
odic chain of vortices spaced by N layers along the z direction
in an infinite annular JJ stack. Our simulations for this case
show that, because of the symmetry of this geometry, the
solutions for θl (x, t ) and Bl (x, t ) are the same as in the above
case of a finite annular stack.

V. VORTEX CHAIN IN AN ANNULAR STACK

The above results show that the initial stage of the contin-
uous V-AV pair production triggered by a single driven vortex
is not very sensitive to the boundary conditions either across

-0.5 0 0.5
0

5

10

θ(
x,

t)

-0.5 0 0.5
x/λ

c

-0.05

0

0.05

B
(x

)/
B

0

FIG. 10. Snapshots of representative solutions for θl (x, t ) (top)
and Bl (x, t ) (bottom) along the middle JJ at the critical current
β = βs = 0.62.

or along the stack. In this section, we present the simulation
results for a chain of M vortices placed equidistantly in the
middle junction of the 21 JJ stack. If vortices are far apart from
each other, so that the spacing between vortices d = L/M 

λJ , the initial stage of the V-AV pair production proceeds
in a way similar to that of a single vortex. Namely, each
vortex starts radiating Cherenkov wakes at β ≈ 0.075, which
matches that of a single vortex for up to M = 9. The onset of
the V-AV pair production at M = 9 occurs at β = 0.625 close
to βs for a single vortex. In this case, the intervortex spacing
d ∼ 30λJ is large so that no significant overlap between
the Cherenkov wakes from neighboring vortices happens, as
shown in Fig. 12.
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FIG. 11. Snapshots of the magnetic field (top) and electric field
(bottom) in junctions 1–11 calculated at β = βs = 0.62, where
E0 = φ0ωJ/2πcs. Here the largest oscillation amplitude corresponds
to the middle junction and the lowest amplitude corresponds to the
top/bottom junction.
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FIG. 12. Comparison between θl (x) in a single vortex and a chain
of nine vortices (only three are shown) moving along the central
junction at β = 0.6.

For M = 9, moving vortices start generating V-AV pairs
at β = 0.625. The expanding pairs then overlap, resulting
in the phase profile θ11(x, t ) increasing nearly linearly with
time while preserving the net winding number of the initial
nine vortices. In turn, the V-AV pair production in the central
junction induces V-AV pairs in the neighboring junctions,
causing propagation of the resistive state across the stack.
Eventually θl (x, t ) evolves into a superposition of traveling
waves propagating on the phase background increasing lin-
early with t . Our simulations of M = 14 vortices in the middle
layer have shown a similar dynamics of θl (x, t ) as for nine
vortices, except that the V-AV pair production starts at a
lower value β ≈ 0.59. The latter may result from stronger
overlap and the constructive interference of the Cherenkov
radiation tails, which extend over the length Lr ∼ λJ/η behind
a moving vortex.

The dynamics of vortices changes as the intervortex spac-
ing d = L/M becomes of the order of λJ . For instance, at
M = 50 and d � 5λJ the radiation tails of adjacent vortices
overlap even at β � βs. As a result, vortices get trapped in
the radiation wakes of neighboring vortices, and the unidi-
rectional motion of the vortex chain at J slightly below Js

is accompanied by a low-amplitude traveling wave in which
the relative position of the adjacent vortices and their instan-
taneous velocities oscillate, as shown in Fig. 13. The vortex
chain starts producing V-AV pairs at β = 0.445 resulting
in a quick transition of the central junction into a resistive
state in which θ11(x, t ) becomes nearly a straight line in x
and increases linearly with t . Unlike the case of smaller M,
the quick resistive transition of the central junction does not
spread across the stack, and no V-AV pairs are generated on
other junctions where only small-amplitude plasma traveling
waves appear. The electromagnetic oscillations in all layers
are phase-locked, the amplitude of oscillations decreasing
with the distance from the central layer. Snapshots of these
solutions are shown in Fig. 14.
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FIG. 13. Snapshots of θl (x, t ) in a moving chain of 50 vortices at
β = 0.44 near the instability threshold. The two profiles are superim-
posed for ease of comparison. Interaction of vortices with Cherenkov
wakes causes temporal variations in the shape and velocity of moving
vortices.

Our simulations have shown that the dynamics of 100
vortices with d � 2.6λJ appears similar to that of 50 vor-
tices. Yet because of a stronger overlap of vortices and their
Cherenkov radiation tails, the onset of the V-AV pair pro-
duction βs = 0.455 is slightly higher than for 50 vortices.
This trend becomes more apparent for 200 vortices for which
βs � 0.665 not only exceeds βs for 100 vortices but also βs

for a single vortex. The increase of βs with M at large M may
result from the fact that, if vortices and their radiation tails
overlap strongly, the spatial modulations of θ (x, t ) along the
vortex chain get reduced, and the critical π phase nucleus that
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FIG. 14. Snapshots of the final form of the solution in electric-
field (top) and magnetic-field (bottom) representations in junctions
1–11 for instability current β = 0.445. The oscillations are both in
phase and periodic for all layers with amplitudes decaying from the
middle junction across the stack.
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FIG. 15. Color map of the magnetic field across the stack for a
stationary vortex lattice with one fluxon per layer (top) and Bl (x) for
the middle and surface JJs (bottom).

triggers the V-AV pair production can only appear at higher
β. For a very dense vortex chain with d � λJ , the V-AV pair
production does not occur before the central junction switches
to the resistive state at β = 1.

VI. VORTEX LATTICE

In this section, we present the results of our simulations
for the driven Josephson vortex lattice in an annular stack of
planar junctions.

A. Annular stack with finite N

Consider vortices initially placed along a line slightly tilted
from being perpendicular to the layers with one vortex per
layer in an annular stack with N = 21. At zero current, this
structure then relaxes to that is shown in the top panel of
Fig. 15. The corresponding field distributions Bl (x) are shown
in the bottom panel of Fig. 15 for the topmost, bottommost,
and middle layer. After a bias current is applied, the vortices
start moving uniformly and radiating Cherenkov waves with
the amplitude and wavelengths increasing with β. As shown
in Fig. 16, the average velocities of vortices in different
layers are almost the same, and their relative positions remain
constant as the current is ramped up to the onset of the V-AV
pair production, β = 0.54. At βs = 0.55, the vortex moving
with the velocity v ≈ 1.34cs along the 20th junction starts
generating V-AV pairs, which then spread to other junctions,
driving the whole stack into a resistive state. As a result,
the initial vortex structure evolves to θl (x, t ), which appears
chaotic in both x and t on each junction, similar to that
obtained for a single vortex shown in Fig. 10.

In our numerical simulations, we observed that the symme-
try of static vortex structures can depend strongly on the initial
arrangement of vortices, which can relax to many metastable
states. This issue has been recognized in the literature as one
of the main reasons why vortices do not necessarily form a

FIG. 16. Color map of the magnetic field across the stack for a
uniformly moving vortex lattice with one fluxon per layer (top) and
Bl (x) for the middle and surface JJs (bottom) calculated at β = 0.54.

triangular lattice in numerical simulations [21,26]. To produce
a static vortex configuration with an equidistant arrangement
of vortices, we initially put chains of equidistant vortices
in each layer with vortices on neighboring layers shifted
with respect to each other. As a result, vortices relax to a
periodic structure, as shown in Fig. 17 for ten vortices per
layer. We found that, for a current-driven vortex lattice, the
onset of the V-AV pair production is mostly determined by
the vortex density within each layer, and it depends weakly
on the symmetry of the vortex lattice. For instance, for the
structure shown in Fig. 17, the V-AV pair production occurs
at β ≈ 0.32 irrespective of the arrangement of vortices as long
as the linear density of vortices per junction is fixed. From our
calculations, it follows that the threshold current Js decreases

FIG. 17. Color map of the magnetic field across the stack for a
stationary vortex lattice with ten fluxons per layer (top) and Bl (x) for
the middle and surface JJs (bottom).
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FIG. 18. Calculated dependence of Js on the linear density of
vortices per length λc along the layer in a vortex lattice.

monotonically with the increase of the linear density vortices
per layer, as shown in Fig. 18. Hence, Js is reduced if a weak
parallel magnetic field is applied to the stack.

As the density of vortices is increased, the vortex config-
uration becomes closer to a triangular lattice, as shown in
Fig. 19 for a lattice of 50 vortices per layer. If a bias current is
applied, Cherenkov radiation occurs once the velocity of the
lattice exceeds the threshold for the minimum plasma mode,
but the radiation wakes are reduced due to strong overlap
of vortices in both directions. Here the chain of vortices in
the middle junction becomes unstable first at βs = 0.195,
producing only one V-AV pair after which the pair production
stops. At a slightly larger current of β = 0.2, two more V-AV
pairs are generated in the neighboring 10th and 12th junctions,

FIG. 19. Color map of the magnetic field in a stationary vortex
lattice composed of 50 fluxons per layer. The closeup in the top left
corner shows a triangle formed by three vortices in two adjacent
layers.

FIG. 20. Magnetic-field color map in moving vortices in junc-
tions 10, 11, and 12 at β = 0.1 (top). Bottom panel illustrates how
a transient triplet is formed out of the conversion of the image of
vortices from the 10th and 12th junctions in the central JJ to a pair of
V-AV at β = 0.175.

while a larger number of V-AV pairs are produced in the
middle junction. As current is increased to β = 0.205, some
vortices in the 9th and 13th junctions produce a few V-AV
pairs. This stepwise process of limited V-AV pair produc-
tion spreads across more and more junctions as the current
increases further. Finally, at β = 0.2225 the middle junction
starts generating V-AV pairs, which triggers the V-AV pair
production in all JJs. As a result, at β > 0.2225 the stack
eventually switches into a dynamic resistive state comprised
of propagating phase-locked waves that are synchronized for
all junctions.

B. Annular stack with θ1 = θN

Here we impose the periodic boundary condition of
θ1 = θN , which models periodic vortex structures in an an-
nular stack infinite along z. Due to the symmetry of the
problem, this boundary condition reduces the number of vari-
ables θl (x, t ) in Eqs. (1) to (N + 1)/2 for odd N . Consider
one fluxon per layer for which the situation is similar to
that considered in the previous section. Because of the exact
same position of vortices in the 10th and 12th junctions, the
magnitude of the image induced by these vortices on the
middle junction (l = 11) doubles. As a result, the onset of
the V-AV pair production on the central junction is reduced
down to βs = 0.175. At β = βs, this image in the middle
junction converts to a V-AV pair, which then expands in such
a way that two vortices move to the left and the antivortex
moves to the right until it gets trapped between two vortices
in the neighboring junctions 10 and 12. Shown in Fig. 20
are snapshots of magnetic-field maps at β < βs and β > βs

that illustrate the formation of transient V-AV-V triplets. The
antivortex trapped in the V-AV-V triplet slows it down relative
to other vortices, so when the vortices from junctions 9 and
13 reach the triplet, the antivortex escapes, producing a V-AV
pair that then annihilates, as shown in the simulation movie
[55]. The process of creation and then annihilation of pairs
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during the disintegration of the triplet occurs as β increases
further. Finally, at β = 0.3 after the disintegration of the
triplet, a cascade of V-AV pairs generated continuously in the
central junction spreads across the whole stack, resulting in a
McCumber-type resistive state in which θl (t ) on each junction
increases nearly linearly with time [55].

VII. FINITE-SIZE EFFECTS AND VORTEX BOUNCING

The proliferation of branching V-AV patterns or macrovor-
tex (MV) structures caused by a single vortex is essentially
a bulk effect that occurs in a sufficiently long sample or an
annular JJ stack. However, in a JJ stack of finite length Lx,
the expanding MV chain eventually hits the edges of the JJs,
where the boundary conditions of zero current θ ′

l = 0 are
imposed. In this section, we consider peculiarities of vortex
dynamics resulting from the finite-size effects. It turns out
that interaction of a MV with the edges of the stack occurs
in a way similar to that of a moving J vortex in a single long
JJ (see, e.g., Ref. [14]). This interaction proceeds as follows.
As V approaches the edge of a JJ, it induces penetration
of a counterpropagating AV that collides with the incoming
vortex. The outcome of this collision depends on the damping
parameter η. In an overdamped JJ (η � 1), the colliding V
and AV annihilate, fully extinguishing the fluxon of the initial
vortex as it exits the junction. However, in an underdamped JJ
with η � 1, the colliding V and AV do not annihilate but go
through each other, as characteristic of nondissipative solitons
described by the sine-Gordon equation [1]. As a result, the
incoming V exits while the AV moves into the JJ. This process
can be regarded as a vortex analog of the Andreev reflection.

A current-driven V in an underdamped JJ stack gets pe-
riodically reflected from the edge where it transforms into a
counterpropagating AV, which in turn gets reflected as a vortex
from the opposite edge. Such a V-AV shuttle causes oscilla-
tions of the magnetic moment M(t ) with the flight frequency
ν = v/2Lx depending on the JJ length. Here M(t ) = φ(t )Ly

and the instantaneous magnetic flux threading the stack φ(t )
are calculated using

M(t ) = M0

∑
l

∫ Lx

0
Bl (x)dx, (11)

where M0 = B0sλcLy/μ0 = φ0Ly/2πμ0, Ly is the length of
the stack along y, and the integral is expressed in terms of
the dimensionless field Bl and coordinates defined in Sec. II.
Shown in Fig. 21(a) is M(t ) calculated for a vortex driven
along the central layer at β < βs in a stack with Lx = λc and
N = 21. The magnitude of |M(t )| � 0.0055M0 in Fig. 21(a)
indicates that the vortex flux φ � 9×10−4φ0 is much smaller
than φ0. This effect is similar to the well-known reduction of
magnetic flux in a parallel Abrikosov vortex in a thin film
[56–58]. Calculation of φ of a vortex in a long JJ stack with
N 
 1 and Lx 
 λJ given in Appendix yields the same result
as for the Abrikosov vortex [57]:

φ(u) = φ0

[
1 − cosh(u/λab)

cosh(Lz/2λab)

]
. (12)

Here u is the position of the vortex relative to the center of the
film. Notice that φ(u) decreases as u increases and vanishes at
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FIG. 21. Temporal oscillations of a magnetic moment M(t ) due
to periodic reflections of driven vortices and antivortices from the
sample edges at η = 0.1. (a) M(t ) caused by a vortex shuttle in
which a single vortex gets reflected from the edges as an antivortex
at β = 0.585 < βs. The features marked by the arrows result from
Cherenkov and bremsstrahlung radiation after reflection of a V or
AV. (b) M(t ) caused by a bouncing flux structure with one vortex per
layer at β = 0.53 < βs.

the surface u = ±Lz/2 where the vortex flux is extinguished
by AV images [56,57]. For the J vortex in the center of a thin
JJ stack (u = 0, Lz = sN � 2λab), Eq. (12) gives

φ � φ0N2

8

(
s

λab

)2

, N � 2λab

s
. (13)

Taking here N = 21, s = 1.5 nm, and λab = 400 nm for
BSCCO, we obtain φ � 8×10−4φ0 in agreement with the
simulation results presented in Fig. 21(a).

Shown in Fig. 21(b) is M(t ) calculated for a dynamic
flux state with one vortex per layer below the Cherenkov
instability threshold at β < βs. Here the magnitude of M(t )
for 21 vortices is about 12 times larger than for a single vortex.
The fact that M(t ) for one vortex per layer is not 21 times
larger than M(t ) for a single vortex is consistent with Eq. (12)
according to which the flux of vortices on outer layers is
smaller than φ for the vortex on the central layer. The shape
of M(t ) changes from rectangular pulses for a single vortex
to triangular pulses for many vortices. This happens because
the repelling vortices tend to arrange themselves to maximize
the intervortex spacing so the reflections of vortices from the
edges on different layers occur at different times.

Above the Cherenkov instability threshold β > βs, a sin-
gle V-AV shuttle excites counterpropagating MVs and anti-
macrovortices (AMV), which then get reflected from the
edges in the same way as single Vs and AVs. For instance,
the collision of MVs with the edge of an underdamped stack
with η = 0.1 is shown in Fig. 22. As the MV exits the stack,
it induces penetration of a counterpropagating AMV, the
structure of this AMV remains preserved as it goes through
the incoming MV without fragmentation into single vortices.
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FIG. 22. Magnetic-field color map in moving macrovortices col-
liding with the edge of the stack at x/λc = −0.5. Top: A chain of
macrovortices reaching the edge just before the collision. Bottom:
The same chain after the leading macrovortex collided with the edge
and got transformed into a counterpropagating anti-macrovortex.

Such bouncing MVs and AMVs generated by a V-AV shuttle
give rise to temporal oscillations of the magnetic moment
M(t ) = Lyφ(t )/μ0, where φ(t ) is the net magnetic flux pro-
duced by all Vs and AVs. As shown in Fig. 23, the magnitude
of M(t ) is of the order of that of a stable flux structure with
one vortex per layer [see Fig. 21(b)]. Notice that M(t ) for
bouncing MVs contains multiple harmonics with frequencies
much higher than those for the stable flux structures shown
in Fig. 21.

A big transient spike in M(t ) at the onset of the MV
formation can be understood as follows. At β > βs, the initial
vortex placed near the right edge of the stack accelerates and
starts producing V-AV pairs, which form the MV structures
spreading both along and across the JJ stack. Here MVs move
to the left along with the initial vortex while AMVs move to
the right and get reflected as MVs from the right edge before
the leading MV reaches the left edge. As a result, the number
of vortices in the stack keeps growing until the leading MV
reaches the left edge, after which the process reverses as the
number of AMVs increases and exceeds the number of MVs.
After a small amount of bouncing of MVs and AMVs back
and forth, generation of new V-AV pairs stops and a standing
wave forms, resulting in self-sustained oscillations of M(t ),
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FIG. 23. Temporal magnetic moment M(t ) due to bouncing
macrovortices excited by a single V-AV shuttle. Inset shows M(t )
caused by self-sustained MV standing waves superimposed onto
M(t ) due to stable oscillations of the flux structure with one vortex
per layer taken from Fig. 21.

as shown in Fig. 23. A snapshot of this standing wave in
Fig. 24 indicates nonlinear interference and multiplication of
harmonics with frequencies ranging from ω ∼ ωJ to much
lower frequencies ω ∼ v/d determined by the velocity v(β )
and the spacing d (β ) between MVs. Simulation movies of this
process are available in Ref. [55].

Self-sustained MV standing waves excited by a V-AV shut-
tle at J > Js increase the power of electromagnetic radiation
W caused by temporal oscillations of M(t ) and a charge
density at the surface of the stack. We do not consider here all
essential contributions to W , which depend on the geometry of
the stack and details of its electromagnetic coupling with sur-
rounding structures (see, e.g., reviews [6,7,45] and references
therein), rather we only estimate a magnetodipole part of W
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FIG. 24. A snapshot of beats standing waves of Bl (x, t ) on differ-
ent layers in a finite stack with N = 41 calculated for self-sustained
oscillations of M(t ) shown in Fig. 23.
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FIG. 25. Self-sustained oscillations of M(t ) calculated for
N = 21, 41, and 81 at β = 0.6 and η = 0.1 after complete decay
of initial transient spikes in M(t ).

that has not been addressed in the literature. As follows from
the inset in Fig. 23, each MV at N = 21 has ∼Nφ0 bunched
vortices lined perpendicular to the layers. Such bouncing
multiquanta MVs greatly increase the magnetodipole radi-
ation power W ∝ M̈2 as compared to the V-AV shuttle at
β < βs. Indeed, once J exceeds Js, both the magnitude and the
frequency of M(t ) shown in Figs. 21 and 23 increase by more
than an order of magnitude, which translates to ∼107-fold
increase in W .

Both the magnitudes and the frequencies of different har-
monics in M(t ) change significantly as the number of layers
increases. Shown in Fig. 25 are M(t ) = φ(t )Ly calculated
at N = 21, 41, and 81 after the transient spikes in M(t )
decayed completely. Parts of these M(t ) curves calculated
with much finer time steps �t = 0.01ω−1

J shown in Fig. 26
clearly exhibit multiple harmonics with high frequencies
ω ∼ ωJ and low beats frequencies ω � ωJ , which increase
nearly linearly with N . As was mentioned above, the low-
frequency part of M(t ) is related to traveling times of MVs.
Characteristic magnitudes MN of M(t ) also increase as N
increases: M81 � 4M41 and M41 � (4 − 5)M21. This trend is
qualitatively consistent with the quadratic increase of the
magnetic flux per vortex MN ∝ φ ∝ N2 in JJ stacks with
Lz � 2λab given by Eq. (13).

The mean radiation power W = μ0〈M̈2〉/6πc3 for JJ stacks
smaller than the radiated wavelength [59] can be estimated
using M(t ) from Eq. (11), where M0 = φ0Ly/2πμ0 and
ωJ = c/

√
εcλc. Hence, W can be presented in the form

W � c(φ0Ly)2GN

24π3μ0ε2
c λ

4
c

, GN =
∫ t0+T

t0

m̈2 dt

T
, (14)

where m(t ) = M(t )/M0. The dimensionless factor GN takes
into account the effect of the number of layers on the am-
plitudes and frequencies of different harmonics in M that
contribute to W , where t0 � 800. We evaluated GN by aver-
aging numerical derivatives in m̈2 for the calculated M(t ) over
the time interval T = 200. Calculations of GN for different
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FIG. 26. Parts of M(t ) at N = 41 and 81 shown in Fig. 25 but
calculated with the finer time steps �t = 0.01ω−1

J to reveal high-
frequency harmonics in M(t ).

N using the results shown in Fig. 26 give G21 = 0.0336,
G41 = 2.05, and G81 = 154.1. Such a strong increase of GN

with N is much faster than W ∝ N4 resulting from only the
quadratic increase of the magnetic flux of the vortex with
N . Another part of this rapid growth of GN comes from
the enhancement of higher-frequency harmonics at larger N
evident from Figs. 25 and 26. All in all, the calculated GN

roughly follows the N6 dependence at N � 102.
Taking λc = 200 μm, Ly = 1 mm, εc = 10, and G81 = 154

in Eq. (14), we obtain W � 1.32 nW of the order of the
lower end of radiated power observed on BSCCO mesas
[7,8] with a much larger number of layers N ∼ 103. Yet
given the very rapid increase of WN ∝ N6 revealed in our
simulations at N � 102, a much greater W at N ∼ 103 may
occur. Direct calculation of W for N ∼ 103 is beyond our
current computational capabilities. Yet if the trend W ∝ N6

continued up to N � 2λab/s � 500 at which the flux per
vortex reaches φ0 [see Eqs. (12) and (13)], one might expect
W500 ∼ W81(500/81)6 ∼ 1 mW (for an ideal cooling of the
sample and no Joule heating caused by the motion of MVs).
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VIII. DISCUSSION

In this paper, we show that the uniform motion of a Joseph-
son vortex driven by a dc current in layered superconductors
breaks down as the velocity of the vortex exceeds the terminal
velocity vc at current densities J > Js. If v > vc, the moving
vortex starts emitting V-AV pairs, causing a dendritic flux
branching in which vortices and antivortices become spatially
separated and form dissipative structures that depend on the
sample geometry. For instance, a single vortex in a long stack
can produce a chain of dissipative macrovortices that extends
across the entire stack, as shown in Fig. 9. The breakdown
of the dc flux flow state caused by V-AV pair production can
occur at current densities Js well below the Josephson critical
currents J0 across the stack.

In an underdamped JJ stack of finite length Lx, a vortex
driven by a dc current at J < Js turns into a V-AV shuttle
in which the vortex periodically changes its polarity and
direction of motion after each reflection from the sample edge.
This process results in oscillations of the magnetic moment
M(t ) with the flight frequency v/2Lx depending on the length
of the stack. At J > Js, the V-AV shuttle produces propa-
gating macrovortices consisting of bunched vortices aligned
perpendicular to the layers. These macrovortices periodically
change both the polarity and the direction of motion with-
out fragmentation into single vortices after each reflection
from the edges of the JJ stack. Such bouncing macrovortices
eventually form large-amplitude flux standing waves, giving
rise to oscillations of M(t ). Here M(t ) contains multiple
harmonics, the amplitudes and frequencies of which increase
as the number of layers increases.

Proliferation of V-AV pairs at J > Js can manifest itself
in hysteretic jumps on the V -I curves. These jumps appear
similar to those produced by heating effects [2,7], yet the
initial stage of the Cherenkov vortex instability is affected by
neither cooling conditions nor the nonequilibrium kinetics of
quasiparticles. Moreover, heating is most pronounced in over-
damped junctions with η > 1 in which radiation is suppressed,
whereas the Cherenkov instability is most pronounced in
weakly dissipative underdamped interlayer junctions char-
acteristic of the BSCCO cuprates. The V-AV pair produc-
tion can be facilitated by the interaction of vortices with
edges or materials defects, resulting in vortex bremsstrahlung
and a further reduction of the terminal velocity vc and the
threshold of instability current density Js. These effects are
similar to those revealed in our previous simulations of
current-driven vortices in a single Josephson junction of finite
length [29].

The V-AV pair production and bouncing macrovortices
caused by a single vortex at J > Js can contribute to the
power of radiation W from a JJ stack. As was shown in
Sec. VII, the V-AV shuttle generates self-sustained MV stand-
ing waves and oscillations of the total magnetic moment. In
turn, oscillations of M(t ) give a contribution to the radiation
power that increases greatly as the number of layers increases.
For the parameters of BSCCO and N � 81, our calcula-
tions gave W ∼ 1 nW, so one might expect W ∼ 1 mW at
N ∼ 103 characteristic of the BSCCO mesas. Hence, bounc-
ing macrovortices could contribute to the radiation power

observed in the BSCCO mesas, although specifying the frac-
tion of this contribution in the total W requires more elab-
orate calculations taking into account the sample geometry
and cooling conditions. The nonlinear MV standing wave at
J > Js eventually gives rise to strong dissipation that can
produce hotspots in the sample [60,61], even though heating
is not the underlying cause for the V-AV pair production but
rather its consequence. Our results thus suggest a mechanism
by which the formation of hotspots may be linked to peaks in
the radiation power, as was indeed observed on the BSCCO
mesas [62–66].
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APPENDIX: MAGNETIC FLUX OF A PARALLEL
J VORTEX

We calculate the magnetic flux φ of a vortex in a long JJ
stack with N 
 1 and Lx 
 λJ . The vortex core has the length
λJ = s� along the layer and a width ∼s across the layers. At
� 
 1 the magnetic field varies slowly across the neighboring
layers, so the discrete Bl (x) can be approximated by a contin-
uous function B(x, y), which satisfies the anisotropic London
equation:

λ2
ab

∂2B

∂z2
+ λ2

c

∂2B

∂x2
− B = − φ0

2π

∂ϕ

∂x
δ(z − u), (A1)

where ϕ(x) is a 2π kink of length λJ that describes the phase
difference between the layers where the vortex core is located
at z = u. The boundary conditions of zero current through the
surface require B(x,±Lz/2) = 0.

The magnetic flux is given by

φ =
∫ ∞

−∞
dx

∫ Lz/2

−Lz/2
B(x, z)dz =

∫ Lz/2

−Lz/2
g(z)dz, (A2)

where g(z) = ∫ ∞
−∞ B(x, z)dx, and z = 0 is taken in the center

of the stack. The equation for g(z) is obtained by integrating
Eq. (A1) over x from −∞ to ∞, using the boundary condi-
tions ∂xB(±∞, z) = 0 and ϕ(∞) − ϕ(−∞) = 2π . Hence,

λ2
ab

∂2g

∂z2
− g = −φ0δ(z − u). (A3)

The solution of Eq. (A3) satisfying the boundary condition
g(±Lz/2) = 0 is then [57]

g(z) = − φ0

2λ2
ab sinh(Lz/λab)

{
cosh

[
(z + u)λ−1

ab

]

− cosh
[
(Lz − |z − u|)λ−1

ab

]}
. (A4)

Integration of this g(z) in Eq. (A2) yields Eq. (12).
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