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ABSTRACT

FLOW SIMULATIONS ABOUT STEADY-COMPLEX AND 
UNSTEADY MOVING CONFIGURATIONS USING 

STRUCTURED-OVERLAPPED AND UNSTRUCTURED GRIDS

by

James C. Newman III 
Old Dominion University

Director: Dr. O. Baysal

The limiting factor in simulating flows past realistic configurations of interest has been 

the discretization of the physical domain on which the governing equations of fluid flow 

may be solved. In an attempt to circumvent this problem, many Computational Fluid 

Dynamic (CFD) methodologies that are based on different grid generation and domain 

decomposition techniques have been developed. However, due to the costs involved and 

expertise required, very few comparative studies between these methods have been 

performed. In the present work, the two CFD methodologies which show the most 

promise for treating complex three-dimensional configurations as well as unsteady moving 

boundary problems are evaluated. These are namely the structured-overlapped and the 

unstructured grid schemes. Both methods use a cell centered, finite volume, upwind 

approach. The structured-overlapped algorithm uses an approximately factored, alternating 

direction implicit scheme to perform the time integration, whereas, the unstructured 

algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and 

limitations of each scheme, they are applied to the same steady complex multicomponent 

configurations and unsteady moving boundary problems. The steady complex cases
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consist of computing the subsonic flow about a two-dimensional high-lift multielement 

airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. 

The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a 

transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. 

Accuracy was accessed through the comparison of computed and experimentally measured 

pressure coefficient data on several of the wing/pylon/finned store assembly’s components 

and at numerous angles-of-attack for the pitching airfoil. From this study, it was found 

that both the structured-overlapped and the unstructured grid schemes yielded flow 

solutions of comparable accuracy for these simulations. This study also indicated that, 

overall, the structured-overlapped scheme was slightly more CPU efficient than the 

unstructured approach.
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Chapter 1 

Introduction

1.1 Motivation

The primary justification for the implementation of Computational Fluid Dynamics 

(CFD) to aid in the design of a store/airframe, or even a complete aircraft configuration, is 

the reduced cost and time incurred to generate and test a particular model. Above is the 

quintessence of CFD in that it is possible to compute flows about these complex 

configurations for a range of flight conditions, with only the modification of a few 

parameters. Hence, large numerical databases of pressure, force and moment predictions 

for existing, as well as hypothetical, computational models may be acquired quickly and 

cost effectively to assist the designer. This is in accordance with the needs of industry 

which are seeking methods that have quick turn around times, methods that utilize 

advanced CFD technology, and methods capable of analyzing realistic configurations.

The first step in any flow calculation is the discretization of the physical domain. 

Unfortunately, this step has been a limiting factor in computing flows past complex 

multicomponent configurations. To circumvent the problem, many techniques for handling 

the computational domain have been devised and are currently being used. Some of these 

methods include the domain decomposition techniques (such as multiblock, zonally 

patched, and overlapped grids), unstructured grid approaches, and various combinations of 

these methods. CFD is relatively inexpensive as compared with the fabrication and the 

testing of experimental wind tunnel models, however, there are costs involved and 

expertise is needed to calculate flow fields over such complex geometries. Due to this, very
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few comparative studies between these methods have been undertaken. Thus, it is evident 

that a means of assessing the performance and limitations of each method is well overdue.

1.2 Literature Survey

With the development of CFD methods and high-speed super computers with large 

memory capabilities, more realistic commercial and military aircraft are being analyzed. 

Nearly all modem high speed and military aircraft are subject to carry some form of wing- 

mounted element. Typical examples of such components are nacelles, stores, or missiles. 

Flow simulations in the transonic and supersonic regimes, about wing/nacelle 

configurations, have been performed by Nishida and Bencze [1], Connell and Holmes [2], 

and Fouladi [3], among others. Within the realm of weapons carriage, much research has 

been conducted on both externally and internally carried stores. Representative work on 

externally captive stores may be found in Stanniland et al. [4], Arabshahi and Whitfield [5], 

Lijewski [6,7], Baysal et al. [7], Yen and Baysal [9], Meakin [10], Parikh et al. [11]. 

Newman and Baysal [12], and Noack and Bishop [13]; whereas internal store calculations 

have been conducted by Baysal et al. [14], Fouladi and Baysal [15], and Lohner [16]. 

Simulations about complete aircraft, which include the wing, fuselage, and wing mounted 

elements, can be found in Refs. 17-21.

In all the above cited references, some form of structured domain decomposition 

technique or unstructured grid methodology was used to discretize the flow field around 

these complex configurations. To follow is a brief summary of these techniques. It should 

be noted that this review is by no means comprehensive, and the interested reader may use 

this as a starting point.

1.2.1 Domain Decomposition Methods

The nemesis in performing a calculation over complex, or realistic, configurations has 

been the construction of an adequate grid on which the governing equations may be solved. 

For such geometries, the generation of a single structured grid is often difficult, if not
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impossible. Furthermore, due to the complexity of the flow usually associated with these 

configurations, control over grid point distribution, skewness, and clustering are 

imperative. Two methods which permit greater control over these aspects and also ease the 

overall grid generation effort are the multiblock and grid overlapping approaches.

The multiblock, or block-structured, approach [5,6,7,22] divides the computational 

domain into a number of blocks. Topological differences may exist between adjacent 

blocks, however, grid lines must be contiguous at interface boundaries; that is, grid point 

continuity must be maintained at block boundaries. From this condition, neighboring 

blocks may communicate through an extraction-injection procedure where information is 

extracted from one block and injected directly into another, without the need for 

interpolation. Hence, no modifications are needed for the evaluation of fluxes at block- 

block interfaces. Other features of multiblock schemes include increased control over grid 

point distribution, and reduced memory requirements since only one block at a time resides 

in computer core memory during the solution procedure. Two of the existing grid 

generation software packages that may be used to construct multiblocked grids are EAGLE 

[23] and GRIDGEN [24].

In developing a blocking strategy for the entire computational domain that obeys the 

point continuity restriction at boundaries, compromises must sometimes be made that 

deteriorate the grid quality. A block-structured system about a multicomponent 

configuration may be created where the grids conform to the surfaces of certain elements in 

the configuration, but other components must be discretized with topologically 

incompatible grids. For example, Lijewski [7] developed an extremely creative multiblock 

structure about a wing/pylon/unfinned store. This system has the desired C-0 grid 

conforming to the pylon, unfinned body, and sting. The wing grid, however, is forced to 

be an H-H type, which may cause inaccuracies in the leading edge and tip regions. In 

general, C or O-type topologies have been found to produce more accurate solutions about 

wings [25].
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To eliminate such deficiencies, another domain decomposition technique, known as 

grid overlapping, is commonly employed. Overlapping methods, for example, those 

derived from the Chimera scheme [8-10,12,14,18,26-27] place no restriction on interface 

boundaries, but does require that a sufficient region of overlapping exists between grids. 

The main advantage of this method is that an optimum body fitted grid may be 

independently generated for each component in a configuration. Such a technique 

immediately simplifies the grid generation required for complex multicomponent 

configurations. The Chimera scheme, however, requires an additional code to locate and 

label interpolated points as well as redundant points. The disadvantages of the Chimera 

scheme include the introduction of a slightly more complicated solution algorithm and, 

more seriously, the trilinear interpolation used in this approach is a locally non-conservative 

procedure. Nevertheless, this method is very attractive when dealing with moving 

boundary problems since after each time step or position, new grids do not have to be 

regenerated, rather only the new lines of communication between outer and hole boundaries 

need to be established.

1.2.2 Unstructured Grid Methods

Unstructured grids discretize the physical domain of interest by contiguous triangles 

and tetrahedra in two- and three-dimensions, respectively. These are the simplest 

geometrical shapes having area and volume and thus, have the capability to discretize 

irregularly shaped domains easier and more efficiently than structured hexahedral cells. It is 

interesting to note that structured domain decomposition techniques are attempts to simplify 

grid generation by dividing the physical domain into subdomains in which structured 

hexahedral cells may be readily used. This is opposed to unstructured grids which take this 

decomposition to its finest level. Instead of discretizing simpler subdomains with 

geometrically more complex cells, it uses the simplest geometric cell to discretize the entire 

physical domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Methods currently being used for unstructured grid generation are Delaunay 

triangulation [28,29] and the advancing front method [30-32]. It has been reported [33], 

however, that Delaunay triangulation based algorithms tend to be more efficient than the 

advancing front method, but lacks the advancing front's self sufficiency, robustness, and 

grid quality. Furthermore, a comparative study of the two methods may be found in Ref. 

34.

Another advantageous quality of unstructured grids is that their adaptation is relatively 

straightforward. The current methods of adapting unstructured grids are to adaptively 

redistribute the nodal points based on either the solution or to a moving body, or to add and 

delete nodes locally when needed. The former approach is referred to as grid adaptation 

[35-37] and the latter as adaptive remeshing or h-refinement [38-40]. These methods have 

been used with great success for both steady and unsteady flow simulations.

1.3 Objectives of the Present Work

Two different methodologies are presented in this study to examine the accuracy, 

efficiency, and limitations of each. They are both applied to the same steady complex multi- 

component configurations and unsteady moving boundary problems. The first method 

seeks to exploit the advantageous qualities of two domain decomposition techniques for 

structured grids. It consists of combinations of multiblock and structured-overlapped grids, 

and has been previously demonstrated in Refs. 12,41. The second method discretizes the 

domains by an unstructured grid approach. These unstructured grids were generated by the 

advancing front method which has been shown to be very effective for three-dimensional 

complex configurations. Thus, the objectives of the present work are to compare the 

performance of structured and unstructured grid techniques for both steady complex and 

unsteady moving boundary configurations.
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Chapter 2

Governing Equations and Discretization

2.1 Equations of Fluid Motion

The equations that govern fluid flow are mathematical interpretations of the physical 

laws which assure the conservation of mass, momentum, and energy. This coupled set of 

equations are known as the time dependent Navier-Stokes equations. In the absence of 

viscosity, heat transfer, and body forces, the Navier-Stokes equations reduce to the 

extensively used and well understood Euler equations. To follow, the time dependent 

Euler equations for dynamic meshes will be expressed in conservative law form using the 

integral, and the analytically equivalent differential, formulations.

The three-dimensional, time dependent Euler equations for dynamic grids can be 

expressed in the integral form for a bounded domain a  with a boundary da as

J fJ ^ -Q d V  + f / E  »NdS = 0 (2.1)
a ot da

E • N  are the inviscid flux vectors normal to the boundary da with

E = { F , G ,H } (2.2)

and N  representing the outward pointing normal to the boundary.

The analytically equivalent differential form of the governing equations may be 

obtained by applying Gauss’s divergence theorem to the surface integral in Eq.(2.1).

Then, assuming the continuity of the integrand, the governing equations may be written

in Cartesian coordinates as
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In order to simplify the numerical treatment of boundary conditions for structured grids, 

the above form of the Euler equations is transformed into boundary conforming 

curvilinear coordinates

dQ dF_ dG m_  
d t  + + d r \  + d C  '

(2.4)

where

p '

pu
„  7

pv
pw

e

- 1 G= -  
J

p V  
pVu+T)xp  
pVv+r}yp 
pVw + rjzp 

(e + p)V-T},p

pU  
pU u + £xp 
pU v + Zyp 
pU w  + l;zp

- 1 H = -  
J

pW  

pW u + CxP
p W v + CyP 
pW w  + £t p  

(e + p )W -£ t p

(2.5a)

(2.5b)

with the adjusted contravariant velocities corresponding to the <*, n, and £ directions 

defined as

U= £xu + $yV + + &

V= Wxu + rjyV + Tfz w + r\t 

W = C xu + Cyv + Czw + &

(2.6a)

(2.6b)

(2.6c)

As can be seen, the above equations are generalized from Cartesian coordinates using the 

following transformations

I; = £{x,y,z,t), ri = T](x,y,z,t), £ = £(*,y,z,r) (2.7)
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From this, the transformation metrics and Jacobian of transformation may be expressed as

It should be noted that for an unstructured grid, no such transformation is possible nor 

necessary, thus, the governing equations are solved in Cartesian coordinates.

2.2 Finite Volume Discretization

The finite volume formulation is derived from application of the integral conservation 

law expressed in Eq.(2.1). A discretization and the subsequent solution obtained using 

this formulation will ultimately satisfy the integral statement of conservation. 

Furthermore, the finite volume formulation is more attractive than the finite difference 

formulation due to its ability to handle arbitrary configurations. This is because the only 

requirement that must be adhered to is the computational domain must be divided into a 

finite number of non-overlapping volumes. The shape of these volumes, however, is 

irrelevant which leads to no ambiguity at grid singularities.

An expression for the semi-discrete approximation to the governing equations may be 

expressed as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2.8)

The pressure is related to the state variables via the ideal gas law as

(2.9)



where Q is the cell-averaged conserved variables and is the residual vector containing 

the inviscid fluxes. Whether on structured or unstructured grids, Eq.(2.10) forms the 

bases of all finite volume schemes.

For structured grid schemes, the summation in Eq.(2.10) is carried out over the six 

faces of the hexahedron defining the computational cell. Since structured grids have 

logical indexing of its cells, the following semi-discrete representation may be written

/  _ * \  
dQ

\ d t . .

F j —F  ! G j - G  , G ! - G  j 
‘V - *  ‘- j d *  _  ij+ z*  u - j *  _  i . iM -  ^

A% AT]

where the transformations are chosen so that the grid spacing in the computational space 

is uniform and of unit length (i.e., At, = A t) = A£ = 1)

The semi-discrete representation for unstructured grid schemes employing tetrahedral 

cells result from the direct application of Eq.(2.10), with the summation occurring over 

the four faces of the tetrahedra. This may be written by replacing the residual in this 

equation with

Ri= ZEijAij (2.12)
j-k(i)

Due to the random placement of the cells in an unstructured mesh, a generalized indexing 

scheme (requiring the use of a connectivity matrix which is referenced repeatedly 

throughout the solution process) must be used [19,42].

2.3 Upwind Discretizations

Methods currently being used to construct the inviscid flux vectors, which appear on 

the right hand side of Eq.(2.10), are the central and upwind differencing schemes. Central 

difference schemes lack dissipation and are inherently unstable. Hence, to allow shock
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capturing and to suppress even-odd point decoupling, artificial dissipation must be added. 

The most popular form of this dissipation is due to Jameson et al. [43] and Jameson and 

Baker [44]. It consists of a blend of second and fourth order differences of the conserved 

variables. This type of dissipation, however, requires user specified second and fourth 

order dissipation coefficients which have been found to be case dependent.

Upwind methods overcome this deficiency by modeling the underlying physics of 

signal propagation as dictated by characteristic theory and, thus, are naturally dissipative. 

These methods can generally be classified as either Flux Difference Splitting (FDS) or 

Flux Vector Splitting (FVS) schemes. Currently there are many FDS and FVS schemes 

available in the literature. A review and comparison for a number of these schemes is 

given in Ref. [45] and Ref. [46], For the computations in the present work, the FDS of 

Roe [47,48] and FVS of van Leer [49,50] are used to evaluate the inviscid fluxes. Both of 

these schemes are discussed below for calculations on dynamic meshes.

2.3.1 Flux Difference Splitting

Roe’s FDS is based on the approximate solution of a locally one-dimensional 

Riemann problem [47]. The flux across each cell face k , for Roe’s scheme, is calculated 

using the numerical flux formula

F„ = \  [ F ( a ) + f ( Q S) -  \a \(Qr - Q l) \  (2.13)

where Q l  and Q r  are the conserved variables to the left and right of the interface and A

is the Roe-averaged flux Jacobian matrix. Furthermore, the Roe-averaged matrix A is a 

mean value of the true flux Jacobian matrix with the following properties: (t) a (q l , Qr }

approches A(Q) as QL and QR approach Q, (ii)A has a complete set of real eigenvalues 

and eigenvectors, and (Hi) A (Qr - Q l ) = f (q r }~ F(QLy  Property (iii) results in the

approximate solution being an exact solution if the right and left states can be connected 

by a single discontinuity parallel to the interface [45]. This explains the sharp resolution
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of shocks and contact discontinuities that Roe’s FDS is able to obtain. Equation (2.13) 

essentially represents a central difference of the inviscid fluxes plus an upwind correction 

[19]. This upwind correction term can be written in canonical form in terms of the right 

and left eigenvector matrices, and the diagonal matrix of eigenvalues. This expression 

subsequently reduces to three AF flux components which may be written as

where

M = p |

1
u

U p -  f ) V + PV a ) w- 2 . - 2 ,  -2 U + V + w
2

0
A u -A U  £  
A v-A V £ .  
Aw-AW % x 

uAu + vAv + w A w -U  AU

9X
Ix

(2.14)

(2.15)

and

^ 2,3 -

1 '

v ± a $ x
v ± a $ y
v ± a £ z

Lh0± aU

with

AU = Au%x +Av%y + Aw%z 

and the adjusted Roe-averaged contravariant velocity defined by

U = uL+ vZx+ w Zx + $t

(2.16)

(2.17)

(2.18)

It should be noted that in the above equations the tilde denotes Roe-averaged quantities 

which may be expressed as
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P ~  yIPlPr 

u=  (Ul + ur^P r/Pl ) /( l + -\IPr/Pl ) 

v=  (vi + V/j-yIPr/Pl ) /( i + ̂ P r/Pl ) 

W= (wt  + WR-\JpR/pL ) / (l + ̂ p R/pL )

k  ~  ( K l  +  K r ^ P r / P l )/(l + P r / P l )

(2.19)

o2= (r - i) m2 + v 2 +  w 2

For the structured grid algorithm, considerable savings in computational time are 

realized due to Roe’s FDS scheme allowing spatial factors in each direction to be 

approximated with a diagonal inversion. Further details of this may be found in Ref. 51.

2.3.2 Flux Vector Splitting

For van Leer’s FVS scheme [49,50], the flux vectors are given in terms of the Mach 

number normal to the face. This results in the possible occurrences of supersonic or 

subsonic flow through the face. The supersonic fluxes are evaluated as

-,\R _ i . _  /^/_v -\L
F+ = (F(Q) • i f ,  F~ = (F(Q). t f  = 0 1

F~ = [F(Q) • i f ,  F+ = (F(<2) • i f  =0 Mz<, -1

(2.20)

(2 .21)

As for the subsonic occurrence, the fluxes through face k are split into the following 

contributions

where

Fk = F+«2l) + f ~(qr )

F± =

f*mass
•±
mass

±
mass

/*/mass

u+^x(-U ±2a)jy  

v + | y(-C7 ± 2a)/y  

w + |, ( - j / ± 2  a)/y

fe/*/energy

(2.22)

(2.23)
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with

= /*  J energy Jmcenergy mass

/ £ . =

( l - y ) U  ± 2 { y - \)U a + 2 a 2 u2 +v2 +w2

(2.24)

(2.25)

and

L  = $x /\g rad($ ) \ , U  =  U/\grad{£)\ 

£y = Zy/\grad{%)\, M ^ = U / a

1 =  &/lgMd(5) |. 1  = $tl\&rad{£) |

(2.26)

U  is the adjusted contravariant velocity, which is the scalar product of the modified 

velocity with the normal vector to the face. A point worth noting is that van Leer’s FVS 

is continuously differentiable, which makes it a valuable method for evaluating the 

inviscid fluxes in implicit algorithms where the flux Jacobians are required. Moreover, it 

has been found in practice that steady shocks are resolved with at most two interior zones

The development of a higher order scheme ultimately depends on the accurate 

interpolation of the state variables to the left and right of the cell interface. The manner in 

which this interpolation is accomplished depends on the grid type, and this is one of the 

major differences between the structured and unstructured grid algorithms. This is not to 

say that the methods used for structured grids cannot be extended to unstructured grids 

[52-54], it has just been found difficult to obtain CPU efficient, accurate results. Thus, 

techniques which exploit the geometric properties of triangles and tetrahedra have been 

developed and used with success for unstructured grids [19,55-57].
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2.3.3a For the Structured Grid Algorithm

The structured grid algorithm utilized in this study obtains the state variables values 

on the cell interfaces from the following upwind-biased interpolations

e ^ =  Q, + { i[ ( l - « : )4 _  +  (1 + k K ] }  (2.27a)

0 s  l = a «  -  {-7 [ (1 -  + (1 + a-)4-]l (2.27b)
*+7 14 J i+i

where

=  Qi - Q i - x , A+ = Qi+, - a  (2.28)

with

K  =

-1  second order fully upwind 
1/3 third order upwind -  biased (2.29)
1 central difference

In regions with large flow gradients, such as shocks, flux-limiting is used to eliminate 

numerical oscillations for the upwind-biased scheme. For all cases, the minimum- 

modulus (min-mod) flux-limiter [58] was used, and may be expressed by replacing A_ 

and A+ in Eqs.(2.27a and b) by A_ and A+

A_ = max [0, min(A_sgnA+, (5A+sgnA_)] sgnA_ (2.30a)

A+ = max [0, min(A+sgnA_, pA_sgnA+)] sgnA+ (2.30b)

where

/» = ! !
P (l -K)

The parameter ft has been referred to as a compression parameter [59].

(2.31)
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Furthermore, it should be noted that other flux-limiters may be chosen which are not 

discussed here. Examples are the van Albada and Spekreijise flux-limiters which may be 

found in Refs. 60 and 61, respectively.

2.3.3b For the Unstructured Grid Algorithm

For the unstructured grid algorithm, a higher-order scheme is obtained by expanding 

the cell-centered solution to each cell face using a Taylor series expansion [55] which 

may be expressed as

Q f R = Qc + + *(Ar2) (2.32)

where the solution gradient,, VQ<. at the center of the cell is found using the geometric 

invariant features of triangles and tetrahedra. The expression for the solution gradient at 

the cell center may be obtained from application of Greens theorem as

V 3 { Q n \+ Q n 2 + Q n 3 )  ~  Qn4  

4 Ar
Ar  (2.33)

where Qnl, Qn2, Q„3 are the primitive variables at the three nodes that constitute the face

through which the flux passes, Ar is the distance from the centroid of the tetrahedra to 

the center of that face, and Qn4 are the same variables at the fourth node of the tetrahedra.

The data at the nodes are interpolated using inverse distance weighting of the surrounding 

cell centers. This, as mentioned in Ref. 19, is the only question of accuracy in the overall 

scheme. It should be noted, however, that in Ref. 62 the data at the nodes have been 

obtained by both the current inverse distance weighting and by a linear least squares fit, 

with no discernible differences between the two. An improved averaging scheme, 

moreover, has been recently implemented in USM3D. Details of this scheme may be 

found in Ref. 57.
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Chapter 3 

Solution Algorithms

3.1 Time Integration

Time integration may be done implicitly or explicitly. Implicit methods traditionally 

have high computational costs per iteration in terms of both CPU time and memory, 

however, they have less stringent stability bounds. Thus, the extra work required for an 

implicit scheme is usually offset by the advantages obtained by the increased stability 

limits. Explicit methods, on the other hand, are relatively inexpensive per iteration but 

have restrictive bounds on stability.

Other considerations, such as the architecture of the computer used and the physics of 

the flow problem to be simulated, must also be investigated when making a choice on the 

type of time integration scheme. For example, most of the supercomputers used today use 

high speed vector processors and, thus, the degree to which a certain algorithm can be 

vectorized becomes critical. It is well known that most explicit schemes are readily 

vectorizable. Implicit schemes, on the other hand, need substantial amounts of memory 

for temporary storage and data management to become fully vectorized.

The other consideration mentioned earlier, when deciding on a time integration 

scheme, was based on the physics of the flow problem to be simulated. For unsteady 

flows, it is imperative that time accurate methods be used and that the time steps be 

commensurate with the time scale of the unsteady phenomena. Both implicit and explicit 

methods are capable of computing time accurate solutions, but the time scales are usually 

so small that the stability of the explicit methods are not jeopardized. Hence, on a per 

iteration basis, an explicit method appears to be the most economical approach for time
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accurate unsteady simulations, and implicit methods for steady state calculations. This 

general assessment is further complicated when these algorithms incorporate domain 

decomposition techniques, multigrid methods and other forms of convergence 

acceleration.

In the sections to follow, the details of the time integration schemes utilized in this 

study, for both the structured grid algorithm as implemented in the computer code 

CFL3D [63-65] and the unstructured grid code USM3D [19,55-57], will be presented.

3.1a For the Structured Grid Algorithm

The structured grid algorithm used in this study advances the solution in time using 

an implicit method. This may be accomplished by first linearizing the inviscid fluxes in 

time as

Fn+l = Fn + ^ -  AQn (3.1)
dQ

similarly for G and H . The linearized, backward-Euler time integration of the unsteady 

equations is written as

l ± ±  + 8 *  + 8 ™  + S '* L
JAt *dQ v dQ *dQ

AQ = - R(Qn) (3.2)

where the residual is collected as

R(Qn) = 8gF + 8nG + 5^H -  j j * Q n~X (3.3)

For upwind methods, the inviscid fluxes in the residual are replaced with the appropriate 

terms from one of the desired flux splitting methods expressed earlier. For example, the

FDS scheme of Roe is used to express the fluxes on the faces as

[5{f U  F i "  F t (3.4)
L J‘ *+r i - -2 2
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where

f , =  74
r \  

L

L \ % 2 J

+ F
\  2 J

'* 4 Q r  1 - Q l i

V. ,+2 ‘+2 J

(3.5)

The fluxes in the other directions are found similarly. For the FVS scheme of van Leer, 

the fluxes are split into forward and backward contributions according to the signs of the 

eigenvalues of the Jacobian matrices. This splitting is given by

M , =

F+
\

q4V 2)
+ F~ QRxl+T2 /  J

A  _LF + Ql 1
V ‘ 2 J

+ F~ QRl
V ‘ 2 J ]

(3.6)

where QL and QR are given in Eq.(2.27a and b).

For most three-dimensional problems, the direct numerical solution to Eq.(3.2) is 

impractical due to the large banded coefficient matrix of the system. To overcome this, 

there are a number of approximate factorizations which may be used to split this large 

coefficient matrix into a sequence of smaller banded matrices. Some examples of possible 

factorizations consist of a six-factor block bidiagonal, a two-factor eigenvalue split, a 

two-factor combination split, and a three-factor spatially split scheme. This latter 

factorization is the one used by the structured grid algorithm [63,64] in this study.

Applying the three-factor spatially split factorization to Eq.(3.2) yields the following 

series of sweeps

' - H  + s g -JAt * dQ

7 + 0 ~ dG
JAt n dQ

I + <p x dH
————— Qf.
JA t ? dQ

AQ

AQ

AQ '= - R(Qn)

-Pni
JAt

AQ*

(3.7a)

(3.7b)

(3.7c)
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For each of the above three equations, if the differencing on the left hand side of each 

equation is reduced to first order spatial accuracy, the solution of a 5 by 5 block 

tridiagonal system is required. The above scheme is first order accurate in time for 0=0 

and nominally second order for 0=1/2.

3.1b For the Unstructured Grid Algorithm

The unstructured grid algorithm used in this study advances the solution in time using 

the explicit m-stage Runge-Kutta time integration scheme developed by Jameson et al 

[43]. For all the unstructured cases presented in this study, the governing equations are 

integrated in time using four stages which has second order temporal accuracy.

Applying this scheme to the semi-discrete finite volume representation given in 

Eq.(2.10) yields

a<0)= a*

where the residual is expressed in Eq.(2.12).

3.2 Geometric Conservation

To avoid grid-motion induced errors when dynamic meshes are involved, the 

geometric conservation law (GCL) must be satisfied concurrently with the conservation 

of mass, momentum, and energy (Refs. 35,66,67). The GCL is only needed for the
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unstructured grid algorithm since the mesh is deformed and locally changed. This is not 

the case with the structured-overlapped grids which move as rigid bodies on top of one 

another [68]. The integral statement of the GCL may be written as

4-JJJ dV = JJ W .hdS  (3.9)
dt a  sa

where W denotes the local velocity of the cell faces. Furthermore, to provide a self 

consistent solution for the local cell volumes, the GCL should be integrated using the 

same scheme that is used for the fluid equations. A discretization of Eq. (3.9) has been 

expressed in Ref. 35 which is consistent with the above unstructured solution algorithm 

and is given by

v;.B+1 = V t*+ E  [& A4]"+1 (3.10)
./=*( 0 ij

Thus, this equation is used to compute the local cell volumes at the current time level as 

seen in Eq.(3.8).

3.3 Convergence Acceleration Techniques

For steady-state calculations, the governing equations are integrated from an arbitrary 

initial condition to a time-asymptotic state. Thus, when a steady-state solution is desired, 

it is typical to employ first order time accurate schemes and use non-time-like maneuvers 

in an attempt to accelerate the algorithm. Examples of some current convergence 

acceleration techniques being used are: (i) local time stepping [43] which can be viewed 

as a means of conditioning the coefficient matrix in an implicit schemes or interpreted as 

an attempt to use a more uniform Courant number throughout the flow field for explicit 

schemes, (ii) mesh sequencing which uses a good initial guess for a fine mesh by first 

iterating on a sequence of coarser meshes, (iii) multigridding [25,69] which damps the 

low-frequency errors by using a series of coarser grids constructed from the fine mesh,
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(/v) implicit residual smoothing [19,43] which, in an implicit-like manner, averages the 

residuals locally.

All the above techniques have been found to accelerate the convergence to steady- 

state. Local time stepping, mesh sequencing, and multigridding are available options in 

the structured grid code CLF3D; whereas, local time stepping and implicit residual 

smoothing are options in the unstructured grid code USM3D. For a more detailed 

discussion of these methods, the reader is referred to the cited literature.

3.4 Initial and Boundary Conditions

The solution to any partial differential equation is completely dependent on the 

choices of the initial and boundary conditions. As would be expected, the form of these 

conditions are different for steady and unsteady computations. To follow is a discussion 

of the initial conditions, physical boundary conditions for steady flows and the 

modifications needed for unsteady moving boundary calculations. It should be noted that 

all boundary conditions used in this study are specified explicitly.

The initial conditions for a steady state calculation may be arbitrary, however, a good 

initial guess at the flow field will ultimately reduce the CPU time needed to converge the 

solution. It is thus common practice for steady computations to choose ffeestream 

conditions as the initial condition. Unsteady moving boundary problems, in which time 

accurate solutions are sought, require meaningful initial conditions. Hence, for this type 

of simulation, fully converged steady state solutions are used.

At the farfield boundaries, locally one-dimensional characteristic boundary conditions 

are employed. Here the downstream- and upstream-running Riemann invariants are 

written as

R* = U ± —̂ — a (3.11)
7 - 1
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Based on the direction and magnitude of the local normal Mach number, the local normal 

velocity and speed of sound may be determined from the Riemann invariants. Other 

quantities such as density and pressure may be found using the entropy relation and the 

equation of state, respectively.

Wall or solid surfaces are considered to be impermeable and adiabatic. For inviscid 

flows this is accomplished by imposing the flow tangency condition expressed by

where V is the contravariant velocity. The pressure is determined by enforcing the normal 

pressure gradient to be zero, and the density is extrapolated.

For unsteady moving boundary problems, however, the above conditions must be 

adjusted since the boundary faces now posses a discernible velocity. The expression for 

the unsteady-corrected boundary velocities are given by the same expression as in 

Eq.(3.12), except that the contravariant velocity used is now the one used for dynamic 

grids in Eq.(2.6). The pressure gradient is no longer zero and must be found from 

enforcing the normal momentum equation [70,71] as

is the acceleration of the body. This acceleration is generalized for both translational and 

rotational motions. From the left to right, the terms on the right hand side of Eq.(3.14) 

represent the translational acceleration, the tangential acceleration, the centripetal
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(3.12a)
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where n is the direction normal to the boundary surface and

a = R + a>xp + a>x(wxp)+^pj  +2a>x (p) (3.14)
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acceleration, the relative acceleration between the moving reference frame and the point 

of concern, and the coriolis acceleration, respectively.
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Chapter 4 

Procedures for Moving Grids

For any CFD calculation, the first step is the discretization of the physical domain; 

which may be challenging for complex configurations. Grid models to handle store 

separation or moving boundary problems have the added requirement of discretizing the 

changing domain around these bodies. This domain may encompass several bodies with 

large relative movements. Fortunately, the two grid models that have been found to 

perform best for complex geometries are also the most promising for the moving boundary 

problems. These two are the structured-overlapped grids and the unstructured grids. In the 

following sections, the details and relative merits of each model will be discussed for 

applications involving moving grids.

4.1 Structured Domain Decomposition

Several types of structured domain decomposition methods exist and have been used 

with great success for cases involving steady, complex configurations [8,15,41,17,72,73]. 

For moving boundary problems, multiblock and overlapped grid approaches have been the 

primary areas of focus. Examples of unsteady calculations using dynamic-multiblock and 

dynamic-overlapped grids may be found in Refs. 5,74,75 and 9,10,20,76-78, 

respectively.

4.1.1 Composite Grid Construction

Construction of the composite grid and lines of communication between the global and 

minor grids are established by a code entitled MaGGiE [8,14], which was developed from 

the Chimera scheme as implemented in the computer code PEGSUS [26,27]. To follow is
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a brief discussion of this procedure. A more detailed presentation of this material may be 

found in Ref. 79.

The first task when constructing a composite mesh is to search out and flag all points 

that fall within the boundaries of a solid body. These points are termed hole points and 

must be removed from the computational domain. The cells that are immediate neighbors of 

the hole cells are called fringe points. The intergrid lines of communication, which may be 

considered as interior boundary conditions, are performed through these points. This line 

of communication is established by first finding a target cell, in the grid which contains the 

solid body, that has the smallest distance to the fringe cell. Next, a search is conducted to 

find seven cells which, with the target cell, forms a hexahedron around the fringe point. 

Information may now be transferred from the vertices of the hexahedron to the fringe point 

via a trilinear interpolation of the conserved variables. To perform this interpolation, the 

hexahedron must be mapped to a unit cube using isoparametric mapping. If the coordinates 

of the fringe point are denoted by a ,  /J, and y  relative to its target cell, then the 

interpolation to the fringe point can be expressed as

Q= Oi + 0 2  a  + <% fi + o4y + a5a fi + a6a y  + c^P y + a ^ a fiy  (4.1)

with

al ~ Q.j.k > a2~  ~ Qi,j,k ^  Qi+l,j,k

<h= ~ Qi,j,k + Qi,j+\,k > 04 = -  Qijik + Qi,j,k+l

°5  =  Q i,j,k  ~  Q i+ \,j,k +  Q i+l,j+l,k ~  Qi,j+X,k

a6~ Qij.k -  Q!+\j,k ~ Qtj . k+i+ ^  ^

~  Q i.j.k  ~  Q i,j+ lk  ~  +  2 ;,;+ U + l

°S  =  ~  Q t j .k  +  Q i+l.j.k ~  Qi+l,j+l,k +  Q i,j+ l,k  +

Q i,j,k+1 -  Q i+ IJM X  +  Q i+ \,j+ lM l ~  Qi,j+\,k+X
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where the coefficients a( are functions of the conserved variable at the vertices of the 

hexahedron. This above procedure is repeated for the outer boundary points of the minor 

grids which also require interpolation data.

4.1.2 Dynamic-Overlapped Grids

Dynamic-overlapped grids is the approach used in this study. This scheme uses 

multiple overset structured grids to allow relative movement between bodies. The aircraft, 

or main body, may be modeled with a global grid about this structure and then minor grids 

used about the smaller structures such as stores or engine nacelles. The minor grids are 

overset on the global mesh and can be moved freely within the global grid.

For store separation sequences, the dynamic-overlapped grid scheme can be 

summarized as follows for a single iteration. First, the flow solver computes the flow 

solution on the global grid. Then, this solution is transferred to the outer boundaries of the 

minor grids via a trilinear interpolation. The solution on these minor grids are subsequently 

obtained. From these solutions, the aerodynamic forces and moments may be obtained and 

supplied to a trajectory code which determines the next position of that body. Next, these 

grids are moved to their appropriate positions and the lines of communication are 

reestablished. Finally, the solution on the minor grids are interpolated back onto the global 

grid's fringe points. At this point, if the stopping criteria has not been met, the solution 

procedure repeats.

4.2 Unstructured Grid Adaptation

4.2.1 Adaptation Method

The grid adaptation method used here has been previously reported by Batina (Ref. 

35). The unstructured mesh about the body (or bodies) of interest is considered as a system 

of interconnected springs. This system is constructed by representing each edge of each 

tetrahedra by a tension spring. Various attempts at determining the optimum relationship for
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specifying the spring stiffness have been made by Chakravarthy, et al. (Ref. 80). In the 

present study, however, the spring stiffness is assumed inversely proportional to the length 

of its edge and may be written as

where p is a parameter used to control the stiffness of the spring. Then, for each mesh 

point, the external forces due to the connecting springs are summed and resolved into 

Cartesian components. The resulting set of linear systems are solved for the displacements 

of each node using several Jacobi iterations:

where i is summed over all edges connected to node j. The positions of the interior points 

are then updated using the determined displacements.

This iterative method has the advantage of not requiring an excessive amount of 

memory, but does require an initial guess. For the present system, only the displacements 

at the current time level are stored, and the initial guesses of the displacements are the 

displacements at the previous time level. Since the system being solved is diagonally 

dominant (the diagonal of each row being the sum of the spring stiffness of every node 

involved in that equilibrium equation) a relaxation factor may be introduced to accelerate 

convergence. Hence, using this successive over relaxation method, an acceptable mesh 

movement is achieved in 4 to 6 iterations.

Over a number of iterations, poor grid distribution and grid skewness may result from 

extremely large translations and rotations of the bodies. When a predefined skewness

k j i  = 1.0 /  [(x, - Xj )2 +  ( y ,  -  y j )2 +  f a  -  Z j)2] pl2 (4.3)

(4.4c)

(4.4a)

(4.4b)
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criterion (based on the aspect ratio of the cells) is violated, the unstructured grid must be

remeshed, regenerated, or smoothed to alleviate this possible source of error. The present

study uses a Laplacian-type smoothing [81] of the grid expressed as

x f  = * " + - £ ( * , - * ; )  (4.5a)
1 J Him lx J/

y j * ' = y ] +  (4.5b)

(4.5c)
rl i*»l

where (O is the relaxation factor and i is summed over all edges connected to node j. The 

number of smoothing sweeps is user specified and is chosen to be 125 in this study.

4.2.2 Adaptive Window Procedure

Having adopted the above method for adapting the unstructured mesh, computational 

efficiency can be improved by limiting the size of the adaptation region. Limiting the size of 

this region is advantageous since only a small area of the mesh needs to be stored and 

adapted. The method used in the present work to restrict the size of the adaptation region is 

to create a "window" around the physical domain of interest. The nodal points inside this 

window are considered as the spring network and, thus, allowed to adapt to the body 

movement. By adopting this procedure, significant savings in both CPU time and memory 

are realized.

Creating the window may be carried out by either specifying a normal distance from the 

body of interest or choosing a basis shape around the body (sphere, ellipsoid, etc.). The 

entire domain is searched to locate the points which fall within the window, and those 

which do, are flagged as "window" points. The window points are allowed to be adapted 

from one time step to the next. The next search is for the mesh points which are connected 

to the outermost window points. These points are flagged as "window frame" points. Mesh 

points exterior to the window and the window frame points are spatially fixed in time.
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For problems in which the body has small or no translational movement, creation of the 

window takes place only once. However, for problems in which large movements are 

encountered, the window may need to be reconstructed on several occasions during the 

body's trajectory. Thus, window construction must be a quick, reliable, and automated 

process. In the present study a basis shape is used to specify the window, and a critical 

displacement is chosen to determine when a new window is needed.

Two examples illustrating the adaptive window method for moving body problems are 

presented. The first example is for a NACA 0012 airfoil sinusoidally oscillating about the 

quarter chord with an amplitude of 35 degrees. The window constructed about this airfoil is 

shown in Fig. 4.1. This mesh contains 1577 nodes and 3042 cells, however, the 

adaptation window contains 569 nodes and 1180 cells. Hence, only about 30% of the 

original mesh is being adapted. Detailed views of the adapted mesh are given in Fig. 4.2. 

To ensure the integrity of the mesh around the airfoil, the stiffness of the springs in this 

region are increased by increasing p in Eq.(4.3) from a value of unity to 2.05.

A second example demonstrates the applicability of the adaptive window procedure to 

multiple-body problems. This example illustrates how the adaptive window procedure may 

be used to confine the adaptation region around different or multiple components in a four- 

element airfoil. This four-element airfoil has a double-slotted flap and leading edge slat. 

Multiple windows about the leading edge slat and vane are shown in Fig. 4.3. Notice that 

the adaptation window is confined to a circular region around the vane and that it intersects 

the airfoil and the main flap. Regions of the mesh outside this window, for example, in the 

vicinity of the leading edge slat, are not affected by the movement of the vane and the 

subsequent grid adaptation. Hence, each element could have been given different 

prescribed motions, and the window regions locally adapted as separate entities.
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(a) Undeformed Mesh

-0.5  0.0 0.5  10  1.5 2.0

(b) Adapted Mesh (+35*)

- 1.0 -0.5  0.0 0.5 1.0 1.5 2.0

(c) Adapted Mesh (-35*)

■10 • 0.5 0.0 0.5 1.0 1.5 2 0

Fig. 4.2 NACA 0012 airfoil sinusoidally oscillating about the quarter chord.
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Chapter 5 

Computational Results

5.1 Steady Computations About Complex Configurations

In the following sections, the computations of the steady flow about a two- 

dimensional high-lift multielement airfoil and a three-dimensional wing/pylon/finned 

store configuration are discussed.

5.1.1 High-Lift Multielement Airfoil

Grid Generation

The high-lift multielement airfoil used in this study consists of four components: a 

leading edge slat, a main airfoil, and a double-slotted flap (a vane and a main flap). 

Structured-overlapped grids are easily generated for two-dimensional configurations with 

streamlined bodies. The composite mesh consists of four grids generated about each 

element separately. Grids about the leading edge slat, the vane, and the main flap are of 

O-topology. The mesh about the main airfoil is used as the global grid and is of C- 

topology. This composite mesh contains 20,224 cells and is shown in Fig. 5.1a.

The unstructured mesh about this four element airfoil is shown in Fig. 5.1b. This grid 

is comprised of 7,614 nodes and 14,919 triangular cells. As can be seen, the unstructured 

mesh has a more efficient distribution of grid points. This is due to the fact that in an 

unstructured mesh there are no family of grid lines that must be followed. This is not the 

case for structured grids where the grid lines in the wake of a C-mesh continue out to the 

far-field.
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Flow Simulation

For a freestream Mach number of 0.2 and a 16.02 degree angle of attack, the off 

surface Mach number contours for this configuration using structured-overlapped and 

unstructured grids are shown in Fig. 5.2a and b, receptively. As a result of the increased 

number of cells due to overlapping, better resolution is observed in the leading edge slat 

region of Fig. 5.2a. Surface pressure coefficients on the four elements are shown in Fig. 

5.3a for the present inviscid computations, and in Fig. 5.3b for the unstructured viscous 

calculations of Ref. 82. From this figure it can be seen that the suction peaks are over 

predicted for the structured-overlapped grids and under predicted for the unstructured 

mesh. Since it is expected that an inviscid solution would over predict this phenomenon, 

it is concluded that the under prediction is due to the coarseness of the unstructured mesh 

(which is especially noticeable in the leading edge slat region). Furthermore, it has been 

asserted [82] that the inadequate resolution of these suction peaks causes the numerical 

generation of entropy, which is convected downstream, and may ultimately degenerate 

the accuracy of the solution in downstream regions. Discrepancy is also observed on the 

vane and flap. The most probable cause of this is due to the inviscid nature of the present 

computations which do not simulate the separated flow condition. Another possible 

source of error is the coarseness the grids in these regions. It has been shown in Ref. 83, 

through a grid refinement study, that the conditions aft of the flap in multielement airfoil 

configurations are highly sensitive to grid resolution.

The computations on the structured-overlapped grids used 2.4 Mega-words (Mw) of 

memory and 0.75 CPU hours to reduce the residual about 5 orders of magnitude in 2200 

iterations on a Cray-2 supercomputer. A similar reduction in the residual for the 

unstructured grid scheme took 1700 iterations for a total of 1.65 CPU hours, and required

5.1 Mw on the same computer. It is well known that unstructured grid schemes have 

more intense computational needs than the structured grid schemes, however, the
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disparity between the two reduces as the number of subdomains in the structured domain 

decomposition increases.

In Ref. 84, simulations about a Modular Transonic Vortex Interaction (MTVI) model 

were performed using multiblocked-structured grids and an unstructured mesh. From this 

comparison, it was concluded that the unstructured grid scheme used significantly greater 

amounts of CPU time and memory than the structured grids, but quicker turn-around 

time for the generation of the mesh was observed with the unstructured grids. For a 

complex three-dimensional geometry, it may be difficult (if not impossible) to generate a 

multiblocked-structured grid about the configuration. Thus, the level/amount of 

structured domain decomposition must be elevated to handle the increased complexity.

5.1.2 Wing/Pylon/Finned Store Configuration

The following computations, about a generic wing/pylon/finned store (WPFS) 

assembly, were performed as part of a store separation analysis special session for the 

1992 Atmospheric Flight Mechanics Conference. In this session, all papers [10-13,77] 

pertained to the analysis of the same WPFS configuration. These papers consisted of both 

structured and unstructured grid simulations. The Armament Directorate of the Air Force 

Wright Laboratory and Arnold Engineering Development Center (AEDC) conducted the 

CFD code validation wind tunnel tests which provided pressure, force, and moment data 

[85]. The WPFS configuration consists of a clipped delta wing with 45 degrees of leading 

edge sweep and a NACA-64A010 airfoil section. Connected to this wing is an ogive-flat 

plate-ogive pylon, which is located 0.07 in. above an ogive-cylinder-ogive store when in 

the carriage position. The store has four fins, which are NACA-0008 airfoil sections and 

swept at 60 degrees, located at 45, 135, 225, and 315 degrees with respect to the 

centerline of the pylon. Dimensions and orientation of this geometry in the captive 

position are depicted in Fig. 5.4.
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Grid Generation

The composite mesh consists of 13 blocks and is constructed using multiblocked 

and overlapped grids. All component and multiblock volume grids in this mesh are 

generated using GRIDGEN 3D [24]. The strategy employed in the present study is to, 

first, require that all components have body-conforming grids (i.e., two sets of grid 

coordinate lines follow the natural surface contours of the body) and, secondly, generate 

block-structured grids about the components which do not move relative to one another. 

The second requirement ensures a conservative flux treatment about geometrical 

complexities in the WPFS configuration. Thus, the grid generation effort breaks into 

three major tasks: multiblock grid generation for the pylon group, multiblock grid 

generation for the finned store group, and single zone grid generation of the wing grid. As 

the final task prior to flow integration, these groups are interconnected using the Chimera 

scheme discussed in section 4.1.

The pylon group contains 7 blocks, all of which are of H-H topology. This group 

resolves the lower half of the wing, the pylon, and the region underneath the wing. The 

unique function of this grid is to envelop the proposed trajectory of the store and, thus, it 

extends 10.0 store diameters upstream, 18.0 downstream, and 15.0 below the nose of the 

store. The grid developed for this system contains approximately 425,000 points and is 

illustrated in Fig. 5.5. Notice that even though the blocks are of H-H topology, the 

leading and trailing ogive ends of the pylon have the same structure as would an O-grid. 

Hence, the strategy for requiring body-conforming grids has been met for all components 

of the wing/pylon group.

The other multiblock group developed is about the finned store. This 4-block 

system contains 248,132 points and is shown in Fig. 5.6. Each block has 89 grid points in 

the spanwise direction, 17 in the circumferential direction, and 41 normal to the body 

surface. Block boundaries correspond to the four fin locations, with the coalition of these 

blocks forming an 0 -0  body-conformed grid about the store. Upstream, downstream, and
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radial outer boundaries are located at 4.0, 9.2, and 2.3 store diameters from the nose of 

the store, respectively.

Additional grids generated consist of a global grid about the wing and an 

intermediate grid to assist the interpolation in the region around the pylon. The wing grid 

(Grid 1), consisting of 264,450 points, is of C-0 topology. This grid has farfield 

boundaries located at 43.0 store diameters upstream, 85.0 downstream, and 35.0 outboard 

of the store nose. An O-C grid, which conforms to the pylon, is also inserted to obtain a 

better resolution in the region of extreme interference that occurs between the lower wing 

surface, the pylon, and the upper surface of the finned store.

Once all the grids have been generated, they are interconnected to form a composite 

grid, and the associated interpolation data is established. The aforementioned computer 

code MaGGiE is used to accomplish this task. This composite grid contains nearly one 

million grid points. Due to extensive overlapping, care must be taken to ensure that all 

points falling within body boundaries (i.e., inside the "solid" body) be removed from the 

computational domain. To illustrate this, Fig. 5.7 shows the overlapped region between 

the finned store group and the global wing grid. Notice that holes must be created in the 

finned store group for the wing and pylon, whereas, the wing grid has points removed in 

the vicinity of the store. Observe how the pylon group is used to resolve the region of the 

lower wing surface, pylon and store. Since Grids 3, 4, 5 and 6 are coincident with the 

wing, the only hole created in this group is for the finned store body. The same cross- 

sections shown in the previous figure are also shown in Fig. 5.8, but with overlapping and 

hole boundaries between the wing grid and pylon group depicted. Figure 5.9 is intended 

to demonstrate the three-dimensional nature of the hole boundaries created in the wing, 

store, and pylon grids. Orientation and relative size of each grid in this structured 

composite mesh are shown in Fig. 5.10a for the finned store in the carriage position.

The unstructured grid used in this study was generated using VGRID3D [30]. It 

contains 68,580 nodes and 379,074 cells. A similar view to the one shown for the
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structured composite mesh is shown for the unstructured grid in Fig. 5.10b. This figure 

depicts the surface triangulation on both the WPFS body and the plane of symmetry. As 

can be seen, the advantage of unstructured grid methodologies is the relative ease with 

which complex configurations are discretized.

Flow Simulation

The WPFS assembly, and the same assembly without the fins on the store [5], have 

been the topic of many CFD code validations and comparative studies for complex 

configurations. In addition to the papers presented in the special session of the 

Atmospheric Flight Mechanics Conference, Lijewski [7] has performed calculations on 

this configuration using both structured multiblocked and overlapped grids. In that study, 

it was concluded that both schemes resulted in comparable accuracy, with excellent 

agreement with experimental data. However, the multiblocked grid simulation required 

significantly less CPU time for solving the fluid equations, but an excessive amount of 

overhead grid generation time. In the present study, the two methods that have been 

found to perform best for three-dimensional complex configurations, in terms of 

overhead grid generation time, are compared. These are the structured-overlapped and 

unstructured grid schemes.

Simulations, with the finned store in the captive position, zero degrees angle-of- 

attack, and a freestream Mach number of 0.95, were performed using both the structured- 

overlapped and unstructured grid schemes. The pressure contours on the WPFS body and 

plane of symmetry at an oblique angle are depicted in Fig. 5.11a and b for each method. 

It can be clearly seen that both schemes capture the major flow physics, however, the 

structured overlapped grids have crisper resolution of the shock waves. This is due to the 

fact that the structured grids are much finer than the unstructured mesh, and that the grid 

lines in this mesh are nearly aligned with the waves. The coarseness of this unstructured 

mesh and the resulting lack of resolution is exemplified in Figs. 5.12 and 5.13. Figure 

5.12a and b illustrates the grids and Fig. 5.13a and b presents the surface pressure
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contours on the upper surface of the wing for the structured-overlapped and unstructured 

grid schemes, respectively. Shown in Figs. 3.14 and 5.15 are the same set of views for the 

lower surface of the wing. Once again, lack of resolution is observed due to the 

coarseness of the unstructured mesh. This is especially noticeable in the wave structure 

near the trailing edge of the pylon. It should be noted that an unstructured WPFS 

simulation was performed using the same flow solver [19], and presented in the special 

session of the Atmospheric Flight Mechanics Conference [11]. The unstructured mesh in 

this simulation was much finer (103,064 nodes and 567,862 cells), and a flow structure 

very similar to that of the structured-overlapped grids was obtained.

With the exception of the unstructured solution on the store (which is explained 

below), good agreement between computed and experimental data is observed on all 

components. Pressure coefficient comparisons at two inboard span locations on the wing 

are shown in Fig. 5.16. As seen in this figure, the upper surface of the wing shows little 

effect of aerodynamic interference, but it does demonstrate the characteristic expansion 

along the wing chord and the existence of a shock near the trailing edge. On the lower 

surface, severe interference is observed to occur between the wing and the pylon when 

the store is in the carriage position. This aerodynamic interference is also seen in Fig.

5.17 which depicts the pressure coefficient data at two outboard stations on the wing. It is 

interesting to note that since the unstructured mesh is relatively coarse, the solutions on 

this grid exhibit a more diffusive behavior (than would the inviscid results on a finer 

mesh) and, hence, resembles the viscous experimental data more closely. Thus, the 

present unstructured grid solutions appear to agree better with the experimental data in 

the shock regions. A more representative inviscid solution on an unstructured mesh are 

shown in Figs. 5.16b and 5.17b for the wing inboard and outboard stations, respectively. 

These computations, which are that of Ref. 11, exhibit the crisper shocks and higher 

pressures that are expected with an inviscid solution.
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For the store, pressure data was obtained at 36 azimuthal locations, beginning at 5 and 

ending at 355 degrees with respect to the pylon center line. Comparisons between the 

computed and the experimentally measured data are presented in Figs. 5.18 and 5.19 for 

the upper and lower surfaces, and the inboard and outboard sides of the store, 

respectively. It should be noted that the surface definition of the store for the present 

unstructured grid is not an exact representation of that body (i.e., the surface triangulation 

is not a smooth ogive-cylinder-ogive store as modeled with the structured grids or used in 

the experiment). This is attributed to a lack of experience with the sophisticated grid 

generation software which was still in the developmental stages. Software [31] presently 

exists which would have eliminated this deficiency, and was used to correct the surface in 

Ref. 11. To illustrate the inviscid solution on the correct store model, the computed 

pressure distributions of Ref. 11 are depicted in these figures. As seen, the computed 

solutions of Ref. 11 are nearly indistinguishable from the present structured-overlapped 

solutions. Nevertheless, from these figures it is clearly evident that the highest degree of 

aerodynamic interference occurs at 5 degrees, which is expected, since the store and the 

pylon are at their closest proximity. The influence of the fins on the flow are also realized 

in these figures from the compressions occurring at about 60% of the store's chord.

Pressure data was measured on the inboard and outboard sides of the pylon at two 

vertical stations. These vertical stations correspond to constant y  locations of 0.67 in. and

1.17 in. above the store. For both the inboard and outboard sides at each station, 

exceptional agreement with experimental data is observed with the structured-overlapped 

grids. The unstructured mesh also has good overall agreement, with discrepancies being 

attributed to the coarseness of the grid and the misrepresentation of the store. Notice that 

the pressure on the inboard sides is less than that on the outboard sides, which would 

suggest a resultant side force directed inward.

Due to the extensive degree of overlapping, with nearly 105,000 interpolated hole or 

outer boundary points, the structured-overlapped grids have more intense computational
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needs than a single or multiblock structured flow solver. To reduce the residual 5.0 orders 

of magnitude it took the structured-overlapped code 1700 iterations, 20.5 Cray-2 hours, 

and 37.5 Mw of memory. The unstructured code reduced the residual 6.2 orders of 

magnitude in 2250 iteration, 8.75 Cray Y-MP hours, and used 36.2 Mw of memory. It 

should be noted that different Cray-class computers were used for the computations, with 

the Y-MP being approximately 1.6 times faster that the Cray-2. Taking this into 

consideration, the CPU run times are roughly the same, however, the structured- 

overlapped grids contain over 60% more cells than the unstructured mesh.

5.2 Unsteady Moving Body Computations

In the following sections, the unsteady simulations of the flow about a two- 

dimensional pitching airfoil and an aerodynamically determined airfoil/store separation 

sequence are discussed.

5.2.1 Forced Pitching Oscillation of an Airfoil

As with the WPFS case for complex configurations, the forced pitching oscillation of 

a NACA 0012 airfoil has been used as the benchmark case for many code validation 

studies [35,37,39,48,71,76,86]. Presented is a comparative study of dynamic-overlapped 

grids and dynamic unstructured meshes for the unsteady pitching airfoil. To assess 

accuracy, the computed instantaneous pressure coefficient distributions for each method 

are compared with experimental data [87].

Grid Generation

The composite mesh for the structured-overlapped grids has a total of 9856 cells 

contained within two blocks, and is shown in Fig. 5.21a. The first block is a Cartesian 

mesh, and it is used as the global grid. This mesh has farfield boundaries located 

approximately 20 chords from the airfoil's quarter chord. The second block is of O- 

topology and it resolves the region directly around the airfoil. Shown in Fig. 5.21b is the
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unstructured mesh around this NACA 0012 airfoil. This mesh has 1577 nodes and 3042 

cells. The farfield boundaries of the unstructured grid are placed approximately 15 chords 

from the quarter chord.

Flow Simulation

A NACA 0012 airfoil sinusoidally oscillating about its quarter chord with a mean 

incidence of 4.86 degrees, an amplitude of 2.44 degrees, a reduced frequency of 0.081, 

and a freestream Mach number of 0.6 is simulated. The initial condition for this unsteady 

problem was a fully converged steady-state solution. A periodic solution was obtained in 

three cycles of motion for both methods.

Illustrated in Figs. 5.22 through 5.29 are the instantaneous offsurface pressure 

contours and the unsteady pressure coefficient comparisons with experimental data for 

eight positions. Notice that as the airfoil oscillates, a shock is formed on the upper-surface 

which migrates toward the leading edge as the angle of attack is increased. As the angle 

of attack is decreasing, this shock migrates away from the leading edge, becoming non

existent as the angle of attack approaches mean incidence. Both methods have good 

overall agreement between the computed and the experimental pressure coefficient 

distributions at all of the eight positions. Small discrepancies over the first 5% of the 

airfoils upper surface are believed to be the result of neglecting viscous effects in these 

computations; with the maximum disparity occurring at the angles of 3.49 and 2.43 

degrees. It is should be noted, however, that in Refs. 48 and 71, similar discrepancies 

have been observed between computed and the experimental data of Ref. 87 at selected 

angles of attack. In all cases, the pressure over the lower surfaces are consistently higher 

than that of the experiment, which would suggest that an angle of attack correction is 

needed. Depicted in Fig. 5.30 is the variation of the normal force coefficient with the 

angle of attack. As would be expected from an inviscid computation, the agreement is 

improved at lower angles of attack.
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The CPU requirements of the structured-overlapped and the unstructured grid 

schemes are increased when dynamic meshes are involved. This is due to the need of 

reestablishing the lines of communication at hole and outer boundary points for dynamic- 

overlapped grids or for mesh adaptation on the unstructured mesh. For the present 

computations, the unstructured grid adaptation is a more CPU efficient process, however, 

solution adaptive remeshing (refinement) is a needed attribute which would definitely 

increase the computational costs.

It is not possible to give definitive CPU times for either method since it is never 

known a priori how many interpolated points will arise due to hole creation or how many 

mesh points will reside in a given window. On average, for the sinusoidally oscillating 

airfoil, the construction of the composite mesh required 19 |i seconds/iteration/cell and 

the unstructured mesh adaptation required 9.5 |x seconds/iteration/cell. The total CPU 

time used to complete three cycles of pitching was 4.6 Cray-2 hours for the dynamic- 

overlapped grids and 6.1 Cray-2 hours for the dynamic-unstructured mesh.

5.2.2 Aerodynamically Determined Airfoil/Store Separation

One of the primary interests for the development of dynamic mesh capabilities is the 

direct simulation of unsteady moving boundary problems such as store separation 

sequences. This case simulates the unsteady flow about an airfoil/store configuration 

where the store has been released and is free falling under aerodynamically determined 

motion. The trajectory is obtained by solving the Eulerian equations of rigid body motion 

for the translations and rotations of the body at each time step. The details of this 

trajectory code, and the unstructured simulation, have been presented by Singh et al. [37]. 

The following dynamic-overlapped grid computations prescribed the motion of the store 

to coincide with that of Ref. 37.
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Grid Generation

The two-dimensional airfoil/store geometry has been adapted from the three- 

dimensional WPFS configuration discussed earlier. The airfoil has a NACA 64A010 

cross section, and the store an ogive-cylinder-ogive cross section. The composite mesh 

for the structured-overlapped grids is comprised of two blocks with a total of 10,368 

cells, and is shown in Fig. 5.31a. The global grid of C-topology is about the airfoil, and 

the minor grid of O-topology is about the store. Illustrated in Fig. 5.31b are the 

unstructured mesh and initial adaptive window for this configuration. This mesh has 

10073 nodes and 19707 cell centers. Once again, very efficient grid point distribution is 

obtained with the unstructured grid.

Flow Simulation

With a ffeestream Mach number of 0.3, the initial conditions for this unsteady store 

separation sequence was a converged steady-state solution. Depicted in Fig. 5.32 are the 

offsurface pressure contours and pressure coefficient distributions for this solution. It 

should be noted that the unsightly contours that appear in the flow field of the structured- 

overlapped grids are due to the plotting of the regions of overlap that end or begin at hole 

or outer boundaries. Figures 5.33 through 5.35 illustrate the offsurface pressure contours 

of three selected separated positions. Position 1 displays the beginning of a compression 

region below the store's lower surface. This compression is caused by the moving store- 

induced force and the subsequent flow. It should be noted that this simulation is two- 

dimensional, which does not allow the lateral relieving effect of axisymmetric or three- 

dimensional flows. Hence, a nozzle-like flow behavior is observed between the airfoil 

and the store. Furthermore, in all figures, a similar flow structure is obtained from both 

methods. This includes the formation and downstream propagation of a vortex off the 

trailing edge of the store. By the time the store has reached its final position, the
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compression region between the airfoil and the store has developed into a strong normal 

shock, and the store-induced downward force has strengthened.
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(b) Unstructured mesh

Fig. 5.1 Grids about the high-lift multielem ent airfoil.
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Structured-overlapped grids

(b) U nstructured mesh

Fig. 5.2 Mach num ber contours for the high-lift m ultielem ent airfoil. 
(M»= 0.2, a=  16.02°)
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 Stnictured-O verlappod Grids
 U nstructured Mesh
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(a) P resen t inviscid computations

(b) U nstructured viscous computations of Ref. 82

Fig. 5.3 Pressure coefficient distributions on the high-lift m ultielem ent 
airfoil.
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Fig. 5.5 Multiblock-structured grids in the pylon group; (a) side view, (b) 
enlarged bottom view.
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(b)

Fig. 5.7 Overlapped region between the finned store group and the global wing 
grid; (a) front view, (b) side view. (+) symbols indicate the overset grid.
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(a)

(b)

Fig. 5.8 Overlapped region between the pylon group and the global wing grid; 
(a) front view, (b) side view. (+) symbols indicate the overset grid.
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Fig. 5.9 Three-dimensional hole boundaries in the wing, store, and pylon grids.
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(a) Structured-overlapped grids
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Fig. 5.12 Boundary grids on the upper surface of the wing.
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Structured-overlapped grids

(b)

Fig. 5.13 Pressure contours on the upper surface of the wing.
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.14 Boundary grids on the lower surface of the wing.
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.15 Pressure contours on the lower surface of the wing.
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Fig. 5.16 Pressure coefficient comparison at inboard span locations on the 
wing; (a) z=-0.6, (b) z=-1.2.
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Fig. 5.17 Pressure coefficient comparison at outboard span locations on the 
wing; (a) z=+0.6, (b) z=+1.2.
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•  Data
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Fig. 5.18 Pressure coefficient comparison for the top/bottom of the store; (a) 
<J>=5°, (b) 0=185°.
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Fig. 5.19 Pressure coefficient comparison for the inboard/outboard sides of 
the  store; (a) <j)=95°, (b) <f>=275°.
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Fig. 5.20 Pressure coefficient comparison for inboard/outboard sides of the 
pylon; (a) y=0.67, (b) y=1.17.
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.21 Grids for the forced pitching oscillation of a NACA 0012 airfoil.
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Fig. 5.22 Pressure contours and coefficient comparison for experimental 
position one (a=5.95°t, M«.= 0.6); (a) structured-overlapped grids,
(b) unstructured  mesh, (c) pressure coefficient comparison.
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Fig. 5.23 Pressure contours and coefficient comparison for experimental position 
two (a=6.92°t); (a) structured-overlapped grids, (b) unstructured mesh,
(c) pressure coefficient comparison.
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Fig. 5.24 Pressure contours and coefficient comparison for experimental position 
three (a=6.57°-i); (a) structured-overlapped grids, (b) unstructured 
mesh, (c) pressure coefficient comparison.
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Fig. 5.25 Pressure contours and coefficient comparison for experimental position 
four (a=5.11°-i); (a) structured-overlapped grids, (b) unstructured 
mesh, (c) pressure coefficient comparison.
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Fig. 5.26 Pressure contours and coefficient comparison for experimental position 
five (a=3.49°i); (a) structured-overlapped grids, (b) unstructured mesh, 
(c) pressure coefficient comparison.
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Fig. 5.27 Pressure contours and coefficient comparison for experimental position 
six (a=2.43°i); (a) structured-overlapped grids, (b) unstructured mesh,
(c) pressure coefficient comparison.
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Fig. 5.28 Pressure contours and coefficient comparison for experimental position 
seven (a=2.67°T); (a) structured-overlapped grids, (b) unstructured 
mesh, (c) pressure coefficient comparison.
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Fig. 5.29 Pressure contours and coefficient comparison for experimental position 
eight (a=4.28°t); (a) structured-overlapped grids, (b) unstructured 
mesh, (c) pressure coefficient comparison.
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.31 Grids for the two-dimensional airfoil/store separation sequence.
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.32 Steady ofF-surface pressure contours about the airfoil/store. 
(Moo= 0.3, a= 0°)
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.33 Off-surface pressure contours about the airfoil/store for selected 
position one.
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.34 Off-surface pressure contours about the airfoil/store for selected 
position two.
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(a) Structured-overlapped grids

(b) Unstructured mesh

Fig. 5.35 Off-surface pressure contours about the airfoil/store for selected 
position three.
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Chapter 6 

Conclusions and Recommendations

Two CFD methodologies for treating the steady flow past complex three-dimensional 

configurations as well as unsteady moving boundary problems were evaluated. This 

comparative study was deemed timely and complementary to existing work in this research 

area. Other studies of this nature have been performed by Lijewski [7] for the multiblocked 

and the structured-overlapped grid schemes, and by Ghaffari [84] for the multiblocked and 

the unstructured grid schemes. It is evident from these studies that the methods which 

produce the quickest turn-around in terms of grid generation overhead time are the 

structured-overlapped and unstructured grids. These are, subsequently, the techniques used 

in this study.

It is well known that unstructured grid schemes have more computationally intense 

requirements in terms of CPU time and memory than do the structured grid schemes. This 

disparity, however, is reduced when structured-domain decomposition techniques are 

employed to handle complex or moving boundary configurations. This was illustrated 

through the simulation of the steady flow about a two-dimensional high-lift multielement 

airfoil and a three-dimensional wing/pylon/finned store (WPFS) assembly. The accuracy of 

the steady-state solution obtained from each method was assessed through the comparison 

of the computed and experimental pressure coefficient distributions on several of the 

WPFS's components. Good agreement was observed for both schemes with the exception 

of the present unstructured solution on the store and in shock regions. This first 

discrepancy was attributed to the misrepresentation of the store's geometry that occurred
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when the unstructured mesh was generated, and the second due to the diffusive nature of 

the coarse mesh used in this study.

The performance of the dynamic-overlapped and the dynamic-unstructured grids were 

evaluated from the unsteady simulation of an airfoil undergoing forced pitching oscillation 

and an aerodynamically determined airfoil/store separations sequence. The instantaneous 

pressure coefficient distributions about the oscillating airfoil were compared with 

experimentally measured data at eight positions. Once again, good agreement was 

observed. A qualitative comparison was shown for the airfoil/store separation. This 

illustrated that both methods were capable of resolving the unsteady aerodynamic 

interference which may occur between an aircraft and a released body. From these 

simulations it was seen that when the solution is carried out over many iterations, the 

higher cost per iteration of the unstructured flow solver is amplified. In an attempt to reduce 

these costs, a very efficient unstructured grid adaptation procedure was adopted.

It was demonstrated in the present study that both the structured-overlapped and the 

unstructured grid schemes yielded flow solutions of comparable accuracy for steady, 

inviscid CFD simulations. Moreover, favorable agreement continued to be observed 

between the two grid schemes when each was applied to two-dimensional unsteady flow 

problems. The present study also indicated that, overall, the structured-overlapped scheme 

was slightly more CPU efficient that the unstructured approach. Recommendations for 

future work consists of: (i) evaluating the performance of each method when inviscid 

simulations of three-dimensional unsteady moving boundary configurations are involved, 

and (//) evaluate the performance of two-dimensional steady and unsteady viscous 

simulations using each method. These recommendations are currently attainable with the 

structured-overlapped grid schemes, but with not the unstructured grid schemes. Only 

recently has unstructured two-dimensional viscous grid generation become possible, with 

much work still needed for the reliable incorporation of turbulence models into these flow 

solvers.
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