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Abstract

This thesis addresses the design of the atmospheric control system of a launch vehicle. During
the ascent-flight phase, the launch vehicle is heavily impacted by wind-induced structural
loads and generally exhibits a flexible behaviour characterised by several resonant modes that
can generate large oscillations and lead to instability. In this challenging scenario, the control
system must ensure stability to guidance commands while satisfying very demanding and tight
performance requirements in the presence of parameter dispersions.

Based on the above, the atmospheric ascent-flight of a launch vehicle represents a
challenging control problem, which is traditionally addressed using a classical design
approach. Although there is a rich heritage and experience in applying classical control
solutions to the launcher problem, several practical limitations are recognised. With the
current industrial state-of-practice it is hard to achieve stability and performance robustness
characteristics along the atmospheric phase. In addition, this strategy results in a very
time-consuming design, tuning and validation process.

Considering the above limitations and also the increasingly competitive launch service
market, more methodological synthesis techniques must be proposed to extend the actual
control system capabilities as well as to facilitate the control design task. In this context, this
thesis proposes a synthesis framework based on robust control techniques. In particular, the
capabilities of the structured H∞ and Linear Parameter Varying (LPV) synthesis techniques
are explored for the design of the atmospheric control system of the European VEGA
launcher. It is shown that these robust control approaches can provide a direct trade-off
between robustness versus performance, reduce tuning effort across launch missions and has
the capability to simultaneously handle multiple performance requirements and also to
explicitly include system uncertainties in the design.

This thesis also explores adaptive features for the atmospheric VEGA control system with
the aim to evaluate its performance and robustness properties. The main goals of the proposed
adaptive scheme are to improve the performance in dispersed conditions and to provide recovery
and prevent the loss of the vehicle in extreme off-nominal conditions. Finally, a comparison
between the proposed structured H∞, LPV and adaptive controllers are provided.
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Introduction

1.1 Motivation

The design of the atmospheric ascent-flight control system of a launch vehicle is a very

challenging task that requires careful consideration of different aspects. First, most of the

launch vehicles are aerodynamically unstable due to the vehicle’s design characteristics (the

center of gravity lies below the center of pressure). Second, any launch vehicle undergoes a

very high dynamic pressure during the atmospheric flight and is heavily impacted by several

undesired effects such as wind-induced structural loads, which all combined cause a

significant performance degradation and may even cause the Loss of Vehicle (LoV). Third,

launch vehicles typically exhibit a flexible behaviour characterised by several resonant modes,

also called bending modes, which generally present low damping. Thus, if these bending

modes are excited by the control system, large oscillations can be produced and lead to

instability. To avoid this problem, the control system must account for these flexible-body

structure interactions and stabilise the bending modes. In particular, this task is highly

complex due to the proximity of the first bending mode frequency and the rigid-body control

bandwidth. Fourth, there is a wide variation of the flight parameters during the atmospheric

phase due to the fast propellant consumption and the rapid launcher dynamics changes. In

addition, further issues are introduced by non-linearities in the actuator, the nozzle dynamics

as well as parameter dispersions.

The control of the atmospheric stage is typically performed using a Thrust Vector Control

(TVC) system for the pitch and yaw axes. Based on the measurements from the Inertial

Navigation System (INS), the launcher TVC flight control system computes the necessary

engine nozzle deflections to ensure stability and follow the guidance commands while

satisfying very demanding and tight performance requirements in the face of all the
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aforementioned adverse effects. During the atmospheric phase, the guidance is performed in

open-loop configuration following a pre-programmed trajectory. This flight strategy leads to

deviations from the nominal trajectory, which are corrected in upper phases. On the other

hand, the roll axis is generally controlled by a Roll Attitude Control System (RACS) using

engine thrusters.

As demonstrated by the current state-of-practice, there is a rich heritage and experience in

applying classical control solutions to the launcher problem. This is the design approach used

by the small European VEGA launcher (see Figure 1.1), which uses a classical (proportional-

derivative plus bending filters) controller for the TVC system [2]. This strategy has been proven

successful in all of the VEGA missions performed so far, but several practical limitations

are recognised. Classical control techniques are oriented to Single-Input Single-Output (SISO)

systems, nevertheless, the TVC launcher control design generally results in a multivariable

control problem when the aforementioned issues and multiple design objectives are considered.

This aspect makes the design task more complex since every channel/requirement has to be

iteratively addressed in a single-loop fashion. In addition, with the classical state-of-practice

design approach, the control system design is performed for nominal conditions and robustness

is only considered in an implicit fashion via stability margin requirements to guarantee stability

under dispersed conditions. As a consequence, the launcher Verification & Validation (V&V)

process must rely in an extensive analysis coverage after design. The synthesis has to be

performed in several iterative phases because the designed controller may not satisfy all the

requirements after V&V and may need to be redesigned. This results in an overall expensive (in

terms of both cost and time) synthesis process, in which it is very difficult to achieve uniform

stability and performance robustness throughout the entire flight.

Figure 1.1: VEGA launch vehicle [Courtesy of ESA - J. Huart]
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Unfortunately, due to the wide range of mission configurations, different payloads and

trajectories, the TVC control laws need to be updated and tailored for each mission. Thus, in

the face of an increasingly competitive launch service market, it is necessary to develop a control

synthesis framework which allows to improve and extend the actual Guidance, Navigation and

Control (GNC) capabilities as well as facilitate the control design task. In this sense, robust and

adaptive control synthesis techniques are of interest for the development of the future launch

vehicles. The demonstration of the methodological and formal capabilities of these techniques

for launcher control design is the main topic of this PhD thesis. In particular, unlike the

state-of-practice, robust control techniques allow considering uncertainties in the design and

are more oriented to multivariable control problems than classical techniques. Robust control

theory also permits to analytically evaluate the robustness of the design, providing relevant

insights on the stability and performance degradation due to model uncertainties. Moreover,

robust control techniques can provide a more systematic design process approach with respect

to the traditional state-of-practice, as well as reduced tuning and design effort across launch

missions. On the other hand, adaptive GNC functionalities will allow the control system to

provide recovery and prevent the loss of the vehicle in extreme off-nominal conditions.

1.2 State-of-the-art in launcher control design

The current state-of-practice in launcher control design has significant heritage from the Cold

War between the United States (US) and the Union of Soviet Socialist Republics (USSR).

After World War II (WWII), both countries started corresponding programs to develop

Intercontinental Ballistic Missiles (ICBMs) for military purposes. This missile development

also led to the so-called Space Race, where both nations showcased their technological

progress in a series of space missions.

The first launch vehicles were developed based on the German V-2 rocket [3], which was

widely used during the end of WWII against the Allies, mainly in London (United Kingdom)

and Antwerp (Belgium). In a span of just few years, this frenetic technological race led to the

development of many families of launch vehicles such as the Soviet R-7, Soyuz and Proton and

the US Redstone, Atlas, Titan, Delta and Saturn rockets. Indeed, the Space Race meant a

significant boost for the evolution of launch vehicle technology and specially for the necessary

GNC architecture and algorithms to provide reliable performance and proper TVC attitude

control. In fact, the actual state-of-the-art in TVC system design leverages a great body of

knowledge from these rocket development programs.

The traditional TVC control system architecture consists of two main parts. First, a

rigid-body controller which is based on a Proportional-Integral-Derivative (PID) controller in

attitude to provide stabilisation for both pitch and yaw axes. The rigid-body controller also

typically includes different measurement feedbacks based on the available on-board sensors

(i.e. drift, drift-rate, acceleration, angle-of-attack) to minimise the structural loads suffered by
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the launch vehicle. And second, a set of bending filters are incorporated to stabilise the

flexible-body launch vehicle.

A good example [4, 5] is the Saturn V rocket used on the Apollo missions, which

implemented a control law based on attitude and attitude-rate plus acceleration signals

feedback for load alleviation and a set of bending filters formed by passive Resistor-Capacitor

(RC) filtering networks. The same architecture was also successfully employed by the Space

Shuttle [6] and the Japanese H-IIA launch vehicle [7]. Based on this heritage, other launch

vehicles were also developed using this classical control configuration, i.e. the US Ares-I flight

control system used an attitude PID controller in parallel with an anti-drift/load-relief

algorithm to minimise lateral deviations and structural loads plus a set of attitude and rate

bending filters [8], or the Brazilian VLS launcher which employed a PID controller in attitude

plus notch filters for the stabilisation of the bending modes [9].

Most launch vehicles present axial symmetry along the roll axis. This characteristic allows

to simplify the design and analysis of the TVC control system in a single plane, either the pitch

or the yaw axis. The reason is that assuming a low roll rate, then the pitch and yaw axes can

be considered decoupled and more importantly identical, and thus, the same controller can be

applied to both axes.

The atmospheric TVC control problem is traditionally decomposed into a number of

linear designs merged into an overall control design by using classical Gain Scheduling (GS)

[10]. This design strategy not only allows to deal with the rapid time variation of the flight

conditions during the atmospheric phase, but it also exploits the benefits of linear control

theory, which offers a well-consolidated framework for synthesis and analysis (i.e.

pole-placement, root locus, Bode diagrams, Nichols and Nyquist charts). Using the GS

approach, the launch vehicle dynamics are linearised about several representative points

along the flight and a controller is designed at each point. These linear controllers are then

interpolated ad-hoc based on a measurable system parameter (e.g. time or non-gravitational

velocity). Finally, the stability, performance and robustness of the resulting scheduled

controller is verified and validated using a high-fidelity non-linear simulator and different

uncertainty configurations are tested via Monte Carlo (MC) and vertex cases simulations

[11, 12].

The synthesis of each linear controller consists in turn of several sequential and iterative

steps [13, 14]. First, a rigid-body controller is initially designed to stabilise the rigid launch

vehicle and satisfy the atmospheric flight specifications. Then, the flexible dynamics are

added and a set of bending filters is designed to prevent the excitation of the flexible modes.

Finally, both rigid-body controller and bending filters are manually tuned in an ad-hoc

manual integration process until all the system requirements are met. These two steps are

detailed next.
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1.2.1 Rigid-body control design

In the first place, the design of the rigid-body control system has two main tasks: to achieve

stability and to obtain an optimal performance along the atmospheric flight. In addition, the

control system must fulfil these two tasks in a robust manner to ensure that the required

stability and performance objectives are met in the presence of parametric uncertainties and

disturbances.

As aforementioned, classical control design techniques do not implicitly consider

uncertainties during the design process. The stability robustness is rather enforced through

stability margin requirements, i.e. 6 dB gain margin and 30 deg phase margin are traditionally

considered to avoid any instability case under dispersed conditions. In addition, the second

rigid-body design task makes the control problem especially challenging because the control

engineer must address two levels of trade-offs to optimize the atmospheric-flight design. First,

the achievable performance of the launch vehicle is limited by the classic trade-off between

stability robustness and performance. And second, the control system must deal with

different competing requirements. In particular, the launcher control problem must fulfil the

following (competing) strategies, some with higher priority over the others depending the

flight phase:

• Tracking performance: the control system will minimise the attitude deviations from

the guidance commands. However, this approach leads to lateral deviations from the

trajectory and it does not account for wind-induced structural loads.

• Drift performance: this design scheme aims at minimising the lateral deviations of the

vehicle. In this case, the control system will attempt to generate an attitude response so

that the normal forces are cancelled out. The drawbacks of this approach are attitude

deviations and, as in the previous case, high structural loads.

• Load performance: the main objective of this approach is to minimise the wind-induced

structural loads. To that end, the vehicle will turn into the wind to reduce the angle of

attack leading to attitude deviations and also translational dispersions with respect to

the pre-programmed trajectory.

This performance trade-off problem is generally oriented towards minimising the

performance degradation due to the wind disturbance contribution. In fact, the main

traditional control strategies considered in the literature for launch vehicle control synthesis

aim to cancel out the steady-state values of each of the previous three performance metrics

from the wind disturbance input, leading to different control modes: i.e.

attitude-error-minimum, drift-minimum and load-minimum [15, 16, 17]. These control modes

are combined throughout the atmospheric flight to achieve a trade-off balance for the best

global performance. In particular, a load-relief control mode is generally employed around the

maximum dynamic pressure region. And for the rest of linear design points, the design is
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normally focused on minimising the tracking error while keeping the lateral deviations

bounded within specifications. After the design process, the wind disturbance rejection is

normally evaluated using a thorough nonlinear simulation analysis using a wide set of

different wind profiles.

From classical to optimal and robust control

Despite the successful application of classical methods for the design of launcher’s TVC

systems, the classical synthesis framework suffers from some practical limitations such as highly

time-consuming synthesis process, difficulties to address multivariable problems and lack of

robustness. These shortcomings led to the use of the linear optimal control theory, mainly

based on two control techniques: Linear Quadratic Regulator (LQR) and Linear Quadratic

Gaussian (LQG). Examples of these techniques are the Brazilian VLS launch vehicle, which

uses the LQR method for the atmospheric control tuning [18] and the TVC flight system of the

Ariane 5 launch vehicle which was initially designed using the LQG approach [19]. In addition,

other research studies were conducted by the Indian Space Research Organisation (ISRO) to

apply LQG to the Indian Geosynchronous Satellite Launch Vehicle (GSLV) [20].

These two optimal methods are oriented to multivariable control problems and allow to

formulate the performance trade-off as an optimisation problem, reducing the complexity of the

synthesis task and improving the optimality of the design. Nevertheless, the LQG approach

does not provide any guaranteed stability robustness against parametric uncertainties and

unmodelled dynamics [21, 22]. Furthermore, this synthesis approach also presents limitations

in tackling the disturbance control problem, since it assumes that the disturbance signals are

described by a white noise stochastic process.

The limitations of LQG control encouraged the development of the H∞ theory for robust

control in the 1980’s [23, 24, 25]. As opposed to classical control techniques where the control

objectives are expressed in the time domain, the H∞ approach uses frequency-dependent

weighting functions to describe the control design objectives. The H∞ optimisation is based

on the minimisation of the H∞ norm of the weighted system. This norm represents the

maximum singular value of the system, which is the generalisation of the eigenvalue for

multivariable systems and can also be interpreted as the maximum gain or amplification of

energy from the system inputs to the outputs to be controlled. In addition, this robust

control theory allows to explicitly consider non-parametric uncertainties, resulting in control

designs with enhanced robustness capabilities.

The H∞ technique received widespread attention in many industrial control applications

and also in the launcher industry [26, 27, 28]. In [27], theH∞ approach was applied to the design

of the atmospheric rigid-body control system of the Ariane 5 launch vehicle and compared with

the LQG baseline controller. In this benchmark, the H∞ design resulted in better rigid-body

stability robustness, less TVC consumption and more systematic tuning process. These benefits

motivated the change from LQG to H∞ control for the evolution of the Ariane 5 launcher [29].
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The H∞ control theory was also employed for the first-stage attitude control design of

the Japanese M-V launch vehicle [30] as well as for its evolution the Epsilon launcher [31].

In these works, the design is performed in two steps to facilitate the H∞ optimisation: the

unstable launch vehicle plant is first stabilised using a classical output feedback and then the

H∞ approach is applied to optimise performance.

Subsequently, the second stage of the M-V rocket was redesigned after the third flight, and

the Japan Aerospace Exploration Agency (JAXA) decided to use structured singular value µ

approach instead of H∞ to improve the tracking performance robustness during the second

phase of the flight [32]. The µ synthesis technique allows to consider parametric uncertainties

explicitly and also provides good stability and performance robustness characteristics. The

main principle of µ control is that the maximum singular value can be reduced by using D

scales and a more robust controller K can be designed than using the H∞ approach when the

D scales are incorporated in the synthesis stage. This defines an iterative design procedure,

also called D-K iteration, which sequentially fixes the D scales and then the K controller while

optimising the other.

Despite the potentialities of µ synthesis and the availability of powerful tools such as

the µ−analysis and synthesis Matlab toolbox [33], the µ technique has not had an extensive

acceptance in Space industry and only a few research studies can be found in the literature for

launcher control design [34, 35]. One of the main issues is that there are no guarantees that the

D-K iteration will converge. In this sense, the order of the system and the number of parametric

uncertainties and its repetitions affect significantly the effectiveness of the optimisation.

From full-order techniques to structured H∞

As stated before, the need to provide higher stability and performance robustness as well

as that of reducing the control tuning effort prior to each mission led to investigate and adopt

optimal and robust control techniques. In this journey towards robustness, the rigid-body

controller architecture evolved from the classical structured configuration (PID plus

measurement feedback for load alleviation) to an unstructured scheme. LQG, H∞ and

µ-synthesis provide full-order controllers whose order equals the size of the weighted design

interconnection. This generally results in high-order controllers without a defined structure.

This is an important drawback in aerospace applications where the computational power is

limited, but also because the lack of structure complicates the understanding and tuning of

the controller. Moreover, in most cases, the order of the controller is reduced by simplifying

the system dynamics or by applying ad-hoc controller order reduction techniques –which may

degrade the effectiveness of the controller.

In the last decade, two new approaches based on the H∞ theory have been developed

to address the aforementioned problems: the HIFOO approach, which allows to synthesize

controllers with a desired order [36], and the structured H∞ technique, which allows to fix

the order and/or structure of the controller [37]. These features are important for industrial
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applications where a good understanding of the controller structure is appreciated. Moreover,

these techniques allow to reconcile the know-how of classical control architectures within a

robust control design and analysis framework.

The main drawback of these robust structured techniques is that they are based on a non-

smooth and non-convex optimisation. This implies that the design can be drastically affected

by the choice of the controller structure as well as the number of tunable parameters and

their initial guesses or initialisations. This problem can be mitigated by performing multiple

optimisations from a set of random initialisations but it raises the problem of non-repeatability

and that of understanding (i.e. how changes by the designer affect the controller synthesis).

Despite the non-smooth nature of the optimisation, the structured H∞ technique has

received special attention in the past few years, resulting in relevant Space flown missions

such as the ESA Rosetta’s orbit controller tuning [38], the design of the attitude and

acceleration control of the French National Centre for Space Studies (CNES) microsatellite

MICROSCOPE [39] and also recent piloted flight tests [40]. In addition, this newly developed

technique has also been successfully applied to launch vehicle control design in several

research studies [41, 42, 43] and more importantly, the structured H∞ approach is being

currently considered by industry as a design framework capable of simplifying the launch

vehicle control design process [44].

In addition to the capability of configuring the size and architecture of the tunable

controller, the structured H∞ approach also offers many other interesting design capabilities

such as explicit consideration of parametric uncertainties, multi-plant design and good

stability/performance robustness trade-off objectives.

From gain-scheduling to Linear Parameter Varying control

The use of optimal control and subsequently robust control techniques significantly

improved the stability and performance robustness properties of the linear rigid-body designs.

As mentioned before, the atmospheric TVC problem has been traditionally addressed using

the GS approach, which is a standard practice in industry to deal with systems with a wide

dynamic variation. This means that a number of linear designs must be performed along the

atmospheric flight envelope at distinct operational points (e.g. every 10 seconds for the

VEGA launcher) and then a scheduled global controller is obtained by interpolating the

different linear designs.

The main drawback of the GS methodology is that the stability and performance robustness

achieved at the linear design points are no longer guaranteed for the flight instants between

the design points. This issue is generally overcome by first analysing the linear stability of the

system using a finer grid of analysis points (e.g. every second) and also by an extensive analysis

coverage using a non-linear, high-fidelity 6 Degree of Freedom (DoF) simulator.
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In this sense, the Linear Parameter Varying (LPV) control theory extends the GS approach

guaranteeing robustness not only for the Linear Time Invariant (LTI) design points but for the

full LPV model (which can capture the full trajectory based on a selected parameter, if properly

modeled). This information is used by the LPV design optimiser to generate in a single step

a scheduled controller based on the chosen parameter. In addition, this synthesis methodology

can lead to a reduction of the design effort across missions as well as a simplification of the

V&V process.

Despite those potential benefits, the introduction of the LPV approach in launch vehicle

control design has been very scarce [45, 46]. The main reasons are the lack of reliable tools for

LPV modelling, synthesis and analysis and the need of an adequate transfer of this technology

to the Space industry. Nonetheless, LPV control is receiving increased attention in the past

few years thanks to the development of LPV software tools such as LPVTools [47] and also

some recent studies on different applications such as flutter suppression [48], load reduction of

wind turbines [49] and microvibration control for flexible satellites [50].

Adaptive control

Different from the previously mentioned control design strategies, the US National

Aeronautics and Space Administration (NASA) is advancing on the study of adaptive control

functionalities for the development of the Space Launch System (SLS) rocket. The SLS flight

control system relies on a classically designed baseline controller which is composed of a

gain-scheduled PID controller in attitude plus a load-relief algorithm. The novelty of the SLS

architecture is that the baseline controller is augmented by an adaptive control law, which

provides minimal adaptation under nominal conditions but results in recovery actions for

off-nominal conditions. This adaptive augmenting control strategy improves robustness to

launch vehicle failures and provides extended safety envelope capabilities [51, 52, 53].

This adaptive strategy has successfully been demonstrated in flight tests on a F/A-18

aircraft [54]. Nevertheless, due to the adaptive behaviour of the system and to the nonlinear

characteristics of the adaptive control law, there are no formal techniques capable of resulting

on an equivalent analysis to the classical linear stability margins used by industry to verify

and validate the designs. This topic has raised the attention of the control research community

in recent years. Most of the works looking at this important issue rely on simulation-based

nonlinear stability techniques [55, 56, 57].

1.2.2 Bending filter control design

In addition to stability and performance, the TVC system must also ensure that the bending

modes related to the flexible structure of the launch vehicle are not excited. This is traditionally

performed using a set of filters, also known as bending filters, that minimise these flexible-body

structure interactions with the control system.
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As aforementioned, the industrial standard practice is to design the rigid-body controller

and bending filters separately in a sequential and iterative fashion. The main control

objective of the bending filters is to stabilise the bending modes without altering the stability

and performance achieved by the rigid-body controller. This control problem can become

very complex when, due to vehicle’s design aspects, the frequency of the first bending mode

is low and close to the rigid-body control system bandwidth. Indeed, regardless of the

rigid-body design approach used, the introduction of the bending filters generally results in

degradation of the rigid-body stability margins and performance. Moreover, further

complications are introduced by the fact that the main properties of the bending modes (i.e.

frequency, damping factor, translational and rotational lengths) vary in time during the flight

and are difficult to characterise, normally involving exhaustive 3D Finite Element Method

(FEM) analyses. This can cause notable discrepancies between the launch vehicle model used

for design and analysis and the real system, and thus, it is paramount to design the bending

filters considering a wide range of uncertainties.

There are two main ways to stabilise the bending modes [13, 14]: gain stabilisation, in which

the bending mode is attenuated so it does not cause any instability; and phase stabilisation,

which implies a filter design where the phase of the bending mode is shaped to guarantee that

the phase margin specifications are met. The latter is generally used for the first bending mode

stabilisation in order to preserve the rigid-body stability margins and performance, whereas

the upper bending modes are normally gain stabilised.

The classical approach is to use passive filtering with low-pass and notch configurations

[13]. For example, the Saturn V rocket employed a network of manually-designed RC lag

filters [4], whereas for the Space Shuttle digital design approaches were employed [6]. Similarly

as for the rigid-body case, the methodology and techniques employed for the bending filter

design problem have also evolved with the aim of providing more robustness and improving

the easiness of design.

Although the literature for bending filter design is not as extensive as for the rigid-body

case, different synthesis approaches have been investigated in the last decade. The bending

filters of the NASA’s Ares-I launch vehicle were designed using a constrained numerical

optimization [58] providing minimal degradation to the rigid-body stability margins. The

same technique was also applied to the design of the hold control system of the International

Space Station (ISS) during Orbiter Repair Maneuver operations [59]. In both references, the

filters are designed in continuous-time domain and then discretised using a bilinear

transformation, while in [60], the same numerical optimization is directly employed in the

discrete-time domain. In addition, the synthesis of time-varying and adaptive notch filters

have also been studied for mode stabilisation [61, 62].
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1.3 Objectives

The objective of this PhD activity is to advance the design and development of control

systems for launchers, using the VEGA launcher as the industrial benchmark to demonstrate

the developed approaches. The main aim is to study robust and adaptive control laws that

can provide extended launch vehicle missions and safety envelope capabilities. The new

designs will target to: 1) formalise the design approach into a more systematic methodology;

2) reduce the need for intensive mission dependent control design loops before each flight; 3)

increase the overall GNC performance with better load drift trade-offs to meet safety corridor

requirements; 4) improve the GNC stability robustness against plant uncertainties and

degradations; 5) reduce the missionisation time.

The specific technical objectives of the activity can be listed as follows:

O1 - Study structured H∞ and parameter optimisation control methods to enhance

the overall system performance while keeping the same control architecture within a

predefined structure and complexity. The aim is to provide a clear and methodological

assessment of the potential of the techniques and of the axis of improvement for the

current VEGA GNC system.

O2 - Study robust and LPV control concepts, which when relying on on-line acquired

scheduling can increase the operational perimeter of the GNC system.

O3 - Develop modular prototypes of the control system designs so that they can

be used as augmentation kits to the existing autopilot loop. The advantage of such an

augmentation is to avoid the inner loop control re-qualification while allowing for a clear

demarcation to measure the improvements.

O4 - Explore adaptive features of the GNC functions. These features will permit to

augment the current VEGA GNC architecture with additional adaptive layers to cope

with launcher degradations and adverse weather conditions.

1.4 Funding

This work was funded by the ESA through the Networking/Partnering Initiative contract No.

4000114460/15/NL/MH/ats. Mr. Diego Navarro-Tapia was also the recipient of a Doctoral

Training Partnership award No. 1609551 by the Engineering and Physical Sciences Research

Council (EPSRC).
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1.5 Thesis Outline

The outline of this thesis is illustrated in Figure 1.2. This thesis contains 9 chapters organised in

four main parts. Note that each chapter is shaded in color according to the synthesis technique

used (i.e. structured H∞ in cyan, LPV in green and adaptive control in purple). Chapters

3-8 address the objectives listed before in Section 1.3. Specifically, Objective O1 is addressed

in Part I (i.e. Chapters 3-5), O2 in Chapter 6, O3 in Chapter 7 and finally, Objective O4 is

covered in Chapter 8.

Chapter 2

Chapter 3 Chapter 4 Chapter 5

Chapter 6 Chapter 7

Chapter 8

Chapter 9

VEGA
launch vehicle

Legacy
Recovery

Design
augmentation

Joint
rigid/flexible

design

LPV
design

Internal
model

Adaptive
augmentation

Conclusions

Benchmark

& modelling

Part I

Structured H∞

synthesis

Part II

From full-order

to structured

synthesis

Part III

Adaptive

synthesis

Part IV

Conclusions

Structured H∞ LPV Adaptive

Figure 1.2: PhD thesis layout
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1.5. THESIS OUTLINE

Chapter 2 describes the VEGA launch vehicle and its GNC atmospheric phase

architecture. The equations of motion of the launch vehicle are derived and expressed in a

state-space representation. In addition, the Linear Fractional Transformation (LFT)

formulation and modelling approach used to capture system uncertainties is presented.

Finally, this chapter also describes the main requirements for the first phase of the VEGA

mission and the high-fidelity, nonlinear simulator employed in this thesis for V&V purposes.

Part I proposes a systematic robust control synthesis framework based on the structured

H∞ approach for the design of the atmospheric TVC system of the VEGA launcher. Part I

comprises Chapters 3, 4 and 5, which are described next.

In Chapter 3, the structured H∞ approach is presented and applied to the actual VEGA

VV05 mission data to recover the baseline rigid-body mission controller. This chapter provides

key guidelines to formulate the atmospheric-phase TVC control synthesis as a robust control

problem. The VEGA legacy control recovery is exemplified in a linear design point and then

validated using the high-fidelity, nonlinear simulator described in Chapter 2.

Chapter 4 explores the potential for improvement offered by the structured H∞ design

framework over the classical design techniques to design the atmospheric-phase TVC rigid-

body controller of a launch vehicle. The design interconnection is first augmented by including

a wind turbulence model and subsequently by incorporating system parametric uncertainties.

These two augmenting design capabilities are exemplified via representative design examples.

In Chapter 5 the flexible-body dynamics of the launcher are also considered to jointly

address the design of the TVC rigid-body controller and the bending filters. This chapter

describes how to formulate the structured H∞ approach to perform this joint design.

Part II presents the capabilities of the LPV synthesis technique for launch vehicle control

design. In addition, this part also shows how to augment the current VEGA TVC architecture

based on the knowledge from a full-order LPV design. This part is organised in two chapters.

Chapter 6 presents an LPV control synthesis for the VEGA atmospheric-phase TVC

system. A cursory introduction to LPV modelling and synthesis is given. Then, the LPV

modelling approach employed for the VEGA launcher is described and a grid-based LPV

synthesis technique is applied for the joint design of the TVC rigid-body controller and the

bending filters of the VEGA launcher.

In Chapter 7 an indirect method is presented to characterise a wind disturbance internal

model that enhances the nominal and robust wind rejection performance capabilities of the

current VEGA control system. This internal model can be used as a modular augmentation

of the actual VEGA TVC architecture. This process is based on the internal model principle

and makes use of the knowledge from the full-order LPV design presented in Chapter 6, which

implicitly encapsulates the internal model by design.
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Part III explores adaptive features for the VEGA control system (Chapter 8). In particular,

an adaptive augmentation control architecture is used to extend the safety envelope capabilities

and increase the performance under extreme off-nominal conditions. The adaptive controller

is compared to the joint rigid/flexible structured H∞ design presented in Chapter 5 and the

LPV controller from Chapter 6.

Finally, Part IV (Chapter 9) provides the conclusions of this thesis.

1.6 Author’s list of publications

During the PhD several journal and conference publications have been achieved. They are

listed below. In addition, the connection between these papers and the chapters of this thesis
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VEGA launch vehicle description

This chapter is organised in two main sections. The first section is devoted to introduce the

VEGA launcher benchmark. First, the VEGA launch vehicle, its GNC atmospheric phase

architecture and the industrial VEGA V&V test plan are described. In addition, the main

characteristics of the high-fidelity, nonlinear simulator employed in this thesis are described

and the atmospheric requirements for the VEGA mission are presented.

Section 2.2 provides the necessary background on launch vehicle modelling to obtain a

physically meaningful representation of the system for analysis and design purposes. The

equations of motion of the launch vehicle are first derived and expressed in a state-space

representation. Then, the Linear Fractional Transformation (LFT) formulation and modelling

approach used to capture system uncertainties is presented. Finally, the verification campaign

used in this thesis to analyse TVC systems is described.

2.1 VEGA launcher

2.1.1 Launch vehicle and mission

VEGA (Vettore Europeo di Generazione Avanzata) is the new European small launch vehicle

developed under the responsibility of ESA and European Launch Vehicle (ELV)/AVIO as prime

contractor. The launcher has successfully performed thirteen launches since its maiden flight

on 13th February 2012.

VEGA is the smallest European launcher with approximately 30m in height and a diameter

of 3m. This launch vehicle was developed to address the small and mini-satellites market,

covering payloads from 300 kg to 2500 kg. VEGA performs a wide range of missions for Earth

observation satellites and many specific purposes using mainly Sun Synchronous Orbits (SSOs)

and Low Earth Orbits (LEOs). The VEGA launch site is located in the Guiana Space Centre

in Kourou (French Guiana, France).
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CHAPTER 2. VEGA LAUNCH VEHICLE DESCRIPTION

VEGA is a single-body launcher that follows a four-stage approach (see Figure 2.1). The

three first stages are formed by three solid propellant motors (P80, Zefiro 23 and Zefiro 9),

whereas the 4th stage, also known as Attitude and Vernier Upper Module (AVUM), is composed

of a bi-propellant liquid engine that provides fine attitude control capability and accurate

payload orbital insertion. The liquid motor of the AVUM stage can be re-ignited and perform

several boosts providing the capability to place multiple payloads into orbit as well as a de-

orbiting boost.

All stages are controlled using a TVC system. Each stage is equipped with two orthogonal

Electro-Mechanical Actuators (EMAs) that move the nozzle to provide attitude control for

pitch and yaw axes [63]. On the other hand, the roll axis is controlled by a RACS, which

consists of six on/off Reaction Control Thrusters (RCTs) located at the 4th stage. Moreover,

the RACS also perform a fine three-axis attitude control during the AVUM phase.

TVC

RACS

P80

Zefiro 23

Zefiro 9

AVUM

Payload

Figure 2.1: VEGA launcher stage configuration [1]

Atmospheric phase

The present study is focused on the atmospheric flight (first stage) of the VEGA launcher.

The other stages are comparatively simpler from a control point of view, since only minor

external perturbations disturb the vehicle. In particular, all the simulations and designs in

this thesis are performed using the actual VEGA 5th flight mission (VV05) data [64]. The

payload of this mission was the Sentinel-2A satellite, part of the European Copernicus Earth

observation program.

The VEGA atmospheric flight consists of different manoeuvres or events [2]. First, the P80

engine is ignited and the vehicle begins to lift-off. During this event, the main control task is to

avoid possible collisions with the launch pad. After four seconds of vertical flight, the launch

vehicle initiates a pitch over manoeuvre, also known as gravity turn, that pursues a zero angle

of attack trajectory to minimise the aerodynamic loads applied on the vehicle.
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During the atmospheric flight, the launch vehicle is heavily impacted by structural loads

coming from the high dynamic pressure and changes in the angle of attack due to strong

wind gusts. These structural loads are particularly critical between the flight instants t=50 s

and t=60 s because during this region the dynamic pressure Q reaches its peak value. Indeed,

the dynamic pressure strongly influences the launch vehicle dynamics and also the design of

the TVC system. Figure 2.2a shows the evolution of this flight parameter that evolves as

Q = 1
2ρaV

2. It increases with the square of the velocity V , but at a certain altitude it starts

decreasing once the low air density ρa has a predominant effect. Thus, after the maximum

dynamic pressure region, the structural loads decrease significantly.

The launch vehicle reaches its maximum acceleration around t=90 s and subsequently when

the acceleration reaches a certain level, the thrust is rapidly cut down in the so-called tail-off

phase. Finally, the first stage is separated around t=110 s.

Figure 2.2 shows some flight parameters corresponding to the VEGA VV05 mission. It can

be seen that these flight parameters have a high time variation during the atmospheric phase,

i.e. in less than two minutes, the launch vehicle reaches Mach 5 and approximately 50 km of

altitude (see Figure 2.2b).

(a) Dynamic pressure versus Mach (b) Mach and altitude versus time

(c) Rigid-body rotational parameters

Figure 2.2: VEGA VV05 mission parameters
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Furthermore, Figure 2.2c illustrates the time evolution of two critical parameters in

launcher control design, i.e. the aerodynamic instability coefficient a6 and the control

efficiency parameter k1. These two parameters determine the main rotational rigid-body

motion dynamics between the yaw attitude angle ψ and the nozzle deflection angle βψ

through the relation ψ̈ = a6ψ + k1βψ, resulting in the following second order transfer

function:

GLVa6/k1 (s) =
ψ(s)

βψ(s)
=

k1
s2 − a6

(2.1)

The above model is simple yet significant. Indeed, it is standard in industrial launcher

design to start with this rotational relation [2, 18].

2.1.2 GNC architecture

The GNC algorithms of the VEGA launcher are executed by the on-board flight computer,

which is located in the avionics bay at the AVUM. The GNC system functions are described

in Figure 2.3. First, the navigation system calculates the attitude, position, velocity and

acceleration of the launch vehicle based on the measurements from the INS. Then using the

outputs of the navigation function, the control system computes the necessary TVC nozzle

deflections and RCT activations to follow the attitude commands delivered by the guidance

system. For VEGA, this GNC procedure is executed by the flight program software with a

sampling period of 40ms.

INS

GNC

Navigation

Guidance

Control

RACS TVC

TVC actuators
(EMAs)

RACS actuators

(RCTs)

Figure 2.3: VEGA launcher GNC architecture
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During the atmospheric phase, the guidance is performed in open-loop following a pre-

programmed trajectory based on attitude tables versus a schedule variable (i.e. time or velocity).

It is important to remark that a closed-loop guidance configuration would be in conflict with

one of the main control tasks of the first stage, which is the load alleviation. In order to limit

the structural loads, the control system must keep the angle of attack low in the presence

of wind disturbances, which naturally leads to deviations from the reference trajectory. Thus,

using guidance in open-loop, the GNC system focuses on controlling the launch vehicle drift

for load alleviation purposes. Any final resulting deviations from the nominal trajectory are

subsequently corrected during the upper stages using closed-loop guidance.

In addition, it should be remarked that the RACS only limits the maximum roll rate during

the first stage. The main reason is that the RCT actuators are not strong enough to set the

roll rate to zero due to the high moment of inertia that the launch vehicle exhibits during the

atmospheric flight. As a solution, the roll rate is only bounded, which means that the RACS

will only act if the roll rate is over a certain threshold. In fact, the telemetry from real flights

shows that there are typically no RCT activations during the first stage. For all these reasons,

the aim of this research focuses on the design of the VEGA TVC system.

Figure 2.4 describes the atmospheric-flight TVC control architecture for the VEGA launcher

in the yaw channel, which results in a 26th order controller. This controller receives as inputs

the yaw attitude error ψe and the lateral deviations (both in position ze and velocity że) with

respect to the reference trajectory and calculates the required yaw nozzle deflection βψc to

follow the guidance commands. The control law is based on a classical structure formed by:

• PD controller on attitude (Kψp and Kψd) to stabilise and control the launch vehicle;

• Lateral control feedback composed of a PD controller on drift (Kz and Kż) to limit the

lateral deviations of the vehicle and minimise the angle of attack for loads alleviation;

• Set of filters with different purposes: H1(s) is added to improve the rigid-body stability

margins; H2(s) performs a derivative action to compute the attitude rate error signal ψ̇e;

H3(s) notches the first bending mode and attenuates the upper bending modes; andH4(s)

is a low-pass filter that reinforces the high-frequency attenuation on the drift channels.

H1(s)

H2(s)

H3(s)

H4(s)

H4(s)

Kψp

Kψd

Kz

Kż

ψe

ψ̇e

ze

że

βψc

Figure 2.4: VEGA TVC control architecture
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As mentioned before, the TVC system provides control for pitch and yaw axes. Due to axial

symmetry of the VEGA launcher about the roll axis, pitch and yaw axes can be considered

decoupled and more importantly identical. Thus, the same TVC controller described above is

also applied to the pitch axis resulting in a pitch nozzle deflection command βθc. Both nozzle

angle commands (βψc and βθc) are finally transformed into EMA elongations and contractions

for TVC actuation. Note that this decoupling strategy is only valid if the roll rate is considered

negligible, which is a standard assumption in launch vehicle TVC designs. The existing coupling

between pitch and yaw axes due to roll rate is typically considered as a disturbance and

subsequently examined ad hoc [65].

In order to cope with the large dynamical system variations, different controllers must be

designed along the atmospheric trajectory at distinct operational design points. In particular,

the VEGA launcher uses 12 linear design sets at approximately every 10 s except at lift- and

tail-off phases. The VEGA design interval is a good trade-off to address the fast-changing

characteristics of the system while featuring a reasonable complexity for design. Recall that

the design of each of the linear controllers is a highly time-consuming task, and thus, more

design points would significantly increase the complexity of the every GNC mission

development. Finally, all the controller gains and filters are discretised and scheduled versus

the non-gravitational velocity.

2.1.3 VEGA launcher verification and validation

The TVC and RACS control designs are all tested prior each mission in an extensive analysis

coverage to verify and validate that the GNC algorithms work as expected and also that all

the control mission requirements are met.

This V&V phase involves analyses in both the time and frequency domain. On the one hand,

time-domain simulations are well suited to evaluate performance metrics. This is normally

carried out using high-fidelity, 6 DoF, nonlinear models which are highly representative of the

real launcher system. On the other hand, frequency-domain approaches are generally employed

to analyse the stability of the launch vehicle using LTI models. Although the stability can also

be assessed in the time domain, the frequency domain provides very valuable information on

how close the system is to instability via the well-known stability margins. In addition, it allows

to analyse the stability of the system with respect to different effects in the frequency spectrum

of the launch vehicle (i.e. aerodynamics, TVC actuator, bending modes, etc).

The GNC V&V test plan for the VEGA launcher [2, 12, 66] is traditionally performed in

several steps:

1. For each stage, the stability of the vehicle is evaluated using frequency-domain approaches.

For instance, for the atmospheric stage the stability analysis is performed every 1 second;
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2. If the stability requirements are met, then the control performance requirements are

evaluated in the time domain for each stage separately and subsequently by simulating

all the stages together;

3. In a third step, if stability and performance specifications are satisfied,

Software-In-the-Loop (SWIL) and Hardware-In-the-Loop (HWIL) campaigns are

carried out to test that the GNC algorithms run properly and that the level of

performance using the real on-board equipment (computers, buses, actuators) is the

adequate.

2.1.4 VEGA high-fidelity, nonlinear simulator

The high-fidelity, nonlinear 6 DoF simulator used in this work for V&V purposes is called

VEGACONTROL. It is implemented in Matlab/Simulink using protected blocks and compiled

code due to proprietary reasons (see Figure 2.5). This nonlinear simulator was developed

by ELV based on the official simulator used in the VEGA program to verify and validate

the GNC designs and algorithms of each mission. It is tailored to only simulate the VEGA

launcher atmospheric phase and is prepared for accelerated-time simulations. Nonetheless, it is

important to highlight that the provided simulator was found [67] to be highly representative

of the real launch system during the atmospheric flight.

Figure 2.5: VEGACONTROL Simulink implementation

The nonlinear simulator allows to scatter more than 125 different operational parameters

by means of normalised flags with the range [−1, 1]. Among these parameters are

mass-center-inertia and aerodynamics parameters, INS mounting, thrust offset and

misalignment scatterings and also bending mode properties. In addition, this analysis tool

allows to perform simulations with different wind profiles (such as those shown later in

Figure 2.8).
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The high-level architecture of this simulator is composed of four main model blocks, see

Figure 2.6.

Actuators
commands

Actuators
position

LV acceleration
and angular velocities

Filtered Euler angles
and LV velocity

GNC Actuators

INS

LV

Figure 2.6: Simplified diagram block of VEGACONTROL simulator

The launch vehicle (LV) model contains the 6 DoF motion of the vehicle, which includes:

• 6 DoF rigid-body model, accounting for the rotational and translational dynamics of the

vehicle;

• Elastic and sloshing modes;

• Tail-wag-dog effect, including the inertia forces and moments created by the motion of

the gimbaled engines;

• Full external environment (rotating Earth, atmosphere and wind);

• Nonlinear aerodynamics (including aero-elastic effects);

• Disturbances (bias, offsets).

The INS block includes a detailed model of the measurement unit (calibration and

mounting errors, quantisation and noise on measured velocity and angles) while the GNC

model comprises a full representative code implementing the actual VEGA GNC and flight

management algorithms. This block uses the measurements from the INS to compute the

necessary nozzle deflections to follow the attitude commands from the guidance function. It is

important to highlight that the GNC model (see orange block in Figure 2.5) is accessible and

can be used to implement other controllers. Finally, the actuators block incorporates a

detailed model of the nonlinear TVC actuators (with saturations in deflection and rate,

backlash, delays and bias) and also of the RACS with thermal and thrust dynamics.

2.1.5 Atmospheric-phase VEGA TVC requirements

The TVC system must ensure stability to guidance commands while satisfying very demanding

and tight performance requirements in the presence of external disturbances and parametric

uncertainty. The most relevant specifications for the atmospheric phase are listed in Table 2.1.
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Table 2.1: Main VEGA stability and performance requirements for the atmospheric phase

Requirements Metrics Bounds

Stability

Rigid-body margins

LF-GM
Nominal ≥ 6 dB

Dispersed ≥ 0.5 dB

DM
Nominal ≥ 100ms

Dispersed ≥ 40ms

HF-GM
Nominal ≤ -6 dB

Dispersed ≤ -3 dB

Flexible-body margins

GMf
Nominal ≤ -3 dB
Dispersed

DMf
Nominal ≥ 50ms

Dispersed ≥ 20ms

Performance

Load performance Qα < Qα envelope

Lateral control performance
Position (y, z) < 500m

Velocity (ẏ,ż) < 15m/s

Actuation performance
β < 6.5◦

Integrated angle < 250◦

Stability requirements

The V&V VEGA program defines stability requirements for both nominal and scattered

conditions. Three rigid-body margins are considered: Low-Frequency Gain Margin (LF-GM),

Delay Margin (DM) and High-Frequency Gain Margin (HF-GM). In addition, a gain margin

(GMf) and a delay margin (DMf) are defined for gain- and phase-stabilised bending modes

respectively. Note that due to industrial heritage from the Ariane launch vehicle program,

Phase Margins (PMs) are expressed as the equivalent delay at the frequency ω at which the

margin is computed
(
i.e. DM = π

180 PM/ω with DM in s, PM in deg and ω in rad/s
)
.

The stability of the VEGA TVC system is traditionally analysed in the frequency domain

in terms of the classical stability margins described above. Figure 2.7 illustrates the stability

margin requirements for the VEGA launcher using a Nichols chart (the most common

frequency visualisation plot used in launcher control design [8]). It can be seen that the

margin specifications are defined for each crossing frequency around the critical instability

points (indicated in the Nichols chart as red crosses).

It is important to remark that the stability specifications presented in Table 2.1 are to be

verified considering a low roll rate assumption, and thus, this stability test can be performed in

either the pitch or the yaw axis. The V&V VEGA program [2, 12, 66] also determines margins

for a Multiple-Input Multiple-Output (MIMO) case in which pitch and yaw axes are coupled

by a constant roll rate. The latter MIMO analysis is be covered in this thesis.
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Figure 2.7: VEGA stability margin specifications

Performance requirements

Performance requirements are verified via time-domain MC simulations using a nonlinear,

high-fidelity 6 DoF simulator. The different performance metrics shown in Table 2.1 must

remain below given bounds in the face of parameter dispersion and disturbances such as noise

and wind.

One of the main tasks of the atmospheric-flight TVC system is to keep the structural loads

within a given envelope defined based on Mach number. This load requirement is expressed

as a function of Qα, which is the product of the dynamic pressure Q and the angle of attack

α. In fact, due to its dependency on the angle of attack, Qα is evidently sensitive to wind

disturbances as it can be seen in Figure 2.8. This plot shows the Qα responses corresponding

to the same mission data and trajectory (the 5th VEGA flight, VV05) but using different wind

profiles (as measured at the launch site in French Guiana in the date indicated in the figure

legend). Therefore, the control system must be particularly robust against moderate and strong

wind gusts at different altitudes.

Furthermore, since the guidance is in open loop, the TVC system must also limit the drift

with respect to the reference trajectory in both position (y, z) and velocity (ẏ, ż). It is also

important to limit the actuation effort to avoid the saturation of the actuators and also reduce

TVC consumption.

Although not covered in this thesis, the TVC validation plan also includes requirements

for the lift off to avoid a collision with the launch tower and also for the tail off to ensure an

adequate stage separation. In addition, there are also control requirements for the RACS, which

validate its control accuracy and general functioning (i.e. consumption, maximum number of

RCT activations).
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Figure 2.8: Effect of wind disturbance on the structural load requirement Qα

2.2 VEGA launcher models and verification campaign

2.2.1 VEGA launch vehicle model

The motion of the vehicle is described by the standard 6 DoF equations of motion, which

account for the translational and rotational dynamics of the launch vehicle. The derivation of

the equations of motion of a generic launch vehicle can be found in reference [68].

The VEGA launch vehicle model is derived assuming that pitch and yaw axes are decoupled.

In this section, the launcher model will be examined in the yaw plane, see Figure 2.9. The

dynamics of the vehicle are described using a body-fixed frame (Xb, Zb) with respect to a

trajectory reference frame (XT , ZT ) with XT tangent to the ascent trajectory. Note that both

reference frames are centred at the Center of Gravity (CG) of the vehicle. It is also important

to remark that the trajectory reference frame can be considered an Earth-centred inertial frame

because the Earth’s rotation is negligible for the duration of the atmospheric flight [68, 69, 43].

The equations of motions are derived using two assumptions which are standard practice

in launcher control design. First, it is considered that the vehicle will follow a gravity turn

manoeuvre throughout the atmospheric flight. This manoeuvre uses a commanded pitch

programme that equalises the gravitational acceleration with the inertial centripetal

acceleration, and thus, the gravity term mg (see Figure 2.9) can be disregarded. A complete

analytical demonstration of this assumption can be found in reference [43]. Second, the

longitudinal dynamics are traditionally neglected because they are scarcely affected by small

perturbations [68, 70]. This allows to simplify the model to a 2 DoF problem, described by

Equations 2.2 and 2.3, which accounts for the translation in the ZT axis and the rotation in

the yaw plane.
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Both translational and rotational dynamics are expressed as the sum of forces and moments

from rigid-body (FR, MR), flexible-body (FF , MF ) and nozzle motion dynamics (FN , MN ).

The latter is also known as the Tail-Wag-Dog (TWD) effect in the launcher field. In addition,

other contributions such as wind disturbances are included via the corresponding forces and

moments. Note that the forces and moments generated by the propellant sloshing modes are

not included in the model due to their negligible impact on the vehicle during the atmospheric

phase.

mz̈ = ΣFψ = FR + FF + FN (2.2)

Iyyψ̈ = ΣMψ =MR +MF +MN (2.3)

wherem is the vehicle mass, Iyy is the lateral moment of inertia, z̈ is the linear drift acceleration

and ψ̈ the yaw attitude acceleration.

2.2.1.1 Rigid-body dynamics

The rigid-body model describes the launch vehicle motion due to thrust and aerodynamics.

The yaw-plane rigid-body model is illustrated in Figure 2.9.
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Figure 2.9: Rigid-body diagram

28



2.2. VEGA LAUNCHER MODELS AND VERIFICATION CAMPAIGN

Using small-angle approximations and a gravity turn assumption, the rigid-body motion

forces FR and moments MR in the inertial coordinate frame are given by:

FR = −(T −D)ψ −Nα− Tβψ (2.4)

MR = NαlCP − TβψlCG (2.5)

where T is the gimbaled thrust force, D the aerodynamic drag force and Nα the force gradient

with respect to the angle of attack α. The latter is formed by N = QSrefCNα, where Q is the

dynamic pressure, Sref is the launcher reference area and CNα is the lift coefficient gradient

with respect to α. The distance from the CG x-coordinate xCG to the aerodynamic Center

of Pressure (CP) x-coordinate xCP is given by lCP while lCG is the distance from CG to the

nozzle Pivot Point (PVP).

The main angles in this dynamic model are the yaw attitude angle ψ, the actuator deflection

in the yaw plane βψ and the angle of attack α. Note that the latter is described by a component

with respect to the ground (αground = ψ + ż/V ) and a wind induced term (αw = vw/V ) as

follows:

α = αground − αw = ψ +
ż

V
− vw
V

(2.6)

where ż/V is the drift angle γ, V the vehicle velocity with respect to the ground and vw the

wind velocity.

2.2.1.2 Flexible-body dynamics

The flexible-body model represents the elastic behaviour of the launch vehicle, which is

described in Figure 2.10.

CG

PVP

lCG

T

βψ
βψ +ΣΨ

′

PV P iqi

ΣΨPV
P i
qi

lN

Figure 2.10: Flexible-body diagram

The flexible behaviour of the launch vehicle is characterised by several resonant modes.

The dynamics of the ith bending mode is represented by the following 2nd order model with

natural frequency ωqi and damping ratio ζqi [69, 71]:

q̈i + 2ζqiωqiq̇i + ωq
2
i qi = −TΨPV P iβψ −

(
mN lNΨPV P i − INΨ

′

PV P i

)
β̈ψ (2.7)
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where qi is the state of the ith bending mode, and Ψ
′

PV P i and ΨPV P i are the rotational

and translational lengths of the ith bending mode at PVP respectively. Moreover, β̈ψ is the

acceleration of the actuator in the yaw plane, mN is the nozzle mass and lN is the distance

from the nozzle center of gravity to the PVP. Finally, IN is the moment of inertia of the nozzle

engine about the PVP and is given by IN = Io +mN l
2
N , with Io the moment of inertia of the

nozzle engine about its center of gravity.

The bending modes produce additional lateral forces and create a local rotation added to

the commanded gimbaled angle βψ. The inertial-frame flexible-body motion forces (FF ) and

moments (MF ) considering k bending modes are given by:

FF = T

k∑

i=1

Ψ
′

PV P iqi (2.8)

MF = −T
(

lCG

k∑

i=1

Ψ
′

PV P iqi +
k∑

i=1

ΨPV P iqi

)

(2.9)

2.2.1.3 Nozzle dynamics

The motion of the gimbaled engines creates inertia forces and torques (the aforementioned

TWD effect), which must be taken into account. The lateral force FN and moment MN due

to nozzle dynamics are given by:

FN = −mN lN β̈ψ (2.10)

MN = −(mN lN lCG + IN)β̈ψ (2.11)

2.2.1.4 Sensors characterisation

The sensed values are defined at the node location of the INS, which is installed in the upper

stage at a distance lINS from CG (see Figure 2.9). In addition, the influence of the flexible-

body motion at the sensor location must also be considered. The sensed attitude, drift and

their derivatives are given by:

ψINS = ψ −
k∑

i=1

Ψ
′

INSiqi (2.12)

ψ̇INS = ψ̇ −
k∑

i=1

Ψ
′

INSiq̇i (2.13)

zINS = z − lINSψ +
k∑

i=1

ΨINSiqi (2.14)

żINS = ż − lINSψ̇ +
k∑

i=1

ΨINSiq̇i (2.15)

where Ψ
′

INSi and ΨINSi are the rotational and translational lengths of the ith bending mode

at INS respectively.
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2.2.1.5 State-space representation

The equations of motion and sensors dynamics are typically expressed as a state-space form,

which is a suitable representation for analysis and design. Thus, following the procedure

described in reference [69], all the relevant dynamics are formulated using the state-space

representation shown in Equation 2.16, where the rigid and flexible-body contributions are

expressed separately.




˙xR

ẋF



 =




AR ARF

AFR AF








xR

xF



+




BR

BF



uLV (2.16)

yLV =
[

CR CF

]




xR

xF



 + DR uLV

︸ ︷︷ ︸

GLVRF (s)

The launch vehicle model GLVRF (s) uses four rigid-body states given by the drift z, yaw

attitude angle ψ and their derivatives
(
xR =

[
z ż ψ ψ̇

]T )
; 2k flexible-body states

accounting for k bending modes
(
xF =

[
q q̇
]T

with q =
[
q1 · · · qk

]
and q̇ =

[
q̇1 · · · q̇k

])
; five

outputs
(
yLV =

[
Qα ψINS ψ̇INS zINS żINS

]T )
, which include the load performance indicator

Qα and the measurements at INS node location for the four rigid-body states; and three

inputs
(
uLV =

[
βψ β̈ψ vw

]T )
. Note that the acceleration of the actual nozzle deflection (i.e.

β̈ψ) is considered as an input system to account for the aforementioned TWD effect.

The matrices of the state-space model are given as follows:
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where 0ij is an i×j matrix filled with zeros and Ii is the identity matrix of size i. The rigid-body

and flexible-body matrix coefficients are defined in terms of the physical parameters given in

Equations 2.18 and 2.19 respectively.

a1 =
−N
mV ; a2 = −a1lCP ; a3 = −acc+ a1V ;

ap = − T
m ; k2 =

mN
m lN ; acc = T−D

m ;

a4 =
N

IyyV
lCP ; a5 = −a4lCP ; a6 = a4V ;

k1 = − T
Iyy
lCG; k3 =

1
Iyy

(mN lN lCG − IN);

(2.18)

azq =
[

azq1 · · · azqk
]

with azqk =
T

m
Ψ

′

PV P k;

aψq =
[

aψq1 · · · aψqk
]

with aψqk =
T

Iyy
(Ψ

′

PV P klCG +ΨPV P k);

aqβ =
[

aqβ1 · · · aqβk
]T

with aqβk = −TΨPV P k;

a
qβ̈ =

[

aqβ̈1
· · · aqβ̈k

]T

with aqβ̈k
= INΨ

′

PV P k −mN lNΨPV P k; (2.19)

aqq = diag
(

aqq1 · · · aqqk
)

with aqqk = −ωq2k;

aqq̇ = diag
(

aqq̇1 · · · aqq̇k
)

with aqq̇k = −2ζqkωqk;

aΨq =
[

ΨINS1 · · ·ΨINSk

]

;

aΨ′q =
[

Ψ
′

INS1 · · ·Ψ
′

INSk

]

;

For design and analysis purposes, the launch vehicle state-space model of Equation 2.17 is

used to derive nominal LTI models at different operating points along the atmospheric phase

considering that the parameters are frozen in time.

As mentioned in Section 2.1.1, all physical parameters vary greatly during the

atmospheric phase. To illustrate this, the frequency responses of the nominal launch vehicle

model at different flight instants are shown in Figure 2.11a. It can be seen in Figure 2.11a

that the magnitude evolves with time presenting different characteristics throughout the

atmospheric phase. This is clearly seen for the rigid-body dynamics in the low frequency

region [0.001 10] rad/s and also for the flexible-body dynamics in the high frequency region.

This plot also shows that the frequency of each bending mode peak increases with time. Note

that only the first two bending modes are modelled, since they are the most relevant for TVC

system design.
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The behaviour described above is also confirmed looking at the pole migration map shown

in Figure 2.11b. The launch vehicle model presents eight poles, four rigid-body and four flexible-

body poles accounting for the two bending modes. It should be remarked that, as typical for

launcher systems in open-loop, two of the rigid-body poles are unstable. The main stabilisation

control problem comes from the larger unstable pole, which is mainly governed by the rotational

motion of the vehicle and it is approximately placed at s =
√
a6 (recall Equation 2.1). This pole

highly varies with time and since a6 is proportional to Q (see Figure 2.2) it reaches its maximum

value around the maximum dynamic pressure region (t = 50 − 60s). Besides the stabilisation

issue, the control problem is also very challenging from a performance point of view because

the launch vehicle encounters the highest aerodynamic loads around this region. This demands

more control actuation in order to counteract the torque generated by the structural loads.

With respect to the second unstable pole, which is closer to the origin, it is mainly caused by

the translational motion of the vehicle and it requires less control effort to stabilise due to its

slow dynamics behaviour.
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Figure 2.11: Launch vehicle open-loop time-varying properties

2.2.2 LFT modelling

The launch vehicle model presented in the previous section can be augmented to incorporate

plant uncertainties using Linear Fractional Transformation (LFT) theory [72, 73]. The LFT

formulation is a well-established and suitable approach to model the known unknowns of a

system, allowing to account for parametric uncertainties according to the expected dispersions

of each parameter along the flight. This uncertainty modelling offers a more realistic description

of the launch vehicle, which is inherently uncertain and it certainly provides an additional level

of insight at the design stage to provide good robustness against system uncertainties.

In this section, the formal and general LFT representation is briefly introduced and then,

based on references [74, 71], the LFT modelling approach followed to model the launch vehicle

and the actuation chain models is described.
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2.2.2.1 LFT background

The LFT representation is defined by a feedback interconnection of two matrix operators

M ∈ C
(nd+nu)×(ne+ny) and ∆ ∈ C

ny×nu , where M is traditionally partitioned into four

submatrices: M = [M11 M12;M21 M22]. There are two types of LFT interconnections, lower

and upper LFT, which are both illustrated in Figure 2.12.

∆u

u y

d e
M

(a) Upper LFT interconnection

∆l

u y

d e

M

(b) Lower LFT interconnection

Figure 2.12: LFT representations

The upper LFT shown in Figure 2.12a describes the relation between M and ∆u. This

connection can be represented by the operator Fu, which defines the closed-loop from the

input signal d to the output e as follows:

Fu(M,∆u) = Tde =M22 +M21∆u(I −M11∆u)
−1M12 (2.20)

The previous representation is widely used in the robust control community because it can

be used to model plants subject to uncertainties. In this case,M22 represents the nominal plant

while M12, M21 and M11 describe how the nominal plant is affected by a perturbation ∆u.

Similarly, the lower LFT describes the relation between M and ∆l using the configuration

shown in Figure 2.12b. This interconnection is defined by the operator Fl as follows:

Fl(M,∆l) = Tde =M11 +M12∆l(I −M22∆l)
−1M21 (2.21)

2.2.2.2 Uncertain launch vehicle model

The LFT model of the VEGA launcher is derived by augmenting the LTI nominal model

presented in Section 2.2.1 with additive parametric uncertainties. This type of uncertainty is

generally defined as x = x0 + σxδx, where x
0 represents the nominal value of parameter x, σx

is the level of uncertainty and δx is a norm-bounded uncertainty flag
(
||δx||∞ ≤ 1

)
.

34



2.2. VEGA LAUNCHER MODELS AND VERIFICATION CAMPAIGN

Standard LFT modelling approaches generally define a different uncertainty flag for each

variable of the model [71]. This strategy generally results in highly accurate LFT models but

also of high complexity (in terms of number of uncertain parameters used and their repetitions).

While this might be valid for some systems and some type of analyses, for robust control design

and advanced analytical robust analyses (i.e. structured singular value, Integral Quadratic

Constraint (IQC)), it is sometimes desirable to employ LFT models with low complexity.

In this thesis, the modelling approach proposed in reference [74] is employed. In that

reference, the LFT models are derived using a reduced set of uncertainty flags which allows

to reduce the complexity of the model while capturing the variability of the system

parameters with respect to the nominal flight.

To identify the subset of uncertainty flags, different system scattering flags are examined

through a time-domain sensitivity analysis using the high-fidelity, nonlinear 6 DoF simulator

presented in Section 2.1.4. For each scattering flag, nine different time-domain simulations are

evaluated, where the uncertainty flag to be examined is set iteratively to its minimum, nominal

and maximum value (i.e. δ# = [-1, 0, 1]), while the other remaining system flags are fixed

iteratively to [-1, 0, 1]. This analysis allows to study the impact of different uncertainty flags

(one at a time) on the main physical parameters (e.g. dynamic pressure, velocity, mass, thrust)

and determine the uncertainty dependencies of the system. A more detailed description of this

sensitivity analysis can be found in reference [74]. The scattering flags with more impact on the

system are described in Table 2.2, which lists the flags corresponding to rigid- and flexible-body

motion separately.

Table 2.2: List of uncertain flags for the VEGA launch vehicle LFT model.

Scattering flags description

Rigid body

δdTc – combustion time

δρ – atmospheric density

δdispCN – dispersions for the normal aerodynamic coefficient

δuncCN – uncertainties for the normal aerodynamic coefficient

δdispXCP – dispersions for the center of pressure x-coordinate

δuncXCP – uncertainties the center of pressure x-coordinate

Flexible body

δωq – bending frequency

δΨPV P – bending mode’s translational length at PVP location node

δΨ′

PV P
– bending mode’s rotational length at PVP location node

δΨINS – bending mode’s translational length at INS location node

δΨ′

INS
– bending mode’s rotational length at INS location node
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Based on the outcome and the recognised trends of the aforementioned sensitivity analysis,

the uncertainty configurations were chosen to be modelled by linear (x = x0 + σ#x δ#) and

bilinear (x = x0 + σ#x δ# + σ♭xδ♭) dependencies, in which the level of uncertainty σ•x can be

associated to more than one flag. The selected parametric set is shown in Table 2.3.

Table 2.3: List of uncertain parameters for the VEGA launch vehicle LFT model.

Rigid-body uncertain parameters Flexible-body uncertain parameters

m = m0 + σdTcm δdTc

xCG = x0CG + σdTcXCG
δdTc

Iyy = I0yy + σdTcIyyδdTc

CN = CN0 + σdispCNCN δdispCN + σuncCNCN δuncCN

xCP = x0CP + σdispXcpCN δdispXCP + σuncXCP

XCP
δuncXCP

T = T 0 + σdTcT δdTc

V = V 0 + σdTcV δdTc

Q = Q0 + σdTcQ δdTc + σρQδρ

acc = acc0 + σdTcaccδdTc + σρaccδρ

ωqi = ωq
0
i + σωqωqiδωq

ΨPV P i = ΨPV P
0
i + σΨPV P

ΨPV P i
δΨPV P

Ψ′
PV P i = Ψ′

PV P
0
i + σ

Ψ′
PV P

Ψ′

PV P i
δΨ′

PV P

ΨINSi = ΨINS
0
i + σΨINS

ΨINSi
δΨINS

Ψ′
INSi = Ψ′

INS
0
i + σ

Ψ′
INS

Ψ′

INSi
δΨ′

INS

with i = 1...k

The nominal values x0 and uncertainty levels σ#x of each rigid-body parameter x are

computed as the mean and the standard deviation of the time-domain simulations obtained

with the associated uncertainty flag δ# taking its minimum, nominal and maximum value.

Differently, the corresponding values for the flexible-body parameters are directly extracted

from the mission data used by the nonlinear simulator.

The VEGA LFT model is built using the state-space representation presented in Section

2.2.1 but employing the uncertain parameters listed in Table 2.3 instead of nominal values.

Note that the uncertain parameters are defined using the Matlab Robust Control Toolbox [75].

The resulting VEGA LFT model has dimension 95 (counting number of parameters and their

repetitions). It should be remarked that prior to the design and analysis stages, the model is

simplified using LFT reduction methods and finally results in a smaller LFT dimension of 41.

This model can be also represented as an upper LFT interconnection as shown in Figure

2.13, where GLV (s) describes the known part of the launch vehicle model and ∆LVRF

represents the model uncertainties. Note that the latter is a diagonal block,

∆LVRF = diag(∆LVR ,∆LVF ), that gathers all the uncertainties from rigid-body ∆LVR and

flexible-body dynamics ∆LVF . These rigid and flexible uncertainties are defined in Equations

2.22 and 2.23, where I• is the identity matrix of size •, and represents the number of

repetitions of each uncertain parameter. Therefore, any uncertainty ∆LVRF belongs to the

uncertainty set defined by ∆LVRF
= diag(∆LVR

,∆LVF
).
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∆LVRF

uLV yLV
GLV (s)

Figure 2.13: Full rigid/flexible VEGA LFT representation

∆LVR ∈ ∆LVR
=
{

diag
(
δdTCI14, δρI3, δdispCN I2, δuncCN I2, δdispXCP I3, δuncXCP I3

)
;

δ# ∈ R; ||δ#||∞ ≤ 1
} (2.22)

∆LVF ∈ ∆LVF
=
{

diag
(
δωq I4, δΨPV P I3, δΨ′

PV P
I3, δΨINS I2, δΨ′

INS
I2
)
; δ# ∈ R; ||δ#||∞ ≤ 1

}

(2.23)

To illustrate the effect of model perturbations on the launch vehicle model, the frequency

response of the nominal VEGA attitude channel at t=50 s (in red) and 1000 random scattered

responses are shown in Figure 2.14a. This plot clearly shows the level of uncertainties defined

for the flexible-body dynamics (high-frequency range). As for the dispersions for the rigid-body

dynamics (low-frequency range), Figure 2.14b has been zoomed in for better visualisation.
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Figure 2.14: Bode plot of the LFT VEGA model
(
ψINS(s)/βψ(s)

)
at t=50 s
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2.2.2.3 Uncertain TVC actuator model

The TVC actuator model characterises the dynamics of the TVC actuators obtained from

HWIL simulations. This model is also described as an upper LFT interconnection

Fu
(
GTV C(s),∆TV C

)
, where ∆TV C ∈ ∆TV C . This LFT model is obtained from reference [71].

The reader is referred to that reference for a detailed description of the model. The bode plot

presenting the nominal frequency response and the LFT coverage is illustrated in Figure 2.15.
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Figure 2.15: Bode plot of the LFT TVC actuator model
(
βψ(s)/βcτ (s)

)

2.2.2.4 Uncertain delay model

This LFT model characterises the delays originated by the digital processing of the on-board

computers (12ms), sensors (12ms) and TVC actuators (15ms). All those contributors are

modelled through a 2nd order Padé approximation using an uncertain delay defined as

τ = τ0 + στδτ (with τ0 =39ms and στ =10ms). Similarly, this model can be expressed as an

upper LFT interconnection Fu
(
Gτ (s),∆τ

)
, where Gτ (s) is described in Equation 2.24 and

∆τ ∈ ∆τ with ∆τ =
{
δτ I2; δτ ∈ R; ||δτ ||∞ ≤ 1

}
.

Gτ (s) =
s2τ2 − s6τ + 12

s2τ2 + s6τ + 12
(2.24)

The bode diagram with the nominal and dispersed responses is shown in Figure 2.16. This

delay approximation provides a good convergence with respect to a pure time delay within the

frequency range of interest for analysis and design, which for launcher systems generally covers

until the second bending mode
(
[0.01 100] rad/s

)
.
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Figure 2.16: Bode plot of the LFT delay model
(
βcτ (s)/βc(s)

)

2.2.3 Analysis and verification process

The analysis and verification campaign employed in this thesis is based on the actual VEGA

V&V test plan presented in Section 2.1.3. In particular, all the TVC designs presented will be

analysed in two steps:

1. First, each linear design point will be evaluated in terms of the stability requirements

presented in Table 2.1. In addition, the traditional stability validation analysis is

complemented using an analytical robust technique (structured singular value µ) to

evaluate the robustness of the design due to model uncertainties;

2. Second, the main TVC performance requirements (see Table 2.1) are evaluated for the

P80 flight phase using nonlinear time-domain MC campaigns with different wind profiles.

It is highlighted that the verification campaign described above is not as intensive as the

industrial V&V test plan described in Section 2.1.3. For instance, in this thesis the stability

requirements are only evaluated at each linear design point (i.e. every 10 s for VEGA), while

the current VEGA V&V framework defines a sampling of 1 second for the atmospheric phase.

In addition, as aforementioned, control performance indicators for the lift- and tail-off phases

or related to the RACS are not covered. Nonetheless, this analysis and verification campaign

offers a very exhaustive assessment for launcher TVC systems.
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3
VEGA controller legacy recovery

In this chapter, the structured H∞ synthesis technique is applied to the actual VEGA VV05

mission data with the objective of recovering the same performance and robustness using the

same controller architecture as the VEGA rigid-body controller 1. The aim is to show that

the same controller can be obtained but using a more methodological and efficient technique

than the classical, loop-at-a-time approach currently used by VEGA. The resulting design

interconnection will be used throughout the reminder of the thesis to serve as the first step

for the development of a launcher robust design framework. In addition, this recovery also

facilitates the transfer of technology to industry as it allows to build exactly from their

architecture, and arrive to the same result, strongly building confidence on the process.

A preliminary recovery of the VEGA launcher controller was presented in reference [76],

for a rotational a6/k1 launch vehicle model, and in reference [77] for a full rigid-body model

of the launcher. In these two references, the main closed-loop transfer functions are analysed

analytically to give an understanding on the constraints imposed by the controller structure

and facilitate the weighting function selection.

This chapter outline is as follows. Section 3.1 gives a cursory introduction to the structured

H∞ synthesis approach. In Section 3.2, the atmospheric VEGA rigid-body TVC system design

is formulated in a robust control synthesis framework. Then, Section 3.4 provides key guidelines

on the weighting function selection. The VEGA legacy control recovery is exemplified in a

linear design point in Section 3.5 and validated for the atmospheric phase using a nonlinear,

high-fidelity simulator in Section 3.6. Finally, Section 3.7 ends with the conclusions.

1Initially, the main goal was to recover as close as possible the performance and robustness properties of
the original baseline controller, but as it will be shown in this chapter by combining the optimisation process of
the structured H∞ technique with the analytical understanding of the launcher flight mechanics via the main
transfer functions it was possible to recover exactly the original controller (without using the knowledge of its
gains).
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3.1 Structured H∞ design approach

The structured H∞ design approach allows to solve the H∞ control problem while enforcing a

defined controller structure and/or state order. These synthesis capabilities allow overcoming

one of the main limitations of the standard H∞, which is the lack of physical insight on the

controller structure. Indeed, the standard H∞ synthesis [24, 25] results in full-order controllers

with no defined structure, generally of high order and sometimes with very high-frequency poles.

These characteristics typically motivate the use of ad hoc controller reduction algorithms to

facilitate its implementation, but they normally result in loss of performance.

The capability of defining the controller structure for design is a valuable feature for

industrial applications, where it is important to have a good understanding of the role of

each element of the controller. This also makes the scheduling and controller implementation

simpler (i.e. no high-frequency poles and no need to apply controller reduction methods).

Furthermore, it also facilitates the re-tuning of the controller if needed. A significant example

of this was demonstrated during ESA’s Rosetta mission, where the attitude control system

had to be re-tuned due to a thruster anomaly. For that mission, the structured H∞ technique

was employed to refine the controllers, which were subsequently uploaded to the space probe

before the final comet insertion manoeuvres [38].

A cursory description of this synthesis technique follows. The reader is referred to reference

[78] for a comprehensive survey on the structured H∞ control problem.

Standard H∞ problem

As mentioned before, the structured H∞ technique is based on H∞ theory. The H∞

control problem is traditionally formulated using the diagram shown in Figure 3.1, where the

closed-loop of the system is represented by a lower LFT interconnection defined by

Ted(s) = Fl
(
P (s),K(s)

)
.

d e

u y

P (s)

K(s)

Figure 3.1: Standard H∞ interconnection

44



3.1. STRUCTURED H∞ DESIGN APPROACH

P (s) is called the generalised plant and it can be represented as:









ẋ

e

y









=









A B1 B2

C1 D11 D12

C2 D21 D22









︸ ︷︷ ︸

P (s)









x

d

u









(3.1)

where x is the state vector of P (s); d represents the exogenous inputs of the system (commands,

disturbances) and e the regulated outputs to be controlled; finally, u and y define the input

and output vectors of the controller K(s).

The H∞ control problem consists of finding a stabilising controller K∗(s) that minimises

the H∞ norm of the closed-loop performance channel Ted(s) as follows:

min
K(s)

||Ted(s)||∞ = min
K(s)

max
ω∈R

σ
(
Ted(jω)

)
(3.2)

where the H∞ norm of a system M(s) is formally defined as the maximum singular value

σ
(
M(s)

)
[73].

In practice, the above control problem is computationally very demanding. The standard

H∞ problem is traditionally formulated to obtain a sub-optimal controller. Let γ∗ be the

optimal value of ||Ted(s)||∞, the control problem is to find a controller such that ||Ted(s)||∞ < γ,

with γ ≥ γ∗.
This problem has received widespread attention in the control community because

robustness is guaranteed by design. Indeed, the H∞ norm can be interpreted as a worst-case

norm which represents the maximum amplification of energy from an input d with bounded

energy ||d||22 to the output e:

||Ted||∞ = sup
d6=0

||e||2
||d||2

< γ (3.3)

The lower LFT interconnection of Figure 3.1 is typically augmented using

frequency-domain weighting functions at the input side Wi(s) and at the output side Wo(s)

as shown in Figure 3.2. The total augmented system is defined by Te′d′(s) as shown in

Equation 3.4. The weighting functions are selected to normalise the problem and to impose

the desired closed-loop performance of the system in the frequency domain. Hence, if there is

a controller K∗(s) that fulfils all the requirements defined by the weighting functions, then

||Te′d′(s)||∞ < 1.

e′ =Wo Fl(P,K)Wi
︸ ︷︷ ︸

Te′d′ (s)

d′ (3.4)
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d ed′ e′

u y

P (s)

K(s)

Wi(s) Wo(s)

Figure 3.2: Augmented standard H∞ interconnection

TheH∞ problem was first solved in reference [25] for the so-called full-order controller space

Kfull, which comprises the set of controllers with the same number of inputs and outputs as

defined by the vectors y and u, and same dimension as Te′d′(s). Using this controller space, the

problem is convex and can be solved via two algebraic Riccati equations [25] or as subsequently

proposed in reference [79] via Linear Matrix Inequalities (LMIs).

Formal statement of the structured H∞ problem

Unfortunately, if the controller space is constrained to an arbitrary structure (i.e. Kstruc), the

synthesis problem requires the solution of Bilinear Matrix Inequalities (BMIs), which results in

non-convexity. The structured H∞ control problem was first discussed in reference [80] using

non-smooth local optimisation algorithms. The use of local-minima optimisation techniques

may be seen as a weak point of this technique because it is possible that the design converges

to a local minimum with poor performance. Moreover, the optimisation can be drastically

affected by the choice of the controller structure as well as the initial guesses or initialisations.

To mitigate these problems, it is recommended to perform multiple optimisations from a set

of random initialisations [37]. However, it is important to remark that this solution also raises

the problem of non-repeatability, which is a concern in industry.

This non-convex, non-smooth optimisation approach was further developed by the

original authors and subsequently included in 2010 in Matlab’s Robust Control Toolbox as

the hinfstruct function [37]. In preparation for the structured H∞ design, the controller

architecture is parametrised using predefined Matlab control design blocks such as tunable

gains, tunable PID controllers, fixed-order state-space models and fixed-order transfer

functions. These building blocks allow to define which controller coefficients are to be tuned

and which ones are to be fixed for the optimisation. All tunable parameters can be initialised

by a given value and moreover, it is possible to constraint the optimisation by defining

maximum and minimum allowable values for each tunable coefficient.

The hinfstruct function internally formulates the problem as the so-called standard form,

which uses the same interconnection shown in Figure 3.2. But differently, this structured

standard form defines a generalised plant P̃ (s) that absorbs the non-tunable part of the

controller structure and a controller K̃(s), which is defined by a diagonal block formed by the

tunable coefficients of K(s)
(
K̃(s) = diag(a1, ..., ank )

)
. In addition, this function also

formulates the H∞ problem as a sub-optimal control problem to find an structured

stabilising controller such that ||Te′d′(s)||∞ < γ.
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Furthermore, the hinfstruct function allows to perform multi-model structured H∞

synthesis, also known as multidisk problem [81]. This design configuration consists of finding

a single controller K∗(s) with a certain structure defined in the set Kstruc that stabilises a

range of np different plants Pj(s) and minimises the following cost function:

min
K(s)

max
j=1,...,np

||Te′d′j (s)||∞ < γ; subject to K(s) ∈ Kstruc (3.5)

In a similar fashion, the control problem can be posed to design self-scheduled structured

controllers [42, 82, 83]. This synthesis scheme embeds the Gain-Scheduling (GS) interpolation

by parametrising the tunable controller as a function of a scheduling variable ρ for a set of

design points covering the operating range of the system.

Two years later, the same authors released a Matlab-based tool called systune [84], which

extends the capabilities of hinfstruct to cope with multiple design requirements. This new

Matlab function defines two set of control goals: soft and hard requirements. In essence, the

optimisation is performed giving priority to meet the hard requirements, and if possible, also

comply with the soft objectives. This formulation allows to perform mixed structured H2/H∞

synthesis [85, 86] and also augment the structured H∞ optimisation with extra design goals

such as time-domain requirements (e.g. desired step response, maximum overshoot, maximum

settling time) [87] and constraints on the closed-loop pole locations. Nonetheless, care should

be taken in using this multi-objective approach because the different control objectives may

overconstrain the optimisation and result in unsatisfactory designs.

More recently, hinfstruct and systune functions were upgraded to account for real

parametric uncertainties during the design [88]. This problem is illustrated in Figure 3.3,

where all the uncertainties of the system are pulled out in a diagonal block ∆ that belongs to

the real uncertainty set ∆R. Then, the robust structured H∞ problem is defined as follows:

min
K(s)

max
∆∈∆R

||Te′d′(s,∆)||∞ < γ; subject to K(s) ∈ Kstruc (3.6)

d e

d∆ e∆

d′ e′

u y

P (s)

K(s)

Wi(s) Wo(s)

∆

Figure 3.3: Augmented robust standard H∞ interconnection
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Note that the structured H∞ problem using mixed uncertainties (i.e. real and complex

uncertainties) is not yet available in Matlab’s Robust Control Toolbox but it has recently been

discussed in reference [89].

Despite its recent development (less than a decade), the structured H∞ synthesis technique

has proven to be a fast and reliable synthesis technique in a wide range of applications. Indeed,

this technique has been successfully deployed operationally for aerospace systems [38, 39, 90],

piloted flight tests [40], experimental platform set-ups [91], active control of broadband noise

in vehicles [92] and also numerous studies in aircraft control design such as anti-windup control

[93] or the design of a civil aircraft autoland control system [94, 95, 96].

There are also some research studies applying the structured H∞ to launch vehicle control

design [41, 42, 43, 97], and more importantly this newly developed technique is being currently

considered by industry as a design framework capable of simplifying the launch vehicle control

design process [44].

3.2 VEGA launcher structured H∞ control problem

formulation

In this section, the atmospheric VEGA rigid-body TVC system design is formulated as a robust

control problem. As mentioned before, the main aim here is to recover the classically-designed

VEGA rigid-body controller using the structured H∞ optimisation approach. In particular, the

control problem is posed to reproduce the classical design framework, and hence the synthesis

is performed for nominal conditions (i.e. no uncertainties).

The closed-loop diagram used for design is depicted in Figure 3.4. This interconnection

diagram is composed of four main blocks: the controller KR and three nominal models

representing the total delay of the system Gτ (s), the TVC actuator dynamics GTV C(s) and

the rigid-body launch vehicle dynamics GLVR(s).

The controller KR represents the actual actual VEGA TVC architecture described in

Section 2.1.2, except that the set of filters H(s) are not implemented. This means that they

are not re-optimised in this design, although they will be added for the time-domain

validation stage. This controller structure is composed of four tunable rigid-body gains
(
Kψp,Kψd,Kz ,Kż

)
and defines the following controller space KV EGAR :

KVEGAR
=
{

K : K =
[

Kψp Kψd Kz Kż

]T

with K ∈ R
4
}

(3.7)
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Figure 3.4: Closed-loop diagram for the VEGA launcher control legacy recovery

Gτ (s) and GTV C(s) are described in Sections 2.2.2.3 and 2.2.2.4, whereas the launch vehicle

model GLVR(s) is defined by the state-space representation given in Equation 3.8. Note that

since the focus of the design is on the rigid-body controller, GLVR(s) only accounts for the

rigid-model contributions. The state-space matrices (AR, BR, CR and DR) and state, input

and output vectors (xR, uLV and yLV) are given in Section 2.2.1.5.




˙xR

yLV



 =




AR

CR



xR +




BR

DR



uLV

︸ ︷︷ ︸

GLVR (s)

(3.8)

It is important to highlight that the closed-loop diagram shown in Figure 3.4 differs from

the real implementation of the VEGA TVC architecture (see Figure 2.4) where the attitude

error rate signal ψ̇e is obtained by processing ψe through a pseudo-derivative filter H2(s). The

design model shown in Figure 3.4 explicitly adds an attitude rate channel by extracting ψ̇INS

directly from the launch vehicle model GLVR(s). In practice, this additional measurement can

be provided by VEGA’s inertial measurement unit so there is no implementation restriction

with the proposed architecture. This new design architecture not only simplifies the design

interconnection while also allowing for a slight controller reduction order when using non-

structured synthesis techniques (i.e. the pseudo-derivative filter H2(s) is no longer needed for

design) but more critically allows for a transparent analysis by decoupling the inputs to the

attitude rigid-body gains, i.e. Kψp and Kψd.
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The closed-loop system shown in Figure 3.4 can be formulated as a robust control

problem using the augmented standard H∞ interconnection shown in Figure 3.5. This

representation gathers the main system dynamics, described by the generalised plant P (s),

and the design specifications represented by input and output weighting blocks (Wi and

Wo(s)). The generalised plant P (s) has a set of inputs formed by the commands, wind

disturbance and sensor noise inputs
(
d =

[
dTc dw dTn

]T )
and a set of outputs

(
e =

[
eψe eψINS ezINS eżINS eQα eβc

]T )
, which have been chosen to cope with all the

atmospheric requirements presented in Table 2.1. In particular, the output vector e is formed

by the attitude error ψe, the (attitude, drift and drift-rate) INS measurements at node

location (ψINS , zINS and żINS), the load performance requirement Qα and the commanded

actuator deflection βψc.

Also note in Figure 3.5 that the tunable controller KR is pulled out of the generalised plant

P (s), with the scalar u = βψc representing the controller output and y =
[
ψe ψ̇e ze że

]T
the

controller input.
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Figure 3.5: Augmented H∞ interconnection for the VEGA launcher control legacy recovery

The control design specifications are imposed by scaling the input-output performance

channel Ted(s) using frequency-domain weighting functions (represented by shaded blocks in

Figure 3.5). The selection of these weighting functions will be discussed later in Section 3.4.

The input weighting functions are tuned to scale the closed-loop dynamics at the input side

with respect to their expected maximum variations, Wi = diag
(
Wc,Ww,Wn

)
. On the other

hand, the output weighting functions are shaped to specify the desired closed-loop performance

of the system in the frequency domain, Wout = diag
(
Wψe ,Wψ,Wz,Wż,WQα,Wβc

)
. Tracking

objectives and stability requirements are set on the attitude channel byWψe andWψ. Similarly,

Wz and Wż address the lateral control objectives while WQα adds constraints to satisfy the

load requirements. Finally, the actuation performance is limited by Wβc. It is worth noting

that other requirements, such as actuation rate or angular acceleration, can also be considered

in the design if necessary.
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3.3 Analysis of the closed-loop transfer functions

In preparation for the subsequent weight design, all transfer functions between the exogenous

inputs d and the regulated outputs e are analytically derived and analysed with the aim of

identifying key design parameters and providing a more coherent and methodological approach

to select the weighting functions. Since the structured H∞ approach is a norm-based technique,

the analysis of the transfer functions is rather focused on the magnitude information and

specifically, on deriving asymptotic bounds that can be used to shape the weighting functions.

In addition, this exercise provides very valuable insight on the constraints imposed by the

controller structure.

First, the proposed analysis is presented for a rotational a6/k1 launch vehicle model in

Section 3.3.1, and then extended for a full rigid-body model of the launcher in Section 3.3.2.

3.3.1 Simplified rotational rigid-body model

Consider the closed-loop diagram shown in Figure 3.6, where GLVa6/k1 (s) is the simplified

rotational rigid-body launch vehicle model given in Equation 2.1 and the controller is defined

as Kψ(s) = Kψp +Kψds. It is noted that neither the delay model nor the actuator model are

considered for this analysis. The former does not affect this analysis because it has unity gain

(recall Figure 2.16). Similarly, the latter can be approximated as unity gain for low frequencies.

βψ ψψeψc
Kψ(s) GLVa6/k1 (s)

Figure 3.6: Simplified rotational launcher closed-loop diagram

A common way to study the robustness and performance of a system is to analyse the

classical sensitivity and complementary sensitivity functions
(
respectively Sψ(s) and Tψ(s)

)
.

The latter represents the transfer function from the attitude command ψc to the attitude

output ψ, and is given by:

Tψ(s) =
ψ(s)

ψc(s)
=

GLV a6/k1(s)Kψ(s)

1 +GLV a6/k1(s)Kψ(s)
=

k1Kψds+ k1Kψp

s2 + k1Kψds+ k1Kψp − a6
(3.9)

51



CHAPTER 3. VEGA CONTROLLER LEGACY RECOVERY

It is easy to recognise that the above can be represented as an ideal second order system

with an extra zero cz and gain A:

Tψ(s) = A(s+ cz)
ω2
n

s2 + 2ζωns+ ω2
n

=
2ζωns+Aczω

2
n

s2 + 2ζωns+ ω2
n

(3.10)

Equating Equations 3.9 and 3.10, the controller gains can be expressed as a function of

classical design parameters such as the natural frequency ωn and the damping ratio ζ:

Kψp =
(

1 +
ωn

2

a6

)a6
k1

(3.11)

Kψd =
2ζωn
k1

(3.12)

The sensitivity function Sψ(s) represents the error between the attitude command and the

output. Note that Sψ(s) and Tψ(s) are related by the well-known Sψ(s)+Tψ(s) = 1 relationship.

Then, Sψ(s) is given as follows:

Sψ(s) = 1− Tψ(s) =
ψe(s)

ψc(s)
=

s2 − a6
s2 + 2ζωns+ ω2

n

(3.13)

Furthermore, the actuation channel is analysed by looking at the control sensitivity function

KψSψ(s), which is given by:

KψSψ(s) =
βψ(s)

ψc(s)
=

1

k1

(2ζωns+ a6 + ω2
n)(s

2 − a6)

s2 + 2ζωns+ ω2
n

(3.14)

In this context, the stability Gain Margin (GM) can also be derived as a function of a6 and

ωn, as follows:

GM = 1 +
ωn

2

a6
(3.15)

All the previous transfer functions
(
i.e. Tψ(s), Sψ(s) and KψSψ(s)

)
were subsequently

analysed in terms of low-frequency asymptotes, see Table 3.1.

Table 3.1: Asymptotic analysis using an a6/k1 rigid-body launcher model

Transfer function ω = 0

|Tψ(s)| 1 + a6
ω2
n

|Sψ(s)| a6
ω2
n

|KψSψ(s)| a6
|k1|

(
1 + a6

ω2
n

)
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Looking at Equation 3.15 and Table 3.1, it is easily seen the dependency on the ratio a6/ω
2
n.

This term plays an important role for launchers since it can tune the stability gain margin

and the low-frequency value of Sψ(s), which is an indicator of tracking performance (better

tracking properties are achieved with lower values of Sψ(s) at low frequencies). In this regard,

if ωn is considered fixed, the most challenging design point (low gain margins and tracking

performance) occurs over the high dynamic pressure region where a6 is at its maximum value

(around the flight instant t=55 s in Figure 2.2c), which is in agreement with standard launcher

knowledge and experience.

Another relevant metric to assess the closed-loop robustness is the maximum peak of the

sensitivity function ||Sψ(s)||∞. It is well known, see reference [22], that ||Sψ(s)||∞ directly

yields a lower bound on the classical stability Gain Margin (GM) and Phase Margin (PM)

through the Equations 3.16 and 3.17.

GM ≥ ||Sψ(s)||∞
||Sψ(s)||∞ − 1

(3.16)

PM ≥ 2 arcsin
( 1

2||Sψ(s)||∞

)

(3.17)

Figure 3.7 shows the evolution of ||Sψ(s)||∞ in terms of a6/ω
2
n and ζ variations. Notice

from the figure that as expected the maximum gain of Sψ(s) increases as the damping ratio ζ

reduces. It is also seen that it increases with increasing a6/ω
2
n. Thus, it can be concluded that

large peaks in the sensitivity function Sψ(s) imply poor tracking performance (large a6/ω
2
n) as

well as poor robustness (see Equations 3.16 and 3.17).
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Figure 3.7: ||Sψ(s)||∞ evolution in terms of a6/ω
2
n and ζ variations
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The previous analyses reconcile classical and robust control concepts by connecting

classical metrics and requirements with those from the sensitivity functions. This provides an

in-depth problem understanding that facilitates the selection of the weighting functions for

the subsequent structured H∞ optimisation. Indeed, the low-frequency asymptotes derived in

Table 3.1 can be used to guide the formulation of the weighting functions. In this thesis, this

process will be illustrated for a full rigid-body launch vehicle model case (i.e. rotational and

translational dynamics) in Section 3.4 2.

3.3.2 Full rigid-body model

In this subsection, the previous analysis is extended to a full rigid-body closed-loop system

(see Figure 3.8). In this case, the launch vehicle model GLVR(s) is the one given in Equation

3.8 (including full rigid-body rotational and translational dynamics) but note that only two

inputs are considered (i.e. uLV = [βψ vw]). Furthermore, the controller KR is defined within

the controller space KVEGAR
previously described in Equation 3.7. Similarly as before, the

delay and actuator models are not considered to simplify the analysis.

βψ








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KR GLVR(s)

Figure 3.8: Simplified full rigid-body launcher closed-loop diagram

All the transfer functions of the closed-loop system in Figure 3.8 are also analytically

derived. The main transfer functions of the attitude channel (complementary sensitivity,

sensitivity and control sensitivity) are given as follows:

ψINS(s)

ψc(s)
= Kψp

s2k1 + sc3
C(s)

(3.18)

ψe(s)

ψc(s)
=
s4+s3

(
Kψdk1+Kżc4+c1

)
+s2
(
Kψdc3+Kzc4+Kżc5−a6

)
+s
(
Kzc5+Kżc6+c2

)
+Kzc6

C(s)

(3.19)

2Nonetheless, it is noted that this methodology to select the weights was also exemplified for the same
closed-loop system defined in Figure 3.6 in reference [76]. In that reference, the weights were expressed in terms
of system response parameters (ωn and ζ) and launcher model parameters (a6 and k1) as well as identified key
relations such as a6/ω

2
n. The resulting weight setting was applied to recover the VEGA baseline rigid-body as

previously defined (i.e. Kψ(s) = Kψp +Kψds) at two flight instants.

54



3.3. ANALYSIS OF THE CLOSED-LOOP TRANSFER FUNCTIONS

βψ(s)

ψc(s)
= Kψp

s4 + s3c1 − s2a6 + sc2
C(s)

(3.20)

where C(s) is the characteristic equation described in Equation 3.21. Note that C(s) is defined

in terms of the rotational a6 and k1 parameters and the terms given in Equation 3.22, which

are a combination of the launch vehicle parameters presented in Section 2.2.1.

C(s) = s4 + s3
(
Kψdk1 +Kżc4 + c1) + s2

(
Kψpk1 +Kψdc3 +Kzc4 +Kżc5 − a6

)

+ s
(
Kψpc3 +Kzc5 +Kżc6 + c2

)
+Kzc6

(3.21)

c1 = −a1 − a5; c2 = a1a6 − a3a4; c3 = a4ap − a1k1;

c4 = ap + lINSk1; c5 = a2k1 − a5ap + lINSc3; c6 = a3k1 − a6ap;
(3.22)

The transfer functions of the other channels are similarly derived, see Appendix A. In

this case, due to the high order of those transfer functions, it was not possible to perform

the analysis based on classical design parameters (i.e. damping ratio ζ or natural frequency

ωn). Nevertheless, all transfer functions were analysed in terms of low- and high-frequency

asymptotes.

Table 3.2 shows this asymptotic analysis for the most relevant transfer functions. It is

observed that the low-frequency asymptote of the attitude sensitivity function is fixed to 1.

This value is generally low for good tracking performance. However, in this case, due to the

inclusion of the lateral control feedback in drift, the attitude error steady-state response is

fixed to 1 and cannot be minimised or controlled with the current TVC architecture. Also note

that some of the asymptotes depend exclusively on the rigid-body gains.

Table 3.2: Low- and high-frequency asymptote analysis

Transfer function ω = 0 ω = ∞
ψe/ψc 1 1

zINS/ψc Kψp/Kz 0

zINS/ψ̇c Kψd/Kz 0

zINS/zc 1 0

zINS/żc Kż/Kz 0

βψ/ψc 0 Kψp

βψ/ψ̇c 0 Kψd

The presented analysis shows that, in addition to the intrinsic physical limitations of the

launch vehicle, the structure of the controller also introduces constraints to the system. This

study is also very relevant because it gives information on how to shape the weights and it will

be used later in Section 3.4 for the weighting function selection.
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3.4 Weighting function selection

The selection of the weighting functions generally implies an iterative process with several

heuristic steps to obtain an adequate set of weights. Nevertheless, in this section, some simple

guidelines are provided to improve the understanding on how to express the design

specifications in the frequency domain. Those guidelines are mainly based on physical

properties of the launch vehicle and limitations imposed by the controller structure (see

Table 3.2).

Alternatively, the weighting function selection for the control legacy-recovery process may

also be performed based on the inverse of the closed-loop transfer functions using the baseline

controller. This reverse-engineering process may result in a faster approach, but it does not

provide any insight into the system limitations (physical and controller). Differently, the aim

of the proposed approach is to show that the weighting function selection can be greatly eased

by analytical analysis (i.e. low- and high-frequency asymptote analysis), as shown next in

Sections 3.4.1 and 3.4.2. Nonetheless, note that the baseline closed-loop transfer functions were

subsequently employed as reference to fine-tune the analytically-selected weighting functions

in order to exactly recover the baseline controller.

In the standard H∞ control problem, the order of the weighting functions is traditionally

kept low to avoid high-order controllers. Recall that the order of the controller equals the

order of the augmented standard H∞ interconnection. However, using the structured H∞

synthesis technique, this restriction is no longer applicable since the controller dimension is fixed

by design. Nevertheless, for ease of tuning and simplicity, constant and first order weighting

functions are used.

3.4.1 Input weighting functions

Proper scaling of the input channels is key for a good control design, particularly working

with multivariable systems. It is also relevant the use of suitable units to balance the different

channels (e.g. expressing angles in degrees instead of radians).

Firstly, the commanded input matrix Wc is described in Equation 3.23. In this thesis, Wψc

has been fixed to consider a maximum attitude angle command of 1 degree andWψ̇c
is tuned to

balance the attitude and attitude rate channels so they have similar magnitude levels. Similarly,

Wżc is kept fixed to 1 while Wzc is adjusted to balance both lateral feedback channels. Using

the information from Table 3.2, a suitable scaling is achieved using the following relations:

Wψ̇c
≈ Kψp/Kψd and Wzc ≈ Kż/Kz.

Wc =












π
180Wψc 0 0 0

0 π
180Wψ̇c

0 0

0 0 Wzc 0

0 0 0 Wżc












(3.23)
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The input disturbance weight Ww aims to scale the wind channel with respect to the

maximum expected wind speed. For the legacy recovery, this weight was chosen to balance

the wind disturbance channel with respect to the other input channels at t=50 s (i.e. around

maximum dynamic pressure), resulting inWw = 10. Note that this value was kept fixed for the

other flight instants throughout the atmospheric phase with the aim of reducing the tuning

complexity of each linear design point.

Finally, the input noise weight Wn models the sensor noise of each feedback measurement

(see Equation 3.24). The attitude and attitude rate noise levels from the INS sensor used

by VEGA are 0.02 deg and 0.1 deg /s. For the lateral deviation measurements, the estimated

errors provided by the guidance function are 0.01m for the drift and 0.001m/s for the drift-

rate. Thus, Wψn = 0.02, Wψ̇n
= 0.1, Wzn = 0.01 and Wżn = 0.001. These values are fixed for

all the designs throughout the atmospheric phase.

Wn =












π
180Wψn 0 0 0

0 π
180Wψ̇n

0 0

0 0 Wzn 0

0 0 0 Wżn












(3.24)

3.4.2 Output weighting functions

The output weighting functions are shaped to specify the control design requirements on the

regulated outputs of the generalised plant P (s). Furthermore, they also scale the closed-loop

dynamics at the output side (as before, all the output angle variables are expressed in degrees).

Wψe and Wψ enforce tracking and stability requirements. The inverse of both functions

impose an upper bound on the classical sensitivity and complementary sensitivity functions of

the attitude channel (respectively Sψ and Tψ).

Generally, Wψe
−1(s) is chosen as a high-pass filter, with a small low-frequency asymptote

to keep low the steady-state tracking error. Nevertheless, as remarked in Section 3.3.2, the

steady-state tracking error of the system is fixed to 1 due to the inclusion of the lateral control

feedback, see Table 3.2. Thus, as shown in Equation 3.25, Sψ(s) is only limited by a constant

weighting function to keep small the maximum peak of the sensitivity function and assure good

stability margins. Recall from Equations 3.16 and 3.17 that ||Sψ(s)||∞ directly yields a lower

bound on the classical stability margins. It is important to note that these relations do not

explicitly incorporate stability margin design objectives, but it is an indirect way to bound the

GM and PM margins at low frequency.

Wψe =
180

π

(

||Sψ(s)||∞
)−1

(3.25)
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Wψ
−1(s) is shaped instead as a low-pass filter to limit the complementary sensitivity

function Tψ(s), and is given by:

Wψ(s) =
180

π

(
hψs+ ωψ

s+
ωψ
lψ

)−1

(3.26)

where lψ and hψ are the low- and high-frequency asymptotes of the low-pass filter and ωψ is the

filter bandwidth. The latter should be sufficiently high to have an adequate attitude tracking

but low enough to avoid interactions with the first bending mode. For the recovery of the

baseline controller, ωψ has been fixed to 20 rad/s. Note that this value has been chosen much

higher than the actual attitude control bandwidth to avoid over constraining the optimisation

process. In addition, hψ is set to a gain of −60 dB to attenuate the control performance at

high frequencies and minimise the noise contribution. Finally, in order to reduce the number

of weight parameters to tune during the design process, the low-frequency asymptote lψ is set

to the value corresponding to ||Sψ(s)||∞.

Wz and Wż specify the lateral control requirements on the design process. Both weights

are defined as constants functions (see Equations 3.27 and 3.28). Their inverses must refer to

the maximum drift and drift rate output expected values. Using the information from Table

3.2, note that the ratio Kψp/Kz imposes a lower bound for Wz
−1.

Wz =
(

zmax

)−1
(3.27)

Wż =
(

żmax

)−1
(3.28)

The load requirement is set through the weighting function WQα. In this case, WQα
−1

bounds the maximum angle of attack as follows (where Qαmax is trajectory specific, and taken

from the defined envelop limit):

WQα =
180

π

(

Qαmax

)−1
(3.29)

Finally, Wβc(s) adds constraints on the actuation channel performance to avoid actuator

saturation and reduce high-frequency actuation. Wβc
−1 is shaped as a low-pass filter given by:

Wβc(s) =
180

π

(
hus+ ωu
s+ ωu

lu

)−1

(3.30)

where lu and hu are the low- and high-frequency asymptotes and ωu is the actuation bandwidth.

The low-frequency asymptote lu is tuned to be the maximum expected actuator deflection

βmax at the design point and the actuation bandwidth has been fixed for all design points to

ωu = 30 rad/s. Also note that the controller structure fixes the value of hu to Kψp (see Table

3.2).
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3.5 Structured H∞ linear design point

In this section, the proposed baseline controller recovery approach based on the structured H∞

synthesis method is detailed. This approach was applied across several design points throughout

the time range of interest, but it is only detailed next for the design point at t=50 s. This point

is chosen for illustration purposes as it corresponds to the maximal dynamic pressure, and as

such it is one of the most critical design points.

As discussed in Section 3.1, the structured H∞ control problem consists of finding a

stabilising sub-optimal controller K that minimises the H∞ norm of the weighted design

interconnection shown in Figure 3.5 as follows:

min
K

||Te′d′(s)||∞ < γ; subject to K ∈ KVEGAR
(3.31)

For this legacy recovery exercise, the structured H∞ optimisation is formulated using the

hinfstruct function. Note that the four gains of the controller block KR are defined as tunable

parameters with no constraints on their allowable values. It is important to remark that the

control problem was not initialised using the baseline knowledge (i.e. the baseline controller

gains) in order not to influence the optimisation. Rather, it was configured to perform multiple

optimisations from a set of 5 random starting points to mitigate the local-minima nature of

the structured H∞ optimisation.

The weighting functions were initially shaped following the guidelines presented in Section

3.4. Then, the analytically-selected weighting functions were subsequently fine-tuned using the

baseline closed-loop transfer functions as reference. This fine-tuning process was necessary to

successfully obtain the same rigid-body gains as the baseline controller employed in the VEGA

VV05 mission. Specifically, the rigid-body gains obtained present less than 1% of error with

respect to the baseline controller gains.

To validate the design, the bode plots of the system using the baseline controller (in solid

black) and the structured H∞ design (in dashed blue with square markers) are shown in Figure

3.9. This plot also illustrates in green the inverse of the final output weighting functions used

for this design. It should be remarked that the frequency responses have been multiplied by

the input weighting functions (for adequate scaling) and that only a subset of channels are

shown for ease of visualisation.

Looking at Figure 3.9, it can be observed that the baseline controller is successfully

recovered at t=50 s. This figure shows clearly the upper bound defined by the weighting

functions.
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Figure 3.9: Bode plots comparison at t=50 s: baseline controller Vs structured H∞ controller

The same design procedure is repeated for the rest of the linear design points along the

atmospheric flight. In total, 9 structured H∞ controllers have been synthesised starting at

t = 5s and then at every 10 seconds between the flight instants t=20 s and t=90 s. Due to the

wide dynamic variation of the launch vehicle model, a different set of weighting functions is

needed to recover the baseline controller at each grid design point (but note that the weights

used for the design at t=50 s are employed as the basis for the weights in all the other points).

Similarly, in all the design points, the rigid-body gains synthesised exhibit less than 1% of error

with respect to the baseline controller gains.

3.6 Nonlinear verification

Finally, the global controller obtained by gain-scheduling the 9 synthesised rigid-body

structured control designs is evaluated and compared with the baseline controller using the

nonlinear, high-fidelity simulator described in Section 2.1.4.

Although not used in design process, the set of filters H(s) of the VEGA TVC architecture

are added to the synthesised rigid-body structured controllers before combining them into a

full global legacy-recovery controller for the nonlinear verification stage. Therefore, both (the

baseline and the global legacy-recovery) controllers exhibit the same implementation as shown

in Figure 2.4. The only difference between them lies in the rigid-body controller gains (which

as aforementioned are within 1% of their corresponding values).
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Before the implementation in the simulator, the 9 linear structured H∞ controllers

(including the corresponding filters H(s)) are discretised and then gain scheduled in the same

fashion as the actual baseline controller (i.e. using the non-gravitational velocity as

scheduling parameter 3.

Figure 3.10 shows the load performance indicator Qα for nominal flight conditions (those

encountered during the selected mission, i.e. VV05). It is important to highlight that although

not used for the synthesis stage, the bending modes of the launch vehicle are also included for

the nonlinear, time-domain simulations. Also note that the estimated wind from the VEGA

VV05 mission is used in this analysis.
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Figure 3.10: VEGA legacy recovery nonlinear validation

Figure 3.10 clearly illustrates that the control behaviour of the scheduled baseline controller

for the VEGA atmospheric phase is successfully recovered using the structured H∞ synthesis

technique (again, no discernible difference is observed in the nonlinear responses – as expected

from the previous frequency responses comparison of Figure 3.4).

3.7 Conclusions

This chapter describes a methodological robust control synthesis framework for the atmospheric

control system design of a launch vehicle. The proposed synthesis framework is based on the

recently-developed structuredH∞ optimisation approach, which allows to perform a systematic

control tuning for a specified controller structure.

3In previous instances [77], time was employed as scheduling parameter for ease of simplicity. However, as
discussed in reference [2], time is not recommended for interpolation purposes because is not linked to the
trajectory (i.e. maximum dynamic pressure does not always happen at the same flight instance).
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With the objective of building industrial confidence in this synthesis framework, it is

shown that the structured H∞ control problem can be formulated to recover the classically

designed VEGA VV05 mission rigid-body baseline controller, but in a more methodological

manner. It is highlighted that this legacy-recovery design process is not trivial and requires

good understanding of the physics of the launch vehicle as well as of the constraints

introduced by the controller structure into the system. With respect to the latter, it is

highlighted that the PD structure used for the rigid-body gains derives from both, industrial

legacy/experience as well as simplification of the tuning process (which currently for VEGA

is performed in a classical manner, i.e. loop-at-a-time). This structure restricts the achievable

performance and robustness, and raises the important question of whether there are other

richer controller structures (this will be clearly demonstrated in subsequent chapters). At any

rate, independently of the chosen controller structure, the closed-loop analysis performed in

Section 3.3 will allow the designer in understanding the limits and capabilities of the

structure. And this analysis will then drive the selection of the most appropriate

frequency-dependent weights to optimise the trade-off between these two (robustness versus

performance) competing objectives. This is especially important since it facilitates the

weighting function selection process and facilitates the transfer of this technology to

industrial control engineers with a more classical control background.

Nonetheless the difficulty, this successful demonstration greatly advances the case for the

use of this more methodological robust design tools over the classical design approach

(especially, or at least, for launcher TVC design). In addition, this robust framework is

completely generic and can be used for any launcher with a specific controller structure, and

for future launcher evolutions (e.g. VEGA C, VEGA E, Ariane 6 4).

4From references [97, 44] and also personal communications, it is known that the Ariane launcher family is
also using structured H∞ synthesis for the atmospheric TVC design.
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4
Control design augmentation

This chapter explores the potential for robustness and performance improvement offered by the

structured H∞ technique with respect to the traditional state-of-practice. In pursuit of these

improvements the level of complexity of the design interconnection presented in the previous

chapter is gradually increased towards enhancing the synthesis capabilities.

The chapter is organised in two main sections. The first part addresses the wind disturbance

control problem by augmenting the design interconnection with a wind turbulence model prior

to the controller synthesis. This wind model is based on a Dryden filter, which represents

different statistical wind levels (light, moderate, severe) at different altitudes. It is shown

via representative design examples, that the use of strong wind levels for design significantly

contributes to improve the wind disturbance rejection performance of the system.

In the second section, the design framework is further augmented by considering

parametric uncertainties explicitly in the design. This feature is quite relevant for uncertain

control problems such as the launcher TVC problem. In essence, the optimisation is

performed using a more realistic description of the launch vehicle, which also includes the

expected dispersions of each parameter along the atmospheric flight. This robust augmented

synthesis approach is also illustrated in a design example.

4.1 Wind generator augmentation

The effect of wind disturbance is a critical factor for any launcher atmospheric phase [98]. It

generally produces a significant degradation in the global performance of the mission and it

induces structural loads which can cause loss of vehicle.
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In order to illustrate the impact of the wind disturbance on the system, the nominal

VEGA VV05 mission data is simulated with (solid black line) and without (dashed blue line)

wind effects using the nonlinear, high-fidelity simulator described in Section 2.1.4. Figure 4.1

compares the main performance metrics of the atmospheric flight for both cases. Note that

both simulations were obtained using the VV05 mission baseline controller. It is easily seen

that all the performance indicators are highly influenced by the wind disturbance – i.e. for

the no-wind case, all the metrics are around the zero value. Unfortunately, a no-wind scenario

is rather unrealistic as opposed to the presented wind case, which employs the estimated

wind encountered during the VEGA VV05 mission. This wind-disturbance control problem is

specially challenging since the wind characteristics change with every mission, and thus, the

TVC system must be robust against a large range of wind profiles.
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Figure 4.1: Atmospheric nominal nonlinear flight responses with and without wind disturbances
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In subsection 4.1.1, the wind channel transfer functions are analysed to provide better

understanding on the controller capabilities to reduce the wind disturbance action. Then, in

subsection 4.1.2, the structured H∞ design framework presented in the previous chapter is

augmented by incorporating a wind turbulence model, which accounts for real wind levels in

the controller synthesis. Finally, in subsection 4.1.3, a nonlinear benchmark is presented to

evaluate the influence of this proposed wind model.

4.1.1 Wind disturbance analysis

The design of the atmospheric TVC system of a launch vehicle is heavily influenced by the wind

disturbance. Indeed, the main classical control design strategies considered in the literature for

launcher control synthesis are directed to improve the wind disturbance rejection performance

of the control system.

The classical approach to address this problem is based on the control design principles

proposed in reference [15]. These control principles aim to minimise or cancel out the steady-

state response of three different launcher performance metrics: attitude-error-minimum, drift-

minimum and load-minimum. These control modes were employed for the design of the Saturn

V’s first stage control system [16, 17, 4], and subsequently, they have been extensively explored

in the literature. Good examples are given in reference [7], where a load-relief control design

for the H-IIA launch vehicle is presented and compared with other control modes, and in

reference [99], where the Ares-I launcher control performance is further investigated using

drift- and load-minimum controllers.

To evaluate the characteristics of the wind disturbance steady-state response of the VEGA

launcher, the rigid-body transfer functions of the main performance outputs (i.e. ψINS , zINS ,

Qα and βψc) from the wind input vw are analysed and their low-frequency asymptotes are given

in Table 4.1. Recall that these transfer functions were derived and presented in Appendix A. It

is critical to notice that only the steady-state value of the drift-wind channel, zINS(s)/vw(s),

can be minimised (by using a low gain ratio Kψp/Kz). Note that the minimum-drift condition

can be achieved using Kψp = − lCP
lCP+lCG

T−D
T , but this choice leads to an unstable response.

Differently, the other steady-state values only depend on physical parameters of the launch

vehicle, and thus they cannot be set to zero or controlled in any way using the current TVC

architecture of the VEGA launcher. This feature can only be enhanced by including new sensors

and feedback loops to the TVC control system (for example, angle of attack), which implies

changing the control law.

Despite the fact that most of the wind steady-state responses cannot be controlled for the

VEGA launcher, the transient response also plays a significant role on the system and must be

adequately considered in design. In this regard, it is very important to scale properly the wind

channel with respect to the wind levels that the launcher will encounter in the real flight.
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Table 4.1: Steady-state analysis of the wind disturbance channel.

Transfer function ω = 0

ψINS/vw
1
V

Nlcpg
Nlcpg+lCGFTD

zINS/vw
1
V
N
T

KψpT lcpg+lCPFTD
Kz[Nlcpg+lCGFTD ]

Qα/vw −Q
V

lCGFTD
Nlcpg+lCGFTD

βψc/vw − 1
V
N
T

lCPFTD
Nlcpg+lCGFTD

Notes: lcpg = lCP + lCG and FTD = T −D

Classical control design techniques generally do not implicitly consider any wind model

during the design process. But as shown in Chapter 3, the robust control design framework

can be augmented to include statistical wind models. This is quite relevant for design, since it

can certainly guide the optimiser to obtain an overall better disturbance rejection performance.

A method to do this is proposed in the next subsection.

4.1.2 Wind generator description

Following the criteria found in reference [100] and the model description from reference [71],

the wind disturbance velocity vw is modelled by colouring white noise nw through a Dryden

filter with the following transfer function:

Gw(s) =
vw(s)

nw(s)
=

√

2
π

V−vwp(h)

Lh
σ2h

s+
V−vwp(h)

Lh

(4.1)

where Lh and σh are the turbulence length scale and the standard deviation versus altitude h.

vwp(h) defines the vertical profile of wind velocity.

For the launcher problem, vwp(h) is characterised by the build-up wind speed profile

envelope given in Equation 4.2 and illustrated in Figure 4.2. This altitude profile is defined

by an exponential leading edge and a 1-cosine shape trailing edge for low and high altitudes

respectively. For intermediate altitudes, the profile is described by a constant gust amplitude

A. vwp(h) is described for the first 20 km of altitude (Hf = 20000m), which is the altitude

range where the wind disturbance plays the most significant role in the flight. The profile

amplitude is set to A = 14m/s and the thickness of the initial and final edges are given by

Hl = 2000m and Hu = 2500m. It is highlighted that the previous values have been chosen to

fit the wind model with the estimated wind encountered in the VEGA VV05 mission as

indicated in reference [71].
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vwp(h) =







10A[( hHl )
0.9 − 0.9 h

Hl
] for 0 ≤ h < Hl

A for Hl ≤ h ≤ Hf −Hu

A
2 [1− cos( π

Hu
(h−Hf ))] for Hf −Hu < h ≤ Hf

(4.2)

vw (m/s)

h
(m

) A

Hl

Hu

Hf

Figure 4.2: Planar wind steady-state profile vwp(h)

The values of Lh and σh from Equation 4.1 can be found in tabular-form in reference [100]

and are given in Table 4.2 for completeness. Note that the standard deviation of the wind

turbulence is defined for light, moderate and severe turbulence levels.

Table 4.2: Turbulence length scale and wind standard deviation versus altitude.

Altitude Turbulence length scale Wind standard deviation σh (m/s)

h (km) Lh (m) Light Moderate Severe

1 832 0.17 1.65 5.70

2 902 0.17 1.65 5.80

4 1040 0.20 2.04 6.24

6 1040 0.21 2.13 7.16

8 1040 0.22 2.15 7.59

10 1230 0.22 2.23 7.72

12 1800 0.25 2.47 7.89

14 2820 0.26 2.62 6.93

16 3400 0.24 2.44 5.00

18 5000 0.22 2.21 4.07

20 8640 0.23 2.26 3.85
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As mentioned before, the vertical wind profile was selected to fit the wind model with the

wind of the VEGA VV05 mission as indicated in reference [71]. The analysis shown in that

reference is extended here to additional winds, see Figure 4.3. It can be seen that a set of

1000 random samples of this wind model (depicted in grey) envelopes the coverage of a range

of different real wind data. Those wind profiles have been extracted from real measurements

taken in French Guiana, the VEGA launch site, and were provided by ELV.
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Figure 4.3: Wind profile analysis with real wind data

It is important to highlight that the wind model Gw(s) has been successfully used for robust

analysis of the VEGA launcher in reference [71]. The aim of this chapter is to demonstrate that

the model can be used also for design, providing the optimiser information about the expected

wind levels and also about the frequency content of the wind disturbance. The latter is very

important in frequency-domain synthesis techniques such as the structured H∞ technique.

4.1.3 Wind generator assessment

The wind model Gw(s) is then used to augment the closed-loop design interconnection

presented in Chapter 3. In particular, Gw(s) is implemented at the wind disturbance input of

the launch vehicle model, see the blue box in Figure 4.4. Using this configuration, the input

disturbance weight Ww now scales the Gaussian process described by the Dryden filter Gw(s).

This input weighting function is defined as Ww = σw, where σw is the standard deviation of

the unitary white noise input nw. Note that σw is assumed to be 3 so that 99.7% of the wind

levels are considered in design.
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Figure 4.4: Closed-loop diagram for design with the wind generator model

To evaluate the influence of the wind model Gw(s) on the design, two different controllers

are synthesised using the structured H∞ technique, one for moderate and the other for severe

wind levels (using the values of σh given in Table 4.2). Both controller designs are performed

using the same weighting functions (those used to recover the baseline controller in Chapter

3) at the same 9 operating points. Note that in these designs only the rigid-body gains are

optimised, with the bending filters kept the same as the baseline controller when performing

the verification campaigns.

The synthesised rigid-body gains are compared with those of the baseline in Figure 4.5.

Note that the values in the y axis are not provided for confidentiality reasons. Looking at

Figures 4.5a and 4.5b, it is observed that the attitude gains of the three designs present the

same trend but with slightly different values (and that for the derivative gain, Figure 4.5b, both

wind-based controllers have the same values across flight instance). It is also shown that the

optimiser yields higher lateral feedback gains for the severe-wind design than for the other two

cases (see Figure 4.5c and 4.5d). Also, note that the baseline and the moderate-wind controllers

present almost the same rigid-body gain values across flight instance.

It is noted that the increase of Kż generally leads to a better drift-rate performance against

wind disturbance, which in turn improves the wind disturbance rejection of the Qα channel

as it will be shown later. This effect on Qα can be analytically ascertained by recalling from

Equation 2.6 that the angle of attack depends directly on the drift-rate. Nevertheless, the

increase of Kż must be handled with care since it deteriorates the rigid-body stability margins

(specifically the high-frequency rigid-body gain margin).

69



CHAPTER 4. CONTROL DESIGN AUGMENTATION

20 40 60 80

Flight instant (s)

K
ψ
p

(a) Kψp

20 4� 6� 80

Flight instant (s)

K
ψ
d

(b) Kψd

20 40 60 80

Flight instant (s)

K
z

(c) Kz

20 40 60 80

Flight instant (s)

K
ż
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Figure 4.5: Time-evolution of the synthesised rigid-body gains

To confirm the above behaviour, the moderate-wind and severe-wind controllers are

implemented in the nonlinear, high-fidelity simulator presented in Section 2.1.4. Figure 4.6

shows a comparison of the two augmented controllers (moderate-wind and severe-wind

designs) versus the baseline controller using the simulation case defined by the VV05 nominal

trajectory and wind data. It is interesting to see that in Figure 4.6, the baseline controller

response (solid black line) and the moderate-wind controller (dashed magenta with circle

markers) are almost coincident – hence, the need for the circle markers. This was expected

since the moderate-wind controller roughly have the same rigid-body gains as the baseline

controller, see Figure 4.5.

Furthermore, the severe-wind controller (in solid green with cross markers) reduces the

aerodynamic loads (see Figure 4.6a). Particularly, the maximum Qα peak around Mach 3 is

reduced by 13% with respect to the baseline controller. Moreover, the drift and drift-rate

responses (see Figures 4.6b and 4.6c) are also significantly improved for the severe-wind

controller resulting in less lateral deviations along the flight. It is highlighted that the same

benchmarking was performed using different wind profiles, obtaining the same wind

disturbance rejection capabilities shown in Figure 4.6.
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Figure 4.6: Nominal nonlinear flight responses for the moderate-wind and severe-wind
controllers

To conclude, it is observed that the structuredH∞ optimisation results in better controllers

(in terms of wind disturbance rejection) when stronger wind levels are employed in the design

process. In addition, recall that the same weighting functions were used for the three controllers

presented. For a finer synthesis, the weighting functions can be tailored according to the main

controller objective at each linear design point.
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4.2 Robust design augmentation

In this section, the VEGA rigid-body TVC system is formulated now in an explicit robust

setting by augmenting the structured H∞ design interconnection by means of LFT models

for the main uncertain subsystems. The resulting controller is shown to provide a balanced

performance but with higher robustness via linear and nonlinear analyses. For the former,

classical stability margins as well as the structured singular value (which is also cursorily

introduced in the section) are used, while for the latter the standard Monte Carlo (MC)

approach is used.

4.2.1 Robust structured control problem formulation

The closed-loop design interconnection used in the previous section, see Figure 4.4, can be

further augmented by including uncertainties in the design. As mentioned before in Section 3.1,

the structured H∞ optimisation can be performed accounting for real parametric uncertainties

in the design [88]. To this end, the nominal LTI models of the TVC actuator, delay and rigid-

body launch vehicle are replaced now by their LFT counterparts presented in Section 2.2.2.

Note that the LFT model of the VEGA launcher only accounts for the rigid-model uncertainties

∆LVR . The resultant closed-loop diagram is shown in Figure 4.7 (as before, blue boxes are used

to indicate the augmented components).
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Figure 4.7: Closed-loop diagram for design with parametric uncertainties

In preparation for the subsequent structured H∞ optimisation the weighted closed-loop

diagram of Figure 4.7 is formulated as the robust standardH∞ interconnection shown in Figure

4.8. In this generalised LFT design formulation the total uncertainty block ∆R is pulled out of

the generalised plant P (s) and ∆R ∈ ∆R with ∆R = diag(∆LVR
,∆τ ,∆TV C). The control

problem consists of finding a stabilising sub-optimal controller K within the controller space

KVEGAR
(which was defined in Equation 3.7) that minimises the cost function in Equation

4.3.

72



4.2. ROBUST DESIGN AUGMENTATION

min
K

max
∆R∈∆R

||Te′d′(s,∆R)||∞ < γ; subject to K ∈ KVEGAR
(4.3)
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Figure 4.8: Augmented robust standard H∞ interconnection

4.2.2 Robust structured H∞ control design

The previous design configuration allows to synthesise a controller K that is robust against

the expected variations of the main parameters of the system. To illustrate the capabilities of

this design augmentation, the structured H∞ synthesis approach is applied at 9 different linear

operating points as before, i.e. at t=5 s and every 10 seconds between flight instants t=20 s

and t=90 s.

For this robust design, an optimal control strategy is performed to achieve a trade-off

balance for the best global performance. In particular, a load-relief control mode is employed

about the maximum dynamic pressure region (t=[40, 50, 60]s). For the rest of the operating

points, the design is focused on minimising the tracking error while keeping the lateral

deviations bounded within specifications. In addition, it is highlighted that the wind model

Gw(s) is set to model severe turbulence levels for all the linear designs.

The weight setup follows the same rationale presented for the VEGA baseline recovery in

Section 3.4, but differs in the value of the weights, which are selected in an iterative process

to obtain a balanced performance while satisfying the stability requirements. Similarly, the

values of the weighting functions are varied at each linear design point to cover the system

variation along the atmospheric phase and also to tailor the different linear designs to the

control strategies mentioned before. It is noted that that the values of the weights obtained

now are slightly higher than the ones used to recover the baseline controller in Chapter 3 to

account for the higher range of values of the transfer functions due to uncertainties.
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To evaluate the performance of this new design, the frequency responses of the main output

channels from the wind disturbance input nw are shown in Figure 4.9 for the linear design point

obtained at t=60 s (i.e. around maximum dynamic pressure). This plot compares the nominal

responses (in dark solid lines) versus 500 dispersed random LFT samples (in lighter solid lines)

for two controllers: the baseline controller (in black) and the new robust structured H∞ design

(in blue). In addition, the inverse of the corresponding output weighting functions are also

illustrated (in solid green lines).
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Figure 4.9: Frequency responses of the main output channels from wind disturbance at t=60 s
for the baseline controller and the augmented robust structured H∞ controller

Looking at Figures 4.9a and 4.9b, it is noticeable that the augmented robust structuredH∞

controller reduces the wind disturbance contribution in both drift and drift-rate channels at

low frequencies. In addition, Figure 4.9c demonstrate the ability of the robust structured H∞

to reduce the transient energy of the Qα channel from the wind disturbance input (specially

between 0.1 and 1 rad/s). This range is important as it is the frequency range where the wind

disturbance has more impact.
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4.2.3 Classical stability analysis

In this section, the stability of the VEGA launch vehicle using the robust structured H∞

controller is assessed. The analysis is performed considering the full launch vehicle model (i.e.

flexible-body dynamics are included) and using the full VEGA TVC architecture presented in

Figure 2.4. This controller configuration uses the synthesised structured H∞ rigid-body gains

while the set of filters H(s) are kept the same as the baseline controller.

The system stability is traditionally analysed through a set of gain and phase margins at

different crossing frequencies (see Section 2.1.5). These stability margins are evaluated in the

frequency domain through Nichols plots at different flight instants. To that end, the open-

loop system (controller, actuator and launch vehicle model) is re-arranged and broken at the

controller output in order to reduce the system to a SISO configuration.

The traditional design verification and validation for the VEGA launcher defines

specifications for nominal and dispersed conditions. Firstly, the system stability using the

robust structured H∞ design is analysed in Figure 4.10 under nominal conditions at each

linear design point. This plot shows that the structured H∞ controller provides satisfactory

margins throughout the flight satisfying the nominal stability specifications.
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Figure 4.10: Nominal stability analysis of the robust structured H∞ design

The analysis for scattered configurations is performed using a Monte Carlo (MC) approach

with 1000 random samples (note that in this case the MC is performed on the LFT model

uncertainty set ∆). Figure 4.11 illustrates the Nichols chart of the nominal system at t=60 s

and 1000 MC random LFT samples (again using dark line for the former and lighter for the

dispersed). This plot shows the stability degradation due to system uncertainties, which is still

acceptable under the defined dispersed VEGA requirements.
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Nominal Dispersed

Figure 4.11: Dispersed stability analysis of the robust structured H∞ design at t=60 s

To conclude this subsection, the main linear metrics from Table 2.1 are analysed for the

new controller in Figure 4.12. This plot shows the stability margins along the different design

points for the nominal LFT as well as for the LFT obtained using at each flight instance the

”worst-case” among all the MC runs (these cases are referred to as ”MC-based WC” in the

plot). It is important to remark that all the stability specifications are fulfilled with the new

robust design.
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Figure 4.12: Worst-case stability margin assessment
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The traditional validation process further extends the previous nominal and MC-based

analyses by using ad-hoc test cases to complete the coverage of the analysis, resulting in an

expensive (in terms of both cost and time) procedure. Another practical limitation of the

traditional approach is the lack of guarantees in finding the worst case. This can be overcome

by complementing the MC approach by using worst-case tools such as the linear structured

singular value µ, which can provide analytically guaranteed bounds on robust stability and

performance. Next, this robust analysis technique is applied to the VEGA launcher.

4.2.4 Robust linear µ analysis

The structured singular value µ was first proposed in 1982 in reference [101]. This analysis

approach allows to evaluate analytically the robustness of uncertain systems. The so-called

µ analysis relies on systems defined by a LFT interconnection such as the one described in

Figure 4.8. Basically, µ∆
(
M(s)

)
represents a metric of the smallest structured uncertainty ∆

that leads the system to instability. This provides very valuable insight on how the system

stability is affected by uncertainties. In addition, the singular structured value can also be

used to assess the performance degradation due to uncertainties.

The computation of µ was further developed by the original authors and subsequently

included in 1993 in Matlab’s µ-analysis and Synthesis Toolbox [33]. Since the appearance of

this analysis tool, µ analysis has been used in many aerospace applications to evaluate the

robust stability and performance of satellite missions [102] and also spacecrafts such as the

European ATV [103]. Furthermore, the structured singular value has been applied on robust

control analysis for the VEGA launcher in reference [71].

In this section, a cursory introduction of the singular structured value µ is presented. Then,

this analysis approach is used to assess the robust stability and performance of the VEGA

launcher using the robust structured H∞ controller.

Structured singular value µ background

The robust stability of the VEGA launcher system, which is defined by M(s) in Figure 4.8,

can be assessed via the structured singular value µ [101], which is computed as follows:

µ∆(M11) =
1

min∆{σ(∆) : det(I −M11∆) = 0} with ||∆||∞ < 1 (4.4)

where M11 = Te∆d∆
represents the transfer function from the uncertainty channel d∆ to e∆.

In this context, the system M(s) is then robustly stable if M(s) is nominally stable and

the following Robust Stability (RS) condition is satisfied over all frequencies:

µ∆
(
M11(jω)

)
< 1, ∀ ω ∈ R (4.5)
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If robust stability is achieved, then there are analytical guarantees that there is no

combination of uncertainties within the range defined by the LFT model which leads to

instability.

It is important to mention that µ is computed using bounds because the structured singular

value computation is a non-polynomial hard problem [104]. The Upper Bound (UB) provides

the maximum size perturbation for which the RS condition given in Equation 4.5 is violated,

whereas the Lower Bound (LB) provides the minimum size perturbation for which the RS

condition is guaranteed.

In addition, the structured singular value can also be used for Robust Performance (RP)

analysis, which verifies if the performance objectives defined by the weighting functions in

Figure 4.8 are satisfied for all the plants in the uncertainty set defined by the LFT models.

In order to address the RP analysis, the robust interconnection of Figure 4.8 is closed

using a fictitious full-complex perturbation matrix ∆P , which does not represent any actual

perturbation of the system. In this context, RP is guaranteed if µ∆̂
(
M ′(s)

)
≤ 1 over all

frequencies, where ∆̂ = diag
(
∆,∆P

)
. Furthermore, it is well-known that RP values are directly

related to RS and also to the maximum singular value, which represents Nominal Performance

(NP), through Equation 4.6 [22].

µ∆̂(M
′)

︸ ︷︷ ︸

RP

≥ max
{

µ∆(M
′
11)

︸ ︷︷ ︸

RS

, σ(M ′
22)

︸ ︷︷ ︸

NP

}

(4.6)

Robust stability analysis

In this section, the structured singular value µ is applied to analyse the RS provided by the

augmented structured H∞ controller. Note that for this analysis, the uncertainty matrix ∆R

has been modified to include a 1% complex uncertainty to one of the parametric uncertainties

of the TVC model. It is well-known that a mixed real/complex uncertainty structure improves

the accuracy of the µ computation (without affecting the actual analysis result in the majority

of the cases) [75].

Figure 4.13 shows the upper and lower bounds of µ computed at the same time instance used

for the previous linear analyses, t=60 s, for the baseline and the augmented robust structured

design. Looking at the baseline µ bounds (in black), it is clear that the system is not robustly

stable since there is a peak around 10 rad/s in which both upper and lower bounds are higher

than 1. It is highlighted that µ does not only output a binary solution (either the system is

robust stable or not), but also provides information in the frequency domain about how the

system stability is degraded due to system uncertainties. For instance, it is identified that the

peak above 1 is centered around the HF-GM frequencies. This information is quite valuable

for synthesis, since it identifies stability problems before going for an extensive MC-based

validation process.
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Figure 4.13: RS analysis of the robust structured H∞ design and baseline controller at t=60 s
( RS condition)

In contrast, Figure 4.13 clearly shows that the RS condition is satisfied at all frequencies

for the augmented robust structured H∞ controller (at the analysed point of t=60 s). Looking

at the upper bounds, this robust design slightly improves also the RS at low frequencies (below

1 rad/s) and critically much more at high frequencies particularly around the peak at 10 rad/s.

These improvements come at the expense of larger upper bounds around 2 rad/s (this illustrates

the so-called water-bed effect [22, 75]).

The same RS analysis is carried out at the other linear design points but only for the

structured H∞ design (see Figure 4.14). For ease of visualisation, only the upper bounds are

shown. As before, this plot clearly shows that the system is robustly stable throughout the

atmospheric phase.
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Figure 4.14: RS analysis of the robust structured H∞ design over the atmospheric flight
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Robust performance analysis

Figure 4.15 shows the RP analysis at t=60 s for two different performance indicators, tracking

and drift-rate. Similarly, the baseline controller and the robust structured H∞ design are

compared. For each controller/metric, the upper bound of µ∆̂(M
′) and the maximum singular

value σ(M ′
22) are shown. Note that the latter represents the NP when ∆ = 0. This comparison

allows to observe the performance degradation due to uncertainties over the frequency axis.
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Figure 4.15: RP analysis of the robust structured H∞ design and baseline controller at t=60 s

As mentioned before, Robust Performance (RP) is directly linked to Robust Stability (RS)

and Nominal Performance (NP). Looking at Figure 4.15a, it is seen that the RP values for the

tracking channel follows the same pattern seen in the RS analysis (e.g. lower upper bounds at

low frequencies and at around 10 rad/s and higher values around 2 rad/s). Also, notice that RP

values for the drift-rate channel (see right plot) are mainly influenced by NP at low frequencies.

It is important to highlight that these results are based on the specific weights used for the

design of the augmented robust structured H∞ controller. Thus, the fact that both controllers

present RP upper bounds higher than one only means that the optimisation objectives were

too demanding. This was already observed in Figures 4.9a and 4.9b, where it was seen that the

frequency responses of both controllers take higher values than the corresponding weighting

functions at low frequencies. Nonetheless, Figure 4.15 clearly illustrates that the structured

H∞ design generally improves the RP for both tracking and drift-rate channels with respect

to the baseline controller.

The enhanced RP for both tracking and drift-rate channels also implies an improvement

on the load performance requirement, since Qα directly depends on those two metrics (recall

Equation 2.6). In this analysis framework, it is also possible to analyse the RP of a channel

with respect to a certain input. For instance, Figure 4.16 shows the RP of the Qα channel

from its main contributor which is the wind disturbance. It is seen that the augmented robust

structuredH∞ design improves the Qα RP at low frequencies and also improves it with respect

to high-frequency wind gusts (see around 10 rad/s).
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Figure 4.16: RP analysis of the Qα channel from wind disturbance input at t=60 s

Although not covered in this thesis, it is noted that the structured singular value also allows

to perform sensitivity analysis and extract worst-case uncertainty combinations. References

[71, 67] has shown that this analysis can be very efficient in finding demanding worst cases for

the VEGA launcher.

4.2.5 Nonlinear analysis

Finally, all the 9 linear augmented robust structuredH∞ design-point controllers are scheduled,

implemented and validated in the nonlinear, high-fidelity described in Section 2.1.4. To evaluate

the performance and robustness of this global augmented robust design, four MC campaigns

of 500 runs are performed. For each run, the same nominal VEGA VV05 flight trajectory is

used but the system parameters are all sampled randomly. Each of the four MC campaign uses

the same parameters’ scattering but a different wind profile (among them, the estimated wind

encountered in VEGA VV05 mission). Note that the four wind profiles have been extracted

from real measurements taken at the VEGA launch site (French Guyana) and cover strong

and moderate wind gusts at different altitudes. The same four MC set-ups are applied also to

the VEGA VV05 baseline controller to allow comparing the improvements in robustness.

The outcomes of this MC campaign for both controllers are depicted side-by-side in Figure

4.17 (on the left for the baseline and on the right for the augmented robust structured design).

For each, the total 2000 randomly sampled MC responses are shown for the aerodynamic load

Qα (top plots) and the TVC actuator deflections (bottom plots). In order to have a reference,

the nominal simulations using the VEGA VV05 mission wind are highlighted in darker lines.

Looking at the Qα responses, it can be observed that the higher Qα peaks (around Mach 1.5,

2.5 and 2.9) are reduced for the augmented robust structured H∞ design. As for the TVC

actuation, although less visible, the responses using this controller require slightly less TVC

deflections to handle the different strong wind gusts encountered.
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(a) Structural loads (baseline) (b) Structural loads (structured H∞ design)

(c) TVC deflections (baseline) (d) TVC deflections (structured H∞ design)

Qα envelope
Baseline (nominal – wind VV05) Structured H∞ (nominal – wind VV05)
Baseline (dispersed) Structured H∞ (dispersed)

Figure 4.17: Nonlinear Monte Carlo responses
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In order to quantitatively compare both designs, a set of performance indicators (such as

actuation, attitude error, drift or aerodynamic load performance) are analysed. For each MC

run and controller, two different metrics are computed for each indicator: the ∞-norm and the

2-norm. The former is equivalent to the maximum value taken by the assessed variable, whereas

the latter accounts for the energy of the indicator. Then, for each controller and each indicator,

the average of those two norms are computed with the aim of comparing the robustness of

both controllers. Figure 4.18 shows the average obtained for each controller (for both ∞-norm

and 2-norm) normalised with respect to the corresponding baseline controller values.
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Figure 4.18: Monte Carlo quantitative assessment

Overall, it can be seen that the augmented robust structured H∞ design improves the

performance for all the indicator/norm pairs. It is interesting to observed that the linear RP

results from the previous section are validated in this nonlinear analysis. This robust controller

reduces the Qα peaks by 10%, the energy of the attitude error also by 10% in both axes and the

drift-rate performance is significantly improved by 20% in both ∞- and 2-norms. Furthermore,

the average TVC deflection peaks are reduced by 5%.

These results highlight that the augmented robust design is able to tackle different

competing trade-off objectives at the same time and provides a balanced solution for a better

global performance. Recall that this is achieved by only optimising the rigid-body controller

gains (the bending filters are kept the same as the baseline). This design framework will be

further augmented in the next chapter by including the bending filters’ design in an

integrated fashion.
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4.3 Conclusions

This chapter demonstrates via LFT modeling, structured H∞ optimisation, µ analysis and

nonlinear MC simulations, how this robust control framework is suitable to address challenging

and uncertain control problems such as launcher atmospheric TVC design.

With the aim to explore the potential for improvement over the traditional state-of-practice,

the design interconnection was first augmented by including a wind turbulence Dryden filter

and subsequently also uncertain LFT models. The former provides the control optimiser with

information about the wind levels and the frequency content of the wind disturbance. In this

regard, it is highlighted that the use of strong wind levels for design contributes to improve the

wind disturbance rejection performance for this mission. Moreover, the latter augmentation

allows to perform the design against the expected variations of the system parameters.

Using this augmented configuration, the linear structured H∞ controllers are synthesised

and then analysed in terms of the traditional verification and validation process based on

stability margins and nonlinear MC simulations. The system has also been analysed using the

structured singular value µ, which provides analytically guaranteed bounds on robust stability

and robust performance. This analysis tool provides a direct connection to design, since it gives

a good insight on the robustness of the system without applying an extensive MC validation

process.

The final, scheduled (augmented robust structured H∞) controller design provides robust

stability throughout the flight envelope and improved robust performance with respect to the

baseline controller, while keeping the classical VEGA TVC architecture and just using new

values for the rigid-body gains. Furthermore, it is shown via µ analysis that the better robust

performance mainly comes from the improved stability robustness. These results highlight

the improvements that can be achieved by increasing the information provided to the control

optimisation. In addition, they also show the capability of this synthesis framework to tackle the

direct trade-off of robustness versus performance using a more comprehensive methodology.
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Joint design of VEGA’s rigid-body controller and bending filter

In Chapter 3 the structured H∞ technique was used to propose a legacy recovery approach

that yielded the same rigid-body controller as that for the VEGA atmospheric TVC control

system. This was followed in Chapter 4 with a control design augmentation approach that

improved the performance and robustness of the rigid-body VEGA controller by introducing

incrementally wind and uncertainty system knowledge. But the design of the full atmospheric

control system for any launcher also requires careful consideration of its flexible dynamics. The

elastic behaviour of launch vehicles are typically characterized by low-damping bending modes,

which can create large oscillations and thus lead to instability if they are excited by the control

system. To avoid these potential instabilities, the TVC system generally incorporates bending

filters, which minimise these flexible-body structure interactions with the control system.

As mentioned in Section 1.2, the traditional design state-of-practice consists of several

sequential and iterative steps [14], where the rigid-body controller and bending filters are

designed separately. Then, both rigid-body controller and bending filters are manually tuned in

an ad-hoc manual integration process until all the system requirements are met. Regardless the

design approach used, the introduction of the bending filters generally results in degradation

of the rigid-body stability margins and performance. This is particularly critical when the

frequency of the first structural mode is close to the control system bandwidth.

In this chapter, the flexible dynamics of the launch vehicle are taken into account to also

address the design of the bending filters. The significance of this chapter is that, unlike the

state-of-practice, the rigid-body controller and bending filters are first parametrised and then

optimized simultaneously using the structured H∞ optimisation approach. The joint design of

the rigid-body controller and the bending filters allows to optimise the rigid-body stability and

performance while achieving a proper mode-stabilisation in one single step. Thus, this design

scheme can significantly simplify the synthesis process and reduce the tuning effort prior to

each launcher mission.
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BENDING FILTER

The layout of this chapter is as follows. Section 5.1 shows how to formulate the structured

H∞ optimisation to perform the joint design of VEGA’s rigid-body controller and bending

filters. The capabilities of this advanced synthesis framework are demonstrated, as in previous

chapters, using as benchmark the VEGA 5th mission data. Section 5.2 analyses the resulting

structured H∞ controller in terms of classical stability margins, µ analysis and nonlinear MC

simulations. Finally, conclusions are presented in Section 5.3.

5.1 Joint rigid/flexible robust structured H∞ synthesis

This section is dedicated to describe the joint synthesis of the rigid-body controller and

bending filter for the atmospheric phase VEGA launcher. As in the previous chapters, the

structured H∞ optimisation is performed in continuous-time domain and applied at 9 several

flight instants along the atmospheric phase (i.e. starting at t=5 s and then at 8 flight instants

between t=20 s and t=90 s in intervals of 10 seconds).

First (subsections 5.1.1 and 5.1.2), the problem is formulated as a robust control problem

and the controller structure parametrisation setup is described in detail. Then in subsection

5.1.3, the weighting functions used for design are introduced and finally (subsection 5.1.4), the

synthesised rigid-body gains and bending filters are discussed.

5.1.1 Control problem formulation

The previous chapter’s full augmented rigid-body design interconnection (with wind model

and parametric uncertainties) is redefined to perform the already mentioned joint synthesis,

see Figure 5.1 where the new blocks with respect to the previous interconnection are highlighted

with a blue box.
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Figure 5.1: Closed-loop diagram for the joint design of VEGA’s rigid-body controller and
bending filters
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Similarly as for the robust augmented design presented in Section 4.2, the wind modelGw(s)

is configured to model severe turbulence models. Also, notice that there are two main differences

in this closed-loop diagram with respect to the one presented in the previous chapter. First,

the launch vehicle model GLVRF (s) also considers the flexible-body dynamics of the launcher

accounting for the first bending mode (recall that the nominal representation is given by

Equations 2.16–2.19). Accordingly, the VEGA LFT model is built using the uncertainty block

∆LVRF , which includes rigid-body and flexible parametric uncertainties (see Section 2.2.2.2).

And second, the controller architecture is augmented to incorporate the necessary structure to

stabilise the bending modes.

5.1.2 Tunable controller structure

The architecture of the tunable controller KRF (s) is shown in Figure 5.1 and for clarity, as

a single diagram in Figure 5.2. It is composed of a rigid-body controller and a bending filter

H3(s). This structure is based on the actual VEGA TVC control system architecture (see

Figure 2.4) [2], but differs in three main aspects. First, as in previous chapters, the attitude

error rate signal ψ̇e is assumed available for design. Second, in order to reduce the complexity

of the controller structure and to simplify the optimisation process, the actual VEGA filters

H1(s) and H4(s) are not implemented. And third, and most importantly, in order to apply the

structured H∞ optimisation, the filter H3(s) is parametrised based on the legacy information

of the baseline bending filter.

H3(s)

Kψp

Kψd

Kz

Kż

ψe

ψ̇e

ze

że

βψc

Rigid-body controller

Bending filter

Figure 5.2: Block diagram of the tunable controller KRF (s)

Tunable rigid-body controller

The rigid-body controller retains the PD controller architecture of the VEGA baseline

controller (Kψp, Kψd, Kz and Kż). As done before in previous chapters, those four gains are

defined as tunable parameters with no constraints on their allowable values.
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BENDING FILTER

Tunable bending filter

The main objective of the filter H3(s) is to provide stabilisation against the flexible modes.

In particular, the VEGA baseline H3(s) performs phase stabilisation for the first Bending

Mode (BM) and gain stabilisation for the upper modes. Recall that phase stabilisation consists

in shaping the phase of the bending mode so that the flexible phase stability margins are

guaranteed, whereas gain stabilisation implies a filter design where the bending modes are

attenuated to prevent any instability.

The design of the bending filter is a highly complex task due to the proximity of the rigid-

body control bandwidth and the first bending filter. For this reason, this problem cannot be

tackled by using a high-order, low-pass filter. That configuration would indeed provide a sharp

cut-off transition to attenuate the first bending mode but at the expense of adding significant

delay (i.e. phase) at low frequencies causing unacceptable degradation of the DM and HF-GM

stability margins.

To overcome this problem, more complex structures are needed. For example, Figure 5.3

shows the frequency response of the VEGA baseline H3(s) (depicted in thick solid black) at

the flight instant t=50 s. Note that the values in both x and y axes are not provided for

confidentiality reasons. In preparation for the joint design, this baseline filter was analysed

and factorised into several filters (see gray dashed-dot lines in Figure 5.3). It is important to

highlight that the actual factorisation of the VEGA baseline filter H3(s) was not provided

by the VEGA GNC team. The proposed factorisation was obtained based on an engineering

and physical knowledge of filter theory and also on a thorough analysis of the actual shape of

the baseline filter. Looking at Figure 5.3, it is recognised that the baseline bending filter can

be factorised into 5 filters (4 notch filters and 1 low-pass filter) as described in Equation 5.1.

The first three notch filters attenuate the first bending mode and provide phase stabilisation,

whereas the other two filters (notch and low-pass) gain stabilise the upper modes.
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Figure 5.3: Baseline bending filter H3(s) factorization at t=50 s
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The resulting factorised bending filter is depicted in thick red dashed line in Figure 5.3,

where it is seen that the baseline filter H3(s) is roughly retrieved. Note that the main purpose

of this factorisation analysis was not to recover exactly the baseline H3(s) as performed in

Chapter 3 with the rigid-body controller, but to identify a clear modular structure to apply

subsequently the structured H∞ optimisation approach while respecting the legacy knowledge

of the VEGA GNC team (i.e. alternative H3(s) parametrisations could be used but probably

changing the design goal used by the team).

H3(s) =

4∏

i=1

s2 + ηis+ (ω′
i)
2

s2 + ηi/ǫis+ (ω′
i)
2

︸ ︷︷ ︸

Notch filters

ω1 = ωq1
[
min 1stBM

]

ω2 = ωq1
[
nom1stBM

]

ω3 = ωq1
[
max 1stBM

]

ω4 = ωq2
[
min 2ndBM

]

·
(

ǫLP s
2 + ηLP s+ (0.6ωq2

′)2

s2 + ηLP s+ (0.6ωq2
′)2

)3

︸ ︷︷ ︸

Low-pass filter
[
Upper BMs attenuation

]

(5.1)

All filters in Equation 5.1 are parametrised as a function of the frequency values of the first

two bending modes. The first and third notch filters are centred respectively at the minimum

and maximum expected dispersed frequencies of the first bending mode due to uncertainties

(ωq1 and ωq1), whereas the second notch filter is centred at the nominal frequency of the first

bending mode (ωq1). Moreover, the fourth notch filter is centred at the minimum expected

dispersed frequency of the second bending mode due to uncertainties (ωq2), and finally, the

fifth filter is a 6th-order low-pass filter which provides attenuation for the upper modes. Note

that these frequency parameters are pre-warped before design using Equation 5.5 to reduce

the impact of the discretisation process. This frequency mapping will be described at the end

of this subsection.

Also note that all notch filters in Equation 5.1 are parametrised as a function of two

parameters: ηi and ǫi (with i = 1...4), where ηi defines the width of the filter and ǫi the

attenuation at the center frequency of the notch filter. Similarly, the low-pass filter is expressed

as a function of ǫLP (which specifies the attenuation at high frequencies) and ηLP (which defines

the quality factor of the filter). This parametrisation allows having a common structure for

the bending filter design along the atmospheric phase and facilitates the subsequent scheduling

process.

The H3(s) design configuration is defined as a function of fixed and tunable parameters for

the structuredH∞ optimisation (see Table 5.1). The inclusion of fixed parameters simplifies the

optimisation problem and allows to specify a common structure for all the different atmospheric-

phase linear designs. For example, the low-pass filter parameter ηLP is fixed to ensure a certain

filter selectivity (or quality factor) and ǫLP is also fixed to provide an attenuation of −25 dB

to gain stabilise the higher bending modes along the flight envelope.

89



CHAPTER 5. JOINT DESIGN OF VEGA’S RIGID-BODY CONTROLLER AND

BENDING FILTER

Table 5.1: Structured H∞ configuration for tunable bending filter H3(s)

Fixed parameters Tunable parameters

Filter Parameter Value Parameter min max

Notch filter 1 η1 2 ǫ1 −25 dB −10 dB

Notch filter 2 η2 5 ǫ2 −10 dB −4 dB

Notch filter 3 η3 2 ǫ3 −25 dB −10 dB

Notch filter 4 η4 12 ǫ4 −20 dB −15 dB

Low-pass filter
ηLP 40

ǫLP −25/3 dB

With respect to the notch filters, their width (ηi) are also fixed whereas the attenuation

at the center frequency (ǫi) are defined as tunable parameters. In order to restrict the range

of attenuation of the latter, the allowable values of ǫi are limited in terms of minimum and

maximum constraints. Those values have been selected to define the range covered by the

different linear baseline bending filters along the first phase.

Figure 5.4 illustrates the allowable frequency responses of the tunable bending filter H3(s)

described by Equation 5.1 and Table 5.1 by randomly sampling 200 times among the range

of values. Notice, by comparing to Figure 5.3, that the proposed parameterisation is slightly

different to the actual VEGA H3(s) filter. As mentioned before, this is done intentionally to

favour subsequent scheduling across flight conditions.
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Figure 5.4: Allowable frequency responses for tunable bending filter H3(s)

Remark on the discretisation process

After the synthesis stage, the designed continuous-time bending filter H3(s) must be

converted to the discrete-time domain H3(z) for its final implementation in the nonlinear,
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high-fidelity simulator. Note that the notation z is not to be confused with the launcher drift

z. Here, z is used to define the discrete z-plane (z = esTs with Ts the sampling rate). This

discretisation is generally performed using a bilinear transformation, also called Tustin’s

method, which is given by [105]:

s =
2

Ts

z− 1

z + 1
(5.2)

It is known that the Tustin’s transformation causes a distortion in the frequency domain,

which is described by Equation 5.3. In essence, a continuous-time frequency point ωc is mapped

to a discrete frequency ωd. This distortion is very small at low frequencies (below 10 rad/s) but

quite significant at high frequencies close to the Nyquist frequency (ωNyquist = π/Ts).

ωd =
2

Ts
tan−1

(

ωc
Ts
2

)

(5.3)

In particular, due to industrial and heritage reasons, VEGA launcher’s sampling rate Ts

is too small to capture all the higher modes’ dynamics (ωNyquist is barely higher than the

nominal frequency of the second bending mode). This means that the distortion between the

continuous- and discrete-time bending filters will be higher around the second bending mode

frequency. Furthermore, this frequency deformation is specially critical when designing notch

filters because the central frequency of the filter is shifted and thus, this effect must be taken

into account from the design phase.

In order to address this problem, two main actions are taken. First, the discretisation

is performed using Tustin’s transformation with a pre-warping frequency ωp, see Equation

5.4 [105]. This approach eliminates the scale distortion at frequency ωp and alleviates the

deformation at adjacent frequencies. For this design, the nominal first bending mode frequency

is chosen as warping frequency (i.e. ωp = ωq1). This selection is taken to specifically preserve

the frequency region around the first bending mode, which is critical since it is generally very

close to the rigid-body dynamics.

s =
ωp

tan(ωpTs/2)

z− 1

z + 1
(5.4)

Furthermore, all the frequency parameters in Equation 5.1 are pre-warped before design

using the following frequency mapping:

ω′ =
ωp

tan(ωpTs/2)
tan(ωTs/2) (5.5)

Equation 5.5 actually describes the frequency distortion between a continuous-time

frequency ω′ and a discrete-time frequency ω when the transformation given in Equation 5.4

is applied. Therefore, using this equation in design allows to ensure that the notch filters will

be centred at the intended frequencies after the discretisation process.
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5.1.3 Weighting function selection

The proposed joint design uses the same weight setup (but not the values) presented in Section

3.4 for the VEGA control legacy recovery, except that the actuation weighting function Wβc(s)

is modified to achieve the desired frequency response for the bending filter H3(s).

The input weighting functions used for this design are given in Equation 5.6. Recall that

Wψc and Wżc are kept fixed throughout the different linear designs whereas Wψ̇c
and Wzc are

varied to balance both attitude and drift channels. Ww is set to 3 to consider 99.7% of the

wind levels defined by the wind disturbance model Gw(s). Finally, Wn represents the sensor

noise inputs according to the expected noise levels from VEGA’s INS.

Wc = diag
( π

180
, [1− 2.6]

π

180
, [5− 30], 1

)

(5.6)

Ww = 3

Wn = diag
(

0.02
π

180
, 0.1

π

180
, 0.01, 0.001

)

Similarly as for the robust structured H∞ design presented in Section 4.2, two main control

modes are employed. A load-relief control mode is used about the maximum dynamic pressure

region whereas for the rest of operating points the focus is on minimising tracking error and

lateral deviations. In this design, these two control modes are mainly accomplished by tuning

the drift and drift-rate weights (Wz andWż), while the weighting functionsWψe , Wψ andWQα

are kept fixed for all the design points. This strategy significantly reduces the tuning complexity

of each linear design and offers sufficient design flexibility to achieve the desired performance.

Furthermore, the bending filter specifications are implemented through the weight Wβc , which

is also tuned at each linear design point.

In particular, the inverse ofWψe imposes an upper bound of 10 dB on the attitude sensitivity

function, while the inverse of Wψ is defined as a low-pass filter with a crossover frequency of

10 rad/s to limit the tracking bandwidth, a low-frequency gain of 10 dB to achieve good stability

margins and a high-frequency gain of −40 dB to reduce the noise contribution.

Wψe =
180

π

(

3.16
)−1

(5.7)

Wψ(s) =
180

π

(
0.01s + 10

s+ 10
3.16

)−1

As previously mentioned, Wz and Wż are tuned to adjust the control mode at each linear

design point. Both weights are defined as constant functions (see Equation 5.8, where it can be

seen the range of values taken by both weights along the atmospheric phase). The load-relief

control mode is achieved by setting low values for the inverses of Wz and Wż. This approach

directly reduces the wind disturbance effect on the drift-rate channel, and in turn, on the

structural load Qα channel which is heavily impacted by the drift-rate contribution. On the

other hand, the tracking control mode allows for lateral deviations (using higher values for the
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inverse of both weights) to reduce the attitude deviations. Note that the maximum value of

the inverse of Wz corresponds to the lateral control requirement for the atmospheric phase, see

Table 2.1.

Wz =
(

[30− 500]
)−1

(5.8)

Wż =
(

[2.5 − 6]
)−1

The structural load weighting functionWQα is fixed throughout the atmospheric phase and

imposes a maximum angle of attack of 3 degrees:

WQα =
180

π

(

3Q
)−1

(5.9)

Finally, the weighting function Wβc enforces constraints to avoid actuator saturation and

reduce high-frequency actuation. In addition, sinceWβc is located at the output of the bending

filter, this weight is also shaped to achieve the desired frequency response for the bending filter

H3(s). The inverse of Wβc (see Equation 5.10) is expressed as a function of a low-frequency

asymptote lu and the bending filter H3(s) factorization given in Equation 5.1. Note that the

notch filters’ width parameters (η#) are kept fixed as described in Table 5.1. Thus, only the

attenuation parameters (ǫ#) are tuned for each linear design, including ǫLP which is adjusted

considering that the high-frequency asymptote of the closed-loop channel Tβcψc equals KpψǫLP .

Wβc(s) =
180

π

(

luH3(s)
)−1

(5.10)

5.1.4 Structured H∞ linear point designs

For the application of the structured H∞ approach, the closed-loop interconnection given in

Figure 5.1 is formulated as a robust standard H∞ interconnection, see Figure 4.8. In this

LFT interconnection, the tunable controller KRF (s) described in Section 5.1.2 and the

uncertainty block ∆RF are pulled out of the generalised plant P (s) in the same fashion as

shown in Figure 4.8. In this case, ∆RF belongs to the uncertainty set defined by

∆RF = diag(∆LVRF
,∆τ ,∆TV C). In addition, the interconnection formed by P (s), KRF (s)

and ∆RF is scaled by the input and output weighting functions described in Section 5.1.3. As

discussed in Section 3.1, the structured H∞ control problem consists of finding a stabilising

sub-optimal controller K(s) that minimises the H∞ norm of the following cost function:

min
K(s)

max
∆RF∈∆RF

||Te′d′(s,∆RF )||∞ < γ; subject to K(s) ∈ KVEGA (5.11)

The controller space KVEGA represents all the controllers with the form described in Figure

5.2 and is formally defined as follows:

KVEGA =

{

K(s) : K(s) = KR ·H3(s), with
KR ∈ KVEGAR

H3(s) defined by Equation 5.1

}

(5.12)
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As aforementioned, the structured H∞ optimisation is applied at 9 several flight instants

along the atmospheric phase. Figure 5.5 shows the synthesised rigid-body gains of the joint

structured H∞ design as well as those for the baseline controller. The values in the y-axis are

not shown for confidentiality reasons.
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Figure 5.5: Comparison of rigid-body gains along the atmospheric phase

Looking at Figure 5.5, it is observed that the attitude gains (top plots) of the joint

structured H∞ design present the same behaviour with time but higher gains in the case of

Kψp and slightly lower gains for Kψd. Furthermore, it is seen that the structured H∞

controller exhibits higher drift gains Kz (see Figure 5.5c), especially about the maximum

dynamic pressure. Similarly, the drift-rate gains Kż are also higher along the atmospheric

flight for the new design favouring the reduction of wind-induced structural loads.

With respect to the 9 synthesized continuous-time bending filters, their frequency responses

are illustrated in Figure 5.6. It is worth noticing that all the filters present the same structure

but with different attenuation levels for the first bending mode and also shifted by the time-

evolving bending mode frequencies. Indeed, note that the frequency of the bending modes

increases with time. In addition, it can be seen that all the filters provide attenuation at high

frequencies to gain stabilise the upper bending modes.
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Figure 5.6: Bode plots of the 9 designed bending filter H3(s) along the atmospheric phase

In order to provide further insight, the frequency responses of the baseline and the

structured H∞ bending filters H3(s) at the flight instant t=50 s are compared in Figure 5.7.

In this case, the filters are illustrated in the discrete-time domain, which is limited in

frequency range by the Nyquist frequency. It is highlighted that the structured H∞ bending

filter provides a sharper cut-off transition in magnitude and introduces less delay at low

frequencies. This strategy significantly reduces the interaction between the first bending

mode and the rigid-body dynamics. Indeed, the structured H∞ bending filter minimises the

degradation of the rigid-body stability margins and improves the decoupling between the

rigid-body controller and the bending filter action.
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Figure 5.7: Bode plot of the designed discrete-time bending filter H3(s) at t=50 s
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The previous two advantages come at the expense of presenting less attenuation for the first

bending mode (very noticeable in the magnitude plot around the ωq1 frequency). Nevertheless,

since the first bending mode is phase stabilised, the gain attenuation of this mode is not

critical for the design task. Looking at the phase plot, it can be seen that both bending filters

add approximately the same phase around the first bending mode frequencies. Furthermore,

as it will be shown in Section 5.2.1, the structured H∞ design successfully achieves phase

stabilisation providing sufficient margins with respect to the instability points. Finally, it is

also observed that the structured H3(s) filter roughly recovers the roll-off and attenuation level

for the upper modes.

5.2 Simulation results

In this section, the structured H∞ controller designed in Section 5.1 is analysed in terms of

linear stability (Section 5.2.1) and nonlinear performance (Section 5.2.2).

5.2.1 Linear stability analysis

The stability of the joint robust structured H∞ controller is first analysed in terms of the

classical (gain and phase) stability margins. For ease of visualisation, only the Nichols chart at

the maximum dynamic pressure region (t=50 s) is shown in Figure 5.8 (but similar results were

achieved at all the other points). This plot shows that the structured H∞ controller presents

adequate rigid-body margins, it phase stabilises the first bending mode and provides enough

attenuation to gain stabilise the upper modes. Furthermore, it is highlighted that all the 9

synthesised linear structured H∞ controllers satisfy the atmospheric stability requirements

(see Table 2.1) under nominal and dispersed conditions.
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Figure 5.8: Nichols chart of the joint robust structured H∞ controller at t=50 s
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In addition to the previous classical analysis, the stability of the structured H∞ design is

also analysed using the structured singular value µ (see Section 4.2.4 for details about this

robust analysis technique). Figure 5.9 shows the upper bounds of µ for the structured H∞

controller at the different linear design points. This plot clearly illustrates that the system is

robustly stable for all the design points since the RS condition is satisfied at all frequencies.
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Figure 5.9: Robust stability analysis of the joint robust structured H∞ controller

5.2.2 Nonlinear performance analysis

Finally, the performance of the synthesised joint rigid/flexible structured H∞ controller is

evaluated and compared with that of the baseline VEGA controller using the nonlinear, high-

fidelity simulator described in Section 2.1.4.

Remarks on the controllers implementation

Before the implementation in the nonlinear simulator, the 9 synthesised linear structured

H∞ controllers are first discretised using the Tustin’s transformation with the first bending

mode frequency as warping frequency, see Equation 5.4. Then, the individual discrete-domain

controllers are gain-scheduled in the same fashion as the actual baseline controller (i.e. using

the non-gravitational velocity in a linear manner as scheduling parameter).

The implementation of the baseline controller is as shown in Figure 2.4. As for the joint

robust structured H∞ controller, the TVC architecture shown in Figure 5.2 is adjusted for the

final implementation to compute the attitude rate error signal ψ̇e from ψe. In this case, instead

of using the baseline filter H2(s), the fixed (non-scheduled) first-order pseudo-derivative filter

Hd(s) presented in Equation 5.13 is employed. This configuration further simplifies the tuning

effort, since the same filter is used for the whole atmospheric flight, and reduces the controller

complexity (1 order versus 4). Note that Hd(s) is also discretised before implementation in the

simulator.
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Hd(s) =
s

0.02s + 1
(5.13)

Including the filter Hd(s), the final implementation of the joint robust structured H∞

controller has 15 states, in contrast to the 26 states of the baseline controller.

Monte-Carlo campaign

This nonlinear analysis is based on the same 4 Monte-Carlo campaigns (2000 runs in total

using 4 different wind profiles) described in Section 4.2.5. This MC setup allows to analyse the

controllers against different strong wind gusts at different altitudes.

Figure 5.10 shows the 2000 nonlinear MC responses of the load performance indicator Qα

versus Mach for both controllers. It is worth noticing that the structured joint H∞ design

globally reduces the different Qα peaks throughout the atmospheric flight, particularly around

the maximum dynamic pressure region (i.e. Mach 1.25-3).

(a) Baseline controller (b) Structured H∞ controller

Qα envelope
Baseline (nominal – wind VV05) Structured H∞ (nominal – wind VV05)
Baseline (dispersed) Structured H∞ (dispersed)

Figure 5.10: MC nonlinear Qα analysis

In addition, other atmospheric performance indicators such as TVC consumption

(integrated TVC angle < 250 deg) and lateral control requirements (lateral position < 500m

and lateral velocity < 15m/s) are compared among the two controllers in Figure 5.11. This

plot shows the Gaussian distribution of the values of those indicators before the tail-off phase

at t=90 s, which is the last linear design point for the structured H∞ controller.

Looking at Figures 5.11a-b, it is observed that the TVC actuation performance is improved

by the structuredH∞ design at both lanes, presenting less TVC consumption (mean value) and

also less variation. Furthermore, the structured H∞ controller provides significantly better (i.e.

similar mean but much tighter variations) lateral robust performance in both Y and Z axes as

shown in Figures 5.11c-f. These results give a good statistical insight of the design robustness.
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(d) Lateral position performance - Z axis
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Figure 5.11: MC statistical analysis of TVC consumption and lateral control performance
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5.3 Conclusions

This chapter presents a joint rigid-flexible controller design of a robust atmospheric control

system for the VEGA launcher. The control formulation is based on the structured H∞

optimisation and makes use of the augmenting capabilities presented in Chapter 4 (wind

model and parametric uncertainties).

It is shown how the legacy information from the classically-designed baseline controller can

be used to guide the tunable controller parametrisation. Furthermore, it is highlighted that the

proposed formulation allows to perform the design of the rigid-body controller and bending

filter in one single design procedure. This joint design scheme can significantly simplify the

industrial state-of-the-practice for TVC design while improving the performance and robustness

objectives in a more methodological manner.

The results show that the structured H∞ synthesis technique, and proposed methodology,

improve the performance and robustness of the launcher, while keeping and further simplifying

the classical VEGA TVC architecture. This represents a paradigm change in terms of the

control design process followed by VEGA but not in terms of the objectives and accumulated

flight experience heritage by the actual VEGA GNC team.
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Linear parameter varying control design

This chapter presents the design of the atmospheric control system of a launch vehicle using

the LPV synthesis technique. The LPV framework can be considered as an augmentation of

the standard H∞ approach, which is based on LTI models, but capturing the time-varying

behaviour of the system (over a defined performance envelope using a measurable set of

scheduling parameters). This time-varying information is used by the LPV design process to

generate in a single step a scheduled controller on the chosen parameters.

The LPV control synthesis problem is also formulated using the same design framework

as in previous chapters (i.e. conceptually the same frequency-based weighted interconnection

as that used for the previous structured H∞ optimization designs –although with important

differences as detailed in the chapter). This is quite valuable, since it allows to build up the

confidence on the weighting function selection and also to apply the augmenting capabilities

presented in Chapters 4-5. For example, the proposed LPV design framework makes use of the

wind model presented in Chapter 4 to account for statistical wind levels in design. In addition,

as it was performed in Chapter 5, the design of the rigid-body controller and bending filters is

unified in the same design process. In this case, since the approach used for LPV design does

not allow defining a specific controller structure, the joint rigid-flexible design is performed by

a different choice of weighting functions.

The layout of this chapter is as follows. Section 6.1 provides a brief cursory introduction

of the LPV modelling and synthesis approaches. Section 6.2 describes the LPV modelling

approach for the VEGA launch vehicle. The resulting VEGA LPVmodel is employed in Section

6.3 to design an LPV controller for the VEGA VV05 mission. Then, this LPV design is analysed

and validated through MC nonlinear simulations in Section 6.4. Finally, conclusions are given

in Section 6.5.

103



CHAPTER 6. LINEAR PARAMETER VARYING CONTROL DESIGN

6.1 LPV background

The foundations of LPV theory were first introduced in reference [106], which represented a

paradigm shift for analysis and control design. In this reference it was shown that the LPV

framework extends the capabilities of the Gain Scheduling (GS) approach. As mentioned in

Section 1.2.1, the main issue of the GS methodology is that the stability and performance

robustness achieved at the linear design points are no longer guaranteed for the flight instants

between two design points.

The LPV synthesis offers several advantages over the more widespread gain-scheduling

approach: i) performance and robustness are guaranteed along the flight envelope for the LPV

model; ii) the controller design and scheduling are incorporated into a single design procedure;

and iii) it uses the same design framework as the H∞ synthesis approach, so requirements are

also expressed in terms of weighting functions.

LPV synthesis has been applied to numerous works in aerospace applications [107, 108,

109, 110] and also including launch vehicle control design [46]. References [10, 111, 112, 113]

are good survey articles on LPV applications. Furthermore, LPV control is receiving increased

attention in the past few years thanks to the development of LPV software tools shuch as

LPVTools [47]. The introduction of this Matlab toolbox has resulted in some recent studies

on different applications such as aeroservoelastic aircraft control [114], flutter suppression [48]

and load reduction of wind turbines [49].

In this section, a brief introduction to LPV modelling and synthesis is provided.

6.1.1 LPV modelling

As the name indicates, LPV systems are linear systems which are dependent on a vector of

time-varying parameters ρ(t) =
[
ρ1(t), . . . , ρnρ(t)

]T
that belongs to the compact set P ⊆ R

nρ.

A general LPV state-space description is formulated as follows:




ẋ(t)

y(t)



 =




A
(
ρ(t)

)
B
(
ρ(t)

)

C
(
ρ(t)

)
D
(
ρ(t)

)








x(t)

u(t)



 , with
ρ ∈ P

ν ≤ ρ̇ ≤ ν

(6.1)

where A : P → R
nx×nx, B : P → R

nx×nu, C : P → R
ny×nx and D : P → R

ny×nu are the

continuous state-space matrices, x ∈ R
nx is the state vector, u ∈ R

nu is the input vector and

y ∈ R
ny represent outputs of the system.
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Note that this model characterisation defines a set of admissible trajectories for the

scheduling vector, in which ρ can take values within the region P and may have bounds on

the rate variation defined by ν ∈ R
nρ and ν ∈ R

nρ. In addition, it is important to highlight

that for LPV systems the variation of ρ is assumed to be unknown but measurable in real

time (i.e. causal). In essence, this is the main difference with respect to Linear Time Varying

(LTV) systems, which are defined for a priori known specific trajectory on the scheduling

vector.

Several modelling approaches have been proposed in the literature to derive LPV models.

Reference [115] offers a good overview of LPV modelling methods and presents a comparison

between three different approaches (Jacobian linearisation, state transformation and function

substitution) to model the longitudinal motion of an aircraft. More recently, reference [113]

presents a survey on LPV control applications based on three different LPV modelling

approaches: polytopic, LFT-based and grid-based. Polytopic LPV models are represented

using an affine parameter dependence on ρ (i.e. the state-space matrices A, B, C and D

depend affinely on the scheduling parameters ρ) [116, 117]. On the other hand, the

LFT-based modelling method makes use of LFT theory to capture the time-varying

behaviour of the system [118, 119]. And finally, a grid-based LPV model is obtained using a

family of LTI models extracted at different linear operating points throughout the

performance envelope [120]. It is noted that last two modelling methods (LFT-based and

grid-based) are implemented in the recently developed Matlab toolbox LPVTools [47].

In this thesis, the grid-based approach is used to derive the LPV model of the VEGA

launcher, see Section 6.2. This modelling method provides a straightforward yet effective way

to derive LPV models.

6.1.2 LPV synthesis

As before with the structured H∞ problem, the LPV control design approach also relies on

the standard H∞ interconnection shown again in Figure 6.1 (but indicating the dependency

of the systems on the scheduling vector ρ). In this case, the generalised plant P (ρ) is an LPV

model as shown in Equation 6.2. Note that the dependence on t is dropped for clarity.

d e

u y

P (ρ)

K(ρ)

Figure 6.1: LPV control problem formulation
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







ẋ

e

y









=









A(ρ) B1(ρ) B2(ρ)

C1(ρ) D11(ρ) D12(ρ)

C2(ρ) D21(ρ) D22(ρ)









︸ ︷︷ ︸

P (ρ)









x

d

u









(6.2)

where x ∈ R
nx, u ∈ R

nu, y ∈ R
ny , d ∈ R

nd, e ∈ R
ne and the state-space matrices present

the appropriate dimensions. In addition, the time-varying parameters hold that ρ ∈ P and

ν ≤ ρ̇ ≤ ν.

Furthermore, the nx-state controller K(ρ) can be written as:




ẋK

u



 =




AK(ρ) BK(ρ)

CK(ρ) DK(ρ)





︸ ︷︷ ︸

K(ρ)




xK

y



 (6.3)

Then, using the above LPV models, the closed-loop system Ted(ρ) can be represented as

follows:




ẋclp

e



 =




Aclp(ρ) Bclp(ρ)

Cclp(ρ) Dclp(ρ)





︸ ︷︷ ︸

Ted(ρ)=Fl

(
P (ρ),K(ρ)

)




xclp

d



 (6.4)

In this framework, the LPV synthesis optimisation consists of finding an stabilising

controller K(ρ) which minimises the induced L2 norm of the cost function given in Equation

6.5 for all the admissible time-varying parameter trajectories.

min
K(ρ)

||Ted(ρ)||L2→L2
; subject to

ρ ∈ P

ν ≤ ρ̇ ≤ ν

(6.5)

The induced L2 norm is the generalisation of the H∞ norm for LPV systems [120]. Indeed,

the induced L2 norm is a performance measure that represents the maximum amplification of

energy from inputs d to outputs e within the admissible set of scheduling parameters:

||Ted(ρ)||L2→L2
= sup

ρ ∈ P

ν ≤ ρ̇ ≤ ν

sup

d ∈ L2

||d||L2
6= 0

||e||L2

||d||L2

(6.6)
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The control problem given in Equation 6.5 can be formulated as a set of LMI

optimisation problems. If the trajectory is rate unbounded (i.e. νi = −∞ and νi = ∞ with

i = 1, . . . , nρ), the synthesis is performed using a single quadratic Lyapunov function [116]. In

essence, the optimisation consists in finding a parameter-dependent controller such that

theorem 1 is satisfied over the performance envelope. This is the simplest LPV design

approach, although it may result in conservative designs.

Theorem 1 [116] Consider the closed-loop LPV system given by Equation 6.4, where ρ ∈ P,

and νi = −∞ and νi = ∞ with i = 1, . . . , nρ. Then, the LPV control problem is solvable if there

exist a controller of the form given in Equation 6.3, and a continuously differentiable matrix

function X ∈ R
2nx×2nx, such that X = XT > 0 and









ATclp(ρ)X +XAclp(ρ) XBclp(ρ) γ−1CTclp(ρ)

BT
clp(ρ)X −I γ−1DT

clp(ρ)

γ−1Cclp(ρ) γ−1Dclp(ρ) −I









< 0 (6.7)

A more general case is defined when the time time-varying parameters are rate bounded.

This approach allows reducing the conservatism in the design but results in a more complex and

more computationally demanding optimisation. In this case, parameter-dependent Lyapunov

functions are employed to find a parameter-dependent controller such that theorem 2 is satisfied

over the performance envelope [120, 121].

Theorem 2 [120, 121] Consider the closed-loop LPV system given by Equation 6.4, where

ρ ∈ P, and ν ≤ ρ̇ ≤ ν. Then, the LPV control problem is solvable if there exist a continuously

differentiable matrix function X, such that for all X = XT > 0 and









ATclp(ρ)X(ρ) +X(ρ)Aclp(ρ) +
∑nρ

i=1

(

νi
∂X
∂ρi

)

X(ρ)Bclp(ρ) γ−1CTclp(ρ)

BT
clp(ρ)X(ρ) −I γ−1DT

clp(ρ)

γ−1Cclp(ρ) γ−1Dclp(ρ) −I









< 0 (6.8)









ATclp(ρ)X(ρ) +X(ρ)Aclp(ρ) +
∑nρ

i=1

(

νi
∂X
∂ρi

)

X(ρ)Bclp(ρ) γ−1CTclp(ρ)

BT
clp(ρ)X(ρ) −I γ−1DT

clp(ρ)

γ−1Cclp(ρ) γ−1Dclp(ρ) −I









< 0 (6.9)
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Both LPV synthesis approaches (non-rate and rate bounded) are implemented in the

Matlab toolbox LPVTools through the function lpvsyn [47].

The LPV framework also allows to take system uncertainties into account for analysis and

design [122]. In this case, the uncertainties are described by integral quadratic constraints [123]

and the robust control is formulated using an iterative design procedure similar to the D-K

iteration employed for µ synthesis. This robust LPV design process alternates LPV design and

IQC analysis steps. Furthermore, the IQC formulation can also include nonlinearities of the

system. Note that this robust LPV synthesis approach is not yet available in the aforementioned

LPVTools toolbox, but it has recently been discussed in reference [124].

6.2 LPV modelling for the VEGA launcher

In order to support the LPV control design, first an LPV model of the VEGA launcher is

formulated by expressing the system as a function of a set of time-varying scheduling

parameters ρ(t).

In a first step, time was chosen as a scheduling parameter 1 (i.e. ρ = t) and a rigid-body

non-rate bounded LPV design (Theorem 1) was performed, see reference [125] –for readability,

this preliminary design is not shown in this thesis but rather a more advanced, final design

will be presented. As shown in the aforementioned reference, the performance results were

promising and showed improvement with respect to the (rigid-motion) baseline and structured

H∞ designs.

In this chapter, the LPV model used for design was derived including the rigid/flexible

launcher dynamics and using the same scheduling parameter as that for the VEGA controller,

i.e. the Non-Gravitational Velocity (NGV). Initially, the non-rate bounded LPV synthesis

approach was also tried but in this case it did not yield overall good designs. Thus, the rate-

bounded approach of Theorem 2 was followed using the NGV as a time-varying parameter and

the Non-Gravitational Acceleration (NGA) to bound the NGV rate variation (i.e. ρ = NGV

and νNGA ≤ ρ̇ ≤ νNGA). It is important to mention that both parameters can be computed

on-board, and thus, they are available to schedule the controller along the flight. Figure 6.2

shows the time evolution of these two variables (NGV and NGA) for the VEGA VV05 mission.

In this thesis, the VEGA LPVmodel is built using the recently developed MATLAB toolbox

LPVTools [47]. In particular, a grid-based approach is employed using a set of 6 linearised

plants throughout the atmospheric phase (at NGV = [433 818 1029 1286 1599 2345]m/s which

corresponds to t = [20 40 50 60 70 90]s). It is important to remark that this LPV modelling

approach requires model consistency, which means that all the LTI models on the grid must

have the same inputs, outputs and states.

1Although it is recognised that formally this yields an LTV model, this formulation was preferred initially
for ease of simplicity (and under the consideration of time being a measured and bounded parameter within the
ascent flight).
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Figure 6.2: Non-gravitational velocity and acceleration for VEGA VV05 flight

Based on the values from Figure 6.2, the admissible time-varying parameter trajectories

are defined for ρ ∈ PNGV , where PNGV ∈ R is the region defined by 6 grid points within

the range ρ = [433 − 2345] m/s, and the following rate constraint νNGA < ρ̇ < νNGA, with

νNGA =17m/s2 and νNGA =40m/s2.

The resulting LPV model is given in Equation 6.10. At each grid point, the LPV model is

described by the respective LTI model at that point. However, at flight instants between the

given grid points, the LPV system is defined by linear interpolation.




ẋLV

uLV



 =




ALV (ρ) BLV (ρ)

CLV (ρ) DLV (ρ)





︸ ︷︷ ︸

GLVRF (ρ)




xLV

yLV



 ; with
ρ ∈ PNGV

νNGA < ρ̇ < νNGA

(6.10)

where xLV =
[

xR xF

]T

, with the (same, as in previous chapters) four rigid-body states

xR ∈ R
4 and two flexible states xF ∈ R

2 (accounting for the second order first bending mode

dynamics) as described in Section 2.2.1.5. Similarly, the description of the 6 LTI launch vehicle

models
(
GLVRF (ρi) with i = [1, 2, 3, 4, 5, 6]

)
, the input vector uLV ∈ R

3 and the output vector

yLV ∈ R
5 can be found in Section 2.2.1.5.
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LPV model validation

In order to ensure that the LPV model captures the main launcher dynamics, the

frequency responses of the LPV model (frozen at specific scheduling parameter instances)

and the corresponding LTI models at those instances are compared in Figure 6.3. This plot

shows the validation for two different flight instants (located between grid points): t=35 s and

t=55 s. In both cases, some small differences can be seen but are considered negligible.
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(b) Bode plot ψINS/βψ(s) at t=55 s
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Figure 6.3: VEGA LPV model validation

6.3 LPV synthesis for the VEGA launcher

This section describes the design of the VEGA atmospheric phase control system using the

LPV synthesis technique of Theorem 2. As already mentioned, designs using Theorem 1 (i.e.

assuming a non-rate bounded approach) provided poor performance and did not yield the

desired robustness.

6.3.1 LPV control problem formulation

The control design problem is formulated as the augmented closed-loop system shown in Figure

6.4. LPV control design, like H∞ theory, relies on frequency-domain weighting functions to

impose the desired requirements over the system (see gray-shaded blocks in Figure 6.4). Its

selection will be discussed in Section 6.3.2.

The main difference with respect to the closed-loop systems presented in the previous

chapters is that the launch vehicle model GLVRF (ρ), the wind generator Gw(ρ) and the

controller K(ρ) are described by LPV representations (see these blocks highlighted in blue).

Note that GLVRF (ρ) corresponds to the LPV model given in Equation 6.10 (that is, including

rigid/flexible effects and parametrised based on NGV) whereas Gw(ρ) is derived using the

same grid-based approach used for the launcher model in Section 6.2.
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Wż(ρ)

d
′

w

d
′

c

d
′

n

e
′

ψINS

e
′

zINS

e
′
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Figure 6.4: Closed-loop diagram for the VEGA LPV control design

6.3.2 Weighting function selection

As seen in the interconnection shown in Figure 6.4, the same weighting function layout, but

different values, as for the structured H∞ designs from previous chapters is used here. But

note that some of the input and output weighting functions are represented by LPV models

also dependent on ρ = NGV. Each of these parameter-varying weights were obtained using the

LPV modelling approach described in Section 6.2 and the set of 6 weight values obtained from

an initial linear, standard (non-structured) H∞ design at each of the grid points.

Although it may seem a doubling of efforts to design these 6 linear H∞ designs prior to the

LPV design, this step is recommended due to the following two reasons. First, these designs

serve as an initial starting point to select the weighting functions for the subsequent LPV

optimisation and it provides a reference level on the possibly (best) performance/robustness at

each of these points (the H∞-norm obtained by these linear designs were in the range between

1.18 and 1.84). And second, due to the higher computational demand of the rate-bounded LPV

synthesis it is more efficient to ascertain in the LTI domain the local performance/robustness

objectives using a sparse, but representative, set of grid points (if necessary the number of

points can be increased).

Using the LTI and LPV weights derived directly from the 6 initial LTI H∞ designs, and

the interconnection from Figure 6.4, the resulting LPV controller turned out to be unstable

and with high-frequency poles, although it achieved global closed-loop stability and the

desired performance/robustness. For safety reasons, it is not desirable to implement unstable

controllers and similarly, practical implementation aspects recommend not having

high-frequency poles. Thus, further tuning of the weighting functions was necessary to obtain

a stable controller that could be implemented in the nonlinear, high-fidelity simulator.
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After this tuning process, the range of values taken by the input and output weighting

functions are given in Equations 6.11 and 6.12.

Wc(ρ) = diag
( π

180
, [1.8 − 2.6]

π

180
, [3− 4], [0.5 − 1]

)

(6.11)

Ww(ρ) = [2− 3]

Wn = diag
(

0.02
π

180
, 0.1

π

180
, 0.01, 0.001

)

Wψe =
180

π

(

5.62
)−1

(6.12)

Wψ(s) =
180

π

(
0.0316s + 15

s+ 15
3.16

)−1

Wz(ρ) =
(

[100− 130]
)−1

Wż(ρ) =
(

[1− 3]
)−1

WQα(ρ) =
180

π

(

3Q
)−1

As for the actuation weighting function Wβc(ρ), a different configuration is used with the

aim to reduce the tuning effort and the total size of the controller. Recall from Equation 5.10

that this weight was defined as a function of the actual shape of the baseline filter H3(s), which

resulted in a weight of 14 states dimension. For the proposed LPV design, a simpler weight

with only 6 states was used including only a low-pass filter and two notch filters, see Equation

6.13, whose selection is decribed next. The inverse of this weight is illustrated in Figure 6.5

for a single grid point. As it can be seen, W−1
u is composed of two notch filters centered

at the minimum and maximum expected dispersion of the 1st bending mode frequency due

to uncertainties (ωq1 = [ωq1, ωq1]), plus a second order low-pass filter F (ρ), which imposes

an actuation bound at low-frequencies and also provides an attenuation of −30 dB at high

frequencies for the upper bending modes. This double-notch filter configuration offers a good

trade-off between attenuation and phase response and provides the necessary design flexibility

to attenuate the 1st bending mode while not degrading too much the rigid-body margins due

to the phase delay.

Wβc(ρ)=

(
s2 + 0.5s +

(
ωq1(ρ)

)2

s2 + 70s +
(
ωq1(ρ)

)2

︸ ︷︷ ︸

Notch 1

s2 + 0.5s +
(
ωq1(ρ)

)2

s2 + 70s+
(
ωq1(ρ)

)2

︸ ︷︷ ︸

Notch 2

F (ρ)

︸ ︷︷ ︸

Low-pass filter

)−1

(6.13)
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u (ρ)

6.3.3 LPV design

Similarly as for the structured H∞ approach, the LPV control design is formulated using the

augmented standardH∞ representation given in Figure 6.6, where it can be seen that all blocks

depend on the time-varying parameter ρ.

P (ρ)

K(ρ)

e′ed′ d

u y

Wi(ρ) Wo(ρ)

Figure 6.6: Standard H∞ interconnection for LPV synthesis

Then, using the interconnection and weighting functions previously presented, a rate

bounded LPV design is performed using NGV as time-varying parameter with the parameter

grid described in Section 6.2. The LPV synthesis consists of finding a stabilising controller

K(ρ) which minimises the induced L2 norm of the cost function given in Equation 6.14 for all

the admissible time-varying parameter trajectories.
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min
K(ρ)

||Te′d′(ρ)||L2→L2
; subject to

ρ ∈ PNGV
νNGA < ρ̇ < νNGA

(6.14)

The previous control problem is performed using the Matlab toolbox LPVTools [47]

through the command lpvsyn. As described in Section 6.1.2, the optimisation is formulated as

a set of LMI problems, which must be solved to generate a controller. The constraints on the

rate variation of ρ(t) are included via basis functions Xρ and Yρ. This design is performed

using quadratic basis functions: Xρ = X0 + X1ρ + X2ρ
2 and Yρ = Y0 + Y1ρ + Y2ρ

2. This

configuration yields a good compromise between performance and complexity. For example,

constant and linear dependent basis functions were initially employed but they provided very

poor performance. On the other hand, more complex basis functions resulted in a very costly

computational process, also due to the high order of the design plant. In addition, the use of

a quadratic dependence on NGV parallels the physical insight on the system since dynamic

pressure is a critical physical parameter for launchers (and it depends on the square of the

velocity).

Like the standard (i.e. non-structured) H∞ control design approach, the applied LPV

synthesis does not allow defining a specific controller structure and the resulting controller

has as many states as those used in the design interconnection, which results in a 22th order

controller. The induced L2 norm of the LPV controller is 2.13 (which is only a 15% increase

with respect to the highest linear H∞ design norm).

6.4 Analysis

This section analyses first the LPV design in terms of classical linear stability margins

(Subsection 6.4.1), and then the LPV controller is compared with the VEGA baseline

controller by means of a Monte Carlo campaign using VEGA’s nonlinear, high-fidelity

benchmark (Subsection 6.4.2).

6.4.1 Linear stability analysis

As in previous chapters, the closed-loop stability is analysed in terms of the classical (gain and

phase) stability margins. Figure 6.7 shows the Nichols chart of the system at distinct flight

instants. To perform this analysis, a set of frozen-parameter controllers, i.e. each then an LTI

system, are extracted from the LPV controller at every 10 seconds in the range t=[20,90]s

(this range covers the grid points used for design as well as additional in-between points). It is

noted that this LTI extraction is performed using for the scheduling parameter and its rate the

corresponding values of NGV and NGA taken from the nominal trajectory at the selected times.

Looking at Figure 6.7, it is highlighted that the LPV design provides satisfactory rigid-body

margins while it yields gain stabilisation for the first and upper bending modes.
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Figure 6.7: Nichols charts using the LPV design using ρ̇(t) = NGA(t)

Although not shown here, the stability margins are also evaluated at the minimum and

maximum rate of change (ρ̇ = νNGA and ρ̇ = νNGA) with NGV taken as before from the

nominal trajectory. It is observed that the variation of the margins are less than 1% with

respect to the case shown above
(
ρ̇ = NGA

)
, except at t=20 s and t=90 s where the differences

are below 5%.

6.4.2 Nonlinear analysis

Before presenting the results of the Monte Carlo campaign using the VEGA benchmark, a

brief comment on the implementation of the LPV controller in the benchmark is given.

Remarks on the LPV controller implementation

The final VEGA LPV control structure is shown in Figure 6.8. This architecture is

composed of the synthesised full-order controller K(ρ) (22 states, which includes the

rigid-body controller and bending filter functionalities) and the first order pseudo-derivative

filter Hd(s) used previously in Chapter 5, see Equation 5.13, which computes the attitude

error signal ψ̇e from ψe. Thus, the final implementation of the LPV controller has 23 states,

in contrast to the 26 states of the baseline controller.

K(ρ) is implemented using a Simulink block provided in the Matlab toolbox LPVTools

[47]. Note that this block performs a multidimensional linear interpolation to evaluate the

state-space matrices of the controller at the measured scheduling parameter ρ.
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Figure 6.8: Nonlinear TVC implementation for the LPV controller

Monte-Carlo campaign

To evaluate the performance and robustness of the LPV design, the same 4 MC campaigns

performed in previous chapters (described in Section 4.2.5) are performed (i.e. 500 runs each,

all using the same scattered parameters and VV05 flight but a different wind).

Figure 6.9 shows the 2000 MC responses for the aerodynamic load performance indicator

Qα versus Mach for the baseline VEGA controller and the designed LPV controller. In darker

lines, the corresponding nominal simulations using the estimated wind from the actual VEGA

VV05 mission are depicted for each controller to serve as reference.

(a) Baseline controller (b) LPV controller

Qα envelope
Baseline (nominal – wind VV05) LPV (nominal – wind VV05)
Baseline (dispersed) LPV (dispersed)

Figure 6.9: MC nonlinear Qα analysis: baseline versus LPV controller
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Comparing both plots, it can be seen that the LPV controller reduces significantly the

aerodynamic loads with respect to the baseline Qα performance. Note that using the baseline

controller there are several cases that violate the Qα safety envelope (around Mach 1.25),

while the LPV design manages to reduce this performance indicator for that Mach point and

throughout the flight envelope. It is highlighted that this is not only achieved on a unique

wind, but using the four different wind profiles –including the real wind from the flown VEGA

VV05 mission.

In addition to the above Qα-vs-Mach comparison, the main performance indicators of the

atmospheric phase (attitude error, drift, actuation and aerodynamic load) are evaluated using

the same quantitative assessment presented in Section 4.2.5. Recall that for each MC run, the

∞-norm and 2-norm are computed for each indicator. Figure 6.10 illustrates the average of

those two norms normalised with respect to the values obtained for the baseline controller.
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Figure 6.10: Monte Carlo quantitative assessment for the LPV controller

From the spider plot of Figure 6.10, it is easily seen that the LPV controller offers improved

performance for all the indicator/norm pairs, except for the ∞-norm of the actuation actuation

(i.e. maximum deflection) at lane B, which is degraded but only about 2% with respect to the

baseline. Nonetheless, the LPV controller provides a reduction on the TVC overall consumption

(measured by the 2-norm of the actuation, which shows a reduction of 10% at lane A and 5%

at lane B). As for the Qα performance, as it was already observed in Figure 6.9, the maximum

peaks of the LPV controller are reduced by 22%. Simlarly, the tracking performance is also

improved, particularly over the y-axis. And finally, the drift and drift-rate performance are

significantly improved as it can be seen at the left-side of Figure 6.10.
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6.5 Conclusions

This chapter presents an LPV control design for the VEGA atmospheric-phase control system.

The design is performed using NGV, which is the actual VEGA scheduling parameter, as

the scheduling time-varying parameter. In addition, information about its rate variation (non-

gravitational acceleration) is also considered in the design process.

A grid-based approach is used to obtain an LPV model of VEGA launcher. The control

problem is formulated as a robust control design problem, where the requirements are

expressed in terms of weighting functions. The weighting functions are also defined as

grid-based LPV models. This allows to cope with the large dynamical system variations and

tackle different design strategies at each design grid point. In order to address the bending

mode attenuation, the control effort is weighted by a double notch-filter, which results to be

very effective providing gain stabilisation for the first and upper bending modes. Finally, note

that the proposed design framework uses an LPV representation of the wind turbulence

Dryden filter presented in Section 4.1, to reduce the performance degradation caused by the

wind disturbance.

The LPV controller provides satisfactory linear stability margins throughout the flight

envelope. Furthermore, the Monte-Carlo simulations exhibit that the LPV controller provides

further improved robust performance with respect to the baseline controller. The same

conclusion is obtained using four different wind profiles, giving a measure of the wind

disturbance rejection capabilities of this design. Also note that the final implementation of

the LPV controller has 23 states, while the baseline controller has 26 states.

It is also important to highlight that as for the joint design presented in Chapter 5, this

synthesis approach allows to design the rigid-body controller and the flexible bending filters

in one single procedure. This can be used to reduce the tuning and design effort required for

each mission.
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7
Reconciling full-order designs and augmented structured H∞

design via internal model principle

Wind disturbance rejection is one of the main factors that must be addressed by the

ascent-flight control system of any launch vehicle. For adequate disturbance rejection, the

control system must contain the necessary structure to encapsulate a model of the

disturbance dynamics. This idea is formally known as the Internal Model Principle (IMP)

[126]. In particular, the actual VEGA TVC architecture does not satisfy this principle

because it does not have any dynamics at low frequencies which is the frequency range where

the wind disturbance has more impact. This chapter aims to reconcile the current VEGA

control system architecture with the IMP.

The IMP can be managed via the classical Internal Model Control (IMC) [127], which

consists of parametrising the controller to include an explicit model of the process to be

controlled (tracking reference, plant, disturbance) and also by including a wind disturbance

observer in the closed-loop system [128]. This Internal Model (IM) structure is created

implicitly when using full-order robust control synthesis techniques such as the standard (i.e.

non-structured) H∞, µ or LPV. Nevertheless, as already mentioned, these methods result in

high-order designs and do not allow to explicitly define a structure for the controller. This is

an important limitation in aerospace applications where a good understanding of the

controller structure is appreciated.

In this chapter, the IMP is tackled by using the structured H∞ technique as it enables to

explicitly embed a wind IM structure to the current VEGA TVC architecture to get further

wind disturbance rejection. The aim of this chapter is also to show how to characterise such an

IM model for the atmospheric ascent phase of the VEGA launcher, and also to show how to

effectively use it within the VEGA TVC design. The process followed leverages the knowledge

from the full-order LPV control design presented in Chapter 6 and the joint robust structured

H∞ design from Chapter 5.
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The layout of the chapter is as follows. Section 7.1 describes the process followed to

characterise a wind/gust rejection internal model. Then, a structured H∞ design including

the characterised IM architecture is performed in Section 7.2. Section 7.3 analyses the robust

stability and performance of this new design using the structured singular value technique.

Finally, Section 7.5 presents the conclusions.

7.1 Wind internal model identification

In this section, the structure of the LPV design from Chapter 6 is examined and compared

with the baseline controller used for the actual VEGA VV05 mission and the joint

rigid/flexible structured H∞ controller presented in Chapter 5. This comparison is carried

out using magnitude Bode plots obtained at flight time t=50 s as shown in Figure 7.1. The

figure shows the transfer functions from the controller inputs (i.e. from top-to-bottom in the

left the attitude and drift errors, ψe and ze, and in the right their corresponding rates, ψ̇e

and że) to the controller output βψc (i.e. the commanded actuator deflection).
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Figure 7.1: Bode plot comparison of baseline, joint structured and LPV controllers at t=50 s
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When comparing the frequency responses shown in Figure 7.1, it becomes clear that the

LPV design has an extra structure at low frequencies that is missing in the other two.

Specifically, the LPV design performs a derivative action at low frequencies in all the

controller channels excepts for the attitude rate error (i.e. top-right plot) where the derivative

response is minimal. This extra structure can be interpreted as a wind disturbance IM since

it occurs in the frequency range where the wind disturbance input has a major effect. Recall

that full-order control synthesis techniques implicitly encapsulate the IM in the resultant

controller as they absorb all the dynamics used for the design, in this case, the wind

disturbance dynamics which are predominantly low frequency.

Figure 7.1 also shows a different behaviour at high frequencies (above 1 rad/s) between the

LPV design and the other two controllers. This is ascribed to the bending filter functionalities

of the LPV controller, whose high-frequency response is determined by the particular actuation

weighting function Wβc(ρ) (Equation 6.13) employed for the LPV synthesis. Indeed, the high-

frequency behaviour of the LPV controller matches with the shape of the aforementioned weight

Wβc(ρ) shown in Figure 6.5. Among these differences, it is observed that the LPV controller

provides more attenuation for the first bending mode in the attitude channels (see the double-

notch filters in Figures 7.1a and 7.1b) as well as the additional high-frequency roll-off seen for

the LPV in all channels.

In addition, it is notable that the LPV design presents higher drift-rate gains than the other

controllers, see Figure 7.1d. As shown in Section 6.4, this feature leads to a better drift-rate

performance against wind disturbance, which in turn improves the wind rejection performance

of the Qα channel (recall that the angle of attack α depends directly on the drift-rate). This

wind rejection performance will be further analysed in the next section.

Focusing on the derivative action at the low-frequency region, and taking advantage of

the easily augmenting capabilities of the structured H∞ approach, it was decided to

characterise the aforementioned wind IM and then assess its re-usability for the redesign of

the joint rigid/flexible structured H∞ controller (the latter will be presented in the next

section). The observed IM structure can be roughly approximated as a first-order high-pass

filter at low frequencies with the following expression:

HIM(s) =
s+ zIM
s+ pIM

(7.1)

where zIM and pIM are respectively the zero and the pole of HIM(s).

In preparation for the subsequent structured H∞ optimisation, zIM and pIM are configured

as tunable parameters, whose values are constrained to limit the action of the internal model

HIM(s) to low frequencies as shown in Figure 7.2. This plot shows the allowable frequency

responses of HIM (s) by randomly sampling 100 times among the defined range of values. This

range is chosen based on the low-frequency behaviour of the LPV controller at different flight

times.
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Figure 7.2: Allowable frequency responses for the internal model HIM(s)

7.2 Augmented structured H∞ design

In this section, the joint robust structured H∞ controller from Chapter 5 is re-designed but

incorporating the identified wind internal model.

7.2.1 Problem formulation

The control problem is formulated in the same manner as in Chapter 5 (with wind model and

rigid/flexible parametric uncertainties), see Figure 7.3. As in previous chapters, the new block

with respect to the previous interconnection is highlighted with a blue box.
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Figure 7.3: Closed-loop diagram for the IM-based structured H∞ design

122



7.2. AUGMENTED STRUCTURED H∞ DESIGN

The structure of the controller KRF+(s) is shown in Figure 7.3 and for clarity, is also given

in Figure 7.4 as a single diagram. KRF+(s) is composed of the same rigid-body controller KR

and bending filter H3(s) proposed in Chapter 5 (recall Figure 5.2) and the internal model

HIM(s) characterised in the previous section. This results in a controller of 15 states. Notice

that using this configuration, the derivative action of HIM(s) is applied to all the controller

channels, as opposed to the full-order LPV design (see Figure 7.1). This scheme is chosen to

reduce the complexity of the controller structure as well as of the optimisation process.

H3(s)

Kψp

Kψd

Kz

Kż

ψe

ψ̇e

ze

że

βψc
HIM(s)

KRF+(s)

Figure 7.4: TVC structure for the IM-based structured H∞ design

The above controller architecture defines the following controller space:

KVEGA+ =







K(s) : K(s) = KR ·H3(s) ·HIM(s), with

KR ∈ KVEGAR

H3(s) defined by Equation 5.1

HIM(s) defined by Equation 7.1







(7.2)

For the structured H∞ design, the rigid-body controller KR and bending filter H3(s) of

Equation 7.2 are defined as in previous chapters (i.e. four rigid-body tunable parameters with

no constraints on their allowable values and four flexible-body tunable parameters as indicated

in Table 5.1), whereas HIM(s) is defined as presented in the previous section via two tunable

parameters. Therefore, the tunable controller KRF+(s) is characterised by a total of 10 tunable

parameters.

As in previous chapters, the closed-loop interconnection of Figure 7.3 is re-arranged into a

robust standardH∞ interconnection (recall Figure 4.8). The control problem is then formulated

as the optimisation given as follows:

min
K(s)

max
∆RF∈∆RF

||Te′d′(s,∆RF )||∞ < γ; subject to K(s) ∈ KVEGA+ (7.3)
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To illustrate the capabilities offered by the internal model HIM(s), the above structured

H∞ optimisation is applied at the same 9 flight instants used in Part I for design. Note also

that, the same weight setup (and values) as the ones presented in Section 5.1.3 is employed

for these 9 designs. Only the output drift and drift-rate requirements are set tighter (i.e. lower

values for Wz and Wż) at the design points t=[40, 50, 60]s with the aim to emulate the Qα

wind rejection performance of the LPV controller.

7.2.2 Controllers comparison

Figure 7.5 compares the Bode plots of the new IM-based design with the three controllers

previously analysed at t=50 s. Looking at the IM-based frequency responses (in red with square

markers), it is worth noticing that, as for the LPV design, the new design shows now also the

high-pass action at low frequencies, which is the result of including the internal model HIM(s).

Note also that, the bending filter structure of the IM-based controller is the one given in

Equation 5.1. Thus, the new design does not exhibit the deep double-notch filtering and high-

frequency roll-off characteristics of the LPV controller.
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Figure 7.5: Bode plot controller comparison at t=50 s (with IM-based struct. H∞ controller)
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Furthermore, it is also observed that the IM-based controller presents similar drift-rate gains

as the LPV controller, see Figure 7.5d. As mentioned before, this feature generally results in

an improved Qα wind rejection performance. To support this analysis, the frequency responses

of the Qα channel from the wind disturbance input are shown for all the analysed controllers

in Figure 7.6. This plot shows that the structured IM-based and LPV designs (respectively red

and green responses) achieve a significant reduction of the Qα transient energy between 0.1

and 1 rad/s, which is precisely the range of action of the internal model HIM(s). In order to

ensure that the improvement in wind disturbance in the [0.1-1.0] rad/s range does not result

in unacceptable degradation of performance for very low- and high-frequency wind gusts, a

campaign of simulations using the nonlinear, high-fidelity launcher simulation model with

different wind profiles is performed (this will be presented later in Section 7.4). The results

indicate that the Qα deterioration at those frequencies is not critical.
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Figure 7.6: Bode plots of the Qα channel from wind input at t=50 s

7.3 Robustness analysis

This section analyses the robust stability of the internal-model-based structured H∞ design

with respect to the joint rigid/flexible structured H∞ controller from Chapter 5 and the LPV

controller from Chapter 6. These three controllers are analysed using the structured singular

value µ technique (see Section 4.2.4).
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Figure 7.7 shows the upper bound of µ computed at t=50 s for the three controllers

mentioned above. Note that for this analysis, an LTI system is extracted from the LPV

controller in the same manner as explained in Section 6.4.1 (i.e. using the corresponding

values of NGV and its rate NGA from the nominal trajectory at the selected time).
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Figure 7.7: Robust stability analysis at t=50 s

It is interesting to observe that all the designs in Figure 7.7 satisfy the RS condition (recall

from Equation 4.5, µ∆RF < 1) across all frequencies. Thus, they are robustly stable at the

analysed flight instant for the considered parametric uncertainties defined by ∆RF . It is also

seen that the LPV controller presents higher peaks at mid frequencies than the two structured

H∞ designs. This can be ascribed to the better RS (i.e. lower values of µ) of the LPV design

at frequencies above 10 rad/s (which is in turn mainly caused by the higher attenuation of the

LPV bending double-notch filtering). In addition, recall that the LPV controller was designed

using nominal conditions, whereas both structuredH∞ controllers were synthesised considering

parametric uncertainties in the design process.

Note, by comparing both structured H∞ designs (dash cyan versus red with square

markers), that the IM-based controller achieves an improvement in RS at low frequencies

(below 0.1 rad/s) with respect to the joint rigid/flexible design. It is worth noticing that this

improvement occurs in the frequency range where the internal model HIM(s) performs the

high-pass action. It is also observed that the aforementioned improvement comes at the

expense of slightly increasing µ at mid frequencies where the wind contribution is much

smaller.
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7.4 Nonlinear analysis

In this section, the IM-based structured H∞ is evaluated in the nonlinear, high-fidelity

simulator and compared to the other controllers analysed before (baseline, joint rigid/flexible

structured H∞ and LPV).

The implementation in the nonlinear simulator is carried out as described in Section 5.2.2,

that is including the first-order pseudo-derivative filter Hd(s) given in Equation 5.13. As a

consequence, the final implementation of KRF+(s) has 16 states. The individual 9 linear IM-

based structured H∞ controllers are first discretised using the Tustin’s transformation with the

first bending mode frequency as warping frequency. Then, the 9 discrete-domain controllers

are linearly gain-scheduled using the non-gravitational velocity as scheduling parameter.

The same 4 Monte Carlo campaigns described in Section 4.2.5 (2000 runs in total using 4

different wind profiles) were carried out for the scheduled global IM-based structured H∞

controller. Figure 7.8 compares the 2000 nonlinear Qα responses for the aforementioned

controllers.

(a) Baseline controller (b) Joint rigid/flexible structured H∞ controller

(c) LPV controller (d) IM-based structured H∞ controller

Figure 7.8: Monte Carlo nonlinear Qα analysis
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Comparing the responses for the two structured H∞ controllers (see Figures 7.8b and 7.8d),

it is observed that the introduction of the internal model HIM(s) results in a further improved

structural load performance. This is clearly seen by looking at the Qα peak around Mach

3 (which is caused by the actual estimated wind from the VEGA VV05 mission). Focusing

on the nominal responses (in darker lines), the maximum value of this peak is approximately

1.3Padeg for the joint rigid/flexible structured H∞ controller (top-right plot) whereas using

the IM-based structured H∞ design this peak is around 1Padeg (bottom-right plot). This

improvement is even more significant when compared to the baseline nominal response (Figure

7.8a), which exhibits a peak of approximately 1.5Padeg around Mach 3.

It is also important to note that the IM-based design (16 states) achieves a similar Qα

performance to that shown by the LPV controller in Figure 7.8c, despite the latter having a

richer structure, i.e. higher number of states with 23.

7.5 Conclusions

In this chapter, the internal model principle is applied to the design of the atmospheric control

system of the VEGA launcher. The main idea of this principle is that the controller must have

the necessary structure to perform adequate wind disturbance rejection control.

A wind disturbance internal model is identified by comparing the control architecture of

the current VEGA TVC controller with the full-order LPV design from Chapter 6, which

encapsulates this model implicitly by design. From this comparison, the internal model is

parametrised as a first-order transfer function, whose tunable pole and zero parameters are

configured to perform a high-pass action at low frequencies. In order to study the effect of

this extra structure, the structured H∞ approach is used again to re-design the controller at

a linear operating point but now incorporating in its structure the internal model. In this

case, the structured H∞ control problem is formulated to simultaneously design the rigid-body

controller, bending filter and internal model in one single procedure.

Using robust µ analysis it is shown that the robustness characteristics of the new design

are improved. The results show that the introduction of the internal model achieves a better

robust stability at low frequencies, which is the frequency range where the wind disturbance has

more impact. Indeed, this coincides with the identified internal model bandwidth. Furthermore,

the nonlinear Monte-Carlo simulations exhibit that the internal model enhances the nominal

and robust Qα wind rejection performance capabilities of the current VEGA control system

architecture.

These results highlight that the overall performance of the TVC system can be improved by

adding a first-order structure to the actual VEGA TVC architecture, which explicitly embeds

a model of the wind disturbance in the controller to achieve better wind disturbance rejection.

This also emphasises the importance of satisfying the internal model principle when applying

structured synthesis techniques.
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8
Adaptive control design

This chapter presents the design and evaluation of an adaptive controller for the atmospheric

phase VEGA launcher. The main goal of this chapter is first, to explore adaptive features for

the VEGA control system and second, to evaluate its performance and robustness properties.

The proposed adaptive controller is obtained by integrating the structured H∞ controller

presented in Chapter 5 with an adaptive control structure. This approach is also known as

adaptive augmenting control, and has been shown to provide minimal adaptation under

nominal conditions, but to improve robustness to launch vehicle failures and to provide

extended safety envelope capabilities [51].

The layout of this chapter is as follows. Section 8.1 describes the adaptive control

architecture as well as the control law tuning. Then in Section 8.2, the resulting adaptive

controller is analysed and compared with respect to the controllers presented in Chapters 5

and 6 (i.e. joint rigid/flexible structured H∞ and LPV controllers). The analysis is carried

out using the high-fidelity, nonlinear simulator of the VEGA launcher in two test cases for

nominal and extreme off-nominal conditions. Next, in Section 8.3, the main performance

indicators for the atmospheric phase are also evaluated through a Monte Carlo campaign.

Finally, Section 8.4 presents the conclusions.

8.1 Adaptive control design for the VEGA launcher

In this section, the proposed adaptive control scheme is first described (Section 8.1.1) and then

the design tuning process is presented (Section 8.1.2).

8.1.1 Adaptive control structure

The adaptive control strategy used in this thesis is based on the NASA’s Space Launch

System (SLS) presented in reference [51] (see Figure 8.1). It should be noted that the SLS

algorithm has evolved and there are currently more modern versions of the adaptive control
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law [53]. Nonetheless, the adaptive architecture presented here still represents a good

benchmark scenario to study adaptive augmentation control functionalities.

The adaptive augmentation relies on a controller which is designed to operate under nominal

conditions. This controller is then integrated with an adaptive control law which has the

following main objectives: 1) adapt minimally in nominal conditions; 2) increase performance

and command tracking in dispersed conditions and when disturbances produce large errors; 3)

prevent loss of vehicle (LoV) in extreme off nominal conditions.
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Figure 8.1: Nonlinear simulator with adaptive control structure

The SLS adaptive augmenting control system is based on a multiplicative law. As it can be

seen in Figure 8.1, the actual actuators commands are computed by multiplying the controller

output by the total loop gain kT , which is defined in Equation 8.1. This gain is composed of

two terms: a fixed gain k0, which establishes a lower bound for kT and the adaptive gain ka,

which is the output of the adaptive control law block.

kT
︸︷︷︸

Total loop gain

= k0
︸︷︷︸

Minimum total loop gain

+ ka
︸︷︷︸

Adaptive gain

(8.1)

In this configuration, the adaptive action should be minimal under nominal conditions

(kT ≈ 1). On the other hand, under dispersed conditions, kT will increase or decrease the loop

gain according to the adaptive control law (i.e. variations in ka).
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The allowable values for kT are defined based on the nominal stability gain margins of the

system. For instance, assuming a nominal low-frequency gain margin of 6 dB, the lower bound

for kT is defined as kTmin = k0 = 0.5. For the maximum allowable kT , a high-frequency gain

margin of −6 dB corresponds to a magnitude of 2, and thus, kTmax = 2. This approach to

set upper and lower gain limits based on linear stability margins may result in conservatism

since it can potentially over-constrain the actual capabilities of the adaptive approach due

to differences between the LTI models and the actual nonlinear system. As it will be seen

later in the nonlinear test cases analysed in Section 8.2, the upper limit does not influence the

performance of the adaptive scheme. On the contrary, the adaptive action is clearly bounded in

the test case shown in Section 8.2.4 due to the lower limit kTmin = 0.5. To avoid this source of

conservatism, other approaches to establish this gain limits based on nonlinear analyses can be

considered, and are advised as a topic for future research. Nevertheless, it should be mentioned

that the performance of the adaptive scheme relies more on the adaptive control law presented

in Equation 8.2, which offers different mechanisms to limit the adaptation as well as to increase

the robustness of the system as it will be explained later. The rate of variation of the adaptive

gain ka is described by the following first-order ordinary differential equation:

k̇a = He
LP keer

2

︸ ︷︷ ︸

Adaptive error

− ka
kamax

He
LPkeer

2

︸ ︷︷ ︸

Logistic damper

− ksdkays
︸ ︷︷ ︸

Spectral damper

− kβ(kT − 1)
︸ ︷︷ ︸

Leakage

(8.2)

The adaptive control law is initialised by a starting value ka(0) = 0.5 so the total loop

gain is kT equals 1 when the adaptive control is activated. In this regard, the adaptive control

structure is only activated at t=15 s to avoid the vertical flight phase and the start of the pitch

over manoeuvre (i.e. kT = 1 for t<15 s).

It should be remarked that there are three main differences between the adaptive control

law presented in this thesis and the one described in reference [51]. The first one is that the

total loop gain kT is passed through a transition filter (see Figure 8.1). Initial transients on the

adaptive control law terms (Equation 8.2) were observed when the adaptive action is activated

at t=15 s. Thus, in order to provide a smoother transition, instead of using a binary switch

between the initial kT = 1 and the output from the adaptive control law, a simple second order

interpolation between both is implemented.

The second difference is the use of the filter He
LP in the adaptive error and the logistic

damper terms, see Equation 8.2. The reason to include this low-pass filter is to smooth the

evolution of both adaptive terms, which were found to exhibit very high-frequency

fluctuations. And third, in reference [51] the adaptive control law is analysed using a

high-fidelity linearised pitch dynamics simulator, whereas in this thesis a more realistic set-up

is employed. The adaptive control structure is implemented and evaluated using the

high-fidelity, nonlinear 6 DoF nonlinear simulator presented in Section 2.1.4. Note that the

same adaptive control law (Equation 8.2) is employed for pitch and yaw axes under the

assumption that they are decoupled.
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Next, the different terms of Equation 8.2 are explained in detail.

Adaptive error

The adaptive error term increases the adaptive gain driven by the reference model error

er, which is defined as er = ψINS − ψ̂INS (see Figure 8.1). In reference [51], the estimated

attitude angle ψ̂INS is computed using a simple second order model with a time-varying natural

frequency ωr. Inspired by the approach used in that reference, the same transfer function is

employed here, but implemented as an LPV model given by:

ψ̂INS
ψc

=
2ζr(ρ)ωr(ρ)s + ωr

2(ρ)

s2 + 2ζr(ρ)ωr(ρ)s + ωr2(ρ)
(8.3)

The above LPV model is built using the same grid-based approach described in Section 6.2

with the non-gravitational velocity (NGV) as scheduling parameter ρ. In this case, 9 different

grid points are used to cover the atmospheric flight (at NGV = [108 433 639 818 1029 1286

1599 1963 2345]m/s which corresponds to t = [5 20 30 40 50 60 70 80 90]s). Note also that,

ζr(ρ) and ωr(ρ) are chosen to approximate the linear closed-loop dynamics at every grid point

along the ascent trajectory.

The signal error er is multiplied by the adaptive error gain ke, which scales the contribution

of the adaptive error term in the adaptive control law. The adaptive error signal is then passed

through a low-pass filter He
LP to avoid high-frequency fluctuations on the adaptive gain.

Logistic damper

The logistic damper term is computed by scaling the adaptive error term by a ratio between

the adaptive gain ka and its maximum value kamax. Using this configuration, the rate of

variation of ka is decreased as ka approaches its maximum value kamax, imposing an upper

bound for the adaptive gain ka.

Spectral damper

The spectral damper term reduces the adaptive gain to suppress the effect of undesired high-

frequency dynamics in the actuators commands. This term is based on the spectral damper

signal ys which is computed as follows:

yHP = Hsd
HPβψc

ys = Hsd
LP (yHP )

2 (8.4)

The actual actuator command βψc is filtered through a high-pass (HP) filter Hsd
HP , which

captures undesired dynamics at frequencies higher than the rigid-body dynamics of the launch

vehicle. This filtered signal yHP is then squared and smoothed through another low-pass (LP)

filter Hsd
LP , which in turn removes high-frequency fluctuations on ys and thus on the total loop

gain kT .

Finally, the spectral damper signal ys is multiplied by the adaptive gain ka as well as by

the spectral damping gain ksd, which also scales the contribution of the spectral damper term

in the adaptive control law.
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Leakage

The leakage term is a compensation model which attempts to lead kT towards unity. This

term is tuned through a leakage gain kβ , which is chosen to achieve minimal adaptation for

nominal conditions.

8.1.2 Adaptive control law tuning

This subsection presents the tuning of the adaptive controller. As aforementioned, the proposed

adaptive controller is formed by integrating the joint rigid/flexible structured H∞ controller

from Chapter 5 with the adaptive control structure presented in the previous subsection. This

integration is carried out and implemented in the nonlinear simulator of the VEGA launcher

(see Section 2.1.4) as shown in Figure 8.1.

The upper and lower limits of the total loop gain kT are determined first. As mentioned

before, these bounds are chosen based on the nominal stability gain margins of the system

(without adaptation). In this regard, the joint rigid/flexible structured H∞ controller globally

achieves ±6 dB nominal rigid-body margins along the atmospheric phase. Thus, to preserve

the robustness characteristics of the system, kTmin = 0.5 and kTmax = 2, which in turn leads

to the following gains: k0 = 0.5 and kamax = 1.5.

Unlike the other techniques presented in this thesis (structured H∞ and LPV), there is no

systematic approach to tune the other gains of Equation 8.2 (i.e. ke, ksd and kβ). In this case,

they are selected in a heuristic manner in two steps. Starting with the values given in reference

[51] (i.e. ke = 500, ksd = 50000 and kβ = 0.05), the aforementioned three gains are first tuned

using a nonlinear nominal test case without wind disturbance. The tuning objective for this

test case is to achieve minimal adaptation (recall that one of the main goals of the presented

adaptive approach is to adapt minimally under nominal conditions). In a second step, the

obtained gains are re-tuned using the same nonlinear nominal test case but with the estimated

wind from the actual VEGA VV05 mission. In this case, the gains are adjusted to balance

the contribution of the adaptive error with respect to the spectral damper and leakage terms.

Note that no other test cases were considered for this tuning to avoid tailoring the design for

a specific off-nominal mission scenario. The final set of parameters is shown in Table 8.1 1.

Table 8.1: Adaptive control law gains

Gain Value

k0 0.5

kamax 1.5

ke 200

ksd 5000

kβ 0.25

1It should be noted that the final set of tuned parameters given in Table 8.1 was subsequently evaluated
using other wind profiles, and the same behaviour was achieved.
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Figure 8.2 shows the Bode plots of the adaptive error and spectral damper filters, which

are also designed empirically. The former (i.e. He
LP in Figure 8.2a) is a fourth-order low-pass

filter, whose bandwidth is selected to smooth and remove the high-frequency components of

the adaptive error signal er. On the other hand, see Figure 8.2b, Hsd
HP is designed to capture

high-frequency components above the launcher rigid-body bandwidth and Hsd
LP is tuned to

smooth the spectral damper signal ys. Note that all those filters are discretised for the final

implementation in the nonlinear, high-fidelity simulator using the Tustin’s transformation.
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Figure 8.2: Bode plots of the adaptive control law filters

8.2 Nonlinear test cases

This section analyses and compares the performance of the adaptive controller with respect

to the non-adapted joint rigid/flexible structured H∞ controller from Chapter 5 and the LPV

design presented in Chapter 6. Unlike reference [51] where only the pitch axis is considered, in

this thesis, the adaptive controller is implemented and analysed in pitch and yaw axes under

the assumption that both axes are decoupled (i.e. roll rate is considered negligible).

The aforementioned three controllers are evaluated using the following 4 test cases:

Test case 1: nominal VV05 flight

Test case 2: nominal VV05 flight + VV05 wind

Test case 3: dispersed VV05 flight + VV05 wind (all uncertainties ± 100%)

Test case 4: dispersed VV05 flight + VV05 wind (all uncertainties ± 135%)

Note that the first two test cases are the ones used for the tuning process described in

Section 8.1.2. The other two aim to analyse the effect of the adaptive control structure in two

dispersed, off-nominal scenarios: test case 3 sets all the simulator uncertainties at the limits of

the mission uncertainty range (i.e. 100%) and test case 4 increases the level of uncertainties

beyond the operation range of the specific VEGA VV05 mission.

It is noted that the above nonlinear test cases do not consider ad-hoc scenarios where

specific effects are triggered (i.e. excessive aerodynamic instability or bending instability [51]),

yet they define a representative benchmark to analyse and stress the selected controllers.
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8.2.1 Test case 1: nominal VV05 flight

This test case aims to verify that the adaptive control structure provides minimal adaptation

under nominal conditions (those encountered during the selected VEGA VV05 mission). For

this simulation, all the nonlinear simulator flags are set to 0 (i.e. zero uncertainty) and the

wind disturbance is disabled.

Figure 8.3 shows the adaptive total loop gain kT for the pitch and yaw axis (see top plots).

It is observed that kT ≈ 1 for both axes along the atmospheric phase and thus, the adaptive

action is negligible in this case. In addition, it is noted that kT presents a small transient in the

pitch axis (Figure 8.3a). To better visualise this effect, the contribution of each of the adaptive

control law terms from Equation 8.2 is also given in Figure 8.3 (see bottom plots). It is seen

that the rate of ka in the pitch axis (bottom-left plot) presents a transient which is caused

by the adaptive control activation at t=15 s. This initial transient occurs because the launch

vehicle is still following the pitch over manoeuvre and that creates an initial adaptive error

contribution (in blue), which is rapidly counteracted by the logistic damper and leakage terms.
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Figure 8.3: Adaptive test case 1: kT and k̇a analysis
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8.2.2 Test case 2: nominal VV05 flight + VV05 wind

In this test case, all the nonlinear simulator flags are set to 0 as before, but the wind disturbance

is enabled (the estimated wind from the VEGA VV05 mission is employed).

Figure 8.4 illustrates the total loop gain kT and the rate of the adaptive gain k̇a. The first

important observation is that there is more adaptive action in the yaw axis than in pitch (see

top plots). This is mainly due to the characteristics of the wind profile used here, which affects

more the yaw axis. The internal mechanism of the adaptive control law can be analysed by

looking at Figure 8.4d. It is observed that the adaptive error term (in dash blue) exhibits

several peaks along the atmospheric flight, which are caused because differences between the

reference model error and the actual attitude angle are detected due to the wind disturbance.

Actually, these peaks correspond to wind gusts of the VV05 wind profile mainly around the

maximum dynamic pressure at t=45 s and t=60 s. This is a very interesting aspect because

these wind gusts are easily recognised in the Qα responses shown in this thesis, since they

cause the high-Qα peaks around Mach 1.8 and 3 respectively (see for example Figure 3.10).

Indeed, these results provide an indication of the validity of the adaptive control law tuning.
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Figure 8.4: Adaptive test case 2: kT and k̇a analysis
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8.2.3 Test case 3: dispersed VV05 flight + VV05 wind (uncertainties 100%)

This simulation analyses the adaptive controller action at the limits of the mission uncertainty

range. In this test case, all uncertainty flags are set to 1, which corresponds to a level of

uncertainty of 100%. As before, the estimated wind from the VEGA VV05 mission is employed.

Figure 8.4 illustrates the total loop gain kT and the rate of the adaptive gain k̇a. Looking

at Figures 8.5a and 8.5b, it is observed that the adaptive action is more noticeable here (i.e.

higher values of kT ) than in the previous test case (particularly in the pitch axis). The same

conclusion can be extracted from the adaptive gain rate k̇a analysis in Figure 8.4 (see bottom

plots). It is noted that the adaptive error term (in dashed blue) takes higher values. This was

expected since the differences between the reference model error and the actual system response

are higher not only due to the wind disturbance but also to a severe uncertainty configuration

(i.e. 100%).
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Figure 8.5: Adaptive test case 3: kT and k̇a analysis
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Figure 8.6 shows the nonlinear Qα responses for the three analysed controllers. It is

observed that the adaptive controller improves the structural loads performance throughout

the atmospheric with respect to the non-adapted structured H∞ controller, but only

minimally (as shown in the zoom box area given in Figure 8.6). Also note that the

rate-bounded LPV design improves the performance under the same conditions.

0 1 2 3 4

0

1

2

3
10
5

1.4 1.6 1.8 2

0.8

1

1.2

10
5

Qα safety envelope
Joint rigid/flexible structured H∞ LPV Adaptive controller

Figure 8.6: Adaptive test case 3: Qα analysis

The results confirm that the adaptive controller satisfies the first two objectives of the

adaptive augmentation approach (i.e. adapt minimally under nominal conditions and increase

performance in dispersed conditions and when disturbance produce large errors). Next, the

third main objective of this adaptive approach, which is to prevent loss of vehicle under extreme

off-nominal conditions, will be assessed.
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8.2.4 Test case 4: dispersed VV05 flight + VV05 wind (uncertainties 135%)

This test explores the extended safety envelope capabilities that the adaptive scheme can

provide by increasing the level of uncertainties beyond the range defined for the specific mission

(i.e. VEGA VV05). Specifically, all the nonlinear simulator uncertainty flags are set to 1.35,

which means a level of uncertainty of 135%.

Figure 8.7 shows the nonlinear responses of three key performance metrics (attitude errors,

actuator deflections and structural loads) for the three analysed controllers. Note that a severe

launch vehicle failure is observed for the joint rigid/flexible structured H∞ controller (in cyan)

around the maximum dynamic pressure region (t=50-60 s) finally causing a Loss of Vehicle

(LoV) at t=60 s. This failure was expected since this test is a very critical scenario and also

because the controller was designed only considering a 100% level of uncertainty.
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Figure 8.7: Adaptive test case 4: nonlinear dispersed flight responses
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On the other hand, it is interesting to observe that the adaptive controller (in purple)

manages to control the instability and prevents the loss of vehicle (see Figure 8.7). To illustrate

the effect of the adaptive control structure, the total loop gain kT and the rate of the adaptive

gain k̇a are shown in Figure 8.8. It is worth noticing that the contribution of the spectral

damper term is increased at t=45 s (see dash-red lines in Figures 8.8c and 8.8d). As seen

before, this is actually the flight instant when the responses of the non-adapted structured

H∞ controller start to oscillate. Indeed, this high-frequency action is detected by the adaptive

control law (through the spectral damper term), leading to an immediate reduction of the total

loop gain kT in both axes (see Figures 8.8a and 8.8b) which, in turn, allows to maintain the

stability of the system as shown in Figure 8.7 (see purple lines).
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Figure 8.8: Adaptive test case 4: kT and k̇a analysis

Furthermore, Figure 8.7 shows that the LPV controller (green lines) also prevents the loss

of vehicle under such extreme flight conditions. Indeed, it is observed that the LPV controller

improves the overall performance with respect to the adaptive controller. It significantly reduces

the Qα peak at Mach 2.8 (see Figure 8.7c) and although less noticeable in Figure 8.7b, it does

not exhibit high-frequency components in the actuation channel as the adaptive controller.
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8.3 Nonlinear Monte Carlo analysis

To evaluate the performance and robustness of the adaptive design with respect to the other

two designs (i.e. joint rigid/flexible structured H∞ controller without adaptive component and

the LPV controller), a MC campaign of 500 runs is performed. For each run, the same nominal

VEGA VV05 flight trajectory (with the measured wind from VV05 mission) is used but the

operational parameters are all dispersed randomly. In this case, the uncertainty flags of the

nonlinear simulator are allowed to vary in the interval [-1.3, 1.3], which corresponds a level

of uncertainty of 130%. Note that since the nonlinear test case 4 presented in Section 8.2.4

represented a very critical case for the structured H∞ controller, in here, it was decided to use

a smaller (i.e. 5%) uncertainty range.

Figure 8.9 shows the 500 MC time-domain responses of the TVC actuator deflections (in

lane B) for the three controllers. In darker lines, the corresponding simulations under nominal

dispersions.

(a) Joint rigid/flexible structured H∞ (b) Adaptive controller

(c) LPV controller

LoV LoV

LoV
LoV

Figure 8.9: Extended Monte Carlo: TVC actuator command responses
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By looking at Figure 8.9, it is observed that there are some critical launch vehicle failures

for the structured H∞ controller (see top-left plot), while the adaptive and LPV controllers

manage to prevent the loss of vehicle. An inspection of the failure cases shows that they are

caused by a significant reduction (≈ 26%) on the nominal first bending mode frequency. This

causes interactions between the rigid-body and the bending modes leading to instability.

The same behaviour can be observed in Figure 8.10, where the aerodynamic load

performance indicator Qα is shown for the three controllers. The adaptive controller manages

to keep the structural loads under the Qα safety envelope for all the cases. In addition, it can

be seen that the LPV controller not only achieves this but also reduces noticeably the

aerodynamic loads with respect to the other two cases.

(a) Joint rigid/flexible structured H∞ (b) Adaptive controller

(c) LPV controller

LoV

Qα safety envelope
Joint rigid/flexible structured H∞ LPV Adaptive controller

Figure 8.10: Extended Monte Carlo: Qα responses

The results confirm the behaviour shown in Section 8.2. That is, the adaptive controller is

able to prevent a major launch vehicle failure under extreme off-nominal conditions as expected,

but that the LPV design is equally capable and in addition shows better performance.
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Finally, a quantitative assessment of the MC results for the three controllers is provided

based on a set of performance indicators (such as attitude error, drift, or aerodynamic load

performance). For each of the previous MC runs, two different metrics are computed for each

indicator: the ∞-norm, which is equivalent to the maximum value taken by the indicator, and

the 2-norm, which accounts for its energy. Figure 8.11 shows the average of those two norms

normalised with respect to the joint rigid/flexible structured H∞ controller (cyan dashed line).
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Figure 8.11: Extended Monte-Carlo: analysis in terms of ∞-norm and 2-norm

Looking at Figure 8.11, it can be seen that the adaptive controller not only can prevent the

loss of vehicle in several cases but also slightly improves the performance of the non-adapted

structured H∞ controller. Particularly with respect to the ∞-norm of Qα, which is reduced

by 8%, and the the ∞-norm of actuation and attitude error indicators, which are reduced

by approximately 5%. It is recognised that a more aggressive adaptive control tuning might

improve these metrics, but that would generate a more intrusive adaptive controller strategy,

causing more impact on the nominal performance of the system. Furthermore, it is now clear

that the LPV design shows an overall superior performance with respect to the baseline and

adaptive controllers. For example, the LPV controller achieves a reduction on average Qα

peaks by approximately 30% (see Figure 8.11a), which confirms the results shown before in

Figure 8.10.
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8.4 Conclusions

This chapter illustrates the design of an adaptive controller for the VEGA launcher based on

NASA’s SLS adaptive augmenting control algorithm. This design relies on the joint

rigid/flexible structured H∞ design presented in Chapter 5, which is integrated with an

adaptive control structure to extend safety envelope capabilities and increase performance

under extreme off-nominal conditions.

The adaptive design is compared with the joint rigid/flexible H∞ controller (without

adaptation) as well as with the LPV design presented in Chapter 6. The three controllers are

analysed using a set of nonlinear test cases with different uncertainty configurations and also

via a Monte Carlo campaign using an extended uncertainty range. The results show that the

adaptive control law can successfully prevent severe failures such as loss of vehicle and

slightly improve the performance of the TVC system under uncertainty levels beyond the

mission range.

Nevertheless, the LPV controller is also capable of preventing such failures while improving

performance and robustness with respect the adaptive scheme. Furthermore, this is achieved

using a more methodological synthesis approach versus the tuning complexity of the adaptive

law and the lack of adaptive analysis tools.
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Conclusions of the thesis

9.1 Thesis summary and main achievements

This thesis presents a methodological robust control framework for the design of the

atmospheric control system of the VEGA launcher. The atmospheric flight is the most

challenging phase of a launch vehicle mission from a control point of view. Indeed, this

control problem is a highly time-consuming task, which requires to address multiple

competing system requirements while also considering external perturbations such as wind

gusts and parameter dispersions.

Part I - Structured H∞ control design

In a first step, the proposed synthesis framework is based on the recently-developed

structured H∞ optimisation approach, which allows to perform a systematic control tuning

for a specified controller structure. Special emphasis is placed on facilitating the transfer of

this technology to the Space industry, starting with the recovery of the legacy behaviour of

the baseline controller and gradually building up the design model towards further enhancing

the synthesis capabilities (i.e. statistical wind models, parametric uncertainties and joint

design of the rigid-body controller and bending filters).

As mentioned before, the structured H∞ control problem is first formulated to recover

the classically-designed VEGA VV05 mission rigid-body baseline controller, but in a more

methodological manner. One of the novelties of the proposed methodology is that an asymptote

analysis is included to reconcile the closed-loop transfer functions with the frequency-dependent

weighting functions and to provide a good understanding of the constraints introduced by the

controller structure. This legacy recovery exercise is paramount since it greatly facilitates

the transfer of this technology to industrial control engineers with a more classical control

background.
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Another main contribution of this thesis is the use of a wind turbulence model in the

controller synthesis. Although this is critically important, especially for launchers, only a few

instances in the aerospace domain can be found where this is directly employed in the design

process. This wind model is based on a Dryden filter, which represents different statistical

wind levels (light, moderate, severe) at different altitudes. The main aim here is to provide

the optimiser with the frequency behaviour of the wind disturbance. This characteristic is very

important in frequency-domain synthesis techniques such as the structured H∞ technique.

In this regard, this thesis shows, via several representative design examples, that the use of

strong wind levels for design significantly contributes to improve the wind disturbance rejection

performance of the system.

In a subsequent design exercise, the synthesis framework is also augmented by considering

parametric uncertainties in design via LFT modelling. This design feature is quite relevant

for uncertain control problems such as the launcher TVC system. In essence, the optimisation

is performed using a more realistic description of the launch vehicle, which also includes the

expected dispersions of each parameter along the atmospheric flight. It is shown that this

formulation provides improved robust stability and robust performance with respect to the

baseline controller, while keeping the classical VEGA TVC architecture.

Based on the previous rigid-body synthesis framework, the structured H∞ control problem

is further reformulated to simultaneously perform the design of the rigid-body controller and of

a bending filter in one single procedure (as opposed to the industrial state-of-practice where the

design of the rigid-body controller and bending filters is performed separately in a sequential

and iterative fashion). This rigid/flexible formulation is an important contribution of this thesis

since it represents a paradigm shift in launcher TVC design. This joint optimisation allows to

optimise rigid-body stability and performance while achieving a proper mode-stabilisation in

one single design step. The effectiveness of this formulation is validated through a design

example. It is shown how the legacy information from the classically-designed VEGA baseline

controller can be used to guide the tunable controller parametrisation. The results show that

the proposed methodology improves the performance and robustness of the launcher, while

keeping and further simplifying the classical VEGA TVC architecture.

Overall, this research work demonstrates via LFT modelling, structured H∞ optimisation,

µ analysis and nonlinear Monte-Carlo simulations, how this robust control framework is

suitable to address challenging and uncertain control problems such as launcher TVC design.

In addition, it is highlighted that the proposed structured H∞ synthesis framework is

completely generic and can be used for any launcher with a specific controller structure, and

for future launcher evolutions (e.g. VEGA C, VEGA E, Ariane 6).
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9.1. THESIS SUMMARY AND MAIN ACHIEVEMENTS

Part II - From full-order control design to structured design

In this second part of the thesis, the limitations in performance of the current VEGA TVC

architecture are assessed by comparing the current VEGA baseline controller and the joint

rigid/flexible structured H∞ design presented in Chapter 5 to a full-order controller.

To that end, the LPV synthesis approach is applied to the design of the full

(rigid/flexible) VEGA TVC system. The relevance of the proposed LPV methodology is that

it considers the full rigid-body dynamics (rotational and translational) as well as the

flexible-body dynamics of the launch vehicle, as opposed to the previous works found in the

literature where simpler rotational a6/k1 models were employed. The LPV modelling and

synthesis steps are performed using a grid-based approach based on the non-gravitational

velocity as scheduling time-varying parameter and the non-gravitational acceleration to

bound its rate of variation. It is shown that the resulting LPV controller achieves a

significant reduction in the aerodynamic loads (maximum peaks are reduced approx 22%)

with respect to the baseline controller while also providing an overall improved performance

for all the main atmospheric performance indicators.

In a second phase, the role of the internal model principle is discussed with respect to the

actual VEGA TVC architecture. The full-order LPV design is compared with the current

VEGA baseline controller and it is shown that the former incorporates an extra internal

model structure that is missing in the other. In particular, this internal model is

characterised as a high-pass filter action at low frequencies, which is the frequency range

where the wind disturbance input has a major effect. In order to evaluate the effect of this

wind-disturbance internal model, the structured H∞ is used again to re-design the controller

but now incorporating in its structure the characterised internal model. The results show

that the introduction of this extra structure (consisting of a simple 1st order function with

two tunable parameters) enhances the nominal and robust wind rejection performance

capabilities of the current VEGA control system architecture and bridges the gap between

the capabilities offered by the full-order technique and the current control structure.

Part III - Adaptive control design

In the third part of the thesis, the design and evaluation of an adaptive controller for the

atmospheric phase VEGA launcher is presented. The proposed adaptive approach relies on

an adaptive control law that augments a robust-based baseline controller, specifically the

robust joint rigid/flexible structured H∞ controller presented in Chapter 5. Unlike the

structured H∞ and LPV techniques, which were designed in a methodological robust design

framework via weighting functions, the adaptive controller must be tuned manually using

nonlinear simulations. It is shown via extreme off-nominal nonlinear test cases and an

extended Monte Carlo campaign (using an uncertainty range of 130%) that the resulting

adaptive controller can successfully prevent severe failures such as loss of vehicle and slightly

improve the performance of the baseline controller.
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To conclude the work performed for this thesis, the adaptive controller from Chapter 8 is

compared with the LPV design presented in Chapter 6. The results show that the LPV

controller is also capable of preventing such failures while improving performance and

robustness with respect the adaptive scheme. Furthermore, this is achieved using a more

methodological synthesis approach versus the tuning complexity of the adaptive law and the

lack of adaptive analysis tools. These results indicate that at least for the studied case of the

VEGA launcher, LPV approaches are more advantageous.

9.2 Future work

In this section, a number of possible improvements for this thesis work and some suggestions

for future research are given.

Robust control validation with Hardware-In-the-Loop

A clear follow-up of this research work would be to implement the controllers presented in

this thesis in the VEGA flight-code hardware and subsequently validate them with software-

in-the-loop and hardware-in-the-loop campaigns.

Robust design in presence of roll

All designs and results presented in this thesis are based on the assumption that the roll

rate is negligible. Recall that this assumption allows to consider pitch and yaw axes decoupled.

As stated in Section 2.1.2, the existing coupling between both axes due to roll rate is typically

considered as a disturbance and examined ad hoc after design.

Motivated by the above observation and following the work found in references [43, 129], the

structured H∞ control optimisation could be extended to a MIMO problem to account for an

specific roll rate in design. The control problem would be formulated to design simultaneously

pitch and yaw controllers, which in this case will have different gains.

Robust design of the atmospheric tail-off controller

Future research can potentially address the design and analysis of different controllers for

the whole atmospheric phase.

The current thesis only focused on the design of the atmospheric phase TVC system until

the beginning of the tail-off phase (i.e. t=90 s), which is when the thrust is rapidly cut down and

the vehicle starts preparing the stage separation. During this phase, the tail-off controller takes

control using an scheduling versus longitudinal acceleration [2]. Future research can potentially

address the design and analysis of the different controllers for the whole atmospheric phase

(i.e. lift-off, atmospheric controller and tail-off), also taking into account the transition between

them.
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TVC control design across missions

In this thesis, all the designs and analyses are performed using the actual VEGA VV05

mission data. Despite there are large differences between missions (i.e. payload, trajectory,

mass-center-inertia properties), there is also commonality between them. In this regard, it

could be possible to research how to take into account shared features among missions to

create a common design framework for the entire set of VEGA missions based on the design

methodology presented in this thesis.

Further research on LPV (uncertainties and structured design)

Motivated by reference [124], future research might investigate the use of a robust LPV

synthesis technique taking into account uncertainties in design. As stated in Section 6.1.2, this

robust LPV formulation alternates LPV design and IQC analysis steps in an iterative design

procedure similar to the D-K iteration employed for µ synthesis.

Furthermore, it would also be interesting to explore the LPV methodology presented in

reference [50], where the LPV optimisation is performed using structured H∞ tools in order

to obtain low-order structured LPV controllers.

Further research on joint rigid/flexible design

Two different approaches, one using the structured H∞ method and the other for LPV

design, have been proposed in this thesis for the joint design of rigid/flexible TVC controllers.

A research venue will be to examine if the solutions presented are valid for other launchers

(with only changes in the values of the free parameters) or if other alternative architectures

could be more applicable.
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A
Analysis of TVC closed-loop transfer functions

In this appendix, the open-loop transfer functions of the rigid-body launch vehicle model are

given. Then, the main transfer functions of the rigid-body closed-loop interconnection used

for TVC system design are analytically derived and analysed. As indicated in Chapter 3,

this closed-loop analysis facilitates the selection of the weighting functions to formulate the

structured H∞ control optimisation and also provides valuable information on the limits and

capabilities of the control system.

A.1 Launch vehicle transfer functions

Consider the rigid-body launch vehicle model shown in Figure A.1. This model is described in

a state-space formulation in Equation A.1, where the state-space matrices (AR, BR, CR and

DR) and state, input and output vectors (xR, uLV and yLV) are given in Section 2.2.1.5.



˙xR

yLV



 =




AR BR

CR DR








xR

uLV



 (A.1)

Qα

ψINS

ψ̇INS

zINS

żINS

βψ

β̈ψ

vw

GLVR(s)

Figure A.1: Rigid-body launcher model diagram
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APPENDIX A. ANALYSIS OF TVC CLOSED-LOOP TRANSFER FUNCTIONS

Next, all the transfer functions from uLV to yLV are derived and expressed in terms of the

rigid-body matrix coefficients defined in Equation 2.18.

A.1.1 Attitude channels

The transfer functions from the launch vehicle inputs to the attitude measurements at INS

location are given by:

ψINS(s)

βψ(s)
=

sk1 + c3
s3 + s2c1 − sa6 + c2

(A.2)

ψINS(s)

β̈ψ(s)
=
sk3 +

(
a4k2 − a1k3

)

s3 + s2c1 − sa6 + c2
(A.3)

ψINS(s)

vw(s)
=

−sa4
s3 + s2c1 − sa6 + c2

(A.4)

where c1 = −a1 − a5, c2 = a1a6 − a3a4 and c3 = a4ap − a1k1.

From the above equations, it is now trivial to derive the transfer functions to the attitude

rate ψ̇INS , as follows:

ψ̇INS(s)

βψ(s)
=

s2k1 + sc3
s3 + s2c1 − sa6 + c2

(A.5)

ψ̇INS(s)

β̈ψ(s)
=
s2k3 + s

(
a4k2 − a1k3

)

s3 + s2c1 − sa6 + c2
(A.6)

ψ̇INS(s)

vw(s)
=

−s2a4
s3 + s2c1 − sa6 + c2

(A.7)

A.1.2 Drift channels

The transfer functions from uLV to the drift measured at INS location are given by:

zINS(s)

βψ(s)
=

1

s

s2c4 + sc5 + c6
s3 + s2c1 − sa6 + c2

(A.8)

zINS(s)

β̈ψ(s)
=

1

s

s2
(
k2 + lINSk3

)
+ s
(
a2k3 − a5k2 + lINS(a4k2 − a1k3)

)
+
(
a3k3 − a6k2

)

s3 + s2c1 − sa6 + c2
(A.9)

zINS(s)

vw(s)
=

1

s

−s2
(
a1 + lINSa4

)
+ c2

s3 + s2c1 − sa6 + c2
(A.10)

where c4 = ap + lINSk1, c5 = a2k1 − a5ap + lINSc3 and c6 = a3k1 − a6ap.
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A.2. RIGID-BODY CLOSED-LOOP TRANSFER FUNCTIONS

Similarly, the transfer functions to the drift-rate żINS can be expressed as follows:

żINS(s)

βψ(s)
=

s2c4 + sc5 + c6
s3 + s2c1 − sa6 + c2

(A.11)

żINS(s)

β̈ψ(s)
=
s2
(
k2 + lINSk3

)
+ s
(
a2k3 − a5k2 + lINS(a4k2 − a1k3)

)
+
(
a3k3 − a6k2

)

s3 + s2c1 − sa6 + c2
(A.12)

żINS(s)

vw(s)
=

−s2
(
a1 + lINSa4

)
+ c2

s3 + s2c1 − sa6 + c2
(A.13)

A.1.3 Qα channel

Finally, all the transfer functions from the inputs to the structural load indicator Qα are given

by:

Qα(s)

βψ(s)
= Q

1

V

s2ap + s
(
k1(V + a2)− a5ap

)
+
(
c3V + c6

)

s3 + s2c1 − sa6 + c2
(A.14)

Qα(s)

β̈ψ(s)
= Q

1

V

s2k2 + s
(
k3(V + a2)− a5k2

)
+
(
(a4k2 − a1k3)V + a3k3 − a6k2

)

s3 + s2c1 − sa6 + c2
(A.15)

Qα(s)

vw(s)
= Q

1

V

−s3 + s2a5
s3 + s2c1 − sa6 + c2

(A.16)

A.2 Rigid-body closed-loop transfer functions

In this section, the closed-loop diagram shown in Figure A.2 is analytically analysed. The

transfer functions from each of the inputs (i.e. commands and wind disturbance) to the main

outputs of the system are derived and analysed in terms of low- and high-frequency asymptotes.

Note that the delay and actuator models are not included in the actuation channel to simplify

the analysis. As mentioned in Section 3.3, this simplification does not affect the asymptotic

analysis because both models present unity gain at low frequencies. Also note that the launch

vehicle model GLVR(s) presents now only two inputs uLV = [βψ vw].

Qα

Kψp

Kψd

Kz

Kż

βψ

vw
GLVR(s)










ψc

ψ̇c

zc

żc








 








ψINS

ψ̇INS

zINS

żINS










ψe

ψ̇e

ze

że

Figure A.2: TVC closed-loop diagram for analysis

169



APPENDIX A. ANALYSIS OF TVC CLOSED-LOOP TRANSFER FUNCTIONS

Next, the transfer functions from commands and wind disturbance input to the most

relevant performance channels (e.g. attitude, drift, drift-rate, Qα and actuation) are

presented.

A.2.1 Attitude channel

The attitude complementary sensitivity function from the attitude command ψc can be derived

as follows:

ψINS(s)

ψc(s)
=

Kψp
ψINS (s)
βψ(s)

1 +Kψp
ψINS(s)
βψ(s)

+Kψd
ψ̇INS(s)
βψ(s)

+Kz
zINS(s)
βψ(s)

+Kż
żINS(s)
βψ(s)

(A.17)

Using the launch vehicle transfer functions presented in Section A.1 and after some

manipulation, the following expression is obtained:

ψINS(s)

ψc(s)
= Kψp

s2k1 + sc3
C(s)

(A.18)

where C(s) is the characteristic equation given in Equation A.19.

C(s) = s4 + s3
(
Kψdk1 +Kżc4 + c1) + s2

(
Kψpk1 +Kψdc3 +Kzc4 +Kżc5 − a6

)

+ s
(
Kψpc3 +Kzc5 +Kżc6 + c2

)
+Kzc6

(A.19)

Similarly, the transfer functions from the other inputs can be derived following the same

formulation as before:

ψINS(s)

ψ̇c(s)
= Kψd

s2k1 + sc3
C(s)

(A.20)

ψINS(s)

zc(s)
= Kz

s2k1 + sc3
C(s)

(A.21)

ψINS(s)

żc(s)
= Kż

s2k1 + sc3
C(s)

(A.22)

ψINS(s)

vw(s)
= −s

2a4 + s
(
Kżc3

)
+Kzc3

C(s)
(A.23)

Furthermore, using the attitude complementary sensitivity function given in Equation A.18,

it is easy to obtain the attitude sensitivity function through the relation ψINS/ψc+ψe/ψc = 1:

ψe(s)

ψc(s)
=
s4+s3

(
Kψdk1+Kżc4+c1

)
+s2
(
Kψdc3+Kzc4+Kżc5−a6

)
+s
(
Kzc5+Kżc6+c2

)
+Kzc6

C(s)

(A.24)
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All previous transfer functions are analysed in terms of low- and high-frequency

asymptotes as shown in Table A.1. It is observed that as expected the sensitivity function

(ψe/ψc) equals one at high frequencies while the asymptote of the complementary sensitivity

function (ψINS/ψc) is zero. At low frequencies, this trend is generally the opposite (i.e. the

low-frequency asymptote of ψe/ψc is normally low to achieve good tracking performance).

However, it is noted that due to the inclusion of the lateral control feedback, the steady-state

tracking error of the system is fixed to 1 (see ψe/ψc when ω = 0 in Table A.1).

Table A.1: Rigid-body asymptotic analysis for the attitude channel

Transfer function ω = 0 ω = ∞
ψINS/ψc 0 0

ψe/ψc 1 1

ψINS/ψ̇c 0 0

ψINS/zc 0 0

ψINS/żc 0 0

ψINS/vw -c3/c6 0

In addition, it is also observed that the low-frequency asymptote of the transfer function

from the wind input vw to ψINS only depends on physical parameters of the launch vehicle.

Therefore, the attitude steady-state response from the wind disturbance cannot be minimised

or controlled in any way with the current TVC architecture.

A.2.2 Drift channel

Similarly as before, the transfer functions from the closed-loop system inputs to the drift

measured at INS location are given by:

zINS(s)

ψc(s)
= Kψp

s2c4 + sc5 + c6
C(s)

(A.25)

zINS(s)

ψ̇c(s)
= Kψd

s2c4 + sc5 + c6
C(s)

(A.26)

zINS(s)

zc(s)
= Kz

s2c4 + sc5 + c6
C(s)

(A.27)

zINS(s)

żc(s)
= Kż

s2c4 + sc5 + c6
C(s)

(A.28)

zINS(s)

vw(s)
=

−s2
(
a1 + lINSa4

)
+ s
(
Kψdc3

)
+
(
Kψpc3 + c2

)

C(s)
(A.29)
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Table A.2 shows the low- and high-frequency asymptotes of the above transfer functions. In

this case, it is interesting to observe that the drift steady-state response can be cancelled out

by an appropriate choice of Kψp. In addition, note that the low-frequency asymptotes from the

commands (except zINS/zc the drift complementary sensitivity function) depend exclusively

on a ratio of rigid-body gains.

Table A.2: Rigid-body asymptotic analysis for the drift channel

Transfer function ω = 0 ω = ∞
zINS/ψc Kψp/Kz 0

zINS/ψ̇c Kψd/Kz 0

zINS/zc 1 0

zINS/żc Kż/Kz 0

zINS/vw -
(
Kψpc3 + c2

)
/
(
Kzc6

)
0

A.2.3 Drift-rate channel

From the drift transfer functions presented in Section A.2.2, it is now trivial to derive the

closed-loop transfer functions for the drift-rate channel as follows:

żINS(s)

ψc(s)
= Kψp

s3c4 + s2c5 + sc6
C(s)

(A.30)

żINS(s)

ψ̇c(s)
= Kψd

s3c4 + s2c5 + sc6
C(s)

(A.31)

żINS(s)

zc(s)
= Kz

s3c4 + s2c5 + sc6
C(s)

(A.32)

żINS(s)

żc(s)
= Kż

s3c4 + s2c5 + sc6
C(s)

(A.33)

żINS(s)

vw(s)
=

−s3
(
a1 + lINSa4

)
+ s2

(
Kψdc3

)
+ s
(
Kψpc3 + c2

)

C(s)
(A.34)

The asymptotic analysis for the drift-rate transfer functions is presented in Table A.3,

although in this case this analysis does not provide functional information to be used on the

weighting function selection.

Table A.3: Rigid-body asymptotic analysis for the drift-rate channel

Transfer function ω = 0 ω = ∞
żINS/ψc 0 0

żINS/ψ̇c 0 0

żINS/zc 0 0

żINS/żc 0 0

żINS/vw 0 0
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A.2.4 Qα channel

The transfer functions from each of the inputs to the structural load performance indicator

Qα are derived using the following relation:

Qα = Q
(
ψ +

ż

V
− vw
V

)
(A.35)

Using the above relation and the equations of the attitude and drift-rate channels presented

in Sections A.2.1 and A.2.3, the transfer functions to Qα are obtained after some manipulation

and given by:

Qα(s)

ψc(s)
= Q

1

V
Kψp

s3ap + s2
(
k1(V + a2)− a5ap

)
+ s
(
c3V + c6

)

C(s)
(A.36)

Qα(s)

ψ̇c(s)
= Q

1

V
Kψd

s3ap + s2
(
k1(V + a2)− a5ap

)
+ s
(
c3V + c6

)

C(s)
(A.37)

Qα(s)

zc(s)
= Q

1

V
Kz

s3ap + s2
(
k1(V + a2)− a5ap

)
+ s
(
c3V + c6

)

C(s)
(A.38)

Qα(s)

żc(s)
= Q

1

V
Kż

s3ap + s2
(
k1(V + a2)− a5ap

)
+ s
(
c3V + c6

)

C(s)
(A.39)

Qα(s)

vw(s)
= −Q 1

V

s4+s3
(
Kψdk1+Kżc4−a5

)
+s2
(
Kψpk1+Kzc4+Kżc5

)
+s
(
Kzc5+Kż(c3V+c6)

)
+Kz(c3V+c6)

C(s)

(A.40)

Similarly, the above transfer functions are analysed and their low- and high-frequency

asymptotes are obtained and shown in Table A.4. In this case, as for the attitude and drift-

rate channels, the steady-state response from the wind disturbance only depends on physical

parameters of the launch vehicle and thus, it cannot be minimised with the current TVC

architecture.

Table A.4: Rigid-body asymptotic analysis for the Qα channel

Transfer function ω = 0 ω = ∞
Qα/ψc 0 0

Qα/ψ̇c 0 0

Qα/zc 0 0

Qα/żc 0 0

Qα/vw -Q/V
(
1 + V c3/c6

)
−Q/V
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A.2.5 Actuation channel

Finally, the transfer functions of the actuation channel are also derived and analysed. As an

example, the transfer function from the attitude angle command ψc to βψ can be expressed as

the sum of the sensitivity functions multiplied by the corresponding rigid-body gain as follows:

βψ(s)

ψc(s)
= Kψp

ψe(s)

ψc(s)
+Kψd

ψ̇e(s)

ψc(s)
+Kz

ze(s)

ψc(s)
+Kż

że(s)

ψc(s)
(A.41)

The above equation can also be expressed in terms of the complementary sensitivity

functions which have been previously presented and then the following expression is obtained:

βψ(s)

ψc(s)
= Kψp

s4 + s3c1 − s2a6 + sc2
C(s)

(A.42)

The transfer functions from the other inputs of the closed-loop system in Figure A.2 can

be derived using the same procedure as before:

βψ(s)

ψ̇c(s)
= Kψd

s4 + s3c1 − s2a6 + sc2
C(s)

(A.43)

βψ(s)

zc(s)
= Kz

s4 + s3c1 − s2a6 + sc2
C(s)

(A.44)

βψ(s)

żc(s)
= Kż

s4 + s3c1 − s2a6 + sc2
C(s)

(A.45)

βψ(s)

vw(s)
=
s3
(
Kψda4 +Kż(a1 + lINSa4)

)
+ s2

(
Kψpa4 +Kz(a1 + lINSa4)

)
− s
(
Kżc2

)
−Kzc2

C(s)

(A.46)

Table A.5 shows the asymptotic analysis of the above transfer functions. It is observed the

high-frequency asymptote from commands to the controller output equals the corresponding

rigid-body gain of each channel. As mentioned in Section 3.4, this feature is quite interesting

since it gives a direct connection between the controller gains and the weighting function

selection. It is also noted that the actuation steady-state response from wind disturbance also

depends only on physical parameters of the launch vehicle model.

Table A.5: Rigid-body asymptotic analysis for the actuation channel

Transfer function ω = 0 ω = ∞
βψ/ψc 0 Kψp

βψ/ψ̇c 0 Kψd

βψ/zc 0 Kz

βψ/żc 0 Kż

βψ/vw −c2/c6 0

174


	List of Tables
	List of Figures
	List of Acronyms
	Nomenclature
	Introduction
	Motivation
	State-of-the-art in launcher control design
	Rigid-body control design
	Bending filter control design

	Objectives
	Funding
	Thesis Outline
	Author's list of publications

	VEGA launch vehicle description
	VEGA launcher
	Launch vehicle and mission
	GNC architecture
	VEGA launcher verification and validation
	VEGA high-fidelity, nonlinear simulator
	Atmospheric-phase VEGA TVC requirements

	VEGA launcher models and verification campaign
	VEGA launch vehicle model
	LFT modelling
	Analysis and verification process


	Structured H control design
	VEGA controller legacy recovery
	Structured H design approach
	VEGA launcher structured H control problem formulation
	Analysis of the closed-loop transfer functions
	Simplified rotational rigid-body model
	Full rigid-body model

	Weighting function selection
	Input weighting functions
	Output weighting functions

	Structured H linear design point
	Nonlinear verification
	Conclusions

	Control design augmentation
	Wind generator augmentation
	Wind disturbance analysis
	Wind generator description
	Wind generator assessment

	Robust design augmentation
	Robust structured control problem formulation
	Robust structured H control design
	Classical stability analysis
	Robust linear  analysis
	Nonlinear analysis

	Conclusions

	Joint design of VEGA's rigid-body controller and bending filter
	Joint rigid/flexible robust structured H synthesis
	Control problem formulation
	Tunable controller structure
	Weighting function selection
	Structured H linear point designs

	Simulation results
	Linear stability analysis
	Nonlinear performance analysis

	Conclusions


	From full-order control design to structured design
	Linear parameter varying control design
	LPV background
	LPV modelling
	LPV synthesis

	LPV modelling for the VEGA launcher
	LPV synthesis for the VEGA launcher
	LPV control problem formulation
	Weighting function selection
	LPV design

	Analysis
	Linear stability analysis
	Nonlinear analysis

	Conclusions

	Reconciling full-order designs and augmented structured H design via internal model principle
	Wind internal model identification
	Augmented structured H design
	Problem formulation
	Controllers comparison

	Robustness analysis
	Nonlinear analysis
	Conclusions


	Adaptive control design
	Adaptive control design
	Adaptive control design for the VEGA launcher
	Adaptive control structure
	Adaptive control law tuning

	Nonlinear test cases
	Test case 1: nominal VV05 flight
	Test case 2: nominal VV05 flight + VV05 wind
	Test case 3: dispersed VV05 flight  +  VV05 wind (uncertainties  100%)
	Test case 4: dispersed VV05 flight  +  VV05 wind (uncertainties  135%)

	Nonlinear Monte Carlo analysis
	Conclusions


	Conclusions
	Conclusions of the thesis
	Thesis summary and main achievements
	Future work

	Bibliography
	Analysis of TVC closed-loop transfer functions
	Launch vehicle transfer functions
	Attitude channels
	Drift channels
	Q channel

	Rigid-body closed-loop transfer functions
	Attitude channel
	Drift channel
	Drift-rate channel
	Q channel
	Actuation channel




