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Abstract

It is well known that every finite simple group can be generated by two elements. In
2000, Guralnick and Kantor resolved a 1962 question of Steinberg by proving that in a
finite simple group every nontrivial element belongs to a generating pair. Groups with
this property are said to be 3

2 -generated.

It is natural to ask which groups are 3
2 -generated. It is easy to see that every proper

quotient of a 3
2 -generated group is cyclic, and in 2008, Breuer, Guralnick and Kantor made

the striking conjecture that this condition alone provides a complete characterisation
of the finite groups with this property. That is, they conjectured that a finite group is
3
2 -generated if and only if every proper quotient of the group is cyclic. This conjecture
has been reduced to the almost simple groups through recent work of Guralnick. By
work of Piccard (1939) and Woldar (1994), the conjecture is known to be true for almost
simple groups whose socles are alternating or sporadic groups. Therefore, the central
focus is the almost simple groups of Lie type.

In this thesis we prove a stronger version of this conjecture for almost simple symplectic
and orthogonal groups, building on earlier work of Burness and Guest (2013) for linear
groups. More generally, we study the uniform spread of these groups, obtaining lower
bounds and related asymptotics. We adopt a probabilistic approach using fixed point
ratios, which relies on a detailed analysis of the conjugacy classes and subgroup structure
of the almost simple classical groups.
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1
Introduction

There is a long and rich history of studying generating sets for groups. We say that
a group is d-generated if it has a generating set of size d. Many familiar groups are
2-generated. For instance, the symmetric group Sn is generated by (1 2) and (1 2 . . . n).
This thesis is concerned with proving that a general class of groups are 2-generated in a
very strong sense. We begin by providing some historical context.

For a 2-generated group G, it is natural to ask how likely it is that a randomly chosen
pair of elements generate G. As early as 1882, Netto [55] wrote the following

If we arbitrarily select two or more [permutations] of n elements, it is to be regarded
as extremely probable that the group of lowest order which contains these is the
symmetric group, or at least the alternating group.

That two elements of the alternating group almost surely generate the entire group
became known as Netto’s Conjecture and was proved by Dixon in 1969 [26]. Moreover,
Dixon conjectured that two elements of any finite simple group almost surely generate it.

A group is simple if it has no proper nontrivial normal subgroups. Therefore, the simple
groups are the indivisible groups, and, accordingly, these groups play a fundamental
role in the general theory of groups. Indeed, many problems about all finite groups can
be reduced to ones about finite simple groups. The simple groups have some remarkable
properties, and generation is one lens through which we see their striking behaviour.
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1. INTRODUCTION

By the Classification of Finite Simple Groups, every finite simple group is a cyclic group of
prime order, an alternating group of degree at least five, a finite group of Lie type or one
of twenty-six sporadic groups.

In 1962, Steinberg [60] proved that every finite simple group of Lie type is 2-generated, by
exhibiting an explicit pair of generators. In light of the Classification, we know that the
conclusion holds for every finite simple group. Moreover, in 1997, building on previous
work of Kantor and Lubotzky [40], Liebeck and Shalev [51] proved Dixon’s Conjecture.

For groups with many generating pairs, it is natural to ask how these pairs are distributed
across the group. In the opening of his 1962 paper on the 2-generation of the groups of
Lie type, Steinberg wrote

It is possible that one of the generators can be chosen of order 2, as is the case for the
projective unimodular group, or even that one of the generators can be chosen as an
arbitrary element other than the identity, as is the case for the alternating groups.
Either of these results, if true, would quite likely require methods much more detailed
than those used here.

This comment motivates the following definition, which plays a central role in this thesis.

Definition. A group G is 3
2 -generated if for every nontrivial element g ∈ G, there exists

an element h ∈ G such that 〈g, h〉 = G.

Steinberg predicted that different methods would be required to prove that the finite
simple groups are 3

2 -generated, if indeed they are. In recent years, probabilistic methods
have been very successful in solving several formidable deterministic problems in group
theory [15, 47, 57]. Indeed, through a probabilistic approach, in 2000, Guralnick and
Kantor [33] proved that every finite simple group is 3

2 -generated.

Classifying the 1-generated groups is trivial and classifying the 2-generated groups is
impossible. Can we classify the 3

2 -generated groups? It is straightforward to demonstrate
that every proper quotient of an arbitrary 3

2 -generated group is necessarily cyclic. In 2008,
Breuer, Guralnick and Kantor [10] conjectured that this evidently necessary condition is
actually sufficient for finite groups.

Conjecture. A finite group is 3
2 -generated if and only if every proper quotient is cyclic.

The aim of this thesis is to make substantial progress towards proving this conjecture,
which we refer to as the 3

2 -Generation Conjecture.

Let us note that this necessary condition for 3
2 -generation is not sufficient for infinite

groups. For example, the infinite alternating group A∞ is simple but not finitely gener-
ated, let alone 3

2 -generated. However, the author is not aware of any 2-generated group
with no noncyclic proper quotients that is not 3

2 -generated.
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The 3
2 -Generation Conjecture is true for soluble groups [8, Theorem 2.01]. Recent work of

Guralnick [32] establishes a reduction of the conjecture to the almost simple groups. A
group G is almost simple if T 6 G 6 Aut(T) for a nonabelian simple group T. In this case,
T is the socle of G. Therefore, to prove the 3

2 -Generation Conjecture for almost simple
groups is exactly to prove that 〈T, θ〉 is 3

2 -generated for all nonabelian simple groups T
and automorphisms θ ∈ Aut(T).

The alternating and symmetric groups of degree at least 5 have been known to be
3
2 -generated since the work of Piccard in 1939 [56], to which Steinberg refers in the quote
above. In addition, the 3

2 -generation of the relevant almost simple sporadic groups (and
the two further almost simple cyclic extensions of A6) follows from the computational
results of Breuer, Guralnick and Kantor [10] (see also [64]). Therefore, to prove the
3
2 -Generation Conjecture, it suffices to focus on almost simple groups of Lie type.

In 2013, Burness and Guest [18] proved the 3
2 -Generation Conjecture for almost simple

groups with socle PSLn(q). They followed the probabilistic approach of Guralnick and
Kantor in [33] but brought a powerful technique to the problem: Shintani descent (see p.5).
This thesis is inspired by the work of Guralnick and Kantor and of Burness and Guest.

In this thesis we prove the following theorem.

Theorem. Let G be an almost simple group whose socle is a symplectic or orthogonal group
other than PΩ+

8 (q). Then G is 3
2 -generated if every proper quotient of G is cyclic.

There are natural generalisations of 3
2 -generation.

Definition. Let G be a finite group.

(i) The spread of G, written s(G), is the greatest integer k such that for any k nontrivial
elements x1, . . . , xk, there exists y ∈ G such that

〈x1, y〉 = 〈x2, y〉 = · · · = 〈xk, y〉 = G.

(ii) The uniform spread of G, written u(G), is the greatest integer k for which there exists
a fixed conjugacy class C such that for any k nontrivial elements x1, . . . , xk, there
exists an element y ∈ C satisfying the above equalities.

Observe that s(G) > u(G) and that s(G) > 1 if and only if G is 3
2 -generated.

If G is simple, then Breuer, Guralnick and Kantor [10] proved that u(G) > 2 with equality
if and only if G ∈ {A5, A6, Ω+

8 (2)} or G is Sp2m(2) for m > 3. This generalises the result
that s(G) > 1 for simple groups G. Moreover, if (Gi) is a sequence of simple groups with
|Gi| → ∞, then Guralnick and Shalev [37] proved that u(Gi) → ∞ if and only if there
is not an infinite subsequence consisting of: alternating groups of degree all divisible
by a fixed prime; or odd-dimensional orthogonal groups over a field of fixed size; or
symplectic groups over a field of even characteristic and fixed size.

3



1. INTRODUCTION

It is natural to seek analogues of these stronger results for almost simple groups. If G
is an almost simple group with socle PSLn(q), then Burness and Guest [18] proved that
u(G) > 2, unless G = PSL2(9).2 ∼= S6, for which s(G) = 2 but u(G) = 0. Moreover, they
determined when sequences of such groups have bounded uniform spread. In this thesis
we establish similar results for almost simple symplectic and orthogonal groups.

We now present our two main results of the thesis.

Theorem A. Let G be an almost simple group whose socle is a symplectic or orthogonal group
other than PΩ+

8 (q). If G/soc(G) is cyclic, then u(G) > 2, unless G = Sp4(2)
′.2 ∼= S6.

Theorem B. Let (Gi) be a sequence of almost simple groups whose socles are symplectic or
orthogonal groups other than PΩ+

8 (q). Assume that Gi/soc(Gi) is cyclic and |Gi| → ∞. Then
u(Gi)→ ∞ if (Gi) does not have an infinite subsequence of groups satisfying one of the following

(i) soc(Gi) = Sp2mi
(q) for a fixed even q

(ii) soc(Gi) = Ω2mi+1(q) for a fixed odd q

(iii) soc(Gi) = PΩ±2mi
(q) for a fixed q and Gi contains a graph automorphism.

Moreover, the spread of the groups in (i) and (ii) is bounded.

The author suspects that the spread of the groups in (iii) is also bounded, and this will
feature in future work (see Remark 5.3.25).

For symplectic and odd-dimensional orthogonal groups, we establish stronger results
and we refer the reader to the introduction to Chapter 4 for statements and discussions
of these results (particularly Theorems 4C and 4D).

Let us now turn to a brief discussion of the techniques employed in this thesis. The
framework for proving Theorems A and B is given by the probabilistic method intro-
duced by Guralnick and Kantor [33]. We give a full account of this method in Section 2.1.
The general idea is to select an element s ∈ G and show that sG witnesses that u(G) > k.
To do this, we let P(x, s) be the probability that 〈x, z〉 6= G for a random conjugate z
of s. Evidently, u(G) > 1 if P(x, s) < 1 for all nontrivial x ∈ G. Indeed, u(G) > k if
P(x, s) < 1

k for all prime order x ∈ G (see Lemma 2.1.1(i)).

LetM(G, s) be the set of maximal subgroups of G that contain s. In addition, for H 6 G
and x ∈ G, let fpr(x, G/H) be the fixed point ratio of x in the action of G on G/H. Then,
by Lemma 2.1.1(ii)

P(x, s) 6 ∑
H∈M(G,s)

fpr(x, G/H).

Therefore, our probabilistic method has three steps: select an appropriate element s ∈ G,
determineM(G, s) and use fixed point ratio estimates to bound P(x, s).

4



Selecting a viable element s ∈ G is perhaps the most interesting and challenging aspect
of the proofs. Write G = 〈T, θ〉 where T = soc(G) and θ ∈ Aut(T). If sG witnesses
u(G) > k > 0, then s is not contained in any proper normal subgroup of G, so we may
assume that s ∈ Tθ. Consequently, we need to understand the conjugacy classes in the
coset Tθ. In many cases, we apply Shintani descent to do this.

The modern way of studying the finite groups of Lie type is to view them as the fixed
points under Steinberg endomorphisms of simple algebraic groups. Shintani descent is a
technique residing in this general setting, which in the main part has been applied in
character theory [41, 58]. At the heart of this method is a bijection with useful group the-
oretic properties that, given a connected algebraic group X, a Steinberg endomorphism
σ of X and an integer e > 1, provides a correspondence between the conjugacy classes of
elements in the coset Xσe σ and in the subgroup Xσ. We use this bijection to transform a
problem about almost simple groups into one about simple groups.

In this thesis we provide new ways of using Shintani descent to overcome various diffi-
culties and subtleties which the symplectic and orthogonal groups pose. For example,
even-dimensional orthogonal groups have a particularly intricate automorphism group;
Sp4(2

f ) admits a graph-field automorphism; and symplectic groups in even character-
istic have orthogonal groups as subgroups. We discuss these topics at length in the
introductions to Chapters 4 and 5.

Our framework for understandingM(G, s) is provided by Aschbacher’s subgroup struc-
ture theorem for finite classical groups [1] (see Section 2.5). The general idea of this
theorem is that the maximal subgroups of classical groups are the stabilisers of geomet-
ric structures on the natural module, unless they arise from an absolutely irreducible
representation of a quasisimple group. By studying how our chosen element, or a suit-
able power thereof, acts on the natural module, we can constrain the possible maximal
subgroups that could contain this element.

Once we have a description ofM(G, s), we use fixed point ratio estimates to bound
P(x, s). There is a vast literature on fixed point ratios for primitive actions of almost
simple groups, and these quantities find applications to a wide variety of problems. In
Chapter 3, we comment on some of these applications, record general results in this area
and prove new fixed point ratio bounds that we require for our proofs.

The techniques developed in this thesis provide a framework for proving the 3
2 -Genera-

tion Conjecture for the remaining almost simple classical groups, namely, those whose
socles are PΩ+

8 (q) or unitary, and this will be the subject of imminent future work. For
example, the obstacles posed by the twisted nature of the unitary groups can be sur-
mounted using the methods developed for working with the minus-type orthogonal
groups (see Remark 5.3.27). The group PΩ+

8 (q) is the most exceptional classical group of
Lie type. Both its triality automorphism and its low rank pose challenges, but we have
strategies for facing them (see Remark 5.3.26).

5



1. INTRODUCTION

The almost simple exceptional groups pose different challenges. On the one hand, the
automorphism groups of exceptional groups have a more transparent structure and the
setup afforded by Shintani descent presented in this thesis will provide a framework
for proving the 3

2 -Generation Conjecture for these groups. On the other hand, we will
need to use different techniques to study the maximal overgroups in exceptional groups.
Through the study of the exceptional groups in future work the author aims to prove the
3
2 -Generation Conjecture in full generality.

The work in this thesis suggests the following two conjectures, which aver that spread
and uniform spread are intimately connected.

Conjecture A. Let G be a nonabelian finite group other than the symmetric group S6. Then

s(G) > 1 ⇐⇒ s(G) > 2 ⇐⇒ u(G) > 1 ⇐⇒ u(G) > 2.

Moreover, each of these conditions is equivalent to every proper quotient of G being cyclic.

Conjecture B. Let (Gi) be a sequence of nonabelian finite groups. Then

s(Gi)→ ∞ ⇐⇒ u(Gi)→ ∞.

Recall that s(S6) = 2 but u(S6) = 0. As far as the author is aware, the only known family
of nonabelian simple groups for which s(G)− u(G) is unbounded is G = PSL2(p) where
p is a prime number satisfying p ≡ 3 (mod 4) (see [21, Proposition 7.4]).

If Conjectures A and B could be reduced to the almost simple groups, then Theorems A
and B would play an important role in proving them.

To conclude this introduction, let us highlight a combinatorial connection to this work.
The generating graph of a group G is the graph Γ(G) whose vertices are the nontrivial
elements of G and where two vertices g and h are adjacent if 〈g, h〉 = G. The generating
graphs of the dihedral group D8 and the alternating groups A4 and A5 are given below.

abb

a3b a2b

a3a

a2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)
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Evidently, Γ(G) has no isolated vertices if and only if G is 3
2 -generated. Indeed, the

dichotomy is demonstrated by Γ(D8) and Γ(A4), where we note that D8 has a noncyclic
quotient whereas A4 does not. Further, if s(G) > 2, then Γ(G) is connected with diameter
at most 2. Therefore, by [10, Theorem 1.2], the diameter of the generating graph of any
nonabelian finite simple group is two.

Many other natural questions about generating graphs have been investigated in recent
years. For instance, if G is a sufficiently large simple group, then Γ(G) is Hamiltonian (that
is, has a cycle containing every vertex exactly once) [11]. Moreover, if n > 120, then the
generating graphs Γ(An) and Γ(Sn) are Hamiltonian [28]. Indeed, it is conjectured that
for all finite groups G of order at least four, the generating graph Γ(G) is Hamiltonian if
and only if every proper quotient of G is cyclic. This is a significant strengthening of the
3
2 -Generation Conjecture.

In a different direction, the total domination number of a graph Γ is the minimal size of a
set S of vertices of Γ such that every vertex of Γ is adjacent to a vertex in S. In recent work
of the author and Burness [20, 21], close to best possible bounds on the total domination
number of generating graphs of simple groups were obtained, together with related
probabilities. For instance, there are infinitely many finite simple groups G for which the
total domination number of Γ(G) is the minimal possible value of two (for example, Ap

when p > 13 is prime, PSLn(q) when n > 3 is odd, E8(q) and the Monster). This is a vast
generalisation of the fact that these groups are 3

2 -generated.

For further reading on group generation, especially in the context of simple groups and
probabilistic methods, see Burness’ recent survey article [16]. The recent paper of Burness
and the author [21] also features a detailed account of the spread of simple groups and
related groups.
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2
Preliminaries

In this chapter we introduce background material for the work in Chapters 3–5. All of
the original work in this chapter can be found in Section 2.3, where we study semisimple
elements, and Section 2.7 on Shintani descent; the remainder of the material in this
chapter is well known, but we see benefit in collecting it together here.

Notational conventions

Let a, b, n be positive integers and let G, H be groups. Throughout this thesis we write

(a, b) for the greatest common divisor of a and b

ab for the greatest power of b dividing a

δab for the Kronecker delta

log a for the base two logarithm of a

Cn (or simply n) for the cyclic group of order n

G.H for an unspecified extension of G by H (with quotient H)

G:H for an unspecified split extension of G by H

G× H for the direct product of G and H

G ◦ H for the central product of G and H

G o H for the wreath product Gn:H where H 6 Sn permutes the factors of Gn

Groups always act on the right. Accordingly, matrices act on the right of row vectors, xg

denotes g−1xg and G/H is the set of right cosets of H in G.

9



2. PRELIMINARIES

2.1 Probabilistic method

Probabilistic methods featuring fixed point ratios, introduced below, are a fruitful means
of studying a vast range of problems. Indeed these methods led to the resolution of the
Cameron–Kantor conjecture on base sizes of permutation groups [52] and the Guralnick–
Thompson conjecture on monodromy groups [30]. The lecture notes [15] provide an
excellent overview of this topic. In this section, we outline the probabilistic method for
studying uniform spread introduced by Guralnick and Kantor [33].

Let G be a finite group acting on a finite set Ω. The fixed point ratio of x ∈ G is

fpr(x, Ω) =
fix(x, Ω)

|Ω| where fix(x, Ω) = |{ω ∈ Ω | ωx = ω}|.

Evidently, 0 6 fpr(x, Ω) 6 1 with the lower and upper bounds achieved if and only if
x is derangement or x is in the kernel of the action, respectively. If H 6 G, then G acts
transitively on the set G/H of right cosets of H in G and one sees that

fpr(x, G/H) =
|xG ∩ H|
|xG| .

We discuss recent work on fixed point ratios, particularly in the context of primitive
actions of almost simple groups, at the opening of Chapter 3.

Let us now describe the probabilistic method for uniform spread. For x, s ∈ G, write

P(x, s) =
|{z ∈ sG | 〈x, z〉 6= G}|

|sG| (2.1)

the probability that x does not generate G with a (uniformly) randomly chosen conjugate
of s. Moreover, letM(G, s) be the set of maximal subgroups of G that contain s. The
following lemma encapsulates the method (see [18, Lemmas 2.1 and 2.2]).

Lemma 2.1.1. Let G be a finite group and let s ∈ G.

(i) For x ∈ G,
P(x, s) 6 ∑

H∈M(G,s)
fpr(x, G/H).

(ii) If for all k-tuples (x1, . . . , xk) of prime order elements of G

k

∑
i=1

P(xi, s) < 1,

then u(G) > k with respect to the conjugacy class sG.

Proof. For (i), let x ∈ G. Then 〈x, sg〉 6= G if and only if x ∈ Hg, or equivalently xg−1 ∈ H,
for some H ∈ M(G, s). Therefore,

P(x, s) =
|{z ∈ sG | 〈x, z〉 6= G}|

|sG| 6 ∑
H∈M(G,s)

|xG ∩ H|
|xG| = ∑

H∈M(G,s)
fpr(x, G/H).

10



2.1. Probabilistic method

For (ii), fix k. To prove that u(G) > k with respect to the class sG, it suffices to prove that
for all elements x1, . . . , xk ∈ G of prime order there exists z ∈ sG such that 〈xi, z〉 = G for
all 1 6 i 6 k. Therefore, let x1, . . . , xk ∈ G have prime order. If ∑k

i=1 P(xi, s) < 1, then

1− |{z ∈ sG | 〈xi, z〉 = G for all 1 6 i 6 k}|
|sG| 6

k

∑
i=1

P(xi, s) < 1,

so there exists z ∈ sG such that 〈xi, z〉 = G for all 1 6 i 6 k. This completes the proof.

We present a basic example to highlight how we apply Lemma 2.1.1.

Example 2.1.2. Let G = A5. We will prove that u(G) > 2.

Step 1: Select a particular element

We must first fix s ∈ G. In light of the steps that follow, we should choose an element s
that is contained in few and small maximal subgroups of G. We will select s = (1 2 3 4 5).

Step 2: Study the element’s maximal overgroups

There are three conjugacy classes of maximal subgroups of G, which are isomorphic
to A4, S3 and D10. Write H = NG(〈s〉) ∼= D10. Evidently, any subgroup containing s is
conjugate to H, and one quickly sees that, in fact,M(G, s) = {H}.

Step 3: Bound a probability using fixed point ratios

Let x ∈ G have prime order r. By Lemma 2.1.1(i),

P(x, s) 6 fpr(x, G/H) =
|xG ∩ H|
|xG| .

If r = 3, then P(x, s) = |xG ∩ H| = 0, since H contains no elements of order 3. Next,
if r = 2, then |xG| = 15 and |xG ∩ H| = 5, since all involutions in G are conjugate,
so P(x, s) = 1

3 . Finally, if r = 5, then we check that |xG| = 12 and |xG ∩ H| = 2, so
P(x, s) = 1

6 . Therefore, in all cases, P(x, s) < 1
2 , so Lemma 2.1.1(ii) gives u(G) > 2.

In fact, s(G) = u(G) = 2 since there is no element g ∈ G such that

〈(1 2)(3 4), g〉 = 〈(1 2)(4 5), g〉 = 〈(1 2)(3 5), g〉 = G.

The above example, demonstrates that our approach demands control over three factors,
which could be crudely summarised as: well-chosen elements, maximal subgroups and
fixed point ratios. For this reason, much of Chapters 2 and 3 focus on these three topics.
The example also demonstrates the power of the probabilistic method: in this case it gave
the exact value of the uniform spread (indeed spread).

We conclude this section with a straightforward application of fixed point ratios.

Lemma 2.1.3. Let G be a finite group, let H 6 G and let x ∈ G. Then the number of G-
conjugates of H that contain x is fpr(x, G/H) · |G : NG(H)|.

11



2. PRELIMINARIES

2.2 Classical groups

In this section, we fix our notation for symplectic and orthogonal groups and record some
basic facts. A full account can be found in [43, Chapter 2]. Throughout this section, V is
an n-dimensional vector space over a field F of characteristic p > 0. (From Section 2.2.2
onwards we will assume that F is either finite or algebraically closed.)

2.2.1 Symplectic and orthogonal groups

We write ΓL(V), GL(V), SL(V) for the groups of invertible transformations of V that are
semilinear, linear and linear with determinant one, respectively. We also write ΓLn(F),
GLn(F), SLn(F) for these groups. If F = Fq, then we write GLn(q) rather than GLn(Fq),
and similarly for all of the other classical groups.

Let Z(V) 6 GL(V) 6 ΓL(V) be the group of scalar transformations, which is the centre
of GL(V) and is normal in ΓL(V). This gives projective groups PGL(V) = GL(V)/Z(V)

and PΓL(V) = ΓL(V)/Z(V). In general, for a classical group G 6 ΓL(V), we write
PG = GZ(V)/Z(V) ∼= G/(G ∩ Z(V)). In particular, PSL(V) ∼= SL(V)/Z(SL(V)).

Let κ be a bilinear form (·, ·) (or quadratic form Q) on V. A map g ∈ ΓL(V) is

(i) an isometry of κ if for all u, v ∈ V we have (ug, vg) = (u, v) (or Q(vg) = Q(v))

(ii) a similarity of κ if there exists τ(g) ∈ F× such that for all u, v ∈ V we have
(ug, vg) = τ(g)(u, v) (or Q(vg) = τ(g)Q(v))

(iii) a semisimilarity of κ if there exists τ(g) ∈ F× and α(g) ∈ Aut(F) such that for all
u, v ∈ V we have (ug, vg) = τ(g)(u, v)α(g) (or Q(vg) = τ(g)Q(v)α(g)).

The sets of isometries, similarities and semisimilarities of such a form are groups under
composition. If (·, ·) is the bilinear form defined as (u, v) = 0 for all u, v ∈ V, then GL(V)

is the isometry and similarity group of (·, ·) on V and ΓL(V) is the semisimiliarity group.

Let κ = (·, ·) be a bilinear form on V. Recall that κ is nondegenerate if

rad(κ) = {u ∈ V | (u, v) = 0 for all v ∈ V} = 0. (2.2)

If n = 2m and (·, ·) is a symplectic form (that is, a nondegenerate alternating bilinear form),
then we write Sp(V), GSp(V) and ΓSp(V) for the groups of isometries, similarities and
semisimilarities of (·, ·) on V.

Next let Q be a quadratic form on V, with associated bilinear form (·, ·)Q defined as

(u, v)Q = Q(u + v)−Q(u)−Q(v).

The norm of a vector v ∈ V is (v, v)Q. Note that (v, v)Q = 2Q(v), so Q is determined by
(·, ·)Q if p is odd, but (·, ·)Q is alternating (and does not determine Q) if p = 2. Now Q is
nondegenerate if (·, ·)Q is nondegenerate, and Q is nonsingular if

rad(Q) = {u ∈ V | Q(u) = 0 and (u, v)Q = 0 for all v ∈ V} = 0. (2.3)
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2.2. Classical groups

If Q is a nonsingular quadratic form on V, then we write O(V), GO(V) and ΓO(V) for
the groups of isometries, similarities and semisimilarities of Q on V, and we write

SO(V) = {g ∈ O(V) | det(g) = 1}.

Note that SO(V) = O(V) if p = 2 and |O(V) : SO(V)| = 2 if p is odd.

If κ = (·, ·) is a bilinear form on V and B = (u1, . . . , un) is a basis for V, then the n× n
matrix M = (mij) defined as mij = (ui, uj) is the matrix of κ with respect to B. If g ∈ GL(V)

is a similarity of κ, then gMgT = τ(g)M, where AT is the transpose of a matrix A.

Remark 2.2.1. The notation introduced in this section is consistent with [2, 10, 17, 31, 43],
sources to which we often refer. However, this notation is not universal. In particular,
CSp, CO and GO often refer to the groups denoted here as GSp, GO and O, respectively
(where C stands for conformal). This alternative is adopted in MAGMA [5], extends the
ATLAS notation of writing GO for O [24, 63] and is closer to the notation of [7].

2.2.2 Forms and bases

From now on in Section 2.2, we assume that F is a finite field Fq, where q = p f , or is an
algebraically closed field (of characteristic p > 0).

First consider symplectic forms. If n is odd, then V does not admit a symplectic form.
Therefore, we assume that n = 2m. Up to isometry, there is a unique symplectic form on
V, so we may write Sp2m(F) for Sp(V) and GSp2m(F) for GSp(V). Fix the standard basis

B = (e1, f1, . . . , em, fm)

for V and define the bilinear form (·, ·) as

(ei, ej) = ( fi, f j) = 0, (ei, f j) = δij. (2.4)

We now turn to quadratic forms. The Witt index of a quadratic form on V is the dimension
of a maximal totally singular subspace of V with respect to the form.

First assume that n is even and write n = 2m. Any nondegenerate quadratic form on V
has Witt index m or m− 1, and two nondegenerate quadratic forms are isometric if and
only if they have the same Witt index. Those with Witt index m are said to be plus-type
and Witt index m− 1 are minus-type. If F is algebraically closed, then all nondegenerate
quadratic forms are plus-type, but both isometry classes are realised when F is finite. For
ε ∈ {+,−}, we write sgn(Q) = ε when Q is ε-type.

With respect to the basis
B+ = (e1, f1, . . . , em, fm)

define the quadratic form Q+, with associated bilinear form (·, ·) = (·, ·)Q+ , as

Q+(ei) = Q+( fi) = 0, (ei, f j) = δij. (2.5)
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2. PRELIMINARIES

Now assume that F = Fq. Deviating from [43] and following [31], fix a basis

B− = (e1, f1, . . . , em−1, fm−1, um, vm)

and define Q− and (·, ·) = (·, ·)Q− as

Q−(ei) = Q−( fi) = (ei, um) = ( fi, um) = (ei, vm) = ( fi, vm) = 0,

(ei, f j) = δij, Q−(um) = Q−(vm) = 1, (um, vm) = ξ2 + ξ−2
(2.6)

where ξ ∈ Fq2 \ Fq satisfies ξq+1 = 1.

As the notation suggests, sgn(Qε) = ε, and we write Oε
2m(F) for O(V) when V is

equipped with the ε-type form Qε. When F is algebraically closed, we will usually
omit the + sign.

Now assume that n is odd and write n = 2m + 1. Fix a basis

B = (e1, f1, . . . , em, fm, x)

and define Q and (·, ·) = (·, ·)Q as

Q(ei) = Q( fi) = 0, Q(x) = 1, (ei, f j) = δij, (ei, x) = ( fi, x) = 0. (2.7)

For now assume that p is odd. Then Q is the unique nondegenerate quadratic form on V
up to similarity, and since similar forms have isomorphic isometry groups, we can write
O2m+1(F) for O(V). (If F is finite, then are exactly two isometry classes of nondegenerate
quadratic forms, see Remark 2.2.2.) It is sometimes convenient to write sgn(Q) = ◦ and
O◦2m+1(F) = O2m+1(F) in this case.

Now assume that p = 2. In this case, all quadratic forms on V are degenerate. The
form Q from (2.7) is the unique nonsingular (degenerate) quadratic form on V, up to
similarity, and we write O2m+1(F) for O(V). (Notice that 〈x〉 is the radical of (·, ·), see
(2.2)). We rarely consider this group since O2m+1(F) ∼= Sp2m(F) (see [63, Section 3.4.7]
and Lemma 2.6.2). Unless we specify otherwise, for O2m+1(F) we assume that p is odd.

Remark 2.2.2. Assume that F = Fq where q is odd. Write (F×q )2 for the index two
subgroup of squares in F×q and write F×q /(F×q )2 = {�,�}, where � denotes (F×q )2.

Let Q be a nondegenerate quadratic form on V = Fn
q and let (·, ·) be the associated

bilinear form. Fix a basis (u1, . . . , un) for V and let M = ((ui, uj)) be the matrix of (·, ·).
The discriminant of Q is the element of F×q /(F×q )2 defined as

D(Q) = det(M) (mod (F×q )2). (2.8)

The discriminant D(Q) is independent of the basis [43, pp.31–32] and determines the
isometry type of Q [43, Propositions 2.5.4 and 2.5.10]. In particular, if n = 2m, then

D(Q) = � ⇐⇒ qm ≡ sgn(Q) (mod 4), (2.9)

where we interpret sgn(Q) as the integer 1 or −1.
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2.2. Classical groups

Table 2.1: Finite simple classical groups

PSLn(q) PSUn(q) PSpn(q) PΩε
n(q)

lower bound on n 2 3 4 7
excluded (n, q) (2, 2), (2, 3) (3, 2) (4, 2)

By a finite simple classical group we mean one of the groups in Table 2.1. These groups are
simple and each excluded group is either not simple or coincides with another simple
group [43, Theorem 2.1.3 and Proposition 2.9.1].

Remark 2.2.3. We make passing references to unitary groups, a thorough treatment of
which is in [43, Section 2.3]. We adopt the convention that GUn(q) and CUn(q) are the
isometry and similarity groups of a nondegenerate conjugate-symmetric sesquilinear
form on Fn

q2 with respect to the field automorphism λ 7→ λq. Therefore, GUn(q) is
naturally a subgroup of GLn(q2) (not GLn(q)). Write SUn(q) = GUn(q) ∩ SLn(q2) and,
by analogy with orthogonal groups, GL+ = GL and GL− = GU.

Remark 2.2.4. Although we use notation such as Sp2m(q) and GO−2m(q), the elements of
these groups are linear maps on a fixed vector space V which preserve a fixed quadratic
or bilinear form; the elements are not matrices. Indeed, we will use a number of different
bases to specify elements in these groups.

2.2.3 Similarities

Continue to assume that F is finite or algebraically closed and has characteristic p. We
use this section to record some properties of similarities in symplectic and orthogonal
groups. We begin with a technical result on the similarity map τ.

Lemma 2.2.5. Let G be GSp(V) or GO(V). For g, h ∈ G,

(i) τ(gh) = τ(g)τ(h)

(ii) if gZ(G) = hZ(G), then τ(g)τ(h)−1 ∈ (F×)2.

Proof. We will prove the result for G = GO(V) since the proof is very similar when
G = GSp(V). Let Q be the quadratic form defining GO(V). Let v ∈ V. Then

Q(v(gh)) = Q((vg)h) = τ(h)Q(vg) = τ(g)τ(h)Q(v),

so τ(gh) = τ(g)τ(h), which proves (i). Turning to (ii), assume that gZ(G) = hZ(G).
Then g = λh for some λ ∈ F×. Consequently, using part (i),

τ(g)τ(h)−1 = τ(λIn)τ(h)τ(h)−1 = τ(λIn) = λ2 ∈ (F×)2,

where τ(λIn) = λ2 since Q(vλIn) = Q(λv) = λ2Q(v). This completes the proof.
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For an element g of PGSp(V) or PGO(V), Lemma 2.2.5 justifies us considering τ(g)
as an element of (F×)/(F×)2. If F is algebraically closed or is a finite field of even
characteristic, then (F×)2 = F×. If F is a finite field of odd characteristic, then we will
write (F×)/(F×)2 = {�,�}.

Lemma 2.2.6. Let (C, G) be (GSp(V), Sp(V)) or (GO(V), O(V)), let Z = Z(GL(V)) and
let g ∈ C. Then gZ ∈ PG if and only if τ(g) ∈ (F×)2.

Proof. If τ(g) ∈ λ2 for some λ ∈ F×, then, by Lemma 2.2.5, τ(λ−1g) = λ−2λ2 = 1, so
λ−1g ∈ G and gZ = λ−1gZ ∈ PG. Conversely, if gZ ∈ PG, then λg ∈ G, for some
λ ∈ F×, so τ(g) = λ−2τ(λg) = λ−2 ∈ (F×)2, which completes the proof.

We conclude with a property of similarities.

Lemma 2.2.7. Let G be GSp(V) or GO(V) and let g ∈ G. Then g and τ(g)g−1 are similar. In
particular, if τ(g) = 1, then g and g−1 are similar.

Proof. We will prove the result for G = GO(V) since the proof is similar and easier when
G = GSp(V). Let Q be the quadratic form defining GO(V) and let (·, ·) be the bilinear
form associated to Q. Fix a basis (u1, . . . , un) for V and let M = (mij) be the n× n matrix
where mij = (ui, uj). Let g ∈ GO(V). Since g is a similarity of Q, for all u, v ∈ V,

(ug, vg) = Q(ug+ vg)−Q(ug)−Q(vg) = τ(g)(Q(u+ v)−Q(u)−Q(v)) = τ(g)(u, v).

Therefore, gMgT = τ(g)M, so gM = τ(g)g−T. Consequently, g is similar to τ(g)g−T,
which is evidently similar to τ(g)g−1. This completes the proof.

2.2.4 Reflections

We will now introduce a particularly important class of elements in orthogonal groups.
Recall that F is finite or algebraically closed and has characteristic p. Let V = Fn be
equipped with a nondegenerate quadratic form Q with bilinear form (·, ·).

Let v ∈ V be nonsingular. The reflection in v is the map rv : V → V defined for u ∈ V as

urv = u− (u, v)
Q(v)

v.

If p is odd, then reflections are always isometries. If p = 2, then rv ∈ O(V) if and only if
Q(v) = 1, in which case we may write

urv = u + (u, v)v,

and rv is referred to as a transvection. For uniformity, following [43], we still refer to rv as
a reflection (rather than transvection) in characteristic two.

The following result is proved in [2, 22.7].

Theorem 2.2.8. Let G = O(V). Then G is generated by reflections unless G = O+
4 (2).

The group O+
4 (2) is a genuine exception and we refer the reader to [43, Proposition 2.5.9].
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2.2.5 The group Ω(V)

In this section, we restrict F slightly further: we will assume that F is an algebraically
closed field of characteristic p = 2 or a finite field (of any characteristic p > 0). Let V = Fn

be equipped with a nondegenerate quadratic form Q with bilinear form (·, ·). The aim
of this section is to define an important index two subgroup Ω(V) of SO(V). In light of
Theorem 2.2.8, we assume that (n, F, sgn(Q)) 6= (4,F2,+) (see [43, Proposition 2.5.9] for
the definition of Ω+

4 (2)).

First assume that p = 2. By Theorem 2.2.8, every element of SO(V) = O(V) is a product
of reflections. We define Ω(V) to be the group of all elements that are a product of an
even number of reflections (which is well-defined, see [2, 22.8 and 22.9]).

Remark 2.2.9. When F is an algebraically closed field of characteristic two, our defini-
tions of Ω(V) and SO(V), which are the conventions of [31], are not widespread and
often SO(V) is used to refer to the group we call Ω(V) (for example, in [53]). However,
the author chose this notation since it accords more strongly with the notation for finite
groups and he imagines that many readers would simply, and reasonably, assume that
SO(V) = O(V) ∩ SL(V).

Now assume that p is odd. Therefore, under our assumption of this section, F is finite.
Write F = Fq where q = p f . In this case, reflections have determinant−1, so the subgroup
of O(V) containing the elements that are a product of an even number of reflections is
simply SO(V). Therefore, we need to define Ω(V) differently in this case.

The spinor norm is the map sp : SO(V)→ F×q /(F×q )2 defined as follows. For g ∈ SO(V),
write g = rv1 · · · rvk and let

sp(g) =
k

∏
i=1

(vi, vi) (mod (F×q )2). (2.10)

By [2, 22.10], sp is well-defined, and we define Ω(V) = ker(sp).

2.2.6 The group DO(V)

We return to our usual assumption that F is finite or algebraically closed and has char-
acteristic p. Let n = 2m and equip V = F2m with a nondegenerate quadratic form Q. In
this section, we coin a useful piece of notation for a particular subgroup of GO(V).

First assume that p is odd. If g ∈ GO(V), then Lemma 2.2.7 implies that g is similar to
τ(g)g−1, so det(g) = ±τ(g)m. This motivates the following definition:

DO(V) = {g ∈ GO(V) | det(g) = τ(g)m}. (2.11)

Informally, DO(V) is to GO(V) as SO(V) is to O(V). Indeed, DO(V) ∩O(V) = SO(V).

If p = 2, then we simply define

DO(V) = Ω(V). (2.12)
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2.2.7 Automorphisms

In this section, we write q = p f and we will describe Aut(PSpn(q)) and Aut(PΩε
n(q))

in terms of classical groups introduced throughout Section 2.2. If T is any finite simple
group, then Out(T) = Aut(T)/T is a known soluble group, where we identify T with
Inn(T) (which we always do). We discuss automorphisms again, from the perspective of
algebraic groups, in Section 2.6.6, and we provide much more detail on automorphisms
in Sections 4.1 and 5.1. The results of this section are given in [43, Section 2.1].

By H 6k G we mean that H is an index k subgroup of G.

Symplectic groups

Let n > 4 be even. Since Sp4(2) ∼= S6, assume that (n, q) 6= (4, 2). For d = (p− 1, 2),

Z(Spn(q)) = 〈−In〉 ∼= Cd.

In addition, we have the chain of subgroups

PSpn(q) 6d PGSpn(q) 6 f PΓSpn(q) 6γ1 Aut(PSpn(q))

where γ1 = 1 unless (n, p) = (4, 2) when γ1 = 2. The group Sp4(2
f ) has an exceptional

graph-field automorphism, which accounts for γ1 > 1 (see (4.5) in Section 4.1.2).

Odd-dimensional orthogonal groups

Let n > 7 be odd and let p be odd. Then Z(Ωn(q)) = 1 and

Ωn(q) 62 SOn(q) = PSOn(q) = POn(q) = PGOn(q) 6 f PΓOn(q) = Aut(Ωn(q)).

Even-dimensional orthogonal groups

Let n > 8 be even and let ε ∈ {+,−}. Let γ2 = 1 unless (n, ε) = (8,+) when γ2 = 3. If
p = 2, then Z(Ωε

n(q)) = 1 and

Ωε
n(q) 62 SOε

n(q) = Oε
n(q) = POε

n(q) = PGOε
n(q) 6 f PΓOε

n(q) 6γ2 Aut(Ωε
n(q)).

Now assume that p is odd. In this case, Z(SOε
n(q)) = 〈−In〉 ∼= C2. For c = 1

2 (q
m − ε, 4),

Z(Ωε
n(q)) ∼= Cc,

see [43, Proposition 2.5.13], and

PΩε
n(q) 6c PSOε

n(q) 62

 POε
n(q)

PDOε
n(q)

 62 PGOε
n(q) 6 f PΓOε

n(q) 6γ2 Aut(PΩε
n(q)).

The group PΩ+
8 (q) has an exceptional triality graph automorphism, which accounts for

γ2 > 1, and we discuss this group in Remark 5.1.15.
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2.3 Semisimple elements in classical groups

We use Sections 2.3.1–2.3.4 to record a variety of useful information about classical groups
and their actions on vector spaces. In Section 2.3.5, we apply this information to studying
semisimple elements. Section 2.3.6 is more specialised and here we define certain types of
elements, which play an important role in Chapters 4 and 5.

2.3.1 Subspaces and decompositions

In this section, V = Fn where n > 1 and F is a field.

Let D be a direct sum decomposition V = V1 ⊕ · · · ⊕ Vk or a tensor product decomposition
V = V1⊗ · · · ⊗Vk, where dim Vi > 1 in the latter case. We say that D is nontrivial if k > 1.
We will routinely identify D with the set {V1, . . . , Vk}, so, for G 6 GL(V), we write

(i) GD = G{D} for the setwise stabiliser of D in G, which we call the stabiliser of D

(ii) G(D) for the pointwise stabiliser of D in G, which we call the centraliser of D.

If V is equipped with a form, then V = V1 ⊥ · · · ⊥ Vk refers to a direct sum decomposi-
tion where V1, . . . , Vk are pairwise orthogonal nondegenerate subspaces.

An element or subgroup of GL(V) or PGL(V) is reducible if it stabilises a proper nonzero
subspace of V and irreducible otherwise. Moreover, an irreducible subgroup is imprimitive
if it stabilises a nontrivial direct sum decomposition of V and primitive otherwise.

If an element g ∈ GL(V) centralises the decomposition D and acts as gi on Vi, then
we write g as g1 ⊕ · · · ⊕ gk, or g1 ⊥ · · · ⊥ gk, or g1 ⊗ · · · ⊗ gk, according to the type of
decomposition. This representation of g is unique if D is a direct sum decomposition. If
D is a tensor product decomposition and g1 ⊗ · · · ⊗ gk = h1 ⊗ · · · ⊗ hk, then there exist
λ1, . . . , λk ∈ F× satisfying λ1 · · · λk = 1 and hi = λigi.

We now present some representation theoretic results on direct sums. The following is
entirely analogous to Goursat’s Lemma from group theory (see [44, p.75] for example).

Lemma 2.3.1 (Goursat’s Lemma). Let G 6 GL(V) centralise V = V1 ⊕ V2. Let U be an
FG-submodule of V. Then there exist FG-submodules W1 6 U1 6 V1 and W2 6 U2 6 V2 and
an FG-isomorphism ϕ : U1/W1 → U2/W2 such that

U = {(u1, u2) ∈ U1 ⊕U2 | ϕ(W1 + u1) = W2 + u2}.

Proof. Let πi : U → Vi be the projection map (u1, u2) 7→ ui and let Ui = πi(U). Write
W1 = {u1 ∈ U1 | (u1, 0) ∈ U} ∼= ker π2 and W2 = {u2 ∈ U2 | (0, u2) ∈ U} ∼= ker π1.

Let u1 ∈ U1. Since U1 = π1(U), there exists u2 ∈ U2 such that (u1, u2) ∈ U. Now let
u2, v2 ∈ U2 satisfy (u1, u2), (u1, v2) ∈ U. Then (0, u2 − v2) = (u1, u2)− (u1, v2) ∈ U, so
u2− v2 ∈W2 and hence W2 + u2 = W2 + v2. Therefore, the map ψ : U1 → U2/W2 defined
as ψ(u1) = {u2 ∈ U2 | (u1, u2) ∈ U} is well-defined.
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Now ψ is surjective since U2 = π2(U). It is straightforward to check that ψ is a FG-
homomorphism. The definition of W1 makes it clear that W1 is the kernel of ψ. Therefore,
ϕ : U1/W1 → U2/W2 defined as ϕ(W1 + u1) = ψ(u1) is a well-defined FG-isomorphism.
By construction,

U = {(u1, u2) ∈ U1 ⊕U2 | ϕ(W1 + u1) = W2 + u2},

as required.

Corollary 2.3.2. Let G 6 GL(V) centralise V = V1 ⊕V2. Assume that there are no nonzero
FG-isomorphisms between FG-subquotients of V1 and V2. Let U be a FG-submodule of V. Then
there exist FG-submodules U1 6 V1 and U2 6 V2 such that U = U1 ⊕U2.

Proof. By Lemma 2.3.1, there exist FG-submodules W1 6 U1 6 V1 and W2 6 U2 6 V2

and an FG-isomorphism ϕ : U1/W1 → U2/W2 such that

U = {(u1, u2) ∈ U1 ⊕U2 | ϕ(W1 + u1) = W2 + u2}.

By assumption, we must have W1 = U1 and W2 = U2. Therefore, ϕ(W1 + u1) = W2 + u2

for all (u1, u2) ∈ U1 ⊕U2, so we conclude that U = U1 ⊕U2.

The following lemma, which is proved directly in [43, Lemma 2.10.11], is an immediate
consequence of Corollary 2.3.2.

Lemma 2.3.3. Let G 6 GL(V) centralise V = V1 ⊕ · · · ⊕ Vk. If V1, . . . , Vk are pairwise
nonisomorphic irreducible FG-modules, then they are the only irreducible FG-submodules of V.

We use the next lemma to compute centralisers of elements in classical groups.

Lemma 2.3.4. Let g = g1 ⊕ · · · ⊕ gk ∈ GL(V) centralise V = V1 ⊕ · · · ⊕ Vk. Assume that
there are no nonzero F〈g〉-homomorphisms between Vi and Vj when i 6= j. Then

CGL(V)(g) = CGL(V1)(g1)× · · · × CGL(Vk)(gk).

Proof. The F〈g〉-endomorphism ring of V is

EndF〈g〉(V) = {(ϕij) | ϕij ∈ HomF〈g〉(Vi, Vj)}

under formal matrix operations. Since HomF〈g〉(Vi, Vj) = 0 if i 6= j,

EndF〈g〉(V) = EndF〈g1〉(V1)⊕ · · · ⊕ EndF〈gk〉(Vk).

Considering the bijections in EndF〈g〉(V) and forgetting the additive structure, we obtain

CGL(V)(V) = CGL(V1)(〈g1〉)× · · · × CGL(Vk)(〈gk〉),

as desired.

We obtain the following immediate consequence of Lemma 2.3.4.

Corollary 2.3.5. Let g = g1 ⊕ · · · ⊕ gk ∈ GL(V) centralise V = V1 ⊕ · · · ⊕Vk. Assume that
V1, . . . , Vk are pairwise nonisomorphic irreducible F〈g〉-modules. Then

CGL(V)(g) = CGL(V1)(g1)× · · · × CGL(Vk)(gk).
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2.3.2 Conjugacy and semisimplicity

Continue to assume that V = Fn where n > 1 and F is a field. Let us record some general
results on GLn(F), which are surely well known but are hard to find direct references
for. In this section, it will be convenient to fix a basis for V and consider the elements
of GLn(F) as matrices with respect to this basis. In light of the notation of the previous
section, we will write g1 ⊕ · · · ⊕ gk for the block diagonal matrix

g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 0 · · · gk


The companion matrix of a monic polynomial φ = ∑n

i=0 aiti ∈ F[t] is the n× n matrix

C(φ) =


0
...
0

In−1

−a0 −a1 · · · −an−1


The following is the main theorem on conjugacy in GLn(F) (see [39, 11.17 and 11.26], for
example). We say that g, h ∈ GLn(F) are similar if g and h are GLn(F)-conjugate.

Theorem 2.3.6. Each element g ∈ GLn(F) is similar to a unique block diagonal matrix

C(φe11
1 )⊕ · · · ⊕ C(φ

e1r1
1 )⊕ · · ·C(φek1

k )⊕ · · · ⊕ C(φ
ekrk
k ) (2.13)

where φi ∈ F[t] are distinct monic irreducible polynomials and ei1 > . . . > eiri > 1. Moreover

∏i,j φ
eirj
i is the characteristic polynomial of g and ∏i φei1

i is the minimal polynomial of g.

The element in (2.13) is known as the (primary) rational canonical form of g. By Theo-
rem 2.3.6, two elements of GLn(F) are similar if and only if they have the same rational
canonical form.

Lemma 2.3.7. Let g ∈ GLn(F). Then g is irreducible if and only if the characteristic polynomial
of g is irreducible over F.

Proof. Let χ be the characteristic polynomial of g. First assume that g is reducible. That
is, V has an k-dimensional submodule U with 0 < k < n. Therefore, g is similar to the
block lower triangular matrix (

g1 0
h g2

)
where g1 is a k× k matrix. Now the characteristic polynomial φ of g1 (of degree k) is a
proper nonconstant divisor of χ (of degree n), so χ is reducible.
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For the converse, assume that g is irreducible. From the rational canonical form of g, it
is evident that the irreducibility of g implies that χ is the minimal polynomial of g. We
wish to prove that χ is irreducible, so write χ = φψ, where φ and ψ are monic. Since
χ(g) = 0, without loss of generality, φ(g) is not invertible. Now let U be the kernel of
φ(g), noting that U 6= 0. Let u ∈ U and note that (ug)φ(g) = (uφ(g))g = 0g = 0, so U
is a submodule of V. However, V is irreducible, so U = V and, consequently, φ(g) = 0.
Since χ is the minimal polynomial of x, we deduce that χ = φ. Therefore, χ is irreducible.
This completes the proof.

Lemma 2.3.8. Let g, h ∈ GLn(F) be irreducible. Then g and h are similar if and only if they
have the same characteristic polynomial.

Proof. If g and h are similar, then g and h evidently have the same characteristic polyno-
mial. Now assume χ is the characteristic polynomial of both g and h. By Lemma 2.3.7,
χ is irreducible, so C(χ) is the rational canonical form of g and h. Now Theorem 2.3.6
implies g and h are similar. This completes the proof.

We say that an element g ∈ GLn(F) is semisimple, if g is similar to a block diagonal matrix
g1 ⊕ · · · ⊕ gk where each gi is irreducible. By Maschke’s Theorem, if F is a finite field of
characteristic p, then g is semisimple if and only if p does not divide the order of g.

Lemma 2.3.9. Let g, h ∈ GLn(F) be semisimple. Then g and h are similar if and only if they
have the same characteristic polynomial.

Proof. Let g, h ∈ GLn(q) be semisimple. If g and h are similar, then evidently g and h have
the same characteristic polynomial. Now assume that χ is the characteristic polynomial
of both g and h. Since g and h are semisimple, they are similar to block diagonal matrices
ga1

1 ⊕ · · · ⊕ gak
k and hb1

1 ⊕ · · · ⊕ hbl
l , where g1, . . . , gk and h1, . . . , hl are pairwise non-similar

irreducible matrices. For each i, let φi and ψi be the characteristic polynomials of gi and
hi, respectively. By Lemma 2.3.7, the polynomials φi and ψi are irreducible since the
matrices gi and hi are irreducible. Now

φa1
1 · · · φ

ak
k = χ = ψb1

1 · · ·ψ
bl
l .

By the irreducibility of each φi and ψi, we conclude k = l and we may assume that for
each i we have φi = ψi and ai = bi. For each i, by Lemma 2.3.8, gi and hi are similar since
gi and hi are irreducible and have equal characteristic polynomials. Therefore, g and h
are similar, as required.

The following result is the main result on the conjugacy of semisimple elements of odd
order in finite symplectic and orthogonal groups. This was proved in in [62] (see [17,
Lemmas 3.4.2 and 3.5.1] for a convenient statement).

Theorem 2.3.10. Let G be Spn(q) or Oε
n(q). Two semisimple elements of G of odd order are

G-conjugate if and only if they are similar.
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2.3.3 Subfields and field extensions

Continue to assume that V = Fn where n > 1 and F is a field. In this section, we will
introduce two sorts of subgroups of classical groups: ones which arise from subfields of
F and others which arise from field extensions of F. We will see that the latter provide a
helpful perspective on semisimple elements. Both sorts of subgroups will feature in an
important way in Section 2.5.

Let F0 be a subfield of F and let V0 be the F0-span of an F-basis B for V. Then all F0-linear
maps on V0 extend to F-linear maps on V. Therefore, GL(V0) 6 GL(V), and we call
GL(V0) a subfield subgroup of GL(V).

As explained in [43, Chapter 4.5], we can obtain subfield subgroups of other classical
groups. For instance, if n is even, B is the basis B+ from (2.5) and Q0 is a nondegenerate
plus-type quadratic form on V0, then Q0 extends to a nondegenerate plus-type quadratic
form Q on V, and we thus obtain the embedding O+

n (F0) 6 O+
n (F). Note that a classical

group may have a subfield subgroup of a different type. For example, both O+
2m(q) and

O−2m(q) are subfield subgroups of O+
2m(q

2) (see the proof of Lemma 2.6.17).

We now turn to field extensions. To avoid Galois theoretic technicalities, let us assume
that F = Fq where q = p f . The following lemma, and its proof, encapsulates field
extension subgroups.

Lemma 2.3.11. Let k divide n.

(i) There is an embedding π : GLn/k(qk): Gal(Fqk /Fq)→ GLn(q).

(ii) If λ ∈ Fp is an eigenvalue of g ∈ GLn/k(qk), then λ is an eigenvalue of π(g).

(iii) If g ∈ GLn/k(qk), then det(π(g)) = det(g)qk−1+···+q+1.

Proof. Let V# = Fn/k
qk and fix an Fqk -basis B# = {u1, . . . , un/k} of V#. Then V# is naturally

an n-dimensional vector space over Fq with basis

B = {µiuj | 1 6 i 6 k and 1 6 j 6 n/k},

where {µ1, . . . , µk} is an Fq-basis of Fqk . In this way, we identify V# with V = Fn
q .

Since any Fqk -linear map is an Fq-linear map, GLn/k(qk) embeds in GLn(q). Moreover,
any Fq-automorphism of Fqk is an Fq-linear map, so, in fact, GLn/k(qk): Gal(Fqk /Fq)

embeds in GLn(q). This proves (i).

For part (ii), let g ∈ GLn/k(qk) and let λ ∈ Fp be an eigenvalue of g. Let

v = ω1u1 + · · ·+ ωn/kun/k

be a λ-eigenvector in the Fp-span of B#. Then v is in the Fp-span of B and vπ(g) = λv,
so λ is an eigenvalue of π(g). Part (iii) is given in [43, (4.3.13)].
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We call the images of both GLn/k(qk) and GLn/k(qk): Gal(Fqk /Fq) under the embedding
in Lemma 2.3.11 field extension subgroups. If needed, we refer to GLn/k(qk) as the base of
the group GLn/k(qk): Gal(Fqk /Fq).

In [43, Chapter 4.3], field extension subgroups of other classical groups are constructed.
For instance, if n = 2m and κ# is a symplectic form on F2m/k

qk , then κ = T ◦ κ# is a

symplectic form on F2m
q , where T : Fqk → Fq is the trace, so Sp2m/k(q

k) embeds in Sp2m(q).

In Lemma 2.3.12, we record some particular examples that will feature in Section 2.3.5.
In this lemma, we will not concern ourselves with the embedding of the Galois group of
the field extension since we will not require this for our application. Recall the definition
of DO±2m(q) from Section 2.2.6 (see (2.11) in particular).

Lemma 2.3.12. Let n = 2m where m > 1 and let k divide m. Then

(i) Sp2m/k(q
k) embeds in Sp2m(q)

(ii) if q is odd, then {g ∈ GSp2m/k(q
k) | τ(g) ∈ Fq} embeds in GSp2m(q)

(iii) SO−2m/k(q
k) embeds in SO−2m(q)

(iv) if q is odd, then {g ∈ DO−2m/k(q
k) | τ(g) ∈ Fq} embeds in DO−2m(q).

Moreover, in (ii) and (iv), τ is invariant under the embedding.

Proof. These embeddings are given in [43, Section 4.3], see in particular [43, (4.3.8)
and (4.3.11)] and the comment on τ is [43, Lemma 4.3.5(i)]. The exception is (iv), where
only the embedding

π : {g ∈ GO−2m/k(q
k) | τ(g) ∈ Fq} → GO−2m(q)

is established.

Let q be odd and let g ∈ DO−2m/k(q
k) with τ(g) ∈ Fq. Then det(g) = τ(g)m. Therefore, by

Lemma 2.3.11(iii) (see Remark 2.3.13 below), det(π(g)) = det(g) = τ(g)m = τ(π(g))m.
Therefore, π(g) ∈ DO−2m(q), which gives the embedding in (iv) and completes the
proof.

Remark 2.3.13. The field extension embeddings in Lemma 2.3.12, as described in [43,
Section 4.3], are simply restrictions of the embedding in Lemma 2.3.11. Therefore, parts (ii)
and (iii) of Lemma 2.3.11 hold for the embeddings in Lemma 2.3.12 also.

2.3.4 Primitive prime divisors

For positive integers a, b such that a > 2, we say that a positive integer r is a primitive
divisor of ab − 1 if r divides ab − 1 but r does not divide ak − 1 for any k < b. Write
ppd(a, b) for the set of primitive prime divisors of ab − 1.

The following useful theorem is due to Zsigmondy [65] (see also [17, Theorem 3.1.5]).
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Theorem 2.3.14. Let (a, b) be a pair of positive integers satisfying

a > 2 and (a, b) 6= (2, 6) and a + 1 is not a power of 2 if b = 2. (2.14)

Then there exists a primitive prime divisor of ab − 1.

For the following lemma see [4, Lemma 6.1], for example.

Lemma 2.3.15. Let a be a prime power and let b > 3. Assume that (a, b) 6= (2, 6).

(i) If r ∈ ppd(a, b), then r ≡ 1 (mod b).

(ii) If ppd(a, b) = {b + 1}, then a is prime and ab ∈ {24, 210, 212, 218, 34, 36, 56}.

(iii) If ppd(a, b) ⊆ {b + 1, 2b + 1}, then a = 2 and b ∈ {2, 8, 20}, or a = 4 and b ∈ {3, 6}.

Remark 2.3.16. Let us make some number theoretic comments.

(i) A primitive divisor is defined in terms of the expression “ab − 1” and not the
numerical value of ab − 1: for instance, 7 is the only primitive prime divisor of
43 − 1 and 3 is the only primitive prime divisor of 82 − 1, but 43 − 1 = 82 − 1.

(ii) Numbers a such that a + 1 is a power of two are said to be Mersenne. Although we
do not use this, we note that if a is a prime power and a + 1 is a power of two, then
Catalan’s Conjecture (which is a theorem [54]) implies that a is a Mersenne prime.

2.3.5 Irreducible elements of classical groups

For this section, V = Fn
q where n > 1 and q = p f . Write F×q = 〈α〉. For a field extension

E/F and λ ∈ E, recall that the minimal polynomial of λ over F is the monic polynomial φ

over F of least degree such that φ(λ) = 0 (so, φ is irreducible over F).

Lemma 2.3.17. Let r be a primitive (not necessarily prime) divisor of qn − 1. Let g ∈ GLn(q)
and assume that g has an eigenvalue over Fp of order r. Then g is irreducible on Fn

q and the
eigenvalues of g over Fp are λ, λq, . . . , λqn−1

, which are all distinct.

Proof. Let λ ∈ Fp be an eigenvalue of g of order r and let φ be the minimal polynomial
of λ over Fq. Since r is a primitive divisor of qn − 1, the element λ is contained in Fqn and
is not contained in any proper subfield of Fqn . Therefore, φ is a polynomial of degree n.
However, the characteristic polynomial of g is a monic polynomial χ of degree n such
that χ(λ) = 0. Therefore, χ = φ. In particular, χ is irreducible over Fq. Now Lemma 2.3.7
implies that g is irreducible on Fn

q . Moreover, the eigenvalues of g are the roots of χ,
which are the n distinct Galois conjugates λ, λq, . . . , λqn−1

. This completes the proof.

The following result provides irreducible elements of GLn(q).

Lemma 2.3.18. Let r be a primitive divisor of qn− 1 and let λ ∈ F×qn have order r. Then GLn(q)
contains an irreducible element of order r and with eigenvalues λ, λq, . . . , λqn−1

.
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Proof. By Lemma 2.3.11(i), there is a field extension embedding π : GL1(qn)→ GLn(q).
Now g = π((λ)) ∈ G has order r. Lemma 2.3.11(ii) implies that λ is an eigenvalue of g,
so, by Lemma 2.3.17, g is irreducible and has eigenvalues λ, λq, . . . , λqn−1

.

For the remainder of Section 2.3.5 write n = 2m.

Lemma 2.3.19. Let G be Sp2m(q) or SO−2m(q). Let r be a primitive divisor of q2m − 1 that
divides qm + 1 and let λ ∈ F×q2m have order r. Then G contains an irreducible element of order r

and eigenvalues λ, λq, . . . , λq2m−1
.

Proof. First assume that G = Sp2m(q). By Lemma 2.3.12(i), there is a field extension
embedding π1 : Sp2(q

m)→ Sp2m(q
m). Now Sp2(q

m) = SL2(qm), so Lemma 2.3.11 gives
an embedding π2 : H → Sp2(q

m), where

H = {(µ) ∈ GL1(q2m) | µqm+1 = 1} ∼= Cqm+1.

Now g = π1(π2((λ))) ∈ G has order r. By Lemma 2.3.11(ii), λ is an eigenvalue of g. Since
λ has order r, by Lemma 2.3.17, g is irreducible and has eigenvalues λ, λq, . . . , λq2m−1

.

Now assume that G = SO−2m(q). Lemma 2.3.12(iii) gives π : SO−2 (q
m)→ SO−2m(q). Since

SO−2 (q
m) ∼= Cqm+1, we may fix h ∈ SO−2 (q

m) of order r. Without loss of generality, the
eigenvalues of h are λ and λ−1. As in the previous case, π(h) ∈ G has order r and
Lemma 2.3.11(ii) implies that λ is an eigenvalue of g, so g is irreducible with eigenvalues
λ, λq, . . . , λq2m−1

.

For the following result, recall that F×q = 〈α〉.

Lemma 2.3.20. Let q be odd and let G be either GSp2m(q) or DO−2m(q). Let r be a divisor of
qm + 1 that is divisible by (qm + 1)2. Assume that r/2 is a primitive divisor of q2m − 1. Then G
contains an element g of order (q− 1)r such that τ(g) = α and gq−1 is irreducible.

Proof. First assume that G = GSp2m(q). Let λ ∈ F×q2m have order (q− 1)r. The order of
λqm+1 is (q− 1)r/(qm + 1, (q− 1)r). Since r divides qm + 1, we may write

(qm + 1, (q− 1)r) = r
( 1

r (q
m + 1), q− 1

)
= r,

where the second equality holds since (qm + 1, q − 1) = 2 and (qm + 1)2 divides r.
Therefore, λqm+1 has order q− 1. Consequently, we may choose λ such that λqm+1 = α.

We now proceed as in the proof of Lemma 2.3.19. By Lemma 2.3.12(ii), there is a field
extension embedding π1 : H → GSp2m(q), where

H = {h ∈ GSp2(q
m) | τ(h) ∈ Fq} = {h ∈ GL2(qm) | det(h) ∈ Fq},

where the second equality holds since GSp2(q
m) = GL2(qm) and τ(h) = det(h) for all

h ∈ GSp2(q
m) (see [43, Lemma 2.4.5], for example). By Lemma 2.3.11, there is a field

extension embedding π2 : K → H, where

K = {(µ) ∈ GL1(q2m) | µqm+1 ∈ Fq}.
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Now g = π1(π2((λ))) ∈ G has order (q− 1)r. Moreover,

τ(g) = τ(π2((λ)) = det(π2((λ))) = λqm+1 = α.

By Lemma 2.3.11(ii), λ is an eigenvalue of g, so λq−1 is an eigenvalue of gq−1. Since λq−1

has order r, by Lemma 2.3.17, gq−1 is irreducible.

Now assume that G = DO−2m(q). In this case, let λ ∈ F×q2m have order r. Lemma 2.3.12(iv)
implies that there is a field extension embedding π : H → DO−2m(q), where

H = {h ∈ DO−2 (q
m) | τ(h) ∈ Fq} ∼= C(qm+1)(q−1).

Now fix h ∈ DO−2 (q
m) of order (q − 1)r and τ(h) = α. Without loss of generality,

the eigenvalues of h are λ and αλ−1. Let g = π(h). Then g has order (q − 1)r and
τ(g) = τ(h) = α. Moreover, λq−1 is an eigenvalue of gq−1 of order r/(r, q− 1) = r/2, so
Lemma 2.3.17 implies that gq−1 is irreducible. This completes the proof.

Let (G, C) be (Sp2m(q), GSp2m(q)) or (O+
2m(q), GO+

2m(q)) and let V = F2m
q be the natural

module for G. Then V admits a decomposition D(V)

V = V1 ⊕V2 where V1 = 〈e1, . . . , em〉 and V2 = 〈 f1, . . . , fm〉, (2.15)

noting that V1 and V2 are totally singular m-spaces (with respect to the bases in (2.4) and
(2.5)). The following describes the centraliser of the decomposition D(V) in (2.15).

Lemma 2.3.21. Let (G, C) be (Sp2m(q), GSp2m(q)) or (O+
2m(q), GO+

2m(q)). Then

(i) G(D(V)) = {g⊕ g−T | g ∈ GLm(q)}

(ii) C(D(V)) = {λg⊕ g−T | g ∈ GLm(q) and λ ∈ F×q }

(iii) If g ∈ GLm(q) and λ ∈ F×q , then τ(λg⊕ g−T) = λ.

Proof. The matrix of the underlying bilinear form with respect to (e1, . . . , em, f1, . . . , fm)

is

M =

(
0 Im

Im 0

)
.

Let x = g⊕ h ∈ GL(V) centralise D(V). If x is a similarity of the form, then, for some
λ ∈ F×q , we have xMx−T = λM and consequently g = λh−T. It is straightforward to
see that all such elements are indeed similarities. This proves (ii). Now let λ ∈ F×q and
g ∈ GL(V). Write x = λg⊕ g−T. Then xMx−T = λM, so τ(x) = λ. This proves (iii) and
consequently (i).

Remark 2.3.22. Assume that q is odd. Let x = λg⊕ g−T ∈ GO+
2m(q) centralise D(V),

where g ∈ GLm(q) and λ ∈ F×q . Evidently det(x) = λm, which equals τ(x)m, by
Lemma 2.3.21(iii). Thus, x ∈ DO+

2m(q). This implies that (GO+
2m(q))(D(V)) 6 DO+

2m(q)
and consequently (O+

2m(q))(D(V)) 6 SO+
2m(q).
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Remark 2.3.23. For two maximal totally singular subspaces U, W 6 V, write U ∼ W if
and only if m− dim U ∩W is even. Then ∼ is an equivalence relation with exactly two
equivalence classes U 1 and U 2 [2, 22.13]. Now PDO+

2m(q) is the stabiliser in PGO+
2m(q)

of each of U 1 and U 2 (see [17, p.56]). In particular, (PGO+
2m(q))D(V) 6 PDO+

2m(q) if and
only if m is even.

Lemma 2.3.24. Let G be Sp2m(q) or SO+
2m(q). Let r be a primitive divisor of qm − 1. Then G

contains an element of order r that centralises D(V) and acts irreducibly on both V1 and V2.

Proof. By Lemma 2.3.18, there exists an irreducible element g ∈ GLm(q) of order r. The
corresponding element g⊕ g−T ∈ G(D(V)) satisfies the statement of the corollary.

The following straightforward lemma is [17, Lemma 3.1.13].

Lemma 2.3.25. Let k > 1, let r be a primitive prime divisor of qk − 1, let λ ∈ F×qk have order r

and let Λ = {λqj | 0 6 j < k}. Then Λ−1 = Λ if and only if k is even.

Proof. Since r is a primitive divisor of qk − 1, we know |Λ| = k. Now r 6= 2, since k > 1,
so µ 6= µ−1 for all µ ∈ Λ. Therefore, if Λ−1 = Λ, then k is necessarily even. Now assume
that k is even and write k = 2l. Since r is a primitive prime divisor of q2l − 1 it must be
that r divides ql + 1. Therefore, λql+1 = λ, so λql

= λ−1, which proves that Λ−1 = Λ.

2.3.6 Types of semisimple elements

Continue to write V = F2m
q and F×q = 〈α〉. Using the results of the previous sections, we

define several types of semisimple elements in symplectic and orthogonal groups. The
general idea that motivates these definitions is that we are interested in elements that
stabilise few subspaces, whose orders have few prime divisors and which are contained
in particular cosets of Sp2m(q) in GSp2m(q) or Ω±2m(q) in GO±2m(q).

Definition 2.3.26. Let m be odd and let G be Sp2m(q) or SO+
2m(q). An element g ∈ G has

type (2m)+q if |g| ∈ ppd(q, m) and g centralises a decomposition V = V1 ⊕V2 where V1

and V2 are totally singular nonisomorphic irreducible Fq〈g〉-modules.

Lemma 2.3.27. Let G be Sp2m(q) or SO+
2m(q) and assume that m is odd. Then G contains an

element of type (2m)+q .

Proof. Theorem 2.3.14 implies that qm− 1 has a primitive prime divisor r and Lemma 2.3.24
establishes that G contains an element g⊕ g−T of order r that centralises D(V) and acts
irreducibly on both V1 and V2. By Lemma 2.3.25, since m is odd, the eigenvalue sets of
g and g−T are distinct, so g and g−T are nonisomorphic. Therefore, g⊕ g−T has type
(2m)+q .

Definition 2.3.28. Let G be Sp2m(q) or SO−2m(q). An element g ∈ G has type (2m)−q if g is
irreducible on V and either |g| ∈ ppd(q, 2m), or q is Mersenne, m = 1 and |g| = q + 1.
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Lemma 2.3.29. Let G be Sp2m(q) or SO−2m(q) and assume that (m, q) 6= (3, 2). Then G
contains an element of type (2m)−q .

Proof. If q is Mersenne and m = 1, then let r = q + 1. Otherwise, Theorem 2.3.14 implies
that q2m − 1 has a primitive prime divisor r. Now Lemma 2.3.19 implies that G contains
an irreducible element of order r, as claimed.

Lemma 2.3.30. Let g ∈ SOε
2m(q) have type (2m)ε

q. Then g 6∈ Ωε
2m(q) if and only if ε = −,

m = 1 and q is Mersenne.

Proof. First assume that ε = −, m = 1 and q is Mersenne. Then |g| = q+ 1 and |Ω−2 (q)| =
1
2 (q + 1), so g 6∈ Ω−2 (q). Now assume otherwise. Therefore, g has odd prime order, so
g ∈ Ωε

2m(q).

Lemma 2.3.31. Let g be an element of Sp2m(q) or SOε
2m(q) of type (2m)ε

q. Then the eigenvalues
of g (over Fp) are distinct.

Proof. If ε = −, then g is irreducible, so the characteristic polynomial of g over Fq is
irreducible and the eigenvalues of g are distinct. Now assume that ε = +. Then g =

x⊕ x−T, centralising the decompositionD(V) (see (2.15)) where x and x−T act irreducibly
on V1 and V2. Therefore, the characteristic polynomial of x is irreducible. Moreover, V1

and V2 are nonisomorphic Fq〈x〉-modules, so the characteristic polynomials of x and
x−T are distinct irreducible polynomials. Consequently, g has distinct eigenvalues in this
case too. This completes the proof.

Now assume that q is odd. Fix β ∈ F×q with |β| = (q− 1)2. Note that α, β 6∈ (F×q )2. We
will define some variants on the types of elements defined above, which have a very
similar action on the natural module. Consequently, in the first instance the reader is
encouraged to think of elements of type (2m)±q upon encountering ∆(2m)±q and Σ(2m)±q .

Definition 2.3.32. Let q be odd, let ε ∈ {+,−} and let G be GSp2m(q) or DOε
2m(q). An

element g ∈ G has type ∆(2m)ε
q if τ(g) = β and gk has type (2m)ε

q where

k =

{
(qm + 1)2(q− 1)2 if ε = − and either m > 3 or q is not Mersenne
(q− 1)2 otherwise.

Lemma 2.3.33. Let q be odd, let ε ∈ {+,−} and let G be GSp2m(q) or DOε
2m(q).

(i) If ε = + and m > 1 is odd, then G contains an element of type ∆(2m)+q .

(ii) If ε = −, then G contains an element of type ∆(2m)−q

Proof. First assume that ε = +. By Lemma 2.3.27, G contains an element g⊕ g−T of type
(2m)+q . Let h = βg⊕ g−T, noting that h ∈ G (see Lemma 2.3.21(ii) and Remark 2.3.22).
We claim that h has type ∆(2m)+q . By Lemma 2.3.21(iii), τ(h) = β. Now |g| is odd, since
|g| ∈ ppd(q, m), and |β| = (q − 1)2, so h(q−1)2 = g(q−1)2 ⊕ (g(q−1)2)−T has order |g|.
Therefore, h(q−1)2 has type (2m)+q and, consequently, h has type ∆(2m)+q .
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Now assume that ε = −. For now assume further that m > 3 or q is not Mersenne. Then
Theorem 2.3.16 implies that we may fix r ∈ ppd(2m, q). By Lemma 2.3.19, there exists an
element g ∈ G of order r(qm + 1)2(q− 1) such that τ(g) = α and g(q−1) is irreducible. Let
h = g(q−1)2′ . Then h(q

m+1)2(q−1)2 has type (2m)−q and τ(h) has order (q− 1)2, so without
loss of generality is τ(h) = β. Therefore, h has type ∆(2m)−q .

It remains to assume that ε = −, m = 1 and q is Mersenne. Then Lemma 2.3.19 implies
that there exists g ∈ G of order (q + 1)(q− 1) such that τ(g) = α and gq−1 is irreducible.
As before, g(q−1)2′ has type ∆(2)−q . We have completed the proof.

Definition 2.3.34. Let q be odd. An element g ∈ SOε
2m(q) \Ωε

2m(q) has type Σ(2m)ε
q if gk

has type (2m)ε
q where k = (qm − ε)2.

Lemma 2.3.35. Let q be odd.

(i) If m > 1 is odd, then SO+
2m(q) contains an element of type Σ(2m)+q .

(ii) If m > 1, then SO−2m(q) contains an element of type Σ(2m)−q .

Proof. First assume that ε = + and m > 1 is odd. By Theorem 2.3.14, we may fix
r ∈ ppd(m, q). Let λ ∈ F×q2m have order r(qm − 1)2. By Lemma 2.3.18, GLm(q) contains an

element of r(qm− 1) and determinant λqm−1+···+q+1. Let h = g⊕ g−T. By Lemma 2.3.21(i),
h ∈ SO+

2m(q). We know that λ 6∈ (F×qm)2 since (qm − 1)2 divides the order of λ. Therefore,
det(g) = λqm−1+···+q+1 6∈ (F×q )2. Consequently, h 6∈ Ω+

2m(q) by [43, Lemma 4.1.9]. Now
h(q

m−1)2 has type (2m)+q , so h has type Σ(2m)+q .

Now assume that ε = − and m > 1. By Theorem 2.3.14, we may fix r ∈ ppd(2m, q).
By Lemma 2.3.19, SO−2m(q) contains an irreducible element h of order r(qm + 1)2. By
[22, Theorem 4], (qm + 1)2 does not divide the order of a maximal torus of Ω−2m(q), so
g 6∈ Ω−2d(q). Since h(q

m+1)2 has type (2m)−q , h has type Σ(2d)−q , completing the proof.

For all of the elements introduced in this section, if the field size q is clear from the
context, then we omit the subscript of q from the notation. However, in general, the field
size is pertinent, as Lemma 2.3.36 demonstrates.

Lemma 2.3.36. Let m > 1 and q = qe
0. Let G be Sp2m(q) or SOη

2m(q). Let g ∈ G have odd order
and type (2m)

η
q0 , where we assume that m is odd if η = +. Then g is similar to g1 ⊕ · · · ⊕ gt

where each of g1, . . . , gt has type
( 2m

t

)ε

q where t = (m, e) and ε = ηe/t.

Proof. First assume that ε = +. Then |g| ∈ ppd(q0, m) and the eigenvalue set of g is
Λ ∪Λ−1 where Λ = {λ, λq0 , . . . , λqm−1

0 }. There are t = (m, e) distinct µ 7→ µq orbits on
Λ, say Λ1, . . . , Λt, each of size m/t. Fix 1 6 j 6 t and λj ∈ Λj. By Lemma 2.3.17, there
exists an irreducible element xj ∈ GLm/t(q) with eigenvalue set Λj. Then gj = xj ⊕ x−Tj

has type
( 2m

t

)+
q and eigenvalue set Λj ∪Λ−1

j . Therefore, g has the same eigenvalues as
g1 ⊕ · · · ⊕ gt. Noting that g is a semisimple element of odd order, Lemma 2.3.9 implies
that g is similar to g1 ⊕ · · · ⊕ gt. This proves the claim in this case.
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Now assume that ε = −. Then |g| ∈ ppd(q0, 2m) and Λ = {λ, λq0 , . . . , λq2m−1
0 } is the

eigenvalue set of g. There are k = (2m, e) distinct µ 7→ µq orbits of Λ, say Λ1, . . . , Λk,
each of size 2m/k. Assume for now that 2m/k is odd. Then k = (2m, e) = 2(m, e) = 2t
and we may assume that Λt+j = Λ−1

j for each 1 6 j 6 t. As we argued in the previous

case, there exists an element gj of type
( 2m

t

)+
q whose eigenvalue set is Λi ∪Λ−1

i and g is
similar to g1 ⊕ · · · ⊕ gt.

It remains to assume that 2m/k is even. In this case, k = (2m, e) = (m, e) = t. Fix
1 6 j 6 t and let λj ∈ Λj. Lemma 2.3.19 implies that there exists an irreducible element
gj ∈ SO−2m/t(q) with eigenvalue set Λj. Therefore, gj has type

( 2m
t

)−
q . Lemma 2.3.9 now

implies that g is similar to g1 ⊕ · · · ⊕ gt, which completes the proof.

We conclude with a comment on centralisers.

Lemma 2.3.37. Let G be PGSp2m(q) or PDOε
2m(q). Let g ∈ G lift to an element of type ∗(2m)ε

q,
where ∗ is the empty symbol, ∆ (q odd) or Σ (q odd and T = PΩε

2m(q)). Then

|CG(g)| 6 qm − ε.

Proof. A suitable power h of g has type (2m)ε
q. For x ∈ GL2m(q), write x for the image in

PGL2m(q). First assume that ε = +. Then h = h1 ⊕ h−T1 and |h| ∈ ppd(q, m). Therefore,
by [17, Appendix B] (see Lemma 2.4.4(ii) later), |CG(h)| = qm − 1, so |CG(g)| 6 qm − 1.

Next assume that ε = −. If m > 1 or q is not Mersenne, then |h| ∈ ppd(q, 2m) and
from [17, Appendix B] (see Lemma 2.4.4(i)), |CG(h)| = qm + 1, so |CG(g)| 6 qm + 1. It is
straightforward to verify the claim in the very special case where ε = −, m = 1 and q is
Mersenne, where |h| = q + 1 and G is either PGSp2(q) or PDO−2 (q).
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2.4 Conjugacy in classical groups

To apply our probabilistic method, especially when we compute fixed point ratios in
Chapter 3, we will need an understanding of the conjugacy of prime order elements in
the relevant almost simple groups. This section provides a short guide to this topic. Let
T be a finite simple classical group. The conjugacy classes of elements of prime order in
Aut(T), and the centralisers thereof, are known. This topic is presented in great detail in
[17, Chapter 3], which we closely follow in this section.

Let q = p f where p is prime. With a view towards our applications, we focus on the
case where T is PSpn(q) (with n > 4) or PΩε

n(q) (with n > 7 and ε ∈ {+, ◦,−}). In this
section, we will consider prime order elements contained in PGSpn(q) and PGOε

n(q),
and we defer the discussion of prime order elements in Aut(PSpn(q)) \ PGSpn(q) and
Aut(PΩε

n(q)) \ PGOε
n(q) to Section 2.6.6.

Recall from Section 2.3.1, that an element g ∈ GLn(q) is semisimple if |g| is coprime to p.
We say that g ∈ GLn(q) is unipotent if p divides |g|.

2.4.1 Semisimple elements

Let g be an element of PGSpn(q) or PGOε
n(q) of prime order r. Then g is either semisimple

or unipotent. In this section, we assume that g is semisimple (so r 6= p); unipotent
elements will be covered in Section 2.4.2. Much of the work in this section is best
attributed to Wall [62]. We will heavily draw on the results of Section 2.3.

Background

We begin with a general discussion of GLn(q) before turning to PGSpn(q) and PGOε
n(q).

Let us fix some notation.

Let i be the least positive integer such that r divides qi − 1.

Let Sr be the set of elements of order r in F×qi .

Let σ : Fqi → Fqi be the field automorphism defined as λ 7→ λq.

Let Λ1, . . . , Λt be the orbits of σ on Sr.

Let λj be an element of Λj.

Notice that t = (r− 1)/i and for each 1 6 j 6 t we have |Λj| = i. By Lemma 2.3.18, there
exists an irreducible element Aj ∈ GLn(q) of order r and whose eigenvalue set is Λj.

Define the following set of t-tuples of nonnegative integers:

I =

{
(a1, . . . , at) | 0 < i

t

∑
j=1

aj 6 n

}
.
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Let (a1, . . . , at) ∈ I . Write e = n− i ∑t
j=1 aj and consider the element

A = [Aa1
1 , . . . , Aat

t , Ie] = A1 ⊕ · · · ⊕ A1︸ ︷︷ ︸
a1 terms

⊕ · · · ⊕ At ⊕ · · · ⊕ At︸ ︷︷ ︸
at terms

⊕Ie

that centralises the decomposition

U1,1 ⊕ · · · ⊕U1,a1 ⊕ · · · ⊕Ut,1 ⊕ · · · ⊕Ut,at ⊕W

where the restriction of A to Uj,k is Aj and W is the 1-eigenspace of A. In particular, A
acts irreducibly on each Uj,k and the order of A is r.

The eigenvalue multiset of A is

Λ = Λa1
1 ∪ · · · ∪Λat

t ∪ {1}e,

where superscripts denote multiplicities in a multiset. We often abuse notation and write
A = [Λa1

1 , . . . , Λat
t , Ie].

The following result [17, Lemma 3.1.7] is a consequence of Theorem 2.3.6.

Lemma 2.4.1. Each semisimple element of prime order in GLn(q) is GLn(q)-conjugate to
[Λa1

1 , . . . , Λat
t , Ie] for a unique sequence (a1, . . . , at) ∈ I .

Example 2.4.2. We will determine the conjugacy classes of elements of order 5 in GL4(4).
Since 5 divides 42 − 1 = 15 but not 4− 1 = 3, we conclude that i = 2. Write

S5 = {λ, λ2, λ3, λ4} = Λ1 ∪Λ2

where Λ1 = {λ, λ4} and Λ2 = {λ2, λ3} are the orbits of σ : (aij) 7→ (a4
ij) on S5. Now

I = {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.

Therefore, there are five conjugacy classes of elements of order 5 in GL4(4), which are
represented by the elements

[Λ1, I2] [Λ2, I2] [Λ2
1] [Λ1, Λ2] [Λ2

2].

Write 〈α〉 = F×4 . The minimal polynomials of λ1 and λ2 over F4 are χ1 = X2 + αX + 1
and χ2 = X2 + α2X + 1. Choosing Aj to be the companion matrix of χj, we obtain the
conjugacy class representatives

0 1
1 α

1 0
0 1




0 1
1 α2

1 0
0 1




0 1
1 α

0 1
1 α




0 1
1 α

0 1
1 α2




0 1
1 α2

0 1
1 α2
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Semisimple elements of odd prime order

Let (T, G, Ĝ) be (PSpn(q), PGSpn(q), GSpn(q)) or (PΩε
n(q), PGOε

n(q), GOε
n(q)) and let

Z = Z(Ĝ) ∼= F×q . Let g ∈ G have odd prime order r. Since |G : T| is a power of two,
r ∈ T. By [17, Lemma 3.1.3], there is a unique element ĝ ∈ Ĝ of order r such that ĝZ = g.

By Lemma 2.2.7, ĝ is similar to ĝ−1, so the multiset of eigenvalues of ĝ over Fp must
be closed under inversion. Recall the notation established in the previous section. By
Lemma 2.3.25, Λ−1

j = Λj if and only if i = |Λj| is even. If i is odd, then t is even and we
will assume that Λ−1

j = Λt/2+j.

Define two variants on I , both of which are sets of sequences of nonnegative integers

Ieven =
{
(a1, . . . , at) | 0 < i

t

∑
j=1

aj 6 n and i
t

∑
j=1

aj < n if ε = (−)n/i+1

}

Iodd =
{
(a1, . . . , at/2) | 0 < 2i

t/2

∑
j=1

aj 6 n and 2i
t/2

∑
j=1

aj < n if ε = −
}

where ε = ◦ if T = PSpn(q) (so the second condition can be ignored in this case).

First assume that i is even and let (a1, . . . , at) ∈ Ieven and e = n− i ∑t
j=1 aj. Lemma 2.3.19

implies that there exists an element A = [Aa1
1 , . . . , Aat

t , Ie] ∈ Ĝ of order r, which centralises
the decomposition

U1,1 ⊥ · · · ⊥ U1,a1 ⊥ · · · ⊥ Ut,1 ⊥ · · · ⊥ Ut,at ⊥W

where A acts (irreducibly) as Aj on Uj,k. Moreover, each Uj,k is a nondegenerate i-space
and W is the 1-eigenspace of A. If T = PΩε

n(q), then each Uj,k is minus-type.

Now assume that i is odd and let (a1, . . . , at/2) ∈ Iodd and e = n − 2i ∑t/2
j=1 aj. By

Lemma 2.3.24 there exists an element A = [(A1 ⊕ A−1
1 )a1 , . . . , (At/2 ⊕ A−1

t/2)
at/2 , Ie] ∈ Ĝ

of order r, which centralises the decomposition

(U1,1 ⊕U∗1,1) ⊥ · · · ⊥ (U1,a1 ⊕U∗1,a1
) ⊥ · · ·

⊥ (Ut/2,1 ⊕U∗t/2,1) ⊥ · · · ⊥ (Ut/2,at/2
⊕U∗t/2,at/2

) ⊥W

where A acts (irreducibly) as Aj on Uj,k and A−Tj on U∗j,k. Moreover, each Uj,k ⊕U∗j,k is a
nondegenerate 2i-space of which Uj,k and U∗j,k are maximal totally singular subspaces,
and W is the 1-eigenspace of A.

The following result combines [17, Propositions 3.4.3 and 3.5.4].

Lemma 2.4.3. Let G be PGSpn(q) or PGOε
n(q). Each semisimple element of odd prime order in

G is G-conjugate to

(i) [Λa1
1 , . . . , Λat

t , Ie]Z for a sequence (a1, . . . , at) ∈ Ieven if i is even

(ii) [(Λ1 ∪Λ−1
1 )a1 , . . . , (Λt/2 ∪Λ−1

t/2)
at/2 , Ie]Z for a sequence (a1, . . . , at/2) ∈ Iodd if i is odd.
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We now record the order of the centraliser in G of a semisimple element of odd prime
order (see [17, Appendix B]).

Lemma 2.4.4. Let G be PGSpn(q) or PGOε
n(q). Let g ∈ G be a semisimple element of odd

prime order. Let Σ be Sp if G = PGSpn(q) and O if G = PGOε
n(q).

(i) If i is even and g = [Λa1
1 , . . . , Λat

t , Ie]Z, then

|CG(g)| = |Σe(q)| ·
t

∏
i=1
|GUai(q

i/2)|.

(ii) If i is odd and g = [(Λ1 ∪Λ−1
1 )a1 , . . . , (Λt/2 ∪Λ−1

t/2)
at/2 , Ie]Z, then

|CG(g)| = |Σe(q)| ·
t/2

∏
i=1
|GLai(q

i)|.

Semisimple involutions

Assume that p is odd and let G be PGSpn(q) or PGOε
n(q). The involutions in G are given

in [31, Table 4.5.1] and are discussed in detail in [17, Sections 3.4.2 and 3.5.2]. Moreover,
the orders of the centralisers in G of these semisimple involutions are given in [17,
Appendix B]. The details are rather technical and we will not provide them here.

2.4.2 Unipotent elements

We now consider unipotent elements. As in Section 2.4.1, we will first discuss the general
situation in GLn(q) before considering the groups PGSpn(q) and PGOε

n(q). Much of the
work on unipotent elements is due to Liebeck and Seitz [50].

Background

For i > 1, let Ji be the i× i (lower triangular) Jordan block with eigenvalues 1. Let J be
the set of nontrivial partitions of n into parts of size at most p; that is,

J =

{
(pap , . . . , 1a1) |

p

∑
i=1

iai = n and a1 < n

}
.

The next result [17, Lemma 3.1.14] is another consequence of Theorem 2.3.6.

Lemma 2.4.5. Each element of GLn(q) of order p is GLn(q)-conjugate to [Jap
p , . . . , Ja2

2 , Ja1
1 ] for

a unique partition (pap , . . . , 1a1) ∈ J .

The following result, which describes the centraliser of a unipotent element of prime
order, is proved in [50, Theorem 7.1].

Lemma 2.4.6. Let g ∈ GLn(q) be the unipotent element [Jap
p , . . . , Ja2

2 , Ja1
1 ]. Then

CGLn(q)(g) = Q
p

∏
i=1

GLai(q)

where |Q| = qγ and γ = 2 ∑i<j iaiaj + ∑
p
i=1(i− 1)a2

i .
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Unipotent elements of odd order

Assume that p is odd. Let (G, Ĝ) be (PGSpn(q), GSpn(q)) or (PGOε
n(q), GOε

n(q)) and let
Z = Z(Ĝ) ∼= F×q . In the previous section, we saw that conjugacy of elements of order
p in GLn(q) is determined by the Jordan form over Fp, so the set of conjugacy classes
of elements of order p in GLn(q) is in bijection with J . However, the Jordan form is
not enough to determine conjugacy of elements of order p in Ĝ. Therefore, a technical
modification has to be made, and we summarise how this is done. We will define two
variants on J . In both definitions, it should be understood that ∑

p
i=1 iai = n and a1 < n.

First assume that G = PGSpn(q). Define the following set of signed partitions of n

Js =
{
(pap , εp−1(p− 1)ap−1 , . . . , ε22a2 , 1a1) | ai even if i odd, ε i = ±

}
.

Let (pap , εp−1(p− 1)ap−1 , . . . , ε22a2 , 1a1) ∈ Js. In [17, Section 3.4.3], a particular element
[Jap

p , J
εp−1,ap−1
p−1 , . . . , Jε2,a2

2 , Ja1
1 ] ∈ Ĝ is defined which has Jordan form [Jap

p , J
ap−1
p−1 , . . . , Ja2

2 , Ja1
1 ].

Now assume that G = PGOε
n(q) and let δ be the discriminant of the quadratic form

defining G (see Remark 2.2.2). Define the following set of labelled partitions of n

Jo =

{
(δp pap , (p− 1)ap−1 , . . . , 2a2 , δ11a1) | ai even if i even, δi ∈ {�,�}, ∏

i odd
δi = δ

}
.

Let (δp pap , (p− 1)ap−1 , . . . , 2a2 , δ11a1) ∈ Jo. An element [Jδp,ap
p , J

ap−1
p−1 , . . . , Ja2

2 , Jδ1,a1
1 ] ∈ Ĝ is

defined in [17, Section 3.5.3], which has Jordan form [Jap
p , J

ap−1
p−1 , . . . , Ja2

2 , Ja1
1 ].

The signs and discriminants indicate the types of nondegenerate subspaces stabilised by
these elements, see [17, Sections 3.4.3 and 3.5.3] for a precise statement.

Lemma 2.4.7. Let q = p f be odd. Let G be PGSpn(q) or PGOε
n(q). Each element of G of order

p is G-conjugate to

(i) [Jap
p , . . . , Jε2,a2

2 , Ja1
1 ]Z for a unique (pap , . . . , ε22a2 , 1a1) ∈ Js if G = PGSpn(q)

(ii) [Jδp,ap
p , . . . , Ja2

2 , Jδ1,a1
1 ]Z for a unique (δp pap , . . . , 2a2 , δ11a1) ∈ Jo if G = PGOε

n(q).

We refer the reader to [17, Lemmas 3.4.11 and 3.5.13] for a description of the centraliser
in G of an element of order p, which is somewhat similar to Lemma 2.4.6.

Unipotent involutions

Now let p = 2. Let n be even and let G be Spn(q) or O±n (q). Again, the Jordan form does
not determine conjugacy of elements of order p in G, and we will adopt the notation of
Aschbacher and Seitz [3, Section 7]. For each 1 6 s 6 n/2, Aschbacher and Seitz define
elements as and cs if s is even and bs if s is odd, all of which have Jordan form [Js

2, Jn−2s
1 ].

These elements are described explicitly in [17, Sections 3.4.4 and 3.5.4].

Lemma 2.4.8. Let n be even and let q = 2 f . Let G be Spn(q) or O±n (q). Each involution in G
with Jordan form [Js

2, Jn−2s
1 ] is conjugate to bs if s is odd, or exactly one of as or cs if s is even.
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2.5 Maximal subgroups of classical groups

Determining the maximal subgroups of almost simple groups is a problem with a long
history, with the classification of the maximal subgroups of PSL2(q) typically attributed
to Dickson [25] in 1901. The Classification added impetus to this project and this remains
an active area of research in its own right. This section is dedicated to the subgroup
structure of almost simple classical groups, since an understanding of this topic will be
essential in Chapters 4 and 5.

Theorem 2.5.1, due to Aschbacher, is one of the most important theorems in this thesis,
since it provides a framework for describing the maximal subgroups of classical groups.
Roughly, it states that if H is a maximal subgroup of an almost simple classical group
G, then either H is the stabiliser of a natural geometric structure on the natural module
V for soc(G), or H is an almost simple group and the embedding soc(H) 6 PGL(V)

is afforded by an absolutely irreducible representation on V of a cover of soc(H). This
is analogous to the description of the maximal subgroups of symmetric groups by the
O’Nan–Scott Theorem (see [63, Theorem 2.4] and also [48]).

2.5.1 Aschbacher’s theorem

Let G be an almost simple classical group and let V = Fn
q be the natural module for

soc(G). Theorem 2.5.1 was proved by Aschbacher [1], but Aschbacher excluded the case
when soc(G) = PΩ+

8 (q) and G contains a triality automorphism, and the theorem was
proved in this special case by Kleidman [42].

Theorem 2.5.1 (Aschbacher’s Subgroup Theorem). Let G be an almost simple classical group
and let H be a maximal subgroup of G not containing soc(G). Then H belongs to one of the
subgroup collections C1, . . . , C8,S ,N .

Regarding Theorem 2.5.1, notice that the subgroups of G that contain soc(G) correspond
to subgroups of G/soc(G) 6 Out(soc(G)), which is a well-known soluble group. This
explains our focus on maximal subgroups not containing soc(G).

Geometric subgroups

The collections C1, . . . , C8 contain the geometric subgroups, and each such collection corre-
sponds to a different geometric structure on the natural module for soc(G). We adopt the
definition of each Ci given in [43, Section 4.i], which differs slightly from Aschbacher’s
original definition. These eight collections are summarised in Table 2.2 and a brief discus-
sion of Ci is given [17, Section 2.6.2.i]. (The C6 subgroups, which do not relate to geometric
structures that we have already introduced, will hardly feature in what follows.)

Each Ci collection is a union of types of geometric subgroup. The type of a subgroup is
a rough indication of both its group theoretic structure and the geometric structure it
stabilises; this notion is formally introduced in [43, p.58].
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Table 2.2: Geometric subgroups

structure stabilised rough description in GLn(q)

C1 nondegenerate or tot. sing. subspace maximal parabolic

C2 V =
⊕k

i=1 Vi where dim Vi = a GLa(q) o Sk with n = ak

C3 prime degree field extension of Fq GLa(qk).k with n = ak for prime k

C4 tensor product V = V1 ⊗V2 GLa(q) ◦GLb(q) with n = ab

C5 prime degree subfield of Fq GLn(q0) with q = qk
0 for prime k

C6 symplectic-type r-group (Cq−1 ◦ r1+2a). Sp2a(r) with n = ra

C7 V =
⊗k

i=1 Vi where dim Vi = a (GLa(q) ◦ · · · ◦GLa(q)).Sk with n = ak

C8 nondegenerate classical form GSpn(q), GOε
n(q), GUn(q

1
2 )

The Main Theorem in [43, Chapter 3] establishes the structure, conjugacy and, when
n > 13, maximality of each geometric subgroup of each almost simple classical group. If
n 6 12, then complete information on the maximal subgroups of almost simple classical
groups is given in the very useful book [7] (and the foreword to this book tells an
interesting story about this topic).

Let us present an example.

Example 2.5.2. The C2 subgroups are the irreducible imprimitive subgroups. Here we
study them for almost simple groups G with socle PSp14(q) using [43, Main Theorem].
Fix the basis B = (e1, f1, . . . , e7, f7) from (2.4).

(i) The group G has exactly two types of C2 subgroups. One is Sp2(q) o S7, where
the summands in the stabilised decomposition are nondegenerate 2-spaces, say
〈ei, fi〉 for 1 6 i 6 7. The other is GL7(q), where the summands are maximal totally
singular subspaces, say 〈e1, . . . , e7〉 and 〈 f1, . . . , f7〉.

(ii) The exact structure of the geometric subgroups is given in [43, Chapter 4]. For
example, [43, Proposition 4.2.10] implies that if q is odd, G = PGSp14(q) and H
has type Sp2(q) o S7, then H = ((Sp2(q)

7:〈δ〉)/〈−I14〉):S7, where δ is the diagonal
matrix [α, 1, . . . , α, 1] for a generator α of F×q and where S7 permutes the Sp2(q)
factors and centralises δ.

We now turn to conjugacy of geometric subgroups. Write T = soc(G) and let H be a
maximal geometric subgroup of G. LetH = {H1, . . . , Hc} be a set of representatives of
the c distinct T-classes of subgroups of T of the same type as H. In the terminology of
[43, Chapter 3], for each 1 6 i 6 c, let HG,i be the G-associate of Hi. In particular, HG,i is
a geometric subgroup of G of the same type as Hi and Hi 6 HG,i. See [43, Section 3.1] for
a precise definition.
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For x ∈ Aut(T) write ẍ for Tx ∈ Out(T), and for X ⊆ Aut(T) write Ẍ = {ẍ | x ∈ X}.
There is a natural action of Out(T) on the set H, and the permutation representation
π : Out(T) → Sc associated to this action is described in [43, Tables 3.5.A–3.5.G]. As a
consequence of the proof of [43, Lemma 3.2.2(iii)], for G 6 A 6 Aut(T), the groups HG,i

and HG,j are A-conjugate if and only if Hi and Hj are in the same π(Ä)-orbit.

The following example highlights the key ideas.

Example 2.5.3. The C5 subgroups are the subfield subgroups, which we now study for
T = PSpn(q) and G = PGSpn(q) when n > 6 and q = p f .

A subfield subgroup of G or T has type Spn(q
1/r) for a prime r dividing f . Inspecting

[43, Table 3.5C], we see that c = 1, unless q is odd and r = 2, in which case c = 2. If
c = 1, then there is a unique T-class of subgroups of type Spn(q

1/r), so there is certainly
a unique G-class.

Now assume that q is odd and r = 2. In this case, c = 2. This means that there are
exactly two T-classes of subgroups of T of type Spn(q

1/2), represented by H1 and H2,
but Hg

1 = H2 for some g ∈ Aut(T). Inspecting [43, Table 3.5G], we see that g̈ ∈ ker π if
and only if g ∈ PSpn(q). Therefore, H1 and H2 are in the same π(G̈)-orbit, so there is a
unique G-class of subgroups of G of type Spn(q

1/2). This completes our example.

The following example highlights the two main types of obstacles to maximality.

Example 2.5.4. These two examples continue Examples 2.5.2 and 2.5.3, respectively.

(i) Let G be an almost simple group with socle PSp14(q). Let H be a subgroup of G of
type Sp2(q) o S7. Then it turns out that H is a maximal subgroup of G unless q = 2.
If q = 2, then G = Sp14(2) and H = Sp2(2) o S7 = O−2 (2) o S7, and in this case H is
contained in O−14(2) which is a maximal C8 subgroup of G.

(ii) Let T = PSpn(q) and G = PGSpn(q) for n > 14 and q = p f , where p is odd and f
is even. It turns out that a subgroup of either T or G of type Spn(q

1/2) is isomorphic
to PGSpn(q

1/2) (this is related to the fact that c = 2 in this case). The subgroups
of this type are maximal in T, but evidently any subgroup of G of this type is
contained in T and is consequently not maximal in G.

Non-geometric subgroups

We will now introduce the families S and N of non-geometric subgroups that feature
in Theorem 2.5.1. If H 6 G is contained in the collection S , then H is almost simple
with socle H0 and the embedding H0 6 G is afforded by an absolutely irreducible
representation ρ : Ĥ0 → GL(V) for some quasisimple extension Ĥ0 of H0. The full
definition of S involves further conditions, which ensure that S is disjoint from

⋃8
i=1 Ci

and this can be found on [43, p.3]. It is critical to realise that the particular subgroups
which arise is S are in general not known.
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When soc(G) is PSLn(q) (with n > 3), Sp4(q) (with p = 2) or PΩ+
8 (q), then Aut(soc(G))

is not contained in PΓL(V). Consequently, there are more exotic almost simple groups
with these socles and the subgroup structure of these groups is accordingly more intricate.
More precisely, when H 6 G and H ∩ soc(G) is not maximal in soc(G), then H is said
to be a novelty subgroup. If G 66 PΓL(V), then there may exist a maximal subgroup
H 6 G such that H ∩ soc(G) is not only non-maximal but is not contained in ∪8

i=1Ci ∪ S .
The definition of C1 was adapted in [43] to avoid this issue when soc(G) = PSLn(q).
However, when soc(G) is Sp4(q) or PΩ+

8 (q), these additional novelty subgroups arise in
a final collection N , which is described in [17, Table 5.9.1].

2.5.2 Elements of maximal subgroups

For this section, write V = Fn
q and V = V ⊗Fq Fp, where q = p f . The main theorem of

[35] classifies the maximal subgroups of GLn(q) that contain an element whose order
is divisible by a primitive prime divisor of qk − 1 for k > n

2 . The following version is a
special case of [34, Theorem 2.2] (the exceptions in part (iv) are given in [34, Table 1]).

Theorem 2.5.5. Let n > 3 and k > n
2 . Let g ∈ GL(V) with |g| ∈ ppd(q, k) and |g| > 2k + 1.

Let H 6 GL(V) be an irreducible subgroup containing g. Then one of the following holds

(i) H is a subfield subgroup

(ii) H is a field extension subgroup of degree dividing (n, k)

(iii) H contains SL(V), SU(V), Sp(V) or Ω(V)

(iv) n 6 9 and H is one of a small number of exceptions.

A wealth of practical information on elements of geometric subgroups can be found in
[17, Chapter 5]. We present some here, beginning with C2 subgroups [17, Lemma 5.2.6].

Lemma 2.5.6. Let r be prime and let D be V = V1 ⊕ · · · ⊕Vr where dim Vi = a for 1 6 i 6 r.
Assume that x ∈ GL(V)D has order r and transitively permutes the subspaces in D.

(i) If r 6= p, then each rth root of unity occurs as an eigenvalue of x with multiplicity a.

(ii) If r = p, then x has Jordan form [Ja
p].

The next result [17, Lemma 5.3.2] concerns field extension C3 subgroups.

Lemma 2.5.7. Let k be a prime divisor of n, let a = n/k and let π : GLa(qk).k→ GLn(q) be a
field extension embedding. Let r 6= p be prime and let x ∈ GLa(qk).k have order r.

(i) If x ∈ GLa(qk) and has eigenvalues λ1, . . . , λa over Fp, then π(x) has eigenvalues

Λ1 ∪ · · · ∪Λa where Λi = {λ
qj

i | 0 6 j < k}.

(ii) If x 6∈ GLa(qk), then r = k and each rth root of unity occurs as an eigenvalue of π(x)
with multiplicity a.
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Let us record some consequences of Lemma 2.5.7.

Corollary 2.5.8. Let G be PSp2m(q) or PSO±2m(q) and let g lift to g1 ⊕ · · · ⊕ gt ⊕ I` where
g1, . . . , gt have type (2d)ε

q for d > 1 and have distinct eigenvalues.

(i) If d is odd, then g is not contained in the base of a subgroup of type Spm(q
2) (where m is

even) or Oυ
m(q2) (where υ ∈ {+,−} if m is even and υ = ◦ if m is odd).

(ii) If ε 6= (−)d, then g is not contained in the base of a subgroup of type GUm(q).

Proof. Let π : H = B.2→ G be the field extension embedding in question, where B is the
base of H. Write |g| = r. For a contradiction, suppose that g ∈ B.

First assume that ε = +, so we may assume that d is odd. Let Λ be the set of nontrivial
eigenvalues of g. If g = π(x) for x ∈ B, then, by Lemma 2.5.7(i), Λ = Λ0 ∪Λq

0, where
Λ0 is the set of eigenvalues of x. Since x is an element defined over Fq2 we know that

Λq2

0 = Λ0. However, the elements of Λ0 have order r, where r ∈ ppd(q, d). Since d is

odd, Λq2

0 = Λq
0. Thus, every eigenvalue of g occurs with multiplicity at least two, which

contradicts the distinctness of the eigenvalues of g.

Next assume that ε = −. Let Λi be the set of 2d distinct eigenvalues of gi. For now
consider part (i), so we may assume that d is odd. Then r ∈ ppd(q, 2d) and there are two
µ 7→ µq2

orbits on Λi, say Λi1 and Λi2 = Λq
i1 = Λ−1

i1 . By Lemma 2.5.7(i), without loss
of generality, the eigenvalues of g as an element of GLm(q2) are ∪t

i=1Λi1, which is not
closed under inversion (see Lemma 2.3.25), which is a contradiction to Lemma 2.2.7(i).

Continuing to assume ε = −, now consider part (ii). We may now assume that d is even.
Therefore, r ∈ ppd(q, d) and again write Λi1 and Λi2 = Λ−q

i1 for the two µ 7→ µq2
orbits

on Λi. Then, by Lemma 2.5.7(i), without loss of generality, the eigenvalues of g as an
element of GUm(q) are ∪t

i=1Λi1, which is not closed under the map µ 7→ µ−q, which is a
contradiction to [17, Proposition 3.3.1]. This completes the proof.

Combining Corollary 2.5.8 with Lemma 2.3.36 gives the following.

Corollary 2.5.9. Let G be PSp2m(q) or PSO±2m(q). Let g ∈ G have type (2d)η
q0 ⊥ I` for qe

0 = q.

(i) If d is odd, then g is not contained in the base of a subgroup of type Spm(q
2).2 or Oυ

m(q2).2.

(ii) If d is odd and η = +; or d is even, η = − and e is odd; or d is odd, η = − and e is even,
then g is not contained in the base of a subgroup of type GUm(q).

The following straightforward result concerns tensor product decompositions.

Lemma 2.5.10. Let x = x1 ⊗ x2 ∈ GL(V) centralise a decomposition V = V1 ⊗V2. Assume
that x has order coprime to p, and let λ1, . . . , λa and µ1, . . . , µb be the eigenvalues of x1 on V1

and x2 on V2. Then the eigenvalues of x on V are λiµj for 1 6 i 6 a and 1 6 j 6 b.
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Table 2.3: Exceptions in Theorem 2.5.14 when q > p

T H ∩ T conditions

PΩ+
8 (q) Ω7(q) p > 2

Ω+
8 (q) Sp6(q) p = 2

Ω7(q) G2(q) p > 2
Sp6(q) G2(q) p = 2

PSp6(p2) J2 p > 2
PSLε

6(q) PSLε
3(q) p > 2

The next result on C7 subgroups [17, Lemma 5.7.2] is analogous to Lemma 2.5.6.

Lemma 2.5.11. Let r be prime and letD be V = V1⊗ · · · ⊗Vr where dim Vi = a for 1 6 i 6 r.
Assume that x ∈ GL(V)D has order r and transitively permutes the subspaces in D.

(i) If r 6= p, then each nontrivial rth root of unity occurs as an eigenvalue of x with multiplicity
n−a

r and 1 occurs with multiplicity n−a
r + a.

(ii) If r = p, then x has Jordan form [J(n−a)/p
p , Ja

1 ].

For the final results of this section, we introduce the following standard piece of notation.

Notation 2.5.12. For x ∈ PGL(V), let x̂ be a preimage of x in GL(V) and define ν(x) as
the codimension of the largest eigenspace of x̂ on V.

The following is [52, Lemma 3.7].

Lemma 2.5.13. Let x = x1 ⊗ x2 ∈ GL(V) have prime order and centralise a decomposition
V = V1 ⊗V2. Then ν(x) > max{ν(x2)dim V1, ν(x1)dim V2}.

We conclude this section by presenting a theorem of Guralnick and Saxl [36, Theorem 7.1],
which provides valuable information about the groups in the collection S .

Theorem 2.5.14. Let G be an almost simple classical group with socle T and natural module
V = Fn

q satisfying n > 6. Let H 6 G be contained in S . Then one of the following holds

(i) ν(x) > max{2,
√

n
2 } for all x ∈ H ∩ PGL(V)

(ii) q is prime, H ∩ T is an alternating group and V is the fully deleted permutation module

(iii) n 6 10 and H ∩ T is one of a small number of exceptions.

A convenient list of the exceptions in part (iii) is given in [14, Table 2.3]. We record in
Table 2.3 the exceptions in (iii) when q is not prime. See [43, p.185–187] for a good account
of the fully deleted permutation module appearing in part (ii).
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2.6 Algebraic groups

The finite simple groups of Lie type arise as the fixed points of algebraic groups under
Steinberg endomorphisms. This section briefly introduces how, and for a full account we
refer the reader to [31, Chapters 1 and 2] and [53]. This perspective allows us to exploit
Shintani descent, which is described in Section 2.7.

2.6.1 Simple algebraic groups

We begin by establishing terminology. Fix a prime number p. By an algebraic group we
always mean a linear algebraic group over Fp. Moreover, by a simple algebraic group we
mean an algebraic group which is simple as an algebraic group (see [31, Definition 1.7.1]
for a definition); any such group is connected but need not be simple as an abstract
group. A morphism π : X → Y of algebraic groups is an isogeny if π is surjective and
ker π is finite; if π is an isogeny and X is connected, then ker π 6 Z(X). We say that X
and Y are isogenous if there exists an isogeny X → Y or Y → X.

The following theorem, which is a special case of Chevalley’s classification of semisimple
algebraic groups (see [31, Theorem 1.10.4]), establishes that simple algebraic groups are
characterised, up to isogeny, by their associated root system. It is therefore useful to
recall that the indecomposable root systems are labelled

Am (m > 1), Bm (m > 2), Cm (m > 2), Dm (m > 4), E6, E7, E8, F4, G2.

Theorem 2.6.1 (Classification of Simple Algebraic Groups). Let Φ be an indecomposable
root system. Then there exist simple algebraic groups Φsc and Φad, unique up to isomorphism of
algebraic groups, such that

(i) Φ is the root system of Φsc and Φad

(ii) Z(Φsc) is finite and Z(Φad) = 1

(iii) if X is any simple algebraic group with root system Φ, then there exist isogenies

Φsc → X → Φad

(iv) if X, Y are isogenous simple algebraic groups, then the root systems of X and Y are
isomorphic, or char(F) = 2 and the root systems of X and Y are Bm and Cm.

The exception featured in Theorem 2.6.1(iv) is genuine, see Lemma 2.6.2.

For an indecomposable root system Φ, the groups Φsc and Φad (from Theorem 2.6.1) are
called the simply connected and adjoint groups of type Φ. Moreover, for a simple algebraic
group X with root system Φ, we say that the simply connected and adjoint versions of X
are Xsc = Φsc and Xad = Φad.
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Table 2.4: Simple classical algebraic groups

Φ Φsc Φad Z(Φsc) p m

Am (m > 1) SLm+1 PSLm+1 C(m+1)p′

Bm (m > 2) SO2m+1 SO2m+1 1 2
Spin2m+1 SO2m+1 C2 odd

Cm (m > 2) Sp2m PSp2m C(p−1,2)

Dm (m > 4) Ω2m Ω2m 1 2
Spin2m PSO2m C4 odd odd

C2 × C2 odd even

2.6.2 Simple classical algebraic groups

The simple classical algebraic groups are described in Table 2.4 (see [31, Theorem 1.10.7]),
where we adopt the notation introduced in Section 2.2 (but we omit reference to the
ambient field Fp). Recall that SOn = On ∩ SLn, and when n and p are even Ωn is the
subgroup of SOn containing the products of an even number of reflections (equivalently,
Ωn is the connected component of the identity of SOn).

The groups of type Bm and Dm merit further attention in odd characteristic. Accordingly,
assume that p 6= 2 and let (Φ, n) ∈ {(Bm, 2m + 1), (Dm, 2m)}. In this case, the simply
connected group Φsc is the spin group Spinn and there is an isogeny Spinn → SOn with a
kernel K 6 Z(Spinn) of order two. We will not require any further information about
spin groups, but for completeness we record that if m is even, then there exists the half-
spin group HSpin2m such that if Z 6 Z(Spin2m) is one of the two order two subgroups
other than K, then Spin2m /K and HSpin2m are isomorphic as algebraic groups.

Let us now address the exception in Theorem 2.6.1(iv). The groups SO2m+1(F2) and
Sp2m(F2) are nonisomorphic algebraic groups, but the following lemma demonstrates
that they are isogenous. We will exploit this isogeny in Proposition 4.3.13.

Lemma 2.6.2. There exists a bijective isogeny SO2m+1(F2)→ Sp2m(F2).

Proof. Let W = F2m+1
2 be equipped with the nonsingular quadratic form Q, with bi-

linear form (·, ·), defined in (2.7) with respect to the basis (e1, f1, . . . , em, fm, x). Let
Y ∼= SO2m+1(F2) be the isometry group of Q. The restriction of (·, ·) to V = 〈e1, . . . , fm〉
is the symplectic form defined in (2.4); let X be the isometry group of this restriction.
With respect to the bases in (2.4) and (2.7), define π : X → Y as

π((aij)) =


a11 · · · a1(2m) ∑m

j=1(a1(2j−1)a1(2j))
1
2

...
. . .

...
...

a(2m)1 · · · a(2m)(2m) ∑m
j=1(a(2m)(2j−1)a(2m)(2j))

1
2

0 · · · 0 1
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Notice that for 1 6 i 6 2m
m

∑
j=1

ai(2j−1)ai(2j) = Q

(
m

∑
j=1

(ai(2j−1)ej + ai(2j) f j)

)
.

To see that π is well-defined, let u, v ∈ {e1, . . . , fm} and g ∈ X, and note that for h = π(g)

(uh, vh) = (ug + Q(ug)
1
2 x, vg + Q(vg)

1
2 x) = (ug, vg) = (u, v)

(uh, xh) = (ug + Q(ug)
1
2 x, x) = 0 = (u, x)

Q(uh) = Q(ug + Q(ug)
1
2 x) = Q(ug) + Q(ug)

1
2 (ug, x) + Q(ug)Q(x) = 0 = Q(u)

Q(xh) = Q(x).

Evidently π is injective. For surjectivity, let h ∈ Y. Then there exists g ∈ X such that for
all u ∈ {e1, . . . , fm} there exists λu ∈ F2 satisfying uh = ug + λux. Now

Q(u) = Q(uh) = Q(ug + λux) = Q(ug) + λ2
u,

so λu = (Q(u) + Q(ug))
1
2 . Therefore, uh = u(π(g)). Moreover, since 〈x〉 is the radical

of (·, ·) (see (2.2)), xh = λx and λ = 1 since

1 = Q(x) = Q(xh) = Q(λx) = λ2Q(x).

Therefore, h = π(g). Consequently, π is a well-defined bijection.

Let us now show that π is an abstract group homomorphism. Let A = (aij) and B = (bij)

be elements of X. It is a matter of routine to show that

π(AB) =

(
AB C
0 1

)
and π(A)π(B) =

(
AB D
0 1

)
where C = (ci) and D = (di) are the 2m× 1 matrices defined as

ci =
m

∑
j=1

2m

∑
s=1

ais(bs(2j−1)bs(2j))
1
2 +

m

∑
j=1

(ai(2j−1)ai(2j))
1
2

di =
m

∑
j=1

2m

∑
s=1

ais(bs(2j−1)bs(2j))
1
2 + ∑
{s,t}∈S

(aisait)
1
2

m

∑
k=1

(bs(2k−1)bt(2k) + bt(2k−1)bs(2k))
1
2

and S is the set of 2-subsets of {1, . . . , 2m}. Write (u1, . . . , u2m) = (e1, f1, . . . , em, fm). For
all {s, t} ∈ S,

m

∑
k=1

(bs(2k−1)bt(2k) + bt(2k−1)bs(2k)) = (usB, utB).

Since B is an isometry of (·, ·),

(usB, utB) = (us, ut) =

{
1 if {s, t} = {2j− 1, 2j} for some 1 6 j 6 m
0 otherwise.

Together with the above expressions for ci and di, this proves that C = D and conse-
quently that π is a homomorphism.

In summary, π is an abstract group isomorphism. Although π is not a morphism of
algebraic groups, evidently π−1 is. Therefore, π−1 : Y → X is a bijective isogeny.
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2.6.3 Finite simple groups of Lie type

A Steinberg endomorphism of an algebraic group X is a bijective morphism σ : X → X
whose fixed point subgroup

Xσ = {x ∈ X | xσ = x}

is finite. Now assume that X is a simple algebraic group. By a theorem of Steinberg [59,
Theorem 10.13] an endomorphism σ of X is a Steinberg endomorphism if and only if σ

is not an automorphism of X as an algebraic group. In particular, we may consider the
semidirect product X:〈σ〉 where σ−1xσ = xσ = σ(x) for all x ∈ X.

Theorem 2.6.3 captures how the finite simple groups of Lie type are obtained from simple
algebraic groups and Steinberg endomorphisms (see [31, Theorem 2.2.6]). Example 2.6.11,
and Section 2.6.5 more generally, provides concrete applications of this theorem. Here,
we write Op′(G) for the smallest normal subgroup N of G such that G/N is a p′-group
(equivalently, Op′(G) is the subgroup of G generated by the p-elements).

Theorem 2.6.3. Let X be a simple algebraic group and let σ be a Steinberg endomorphism of X.
Write G = Op′(Xσ) and similarly define Gsc = Op′((Xsc)σ) and Gad = Op′((Xad)σ). Then

(i) there exist surjective homomorphisms Gsc → G → Gad with central kernels

(ii) Gsc/Z(Gsc) ∼= Gad and Z(Gad) = 1

(iii) Gsc = (Xsc)σ.

The group Gad defined in Theorem 2.6.3 is typically a finite simple group (see [31,
Theorem 2.2.7(a)]) and these are the finite simple groups of Lie type.

With the notation from Theorem 2.6.3, define the innerdiagonal group of Gad as

Inndiag(Gad) = (Xad)σ. (2.16)

It is interesting that Inndiag(Gad)/Gad ∼= Z(Gsc) (see [31, Theorem 2.5.12]).

Remark 2.6.4. Different authors use the term Steinberg endomorphism differently. In
[31], the term is used more generally to refer to any surjective endomorphism with a
finite fixed point subgroup; injectivity is not assumed. However, if X is a simple algebraic
group, then any surjective endomorphism of X is bijective [31, Proposition 1.15.3], so
our terminology agrees in this case. In contrast, in [53] the term is used in a more
restrictive manner (for what is known as a Frobenius endomorphism in [31]), but again
the terminology is consistent for simple algebraic groups (see [31, Theorem 2.1.11] and
[53, Theorem 21.5]).
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2.6.4 The Lang–Steinberg Theorem

We now record the key theorem that allows one to transfer information from algebraic
groups to the finite simple groups of Lie type [59, Theorem 10.13].

Theorem 2.6.5 (Lang–Steinberg Theorem). Let X be a connected algebraic group and let σ be
a Steinberg endomorphism of X. The map L : X → X defined as L(x) = xx−σ is surjective.

The following observation will be used repeatedly in the following section.

Corollary 2.6.6. Let X be a connected algebraic group and let σ be a Steinberg endomorphism of
X. The map L′ : X → X defined as L′(x) = xx−σ−1

is surjective.

Proof. Let g ∈ X. By Theorem 2.6.5, there exists x ∈ X such that g−σ = xx−σ. Conse-
quently, g = xx−σ−1

and L′ is surjective.

Let us record some applications of Theorem 2.6.5, which highlight its significance.

Proposition 2.6.7. Let X be a connected algebraic group and let σ be a Steinberg endomorphism
of X. The coset Xσ of X:〈σ〉 is exactly the conjugacy class σX.

Proof. For all g ∈ X we have σg = g−1σg = g−1gσ−1
σ, so σX ⊆ Xσ. For the reverse

inclusion, fix y ∈ X. Corollary 2.6.6 implies that there exists x ∈ X such that y = xx−σ−1
.

Consequently, σx−1
= xx−σ−1

σ = yσ. This implies that Xσ = σX.

We refer the reader to [46, Section 1.3] for a proof of the following important consequence
of Theorem 2.6.5, together with several applications. Here, for a group G and σ ∈ Aut(G),
two elements g, h ∈ G are σ-conjugate if there exists x ∈ G such that g = x−1hxσ.

Theorem 2.6.8. Let X be a connected algebraic group and let σ be a Steinberg endomorphism of
X. Let X:〈σ〉 act on a nonempty set Ω and assume that X acts transitively on Ω.

(i) The set Ωσ = {ω ∈ Ω | ωσ = ω} is nonempty.

(ii) If Gα is closed for some α ∈ Ω, then for all ω ∈ Ωσ, there exists a bijection between the
Xσ-orbits on Ωσ and the σ-conjugacy classes in Gω/G◦ω.

2.6.5 Finite simple classical groups

We now identify classical finite simple groups of Lie type with classical groups introduced
in Section 2.2. We follow the account in [31, Section 2.7]. For this section, we fix f > 1
and q = p f .

Definition 2.6.9. The standard Frobenius endomorphism with respect to the basis B for Fn
p

is the endomorphism ϕB of GLn(Fp) defined as (aij) 7→ (ap
ij), where the elements of

GLn(Fp) are written as matrices with respect to B.
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Remark 2.6.10. Regarding Definition 2.6.9, if the basis B is understood, then we omit
reference to it. We will identify ϕ with the map induced on ϕ-stable subgroups of GLn(Fp)

and quotients of such subgroups by ϕ-stable normal subgroups.

The following example gives a detailed discussion of linear groups.

Example 2.6.11. Let m > 1 and consider the groups of type Φ = Am. Write n = m + 1,
fix a basis B for Fn

p and write σ = ϕ
f
B . If n = 2 and f = 1, then assume that p > 5, since

PSL2(2) ∼= S3 and PSL2(3) ∼= A4 are not simple.

Let Xsc = Φsc = SLn(Fp). Evidently

(Xsc)σ = {(aij) ∈ SLn(Fp) | (aq
ij) = (aij)} = SLn(q).

If N is a proper normal subgroup of SLn(q), then N 6 Z(SLn(q)), so the order of N
divides (n, q− 1) and therefore SLn(q)/N is not a p′-group. This implies that

Gsc = Op′((Xsc)σ) = Op′(SLn(q)) = SLn(q) = (Xsc)σ,

as claimed in Theorem 2.6.3(iii). (Alternatively, note that SLn(q) is generated by the set
of transvections [2, 13.7], which have order p, so Op′(SLn(q)) = SLn(q).)

Let Xad = Φad = PSLn(Fp). Write Z = Z(GLn(Fp)). For each µ ∈ Fp, there exists λ ∈ Fp

such that λn = µ and hence there exists λIn ∈ Z such that det(λIn) = µ. Consequently,

Xad = PSLn(Fp) = (SLn(Fp)Z)/Z = GLn(Fp)/Z = PGLn(Fp).

Moreover,

(Xad)σ = {(aij)Z | (aij) ∈ GLn(Fp) and (aq
ij) = (aij)} = PGLn(q).

Every nontrivial normal subgroup of PGLn(q) contains PSLn(q). Since PGLn(q)/ PSLn(q)
has order (n, q− 1), and is therefore a p′-group, Op′(PGLn(q)) = PSLn(q), which is a
finite simple group.

Now Z(Gad) = Z(PSLn(q)) = 1 and

Gsc/Z(Gsc) = SLn(q)/Z(SLn(q)) ∼= PSLn(q) = Gad,

as claimed in Theorem 2.6.3(ii).

Finally, we record that

Inndiag(PSLn(q)) = Inndiag(Gad) = (Xad)σ = PGLn(q).

This completes the example on groups of type Am.

The following results on symplectic groups and odd-dimensional orthogonal groups can
be proved as in Example 2.6.11 and we omit the proofs. In the statements, we refer to the
bases B in (2.4) and (2.7).
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Lemma 2.6.12. Let n > 4 be even and ϕ = ϕB .

(i) If X = Spn(Fp), then Xϕ f = Spn(q).

(ii) If X = PSpn(Fp), then Xϕ f = PGSpn(q).

Therefore, for even n > 4,

Inndiag(PSpn(q)) = PGSpn(q). (2.17)

Lemma 2.6.13. Let n > 7 be odd, p be odd and ϕ = ϕB . If X = SOn(Fp), then Xϕ f = SOn(q).

Therefore, for odd n > 7 and odd q,

Inndiag(Ωn(q)) = SOn(q). (2.18)

We now turn to even-dimensional orthogonal groups. Here we will see the significance
of the groups PDO±n (q) introduced in Section 2.2.6. Lemma 2.6.14 concerns plus-type
groups (see (2.5) for the basis B+).

Lemma 2.6.14. Let n > 8 be even and ϕ = ϕB+ .

(i) If p = 2 and X = Ωn(F2), then Xϕ f = Ω+
n (q).

(ii) If p is odd and X = SOn(Fp), then Xϕ f = SO+
n (q).

(iii) If p is odd and X = PSOn(Fp), then Xϕ f = PDO+
n (q).

Proof. First assume that p = 2. Since X = Ωn(F2) 6 On(F2), we have Xϕ f 6 O+
n (q).

Since Ωn(F2) does not contain any reflections, we must have Xϕ f 6 Ω+
n (q). However,

|On(F2) : Ωn(F2)| = 2, so |O+
n (q) : Xϕ f | 6 2. Therefore, Xϕ f = Ω+

n (q). This proves (i).

Now assume that p is odd. Part (ii) is clear. For (iii), let X = PSO2m(Fp) and write
Z = Z(GOn(Fp)) = {λIn | λ ∈ F×p }. Since det(λIn) = λn = τ(λIn)n/2, we have
Z 6 DOn(Fp). Moreover, for each µ ∈ Fp, there exists λ ∈ Fp such that λ2 = µ and
hence there exists λIn ∈ Z such that τ(λIn) = µ and det(λIn) = µn/2. Consequently,
SOn(Fp)Z = DOn(Fp) and

X = PSOn(Fp) = (SOn(Fp)Z)/Z = DOn(Fp)/Z = PDOn(Fp), (2.19)

whence Xϕ f = PDO+
n (q).

For minus-type groups, we need to consider a different sort of Steinberg endomorphism.

Definition 2.6.15. Let n be even. With respect to B+, define r ∈ O+
n (p) as the element

r = I2m−2 ⊥
(

0 1
1 0

)

that centralises the decomposition 〈e1, . . . , fm−1〉 ⊥ 〈em, fm〉.
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Remark 2.6.16. Regarding Definition 2.6.15, note that r ∈ On(Fp) \Ωn(Fp). We routinely
identify r with the involutory automorphism of the algebraic group Ωn(Fp) it induces
by conjugation. We will write r for the image of r in POn(Fp).

Lemma 2.6.17. Let n > 8 be even and ϕ = ϕB+ . Then there exists an inner automorphism Ψ of
GLn(Fp) such that the following hold.

(i) If p = 2 and X = Ωn(F2), then Ψ(Xrϕ f ) = Ω−n (q).

(ii) If p is odd and X = SOn(Fp), then Ψ(Xrϕ f ) = SO−n (q).

(iii) If p is odd and X = PSOn(Fp), then Ψ(Xrϕ f ) = PDO−n (q).

Proof. Let V = Fn
p be equipped with the quadratic form Q, with bilinear form (·, ·),

defined in (2.5) with respect to the basis B+ = (e1, f1, . . . , em, fm), where n = 2m. Let Ψ
be the endomorphism of GLn(Fp) induced by conjugation by the element A = In−2 ⊥ A′

that centralises 〈e1, . . . , fm−1〉 ⊥ 〈em, fm〉, where

A′ =

(
ξ ξ−1

ξ−1 ξ

)
and where ξ ∈ Fq2 \ Fq satisfies ξq = ξ−1.

Write um = em A and vm = fm A. It is straightforward to check that Q(um) = Q(vm) = 1
and (um, vm) = ξ2 + ξ−2, so, without loss of generality, we may assume that B+A is the
basis B− defined in (2.6).

Let σε = (ϕBε) f . A straightforward calculation yields AA−(q) = r where A = (aij) and
A(q) = (aq

ij). Consequently, Ψ(Xrσ+) = A−1Xrσ+ A = Xσ− for any subgroup X 6 GLn(Fp).
Let Vε be the Fq-span of Bε. Then (Vε, Q) is the ε-type formed space from (2.5) or (2.6).
Therefore, if X = SOn(Fp), then Xσ+ = SO+

n (q) and Ψ(Xrσ+) = Xσ− = SO−n (q).

We are now in the position to prove the main claims of the lemma.

First assume that p = 2 and X = Ωn(F2). We know that Ψ(Yrϕ f ) = O−n (q), where
Y = On(F2). Since Ψ−1 maps the reflections in O−n (q) to reflections in Yrϕ f and X contains
no reflections, we conclude that Ψ(Xrϕ f ) = Ω−n (q). This proves (i).

Now assume that p is odd. We have already proved (ii). For (iii), let X = PSOn(Fp). We
recorded in (2.19) that X = PSOn(Fp) = PDOn(Fp). The above discussion now implies
that Ψ(Xrϕ f ) = PDO−n (q). This completes the proof.

In light of Lemmas 2.6.14 and 2.6.17, with a slight abuse of notation for minus-type
groups, for even n > 8,

Inndiag(PΩ±n (q)) = PDO±n (q). (2.20)

Let us conclude this section by recording our notation for finite spin groups. Assume
that p is odd and X = Spinn(Fp). If n > 8 is even, then we write Xϕ f = Spin+

n (q) and
Xrϕ f = Spin−n (q). Similarly, if n > 7 is odd, then we write Xϕ f = Spinn(q).
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2.6.6 Automorphisms

Let q = p f where p is prime and f > 1. In this section, we describe the automorphism
groups of the finite simple symplectic and orthogonal groups. This should be compared
with the brief discussion in Section 2.2.7 and the detailed analysis in Sections 4.1 and 5.1.
In particular, we tie up a loose end from Section 2.4 by discussing the conjugacy classes
of elements of prime order in Aut(PSpn(q)) \ PGSpn(q) and Aut(PΩε

n(q)) \ PGOε
n(q).

Viewing the finite simple groups of Lie type from the perspective of algebraic groups
provides a uniform means of describing their automorphisms. This is described in
full generality in [31, Section 2.5]. In Lemmas 2.6.18, 2.6.21 and 2.6.25, we record the
consequences of [31, Theorem 2.5.12] for the groups we are interested in. The terminology
that we introduce follows [31, Definition 2.5.13].

In this section, ϕ is the standard Frobenius endomorphism (aij) 7→ (ap
ij) with respect to

the appropriate basis from (2.4), (2.5) or (2.7).

Lemma 2.6.18.

(i) If T = PSpn(q) where n > 4 is even and (n, p) 6= (4, 2), then

Aut(T) = Inndiag(T):〈ϕ〉 = PΓSpn(q).

(ii) If T = Ωn(q) where n > 7 is odd, then

Aut(T) = Inndiag(T):〈ϕ〉 = PΓOn(q).

(iii) If T = PΩ+
n (q) where n > 10 is even, then

Aut(T) = Inndiag(T):(〈r〉 × 〈ϕ〉) = PΓO+
n (q).

Definition 2.6.19. Let T be a simple group featured in Lemma 2.6.18.

(i) A field automorphism of T is an Aut(T)-conjugate of an element of 〈ϕ〉.

(ii) If T = PΩ+
n (q), then a graph automorphism of T is an Aut(T)-conjugate of an element

of Inndiag(T):〈r〉 \ Inndiag(T) = PGO+
n (q) \ PDO+

n (q).

(iii) If T = PΩ+
n (q), then a graph-field automorphism of T is an Aut(T)-conjugate of an

element of 〈r, ϕ〉 \ (〈r〉 ∪ 〈ϕ〉).

The next result follows from [17, Propositions 3.4.15, 3.5.20 and 3.5.21].

Lemma 2.6.20. Let (G, Γ) be (PGSpn(q), PΓSpn(q)) for n > 4, (PGOn(q) PΓOn(q)) for
n > 7 or (PGO+

n (q), PΓO+
n (q)) for n > 10. A prime order element in Γ \ G is G-conjugate to

(i) a field automorphism ϕi for some 1 6 i 6 f , or

(ii) the graph-field automorphism rϕ f /2 (assuming that G = PGO+
n (q) and f is even).
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We now turn to minus-type orthogonal groups. Let n > 8. Recall from Lemma 2.6.17
that PDO−n (q) = Ψ(Xrϕ f ), where X = PSOn(Fp) and Ψ is an inner automorphism of
GLn(Fp). Define ψ : Ψ(X)→ Ψ(X) as

ψ = Ψ ◦ ϕ ◦Ψ−1. (2.21)

Lemma 2.6.21. Let T = PΩ−n (q) where n > 8. Then

Aut(T) = PDO−n (q):〈ψ〉 = PΓO−n (q).

Definition 2.6.22. Let T = PΩ−n (q) where n > 8.

(i) A field automorphism of T is an Aut(T)-conjugate of an odd order element of 〈ψ〉.

(ii) A graph automorphism of T is an element g ∈ Aut(T) such that π(g) has even order,
where π : Aut(T)→ Aut(T)/ Inndiag(T) is the natural quotient map.

Lemma 2.6.23. Let T = PΩ−n (q) where n > 8. Then ψ is an order 2 f graph automorphism of
T satisfying ψ f = r.

Proof. Write X = PSOn(Fp). Evidently, ϕ is an automorphism of Xrϕ f of order 2 f and ϕ f

induces conjugation by r. Consequently, ψ = Ψ ◦ ϕ ◦Ψ−1 is an order 2 f automorphism
of Ψ(Xrϕ f ) = PDO−n (q) and hence also of T = PΩ−n (q). Moreover, ψ f = Ψ ◦ ϕ f ◦ Ψ−1

induces conjugation by Ψ(r) = r on T. This proves the result.

The following is a special case of [17, Proposition 3.5.20].

Lemma 2.6.24. Let n > 8 be even. Each prime order element in PΓO−n (q) \ PGO−n (q) is
PGO−n (q)-conjugate to a field automorphism ψi for some 1 6 i 6 2 f .

It remains to consider T = Sp4(2
f ) and T = PΩ+

8 (q). We will not discuss the latter case
in detail since we will not prove our main theorems for almost simple groups with socle
PΩ+

8 (q), but we refer the reader to Remark 5.1.15 for some further details.

Now let T = Sp4(2
f ). The group T has an exceptional automorphism ρ, which satisfies

ρ2 = ϕ (see [23, Proposition 12.3.3]).

Lemma 2.6.25. Let T = Sp4(2
f ). Then Aut(T) = 〈T, ρ〉.

Definition 2.6.26. Let T = Sp4(2
f ) where n > 4.

(i) A field automorphism of T is an Aut(T)-conjugate of an element of 〈ϕ〉.

(ii) A graph-field automorphism of T is an Aut(T)-conjugate of ρi for odd 0 < i < 2 f .

Lemma 2.6.27. Let T = Sp4(2
f ). Each prime order element in Aut(T) \ T is T-conjugate to

(i) a field automorphism ϕi for some 1 6 i 6 f , or

(ii) the graph-field automorphism ρ f (assuming that f is even).
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2.7 Shintani descent

We now describe Shintani descent. We begin with the basic setup in Section 2.7.1, where
we follow the account given in [18, Section 2.6]. In Section 2.7.2 we present three new
technical lemmas, which are crucial to how we manipulate Shintani maps in our proofs,
and Section 2.7.3 records some further applications. Section 2.7.4 introduces a new result
(Lemma 2.7.13) that allows us to use Shintani descent more flexibly.

2.7.1 Introduction

Let X be a connected algebraic group and let σ be a Steinberg endomorphism of X.
We consider the semidirect product X:〈σ〉 where σ−1xσ = xσ = σ(x) for all x ∈ X.
For e > 1 the subgroup Xσe is σ-stable, so σ restricts to an automorphism σ̃ = σ|Xσe

of Xσe . Therefore, we may also consider the finite semidirect product Xσe :〈σ̃〉, where
gσ̃ = σ̃(g) = σ(g) for all g ∈ Xσe , noting that |σ̃| = e.

A Shintani map of (X, σ, e) is a map of conjugacy classes of the form

F : {(gσ̃)Xσe | g ∈ Xσe} → {xXσ | x ∈ Xσ} (gσ̃)Xσe 7→ (a−1(gσ̃)ea)Xσ

where a ∈ X satisfies g = aa−σ−1
(which exists by Corollary 2.6.6). We often abuse

notation by writing F(gσ̃) for a representative of the Xσ-class F((gσ̃)Xσe ).

The following theorem establishes the main properties of the Shintani map. This result
was first proved in this form by Kawanaka in [41, Lemma 2.2], building on the work of
Shintani who introduced the key ideas in [58, Lemmas 2.1 and 2.6]. We follow the proof
given in [18, Lemma 2.13].

Theorem 2.7.1 (Shintani Descent). Let X be a connected algebraic group, let σ be a Steinberg
endomorphism of X and let e > 1. Let F be a Shintani map of (X, σ, e).

(i) The map F is a well-defined bijection, which does not depend on the choice of a ∈ X.

(ii) If g ∈ Xσe then CXσ(F(gσ̃)) = a−1CXσe (gσ̃)a.

Proof. Let g ∈ Xσe and write g = aa−σ−1
. First note that

a−1(gσ)ea = a−1ggσ−1· · · gσ̃−(e−1)
a = a−1(aa−σ−1

)(aσ−1
a−σ−2

) · · · (aσ−(e−1)
a−σ−e

)a = a−σ−e
a.

Since g = aa−σ−1 ∈ Xσe we know that aa−σ−1
= (aa−σ−1

)σ−e
= aσ−e

a−σ−(e+1)
, whence

a−σ−e
a = a−σ−(e+1)

aσ−1
= (a−σ−e

a)σ−1
, so a−σ−e

a ∈ Xσ.

Let hσ̃ be Xσe -conjugate to gσ̃. Fix k ∈ Xσe such that hσ̃ = k−1(gσ̃)k and consequently
h = k−1gk−σ−1

. Writing g = aa−σ−1
, we obtain h = (k−1a)(k−1a)−σ−1

, whence

(k−1a)−1(hσ̃)e(k−1a) = a−1k(hσ̃)ek−1a = a−1(gσ̃)ea.

Therefore, F does not depend on the choice of representative of the Xσe -class.
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Write g = aa−σ−1
= bb−σ−1

. Then a−1b = a−σ−1
bσ−1

= (a−1b)σ−1
, so a−1b ∈ Xσ and

b−1(gσ̃)eb = (a−1b)−1(a−1(gσ̃)ea)(a−1b),

so F is independent of the choice of a. Therefore, F is a well-defined function.

To see that F is surjective, let x ∈ Xσ and write x−1 = bb−σ−e
. Then x = a−σ−e

a where
a = b−1. As we argued in the first paragraph, a−1(aa−σ−1

σ̃)ea = x and aa−σ−1 ∈ Xσe since
a−σ−e

a ∈ Xσ. We will complete the proof that F is bijective after proving (ii).

Turning to (ii), let z ∈ CXσe (gσ̃). Then a−1za centralises a−1(gσ̃)ea. Since z ∈ CXσe (gσ̃),
we know that zgσ̃ = gσ̃z, which implies that zσ−1

= g−1zg. Therefore,

(a−1za)σ−1
= a−σ−1

g−1zgaσ−1
= a−1gg−1zgg−1a = a−1za.

Therefore, a−1za ∈ Xσ, so a−1za ∈ CXσ(a−1(gσ̃)ea) = CXσ(F(gσ̃)). This proves that
a−1CXσe (gσ̃)a ⊆ CXσ(F(gσ̃)). For the reverse inclusion, let w ∈ CXσ(F(gσ̃)). Then

awa−1 = (gσ̃)−e(awa−1)(gσ̃)e = (aa−σ−1
σ)−e(awa−1)(aa−σ−1

σ)e = (awa−1)σ−e
,

which implies that awa−1 ∈ Xσe . Moreover,

(gσ̃)−1(awa−1)(gσ̃) = (σ−1aσ−1
a−1)awa−1(aa−σ−1

σ) = awσ−1
a−1 = awa−1,

so awa−1 ∈ CXσe (gσ̃). This implies that a−1CXσe (gσ̃)a = CXσ(F(gσ̃)), as claimed.

We may now prove that F is bijective. Let {c1, . . . , ct} be representatives of the Xσ-classes
in Xσ. Then there exist Xσe -classes C1, . . . , Ct in Xσe σ̃ such that F(Ci) = ci for each i, by
the surjectivity of F. By (ii), |Ci| = |ci||Xσe : Xσ|. This implies that

t

∑
i=1
|Ci| = |Xσe : Xσ|

t

∑
i=1
|ci| = |Xσe | = |Xσe σ̃|,

so {C1, . . . , Ct} is a complete set of G-classes in Xσe σ̃, which proves that F is bijective.

The following concrete example highlights how we apply Shintani descent.

Example 2.7.2. Let e > 2, let m > 4 and let q = 2e. Write X = Ω2m(F2). Let ϕ = ϕB+ be
the standard Frobenius endomorphism (aij) 7→ (a2

ij) of X.

Let F be the Shintani map of (X, ϕ, e). Note that Xϕ = Ω+
2m(2) and Xϕe = Ω+

2m(q). Now

F : {(gϕ)Ω+
2m(q) | g ∈ Ω+

2m(q)} → {x
Ω+

2m(2) | x ∈ Ω+
2m(2)}.

Therefore, we can specify a conjugacy class in the coset Ω+
2m(q)ϕ of the almost simple

group 〈Ω+
2m(q), ϕ〉 as the preimage under F of a conjugacy class in Ω+

2m(2).

Recall the element r from Definition 2.6.15. Let E be the Shintani map of (X, rϕ, e). Then
Xrϕ
∼= Ω−2m(2) and X(rϕ)e ∼= Ωε

2m(q) where ε = (−)e. Therefore, the map

E : {(grϕ)Ωε
2m(q) | g ∈ Ωε

2m(q)} → {xΩ−2m(2) | x ∈ Ω−2m(2)}

allows us, for example, to specify elements in the coset Ω+
2m(q)rϕ of 〈Ω+

2m(q), rϕ〉 when e
is even; however, this setup does not shed light on this coset when e is odd.
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2.7.2 Properties

In this section, we will highlight three properties of the Shintani map, which justify
techniques that we repeatedly employ. Each of these properties relies on the fact that the
Shintani map does not depend on the choice of element afforded by the Lang–Steinberg
Theorem (see Theorem 2.7.1(i)). Throughout, we assume that X is a connected algebraic
group, σ is a Steinberg endomorphism of X and e > 1. Moreover, let F be the Shintani
map of (X, σ, e) and let σ̃ = σ|Xσe .

We begin with a preliminary observation. If Y is a closed σ-stable subgroup of X, then
the restriction σY of σ to Y is a Steinberg endomorphism. Similarly, if π : X → Y is an
isogeny with a σ-stable kernel, then σ induces a Steinberg endomorphism σY on Y such
that σY ◦ π = π ◦ σ. For ease of notation, in both cases we write σ for σY.

The first property concerns subgroups of X (see Proposition 4.3.9 for an application).

Lemma 2.7.3. Let Y be a closed connected σ-stable subgroup of X and let E be the Shintani map
of (Y, σ, e).

(i) For all g ∈ Yσe , any representative of E((gσ̃)Yσe ) is a representative of F((gσ̃)Xσe ).

(ii) For all x ∈ Yσ, any representative of E−1(xYσ) is a representative of F−1(xXσ).

Proof. We prove only (i) since (ii) is very similar. Let g ∈ Yσe and let x be a representative
of E((gσ̃)Yσe ). Then x = a−1(gσ̃)ea for an element a ∈ Y such that aa−σ−1

= g. Since
Y 6 X, the element a−1(gσ̃)ea = x is a valid representative of F((gσ̃)Xσe ), as required.

The second property concerns quotients of X.

Lemma 2.7.4. Let π : X → Y be an isogeny with a σ-stable kernel and let E be the Shintani
map of (Y, σ, e).

(i) For all h ∈ π(Xσe) 6 Yσe , there exists y ∈ π(Xσ) 6 Yσ that represents E(hσ̃).

(ii) For all y ∈ π(Xσ) 6 Yσ, there exists h ∈ π(Xσe) 6 Yσe such that hσ̃ represents E−1(y).

Moreover, if 〈π(Xσe), σ̃〉 P 〈Yσe , σ̃〉 and π(Xσ) P Yσ, then E restricts to a bijection

E1 : {(hσ̃)Yσe | h ∈ π(Xσe)} → {yYσ | y ∈ π(Xσ)}.

Proof. For (i), let g ∈ Xσe and let x be a representative of F(gσ̃). Then x = a−1(gσ̃)ea
for an element a ∈ X such that aa−σ−1

= g. Therefore, π(x) = π(a)−1(π(g)σ̃)eπ(a).
Note that π(x) ∈ π(Xσ) 6 Yσ. Moreover, π(a) ∈ Y and π(a)π(a)−σ−1

= π(g), so
π(a)−1(π(g)σ̃)eπ(a) = π(x) is a valid representative of E(π(g)σ̃), as required. As with
Lemma 2.7.3, (ii) is similar to (i).

If 〈π(Xσe), σ̃〉 P 〈Yσe , σ̃〉 and π(Xσ) P Yσ, then for all h ∈ π(Xσe) and y ∈ π(Xσ) we have
(hσ̃)Yσe ⊆ π(Xσe)σ̃ and yYσ ⊆ π(Xσ), which implies, given (i) and (ii), that E restricts to
the bijection E1.
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The following concrete example elucidates the utility of Lemma 2.7.4.

Example 2.7.5. Let m > 2, let p be an odd prime and let q = qe
0 = p f , where e > 2

divides f . Write X = Sp2m(Fq) and Y = PSp2m(Fq). Note that the natural quotient
map π : X → Y is an isogeny. Let σ = ϕ f /e where ϕ = ϕB+ is the standard Frobenius
endomorphism (aij) 7→ (ap

ij) of X and also the induced endomorphism of Y.

Then Xσe = Sp2m(q), so π(Xσe) = PSp2m(q), which is a subgroup of Yσe = PGSp2m(q)
(see Lemma 2.6.12). Since PSp2m(q) P PGSp2m(q) and 〈PSp2m(q), σ̃〉 P 〈PGSp2m(q), σ̃〉,
by Lemma 2.7.4, the Shintani map

E : {(gσ̃)PGSp2m(q) | g ∈ PGSp2m(q)} → {x
PGSp2m(q0) | x ∈ PGSp2m(q0)}

restricts to the bijection

E1 : {(gσ̃)PGSp2m(q) | g ∈ PSp2m(q)} → {x
PGSp2m(q0) | x ∈ PSp2m(q0)}.

We conclude with a property that relates Shintani maps to taking powers (see Proposi-
tion 4.4.5 for an application).

Lemma 2.7.6. Let d be a proper divisor of e and let E be the Shintani map of (X, σd, e/d). Let
x ∈ Xσ. If F(gσ̃) = xXσ , then E((gσ̃)d) = xX

σd .

Proof. Assume that g ∈ Xσe satisfies F(gσ̃) = x. Let a ∈ X satisfy a−1(gσ̃)ea = x and
aa−σ−1

= g. Write
h = ggσ−1 · · · gσ−(d−1)

.

Then (gσ̃)d = hσ̃d and h = aa−σ−d
. Therefore,

E((gσ̃)d) = E(hσ̃d) = a−1(hσ̃d)e/da = a−1(gσ̃)ea = x,

which completes the proof.

Remark 2.7.7. Let g, h ∈ Xσe . If gσ̃ and hσ̃ are 〈Xσe , σ̃〉-conjugate, then there exist k ∈ Xσe

and an integer i such that

hσ̃ = (kσ̃i)−1gσ̃(kσ̃i) = (hσ̃)i(kσ̃i)−1gσ̃(kσ̃i)(hσ̃)−i,

but (kσ̃i)(hσ̃)−i ∈ Xσe , so gσ̃ and hσ̃ are Xσe -conjugate. In particular,

|C〈Xσe ,σ̃〉(gσ̃)| = e|CXσe (gσ̃)|. (2.22)

2.7.3 Applications

Theorem 2.7.1(ii) highlights that Shintani maps preserve important group theoretic data.
We now exploit this by providing three applications of Shintani descent to determining
maximal overgroups of elements, a key aspect of our probabilistic approach. We continue
to assume that X is a connected algebraic group, σ is a Steinberg endomorphism of X,
e > 1, F is the Shintani map of (X, σ, e) and σ̃ = σ|Xσe .

We begin with an important general theorem of Shintani descent [18, Theorem 2.14].
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Theorem 2.7.8. Let Y be a closed connected σ-stable subgroup of X. For all g ∈ Xσe ,

fix(gσ̃, Xσe /Yσe) = fix(F(gσ̃), Xσ/Yσ).

The first application is essentially [18, Corollary 2.15].

Lemma 2.7.9. Let Y be a closed connected σ-stable subgroup of X such that NXσ(Yσ) = Yσ and
NXσe (Yσe) = Yσe . For g ∈ Xσe , the number of Xσe -conjugates of Yσe normalised by gσ̃ equals
the number of Xσ-conjugates of Yσ containing F(gσ̃).

Proof. Since Yσe is σ-stable and NXσe (Yσe) = Yσe , the conjugation action of 〈Xσe , σ̃〉 on
the set of Xσe -conjugates of Yσe is equivalent to the action of 〈Xσe , σ̃〉 on cosets of Yσe in
Xσe . Therefore, the number of Xσe -conjugates of Yσe normalised by gσ̃ is fix(gσ̃, Xσe /Yσe).
Similarly, the number of Xσ-conjugates of Yσ containing F(gσ̃) is fix(F(gσ̃), Xσ/Yσ). The
result now follows from Theorem 2.7.8.

The following example demonstrates a typical application of Lemma 2.7.9.

Example 2.7.10. Let n > 2 and let q = qe
0 = p f where e > 2 divides f . Let X = SLn(Fp)

and let σ = ϕ f /e, where ϕ is the standard Frobenius endomorphism (aij) 7→ (ap
ij) of X,

with respect to some fixed basis B = (u1, . . . , un) for Fn
p. Let F be the Shintani map of

(X, σ, e). Note that Xσ = SLn(q0) and Xσe = SLn(q).

Let 1 6 k < n. We may fix a σ-stable maximal Pk parabolic subgroup Y 6 X; for
example, let Y = X〈u1,...,uk〉 (see [53, Section 12] for a discussion of parabolic subgroups).
In particular, Y is a closed connected subgroup of X. Moreover, NXσ(Yσ) = Yσ and
NXσe (Yσe) = Yσe , so we are in a position to apply Lemma 2.7.9.

Let g ∈ Xσe . By Lemma 2.7.9, the number of SLn(q)-conjugates of Yσe normalised by gσ̃

equals the number of SLn(q0)-conjugates of Yσ containing F(gσ̃).

There is a unique SLn(q)-class of maximal subgroups of G = 〈SLn(q), σ̃〉 of type Pk

and this class is represented by H = 〈Yσe , σ̃〉 (see, for example, [43, Proposition 4.1.17]).
In addition, for each x ∈ SLn(q), the element gσ̃ is contained in Hx if and only if gσ̃

normalises Yx
σe . Therefore, the number of G-conjugates of H containing gσ̃ equals the

number of SLn(q0)-conjugates of Yσ containing F(gσ̃).

Example 2.7.10 highlights the key idea of Shintani descent: we can deduce information
about gσ̃ from information about F(gσ̃).

Our second application is a minor generalisation of [18, Proposition 2.16(i)]. Here we
write G̃ = Xσe :〈σ̃〉.

Lemma 2.7.11. Let g ∈ G̃ and let H 6 G̃. Then gσ̃ is contained in at most |CXσ(F(gσ̃))|
G̃-conjugates of H.
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Proof. By Lemma 2.1.3, the number of G̃-conjugates of H that contain gσ̃ is

N =
|(gσ̃)G̃ ∩ H|
|(gσ̃)G̃|

· |G̃|
|NG̃(H)| =

|(gσ̃)G̃ ∩ H||CG̃(gσ̃)|
|NG̃(H)| .

First note that (gσ̃)G̃ ⊆ Xσe gσ̃, and for 0 6 i < e, the cosets (Xσe ∩ H)(gσ̃)i in H are
distinct. Therefore, |(gσ̃)G̃ ∩ H| 6 |H|/e. Next, by (2.22) and Theorem 2.7.1(ii),

|CG̃(gσ̃)| = |CXσe (gσ̃)|e = |CXσ(F(gσ̃))|e.

Together these observations give

N 6
|H||CXσ(F(gσ̃))|e

e|NG̃(H)| 6 |CXσ(F(gσ̃))|.

The third application is based on [18, Proposition 2.16(ii)] and is more specialised than
the previous two. In this case, assume that X is an adjoint simple classical algebraic group
with natural module V and σ = γϕi, where ϕ is a standard Frobenius endomorphism of
X and either γ is trivial or X has type Dm and γ = r (see Section 2.6.3).

Lemma 2.7.12. Let q = qe
0 = p f where e is a prime divisor of f . Let g ∈ Xσe such that F(gσ̃)

is A1 ⊕ · · · ⊕ Ak, where each Ai is either irreducible on a di-space or is Ai = Bi ⊕ B−Ti where
Bi is irreducible on a di-space and Bi is not similar to B−Ti . Assume that (di, dj) = 1 when i 6= j.
Then the number of Xσe -conjugates of Xσ normalised by gσ̃ is at most ek.

Proof. Write H = Xσ and H̃ = NG̃(H), noting that H̃ = H × 〈σ̃〉 since H is adjoint. The
restrictions on F(gσ̃) in the statement imply that the eigenvalue multiset (over Fp) of

F(gσ̃) is S1 ∪ · · · ∪ Sk where Si is either Λi or Λi ∪Λ−1
i where Λi = {λi, . . . , λ

q
di−1
0

i }, and
Λi 6= Λ−1

i in the latter case (compare with Lemma 2.3.17).

Let hσ̃ ∈ H̃ be G̃-conjugate to gσ̃. Then F(hσ̃) is Xσ-conjugate to F(gσ̃). Let the eigenvalue
multiset of h ∈ H be {α1, . . . , αn}. Therefore, the eigenvalue multiset of F(hσ̃) is the
eigenvalue multiset of (hσ̃)e = he, which is {αe

1, . . . , αe
n}. Therefore, without loss of

generality, αe
i = λi for each 1 6 i 6 k. Now note that α1, . . . , αk determine all of the

eigenvalues of h. Thus, there are ek choices for the eigenvalues of h and consequently
ek choices for h and, hence, hσ̃ up to H-conjugacy. Therefore, (gσ̃)G̃ ∩ H̃ splits into
ek H-classes. Since (di, dj) = 1 for i 6= j, we know that h stabilises the same type of
decomposition of Fn

q0
as g, acting irreducibly on the corresponding summands. Therefore,

|CXσ(hσ̃)| = |CXσ(h)| = |CXσ(F(gσ̃))|. Consequently, the H-classes into which gσ̃G̃ ∩ H̃
splits have size |F(gσ̃)H |.

By Lemma 2.1.3, the number of G̃-conjugates of H̃ which contain gσ̃ is

|(gσ̃)G̃ ∩ H̃|
|(gσ̃)G̃|

|G̃|
|H̃|
6

ek|F(gσ̃)Xσ ||CG̃(gσ̃)|
|H̃|

=
ek|Xσ||CG̃(gσ̃)|
|H̃||CXσ(F(gσ̃))|

6 ek.
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2.7.4 Generalisation

In situations where we are unable to apply Shintani descent directly (see Section 5.3.2),
the following new result is a very useful substitute. We continue to assume that X is a
connected algebraic group, σ is a Steinberg endomorphism of X and e > 1.

Lemma 2.7.13. Let γ be an order d automorphism of X as an algebraic group. Let Z be a closed
connected σ-stable subgroup of X contained in CX(γ). Let G = Xγσe :〈γ̃, σ̃〉 where σ̃ = σ|Xγσe

and γ̃ = γ|Xγσe .

(i) Let x ∈ Zσ 6 Xγσe . There exists g ∈ Xγσe such that (gσ̃)e and xγ̃−1 are X-conjugate
elements of G.

(ii) Moreover, if (γσe)d = σed, then, for all x and g in (i) and H 6 〈Xγσe , σ̃〉, the number of
Xγσe -conjugates of H containing gσ̃ is at most |CXσ(xd)|.

Proof. Let F be the Shintani map of (Z, σ, e) and fix x ∈ Zσ. Let σ̂ = σ|Zσe , noting that
σ̂e = 1. By Theorem 2.7.1 applied to F, there exists g ∈ Zσe such that

a−1(gσ̂)ea = a−1(ggσe−1
gσe−2 · · · gσ)a = x

as elements of Zσe :〈σ̂〉, where a ∈ Z 6 X satisfies aa−σ−1
= g. Note that g ∈ Zσe 6 Xγσe

and σ̃e = γ̃−1 as an element of G = Xγσe :〈σ̃, γ̃〉. Therefore, as elements of G,

a−1(gσ̃)ea = a−1(ggσe−1
gσe−2 · · · gσ)σ̃ea = a−1(ggσe−1

gσe−2 · · · gσ)γ̃−1a = xγ̃−1,

which proves (i).

Now fix H 6 〈Xγσe , σ̃〉. Let E be the Shintani map of (X, σ, de), recording that Zσ 6 Xσ

and Xγσe 6 X(γσe)d = Xσde . Write σ = σ|X
σde . Since σ|Xγσe = σ̃ and |σ| = de = |σ̃|, we can

consider 〈Xγσe , σ̃〉 as a subgroup of 〈Xσde , σ〉, where we identify σ̃ with σ. Therefore,

E(gσ̃) = a−1(gσ̃)dea = xd.

Therefore, by Lemma 2.7.11, the number of Xσde -conjugates of H containing gσ̃ is at most
|CXσ(xd)|, which implies (ii).

We conclude with an example that demonstrates how we use Lemma 2.7.13.

Example 2.7.14. This example continues Example 2.7.2. Recall that standard Shintani
descent did not provide information about the coset Ω+

2m(q)rϕ of 〈Ω+
2m(q), rϕ〉 when e is

odd. We now use Lemma 2.7.13 to do this.

Let e > 3 be odd, m > 4 and q = 2e. Write X = Ω2m(F2) and recall the standard
Frobenius endomorphism ϕ and the involutory automorphism r. Let Z ∼= Ω2m−2(F2)

be the subgroup of X that centralises 〈e1, . . . , fm−1〉 ⊥ 〈em, fm〉 and acts trivially on the
second summand. Evidently Z 6 CX(r). Therefore, Lemma 2.7.13(i) implies that for all
x ∈ Zrϕ

∼= Ω+
2m−2(2), there exists g ∈ Xr(rϕ)e = Ω+

2m(q) such that (gϕ)e is X-conjugate to
xr. Moreover, Lemma 2.7.13(ii) translates information about x into information about gϕ.
In this way, we can select and work with elements in the coset Ω+

2m(q)ϕ when e is odd.
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2.8 Computational methods

Here we briefly discuss the computational methods that we employ to study the uniform
spread of small almost simple classical groups. The relevant code is in Appendix A.

We implemented an algorithm in MAGMA [5] that takes as input a finite group G, an
element s ∈ G and nonnegative integers k and N. The aim of the algorithm is to determine
whether u(G) > k is witnessed by the conjugacy class sG.

We first follow the probabilistic method described in Section 2.1. To determineM(G, s)
we typically use MaximalSubgroups. However, for larger groups we use the function
ClassicalMaximals of Holt and Roney-Dougal. For each conjugacy class xG, we need to
compute fpr(x, G/H) for each H ∈ M(G, s); we do this by calculating |xG ∩ H| using
IsConjugate. If we establish that P(x1, s)+ · · ·+ P(xk, s) < 1 for all k-tuples (xG

1 , . . . , xG
k )

of classes of prime order elements of G, then we have verified that u(G) > k with respect
to the class sG.

Otherwise, for each k-tuple of classes (C1, . . . , Ck), we apply a randomised method
(parameterised by N) to explicitly construct an element z ∈ sG such that for all ci ∈ Ci,
〈c1, z〉 = · · · = 〈ck, z〉 = G. This randomised approach is based on the computations in
[10, Section 4], which are described by Breuer in [9, Section 3.3]. Observe that it suffices
to show that for all representatives (x1, . . . , xk) of the orbits of C1 × · · · × Ck under the
diagonal conjugation action of G, there exists z ∈ sG such that 〈x1, z〉 = · · · = 〈xk, z〉 = G.
An algorithm of [9, pp.18–19] to construct these orbit representatives is the crucial
ingredient. Given these representatives, we test at most N random conjugates of s for
each list of representatives, and we return any k-tuples of conjugacy classes for which no
suitable conjugate of s is found. If no k-tuples fail, then the bound u(G) > k holds.

These computational methods are similar to those employed to study the uniform
domination number in the joint paper [20], which are detailed in [19]; any overlap with
the computational methods in this joint paper is the work of the author of this thesis.

The computations were carried out in MAGMA 2.24-4 on a 2.7 GHz machine with 128 GB
RAM. The largest computation took 144 s and 193 MB of memory.
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3
Fixed Point Ratios

This section serves to provide the fixed point ratio bounds that we require in order to
apply the probabilistic method described in Section 2.1. There is a vast literature on fixed
point ratios for primitive actions of almost simple groups. One reason for this work is
the important applications these bounds have to a variety of areas, such as monodromy
groups and base sizes of permutation groups, via probabilistic methods (see Section 2.1).

The most general bound in this area is [49, Theorem 1] of Liebeck and Saxl, which
establishes that

fpr(x, G/H) 6
4
3q

(3.1)

for any almost simple group of Lie type G over Fq, maximal subgroup H 6 G and
nontrivial element x ∈ G, with a known list of exceptions. This bound is essentially
best possible, since fpr(x, G/H) ≈ q−1 when q is odd, G = PGLn(q), H is a maximal P1

parabolic subgroup (the stabiliser of a 1-space of Fn
q ) and x lifts to the diagonal matrix

x = [−1, In−1] ∈ GLn(q).

Let G be an almost simple classical group. A maximal subgroup H 6 G is a subspace
subgroup if H ∩ soc(G) acts reducibly on the natural module for soc(G) or if soc(G)

is Spn(2
f ) and H ∩ soc(G) = O±n (2 f ), and H is a nonsubspace subgroup otherwise. In

Section 3.1 we record and prove bounds on fixed point ratios for subspace subgroups.

Notice that the bound in (3.1) does not depend on the element x. A theorem of Burness [12,
Theorem 1] gives a bound on fpr(x, G/H) depending on x when H 6 G is nonsubspace
and x ∈ G has prime order. We present and apply this result in Section 3.2 before
establishing a stronger bound for groups with socle PSp4(q).
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3.1 Subspace actions

We begin with a general theorem, which combines several results of Guralnick and
Kantor [33, Proposition 3.1, 3.15 and 3.16].

For an almost simple classical group G, we adopt the convention that u = 1, unless
soc(G) = PSUn(q), in which case u = 2. Therefore, V = Fn

qu is the natural module for
all of GLn(q), Spn(q), Oε

n(q) and GUn(q). The Witt index of a subspace U of V is the
dimension of a maximal totally singular subspace of U. (When G = GLn(q) all subspaces
of V are totally singular.)

Theorem 3.1.1. Let G 6 PΓL(V) be an almost simple classical group with natural module
V = Fn where F = Fqu . Assume that n > 6. Let H 6 G be a reducible maximal subgroup,
stabilising a subspace 0 < U < V of dimension k and Witt index l. Let 1 6= x ∈ G. Let m, a, b, c
be the parameters defined in Table 3.1.

(i) If soc(G) = PSLn(q), then

fpr(x, G/H) 6 2|F|−min{k, n−k}.

(ii) If soc(G) 6= PSLn(q) and U is nondegenerate, then

fpr(x, G/H) 6 2|F|−m+a + |F|−m+b + |F|−l + |F|−n+k.

(iii) If soc(G) 6= PSLn(q) and U is totally singular, then

fpr(x, G/H) 6 2|F|−m+c + |F|−m
u +

b
u + |F|−k.

The bounds in Theorem 3.1.1 do not depend on x. In contrast, Frohardt and Magaard
[29, Theorems 1–6] established upper and lower bounds for the fixed point ratio of an
element x of an almost simple classical group on an appropriate set of k-spaces which
depend not only on q, n and k, but also the element x ∈ G ∩ PGL(V).

Table 3.1: Fixed point ratios: Values of a, b, c

soc(G) a b c

PSp2m(q) q even 2 0 1
q odd 1 0 1

Ω2m+1(q) 1 0 1
PΩε

2m(q) ε = + 2 1 2
ε = − 2 0 1

PSUn(q) n = 2m 2 1
2 1

n = 2m + 1 1 − 1
2 0
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More precisely, the bounds in [29] depend on the parameter ν(x), the codimension
of the largest eigenspace of x̂ on V = V ⊗Fq Fq for a preimage x̂ of x in GL(V) (see
Notation 2.5.12). For example, if G = PSpn(q) and H 6 G is the stabiliser of a nonde-
generate k-space, where k < n

2 , then for all elements x ∈ G satisfying s = ν(x) < n
2k , [29,

Theorem 2] gives

q−sk − 3q−(n−1)/2 < fpr(x, G/H) < q−sk + 200q−(n−1)/2.

However, for our application, the constants in these bounds are not sufficient. Therefore,
we present bounds which are similar to those in [29], but with sharper constants in the
special cases that we are interested in. Our bounds will have no restriction on s.

Before we obtain these bounds, let us make some comments on our proofs. We will need
a detailed understanding of the conjugacy of prime order elements in almost simple
classical groups. Recall this topic was discussed in Sections 2.4 and 2.6.6. We will freely
adopt the notation and terminology introduced therein.

The following lemma will be used frequently without reference.

Lemma 3.1.2. Let G be a finite group with a normal subgroup G0. Let H be a maximal subgroup
of G that does not contain G0. Write H0 = H ∩ G0. Then

(i) |G : G0| = |H : H0| and |G : H| = |G0 : H0|

(ii) fpr(x, G/H) = fpr(x, G0/H0) for all x ∈ G0.

Proof. We begin with (i). Since H is maximal in G and does not contain G0

G/G0 = HG0/G0 ∼= H/(H ∩ G0) = H/H0.

Therefore, |G : G0| = |H : H0| and, consequently, |G : H| = |G0 : H0|.

Let us now turn to (ii). Let x ∈ G0. Let g1, . . . , gk be a (right) transversal of H0 in G0. We
claim that g1, . . . , gk is a transversal of H in G. By (i), it suffices to prove that Hgi 6= Hgj

when i 6= j. To this end, assume that Hgi = Hgj. Then gj = hgi for some h ∈ H. Since
gi, gj ∈ G0 we deduce that h ∈ G0 and hence h ∈ H0. Therefore, H0gi = H0gj and i = j.
Now, for each i, since x, gi ∈ G0 we know that gixg−1

i ∈ H if and only if gixg−1
i ∈ H0, so

Hgix = Hgi if and only if H0gix = H0gi. This proves that fix(x, G/H) = fix(x, G0/H0).
By (i), |G : H| = |G0 : H0|, so fpr(x, G/H) = fpr(x, G0/H0), as required.

The next result appears as Proposition 3.5 in the author’s paper [38].

Proposition 3.1.3. Let G be an almost simple group with socle PSp2m(q) where m > 3. Let
x ∈ G have prime order. If x ∈ PGSp2m(q), then write s = ν(x). Let H be the stabiliser in G of
a nondegenerate 2-space. Then

fpr(x, G/H) 6

{
q−2s + q−(2s+2) + q−(2m−2) + q−(2m−1) if x ∈ PGSp2m(q)
2q−(2m−1) if x 6∈ PGSp2m(q)
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Proof. If x is not contained in a G-conjugate of H, then fpr(x, G/H) = 0. Therefore,
assume that x ∈ H. Write G0 = G ∩ PGSp2m(q) and H0 = H ∩ G0. Hence, H0 is a
subgroup of GSp2(q)×GSp2m−2(q), modulo scalars. Let r be the (prime) order of x. Let
V = F2m

q be the natural module for PSp2m(q).

Case 1: x ∈ G0

The information on the conjugacy classes of elements of prime order given in Section 2.4
allows the splitting of xG0 ∩H0 into H0-classes to be easily determined. We then verify the
claimed fixed point ratio bound by using the centraliser orders given in [17, Appendix B]
Let us explain in detail how this is done when r 6∈ {2, p}.

Assume that r 6∈ {2, p}. Therefore, x is a semisimple element of odd prime order.
By Lemma 2.4.3, x is G0-conjugate to an element that lifts to a block diagonal matrix
[Aa1

1 , . . . , Aat
t , Ie] centralising a decomposition V = Va1

1 ⊥ · · · ⊥ Vat
t ⊥W where, for some

even k, each Vj is a nondegenerate k-space and W is the (nondegenerate) 1-eigenspace of
x. Moreover, either each matrix Aj acts irreducibly on Vj or each matrix Aj centralises the
decomposition Vj = Uj ⊕U∗j , where Uj and U∗j are totally singular subspaces on which
Aj acts irreducibly. The submodules Vj are pairwise nonisomorphic.

Let us now determine how xG0 ∩ H0 splits into H0-classes. Let h ∈ H0 be G0-conjugate
to x. Then h lifts to (A, B) ∈ GSp2(q)×GSp2m−2(q). If A = I2, then e > 2 and h is H0-
conjugate to x0, an element lifting to (I2, [Aa1

1 , . . . , Aat
t , Ie−2]). If A 6= I2, then let λ ∈ Fq

be a nontrivial eigenvalue of A. Then λ is an eigenvalue of Aj for some j. Since the set
of eigenvalues of A is closed under the map µ 7→ µq, we deduce that k = 2 and A = Aj.

Therefore, h is H0-conjugate to xj, an element lifting to (Aj, [A
a1
1 , . . . , A

aj−1
j , . . . , Aat

t , Ie]).

This information is enough to determine how xG0 ∩ H0 splits into H0-classes. If k > 2,
then e > 0 and xG0 ∩ H0 = xH0

0 . If k = 2, then, writing e = 2a0, we have

xG0 ∩ H0 =
⋃

06j6t
aj>0

xH0
j

We now use this information about xG0 ∩ H0 to find an upper bound on fpr(x, G0/H0).
First note that

|H0|
|G0|

=
| Sp2(q)|| Sp2m−2(q)|

| Sp2m(q)|
=

q2 − 1
q2m−2(q2m − 1)

.

Similarly, if e > 0, then

|CG0(x)|
|CH0(x0)|

=
| Spe(2)|

| Sp2(q)|| Spe−2(q)|
=

qe−2(qe − 1)
q2 − 1

.

Now assume that k = 2. Let ε = + if r divides q− 1 and let ε = − otherwise (when r
necessarily divides q + 1). Then for all 1 6 j 6 t such that aj > 0 we have

|CG0(x)|
|CH0(xj)|

=
|GLε

aj
(q)|

|GLε
1(q)||GLε

aj−1(q)|
6

qaj−1(qaj + 1)
q− 1
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Now, in light of Lemma 3.1.2,

fpr(x, G/H) = fpr(x, G0/H0) =
|H0|
|G0| ∑

06j6t
aj>0

|CG0(x)|
|CH0(xj)|

.

Therefore, with the above bounds, we maximise our upper bound on fpr(x, G/H) when
aj = 0 for all j > 2. In this case, a0 + a1 = m and s = 2a1 = 2m− e. Therefore,

fpr(x, G/H) 6
q2 − 1

q2m−2(q2m − 1)

(
q2m−s−2(q2m−s − 1)

q2 − 1
+

q
s
2−1(q

s
2 + 1)

q− 1

)
6

1
q2s +

1
q2m−2s .

For another example, assume that r = p = 2. Therefore, x is a unipotent involution
and we adopt the notation of Aschbacher and Seitz [3]. In light of [17, Lemma 3.4.14],
it is straightforward to determine how xG0 ∩ H0 splits into H0-classes. For example, if
x = bs for odd s > 3, then xG0 ∩ H0 is the union of xH0

1 ∪ xH0
2 ∪ xH0

3 where x1, x2 and x3

are the elements (I2, bs), (b1, as−1) and (b1, cs−1) of Sp2(q)× Sp2m−2(q). Therefore, using
the centraliser orders in [17, Appendix B],

fpr(x, G/H) = fpr(x, G0/H0) =
|H0|
|G0|

3

∑
i=1

|CG0(xi)|
|CH0(xi)|

6
1

q2s +
1

q2m−1 +
1

q2m+s−1 .

Case 2: x 6∈ G0

By Lemma 2.6.20, x is a field automorphism. In this case, |xG ∩ H| is at most the number
of elements of order r in G0x ∩ H = H0x, which, by [31, Proposition 4.9.1(d)], is at most
2|xH |. Therefore, |xG ∩ H| 6 2|xH | and

fpr(x, G/H) =
2|H||CG(x)|
|G||CH(x)| 6

2| Sp2(q)|| Sp2m−2(q)| f | Sp2m(q
1/r)| f

| Sp2m(q)| f | Sp2(q1/r)|| Sp2m−2(q1/r)| f 6
2

q2m−2 .

This completes the proof.

We now turn to orthogonal groups. In part (i) of the statement of Proposition 3.1.4, if q is
even, then the nonsingular 1-space in question is degenerate and has a stabiliser of type
Sp2m−2(q) (see [43, Proposition 4.1.7]).

Proposition 3.1.4. Let G = POε
2m(q) where m > 4. Let x ∈ G have prime order and ν(x) = s.

(i) If H 6 G is the stabiliser of a nonsingular 1-space, then

fpr(x, G/H) 6
1
qs +

1
q2m−s +

2
qm − ε

.

(ii) If H 6 G is the stabiliser of a nondegenerate 2-space, then

fpr(x, G/H) 6
1

q2s +
1

qm−1 − 1
+

4
q2m−3 +

1
q2m−2s .
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Proof. We focus on part (i), since part (ii) is very similar to Proposition 3.1.3. Let r be the
order of x and assume that x ∈ H. Write H = G〈u〉 and write U = 〈u〉⊥.

Case 1: r 6∈ {2, p}

As in the proof of Proposition 3.1.3, by Lemma 2.4.3, x is G-conjugate to an element that
lifts to a block diagonal matrix [M1, . . . , Md, I2l ] centralising V = V1 ⊥ · · · ⊥ Vd ⊥ W
where each Vj is nondegenerate and W is the 1-eigenspace of x. Moreover, either each
matrix Mj acts irreducibly on Vj or each matrix Mj centralises a decomposition of Vj into
two totally singular subspaces on which Mj acts irreducibly.

Since x ∈ H, we deduce that x fixes u. Therefore, 2l > 0 and on U the element x acts as
[M1, . . . , Md, I2l−1]. Therefore, Lemma 2.4.3 implies that xG ∩ H = xH. Moreover, from
the centraliser orders in [17, Appendix B] we obtain

|xG ∩ H|
|xG| =

|H|
|G|
|CG(x)|
|CH(x)| 6

(2, q− 1)
qm−1(qm − ε)

ql−1(ql + 1)
(2, q− 1)

6
1

q2m−2l +
1

qm − ε
.

Since 2l is the dimension of the 1-eigenspace of x, we know that 2m− 2l > s. The result
now follows in this case.

Case 2: r = 2

If p = 2, we proceed exactly as described in the proof of Proposition 3.1.3, so assume
that p 6= 2. The G-classes of semisimple involutions are described in detail in [17,
Section 3.5.2]. Since x ∈ H we may deduce that x has type ti, t′i or γi for some i, in the
notation of [31]. (In particular, [17, Table B.9] makes clear that involutions arising from
matrices of order four do not stabilise nondegenerate 1-spaces.) Said otherwise, x lifts
to an involution −Ia ⊥ Ib centralising a decomposition U1 ⊥ U2 where U1 and U2 are
nondegenerate a- and b-spaces. Therefore, either x fixes u and acts as −Ia ⊥ Ib−1 on U,
or x negates u and acts as −Ia−1 ⊥ Ib on U. Therefore, xG ∩ H = xH

1 ∪ xH
2 where x1 and

x2 correspond to the two possible actions of x on u. Consequently,

|xG ∩ H|
|xG| =

|H|
|G|

(
|CG(x1)|
|CH(x1)|

+
|CG(x2)|
|CH(x2)|

)
.

Assume that a = 2k and b = 2l; the case where a and b are odd is very similar. From the
centraliser orders in [17, Appendix B] we can compute that

|CG(x1)|
|CH(x1)|

6
1
2

ql−1(ql + 1) and
|CG(x2)|
|CH(x2)|

6
1
2

qk−1(qk + 1).

Therefore,

|H|
|G|

(
|CG(x1)|
|CH(x1)|

+
|CG(x2)|
|CH(x2)|

)
6

ql−1(ql + 1) + qk−1(qk + 1)
qm−1(qm − ε)

6
1

q2k +
1

q2l +
1

qm − ε
.

Since {2k, 2l} = {s, 2m− s}, we have verified the result in this case.
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Case 3: r = p > 2

By Lemma 2.4.7, x is G-conjugate to an element that lifts to a matrix with Jordan form
[Jap

p , . . . , Ja2
2 , Ja1

1 ] where ∑
p
i=1 iai = 2m. Indeed, the conjugacy class xG is characterised

by this Jordan form together with a sequence (δ1, δ3, . . . , δp) in {�,�} that satisfies the
condition δ1δ3 · · · δp = D(Q), where Q is the form defining G.

Note that V = 〈u〉 ⊥ U since p is odd. Since x ∈ H and the only eigenvalue of x
is 1, the vector u is fixed by x. Since the 1-eigenspace of Ji is totally singular when
i > 1, we deduce that a1 > 0 and x acts on U as an element whose Jordan form
is [Jap

p , . . . , Ja2
2 , Ja1−1

1 ]. Moreover, the corresponding sequence of discriminants for the
element x|U is (δ1δ, δ3, . . . , δp), where δ = D(Q|〈u〉). By Lemma 2.4.7, this completely
determines the H-class of x. Therefore, xG ∩ H = xH and the result again follows from
the centraliser orders in [17, Appendix B]. This completes the proof.

A weaker version of the next result appears as Lemma 6.10 in the joint paper [20]; both versions
are work of the author of this thesis.

Proposition 3.1.5. Let G be an almost simple group with socle Sp2m(q) where q = 2 f and
m > 2. Let x ∈ G have prime order. If x ∈ Sp2m(q), then write s = ν(x). Let H 6 G be a
maximal subgroup of type O±2m(q). Then

fpr(x, G/H) 6

{
q−s + (qm − 1)−1 if x ∈ Sp2m(q)
2q−m if x 6∈ Sp2m(q).

Proof. Write G0 = Sp2m(q) and H0 = H ∩ G0 ∼= Oε
2m(q). Assume that x ∈ H and let r be

the order of x.

Case 1: x ∈ G0

First assume that r is odd. The description of the conjugacy classes of semisimple el-
ements of odd order in G0 and H0 given in Lemma 2.4.3 implies that xG0 ∩ H0 = xH0 .
Consequently,

fpr(x, G/H) = fpr(x, G0/H0) =
|xG0 ∩ H0|
|xG0 | =

|H0|
|G0|
|CG0(x)|
|CH0(x)| .

From the centraliser orders given in Lemma 2.4.4 we deduce that

fpr(x, G/H) =
|H0|
|G0|
| Spe(q)|
|Oη

e (q)|
,

where the 1-eigenspace of x on F2m
2 is an e-dimensional η-type space (if e = 0, then we

define Spe(q) = Oη
e (q) = 1). Since e 6 2m− s we deduce that

fpr(x, G/H) 6
|H0|
|G0|

· 1
2

qm−s/2(qm−s/2 + 1) 6
qm−s/2(qm−s/2 + 1)

qm(qm − 1)
6

1
qs +

1
qm − 1

.
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Now assume that r = 2. The conjugacy classes of unipotent involutions are described in
Lemma 2.4.8. It is easy to see that the G-class and H-class of x have the same Aschbacher–
Seitz label (see [17, Remark 3.5.17]), so xG0 ∩ H0 = xH0 . The conjugacy class sizes |xH0 |
and |xG0 | appear in [13, Proposition 3.22] and the desired bound is easily established. For
example, if s is odd and x = bs, then

|xH0 | = |Oε
2m(q)|

2| Sps−1(q)|| Sp2m−2s(q)|q2m(s−1)−3s2/2+3s/2

|xG0 | =
| Sp2m(q)|

| Sps−1(q)|| Sp2m−2s(q)|q2ms−3s2/2+s/2

and thus
fpr(x, G/H) =

1
qs

(
1 +

ε

qr − ε

)
6

1
qs

(
1 +

1
qm − 1

)
.

Case 2: x 6∈ G0

If m = 2 and x is a graph-field automorphism, then G does not have a maximal sub-
group of type Oε

2m(q). Therefore, we may assume that x is a field automorphism of G0.
Moreover, by Lemma 2.6.20, we may assume that x = ϕi where ϕ is the standard field
automorphism of G0 and r = f /i.

We now determine how xG ∩ H splits into H-classes. First assume that r is odd. In
this case, the r − 1 distinct G-conjugacy classes of order r field automorphisms of G0

(represented by the nontrivial elements of 〈ϕ〉) naturally correspond to the r− 1 distinct
H-classes of order r field automorphisms of H0 (see Lemmas 2.6.20 and 2.6.24). Therefore,
xG ∩ H = xH and from the centraliser orders in [17, Propositions 3.4.15 and 3.5.20] we
obtain

fpr(x, G/H) =
|H|
|G|
|CG(x)|
|CH(x)| =

|Oε
2m(q)| f

| Sp2m(q)| f
| Sp2m(q

1/r)| f
|Oε

2m(q1/r)| f <
1

qm .

Now assume that r = 2. Lemma 2.6.24 implies that there are no involutions in H \ H0 if
ε = −. Therefore, we may assume that ε = +. In this case, Lemma 2.6.20 implies that
there is a unique G-class of involutions in G \G0, which is represented by ϕ f /2, but exactly
two H-classes of involutions in H \ H0 represented by x1 = ϕ f /2 (a field automorphism)
and x2 = rϕ f /2 (a graph-field automorphism). Therefore, xG ∩ H = xH

1 ∪ xH
2 and

fpr(x, G/H) =
|O+

2m(q)|| Sp2m(q
1/2)|

| Sp2m(q)|

(
1

|O+
2m(q1/2)|

+
1

|O−2m(q1/2)|

)
<

2
qm .

This completes the proof.
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3.2 Nonsubspace actions

We now turn to fixed point ratios for nonsubspace actions of classical groups, which,
in general, are smaller than fixed point ratios for subspace actions. Liebeck and Shalev
proved the following general theorem [52].

Theorem 3.2.1. There exists a constant ε > 0 such that if G is an almost simple classical group,
H 6 G is a maximal nonsubspace subgroup and x ∈ G has prime order, then

fpr(x, G/H) < |xG|−ε.

An essentially best possible value of ε was determined by Burness in [12, Theorem 1]
(see [12, Definition 2] for a precise definition of the dimension of the natural module).

Theorem 3.2.2. Let G be an almost simple classical group with an n-dimensional natural
module. If H 6 G is a maximal nonsubspace subgroup and x ∈ G has prime order, then

fpr(x, G/H) < |xG|− 1
2+

1
n+ι

where ι is given in [12, Table 1].

Regarding Theorem 3.2.2, for most subgroups H 6 G the parameter ι is simply 0, and
whenever n > 10 we have ι 6 1

n−2 .

Let us now apply Theorem 3.2.2 to the classical groups that we will be interested in.

Proposition 3.2.3. Let G be an almost simple group with socle PSp2m(q) or Ω2m+1(q), where
m > 3 and q = p f with f > 2. Let H 6 G be a maximal nonsubspace subgroup and let x ∈ G
have prime order. Let ` = 0, unless either

(a) T = PSp2m(q) and H has type Spm(q) o S2 or Spm(q
2)

(b) T = Ω7(q) and H has type G2(q),

in which case ` = 1. Then

(i) fpr(x, G/H) <
√

5 q−(m−
3
2−`)

(ii) fpr(x, G/H) <
√

5 q−(2m−4−2`) if ν(x) > 2 or x 6∈ PGL(V).

Proof. Let T be the socle of G. Let n be 2m if T = PSp2m(q) and 2m + 1 if T = Ω2m+1(q).
First assume that x ∈ Inndiag(T). From the bounds on conjugacy class sizes presented
in [13, Section 3],

|xG| > |xT| > 1
4

(
q

q + 1

)
q2m−1 >

1
5

q2m−1,

and if ν(x) > 2, then

|xG| > |xT| > 1
4

(
q

q + 1

)
q4m−4 >

1
5

q4m−4.
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Next assume that x ∈ G \ Inndiag(T). In this case,

|xG| > |xT| >
|PSp2m(q)|
|PGSp2m(q1/2)| >

1
2

qm2+m/2 >
1
5

q4m−4,

noting that |PSp2m(q)| = |Ω2m+1(q)| when q is odd.

Therefore, Theorem 3.2.2 implies that

fpr(x, G/H) < |xG|− 1
2+

1
n+ι <

√
5

q(2m−1)( 1
2−

1
n−ι)
6

√
5

qm− 3
2−ι(2m−1)

,

and if ν(x) > 2 or x 6∈ Inndiag(T),

fpr(x, G/H) < |xG|− 1
2+

1
n+ι <

√
5

q(4m−4)( 1
2−

1
n−ι)
6

√
5

q2m−4−ι(4m−4)
,

where ι = 0, unless H is listed in (a) or (b), in which case ι 6 1
n . This proves the result.

Proposition 3.2.4. Let G be an almost simple group satisfying PΩε
2m(q) 6 G 6 PΓOε

2m(q)
where m > 4 and q = p f with f > 2. Let H 6 G be a maximal nonsubspace subgroup and let
x ∈ G have prime order. Let ` = 0, unless H has type GL±m(q), in which case ` = 1. Then

(i) fpr(x, G/H) < 2 q−(m−2−`)

(ii) fpr(x, G/H) < 3 q−(2m−5−2`) if ν(x) > 2 or x 6∈ PGL(V)

Proof. Write T = PΩε
2m(q). First assume that x ∈ PGOε

2m(q). From the bounds presented
in [13, Section 3],

|xG| > |xT| > 1
4

q2m−2,

and if ν(x) > 2, then

|xG| > |xT| > 2δ2,p

8

(
q

q + 1

)
q4m−6.

Next assume that x ∈ PΓOε
2m(q) \ PGOε

2m(q). In this case,

|xG| > |xT| >
|PΩ+

2m(q)|
|PDO−2m(q1/2)|

>
1
4

qm(m−1) >
1
4

(
q

q + 1

)
q4m−6.

Theorem 3.2.2 now implies that

fpr(x, G/H) < |xG|− 1
2+

1
2m+ι <

4
1
2

q(2m−2)( 1
2−

1
2m−ι)

6
2

qm−2−ι(2m−2)
,

and if ν(x) > 2 or x 6∈ PGOε
2m(q), then

fpr(x, G/H) < |xG|− 1
2+

1
2m+ι <

(
8/2δ2,p · q+1

q

)1/2

q(4m−6)( 1
2−

1
2m−ι)

6
3

q2m−5−(4m−6)ι
,

where ι = 0 unless H has type GL±m(q) and ι = (2m− 2)−1. This proves the result.
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The four-dimensional symplectic groups require special attention and we will provide a
close to best possible fixed point ratio bound for these groups.

This appears as Proposition 3.6 in the author’s paper [38].

Proposition 3.2.5. Let q = p f where f > 1 and let G be an almost simple group with socle
PSp4(q). For a maximal nonsubspace subgroup H 6 G and a prime order element x ∈ G

fpr(x, G/H) 6
4

q(q− 1)
,

unless H has type Sp2(q) o S2 or Sp2(q
2) and x is an a2 or t2 involution, in which case

fpr(x, G/H) 6
q

q2 − 1
.

Moreover, we have the following stronger bounds when q is even.

(i) If H has type 2B2(q), then fpr(x, G/H) 6 q−2.

(ii) If H has type O−2 (q
2), then fpr(x, G/H) 6 8 q−2(q− 1)−1.

Proof. Let x have prime order r. We may assume that x ∈ H. By [7, Tables 8.12–8.14], the
possibilities for the type of H are the following, where k is a prime divisor of f

◦ in all cases:

type Sp4(q
1/k) 2B2(q) PSL2(q)

condition q even & f odd q odd

◦ if G does not contain a graph-field automorphism:

type Sp2(q) o S2 GL2(q) Sp2(q
2) GU2(q)

condition q odd q odd

◦ if G contains a graph-field automorphism:

type O+
2 (q) o S2 O−2 (q) o S2 O−2 (q

2)

Write T = PSp4(q), G0 = G ∩ PGSp4(q) and H0 = H ∩ G0. Assume that H does not have
type PSL2(q) since the calculation for this case is in [14, Proposition 2.22].

Case 1: x ∈ G0

Suppose for now that H does not have type 2B2(q). We proceed as in the proof of
Proposition 3.1.3. The splitting of xG0 into H0-classes is straightforward to determine,
except for involutions when q is odd. For these elements the arguments are often more
subtle. We present the example where q is odd, x is an involution and H has type GU2(q).
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Write H0 = B:〈ι〉 where B is the image of GU2(q) in Sp4(q) modulo scalars, and ι

induces the inverse-transpose map on B. First assume that x ∈ B. By Lemma 2.5.7(i),
any element of GU2(q), modulo scalars, with eigenvalue multiset {λ, µ} has an image
in B with eigenvalue multiset {λ, λq, µ, µq}. Following [31], there are two classes of
involutions in B. The t1 class is represented by an element which lifts to [−1, 1], so
embeds in G0 as [−I2, I2], a t1 involution of G0. If q ≡ 1 (mod 4), then the second class is
represented by t′1, which lifts to [ξ, ξ−q], where ξ has order 4 in F×q2 . In this case, ξ ∈ Fq

and so [ξ, ξ−q] = [ξ, ξ−1] embeds in G0 as [ξ I2, ξ−1 I2] ∈ G0, a t2 involution of G0. If
q ≡ 3 (mod 4), then the second class arises from central involutions z which lift to [λ, λ],
where λ ∈ F×q2 has order 4. Since λ 6∈ Fq, z embeds in G0 as a t′2 involution. Now assume
that x ∈ H0 \ B. Then x lifts to Aι such that (Aι)2 ∈ {I,−I}. That is, A is either symmetric
or skew-symmetric. Moreover, x has a 1-eigenvector, and hence embeds as t1 ∈ G0, if and
only if A is skew-symmetric. Therefore, we have determined how xG0 ∩ H0 splits into H0

classes, and the result follows as in the proof of Proposition 3.1.3. For example, if x is a
t1 involution and G0 = PSp4(q) then, since there are q + 1 skew-symmetric matrices in
GU2(q),

fpr(x, G/H) =
|xG0 ∩ H0|
|xG0 | =

| Sp2(q)|2
|PSp4(q)|

(
|GU2(q)|

2|GU1(q)|2
+

q + 1
2

)
=

1
q2 .

Now consider the case where H has type 2B2(q). By [13, Proposition 3.52], either x = c2

or x = [λ1, λ−1
1 , λ2, λ−1

2 ] for λ1 6= λ2. For the former case, we use the fact that |xT ∩ H0| is
at most (q− 1)(q2 + 1), the number of involutions in 2B2(q). In the latter case, the bound
|xT ∩ H0| 6 |H0| suffices.

The stronger bound for the subgroup of type O−2 (q
2) is obtained by observing that, in

this case, H0 does not contain any involutions of type a2 or b1 (see [17, Proposition 5.9.2]).

Case 2: x is a field automorphism

Assume that if H has type Sp4(q
1/k) then r 6= k, and if H ∈ C2 or H ∈ C3 then r 6= 2.

The calculations in these cases are similar and we will present an example below. If
these conditions are not satisfied, then the situation is slightly more complicated. We will
demonstrate how to handle this when r = 2 and H ∈ C2 before outlining the other cases.

Consider the case where H has type Sp2(q) o S2. Let H0 = B:〈π〉 where B 6 H0 is the
index two subgroup of type Sp2(q)× Sp2(q). By Lemma 2.6.27, we may assume that
x is a power of the standard field automorphism. Moreover, we may choose π such
that π and x commute. Since |xG| is at most the number of elements of order r in Tx,
|xG ∩ H| is at most the number of elements of order r in Tx ∩ H = H0x = Bx ∪ Bπx. If
r 6= 2, then, since π has order two and commutes with x, no element of Bπx has order r.
In this case, |xG ∩ H| is at most the number of elements of order r in Bx which, by [31,
Proposition 4.9.1(d)], is at most 2|xH |. If r = 2, then the previous argument gives the
number of involutions in Bx, so it remains to determine the number of involutions in Bπx.
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3.2. Nonsubspace actions

Let gπx ∈ Bπx be an involution. Suppose that g lifts to [M, N] ∈ GSp2(q)×GSp2(q).
Then for λ ∈ Fq,

λ[I, I] = ([M, N]πx)2 = [M, N][M, N]πx = [MNx, NMx].

Hence, λ ∈ {1,−1} and N = λM−x. Therefore, there are at most 2| Sp2(q)| = 2q(q2 − 1)
involutions in Bπx. The bound follows.

Let us now remark on the remaining subtleties. First, if r = 2 and H has type Sp2(q
2)

or GU2(q), then fpr(x, G/H) = 0. To see this, suppose that G = PSp4(q):〈σ〉 and that
H = PSp2(q

2):〈τ〉 where σ is a field automorphism of PSp4(q) of order e and τ is a field
automorphism of PSp2(q

2) of order 2e; the other cases are similar. If x 6∈ PSp2(q
2) is

an involution, then x = gτe for some g ∈ PSp2(q
2). However, gτe ∈ PSp2(q

2):〈τe〉 =
H ∩ G0, so x ∈ G0, which is a contradiction.

Now let H have type Sp4(q
1/k) with r = k. For S ⊆ G, let ir(S) be the number of elements

of S of order r. Although |xG ∩ H| = ir(H0x), we cannot argue that ir(H0x) = |xH | since
x commutes with H0. Therefore, we need to explicitly bound ir(H0x) 6 1 + ir(H0). If
r > 5, then the bound ir(H0) 6 |H0| 6 q2 suffices. If r ∈ {2, 3}, we obtain the result
by using the bounds in [45, Proposition 1.3]; in particular, i2(H0) 6 2(q3/2 + q) and
i3(H0) 6 2(q11/9 + q8/9).

Case 3: x is a graph-field automorphism

In this case r = p = 2. If H0 = Sp4(q
1/k), then the argument is the same as for field

automorphisms. Next, if H0 = 2B2(q), then, as above, x commutes with H0 and we note
that i2(2B2(q)) = (q− 1)(q2 + 1). Finally, if H has type Oε

2(q) o S2 or O−2 (q
2), then, since

H is a split extension of H0 by a cyclic group of order 2e = |H : H0|, there are at most
|H|/e = 2|H0| elements of order 2 in H. The bound |xG ∩ H| 6 2|H0| suffices.

Our final result in this section is a bound relating to subfield subgroups. Before giving
this result, let us record two useful technical lemmas. The first is a straightforward
observation (see, for example, [17, Appendix B]).

Lemma 3.2.6. Let G be Sp2m(q) or Oε
n(q) where ε ∈ {+,−, ◦}. Let g ∈ G have prime order.

Then ν(g) = 1 if and only if one of the following hold

(i) G = O±2m(q) for even q or G = Sp2m(q), and g has Jordan form [J2, I2m−2]

(ii) G = Oε
n(q) for odd q and, modulo scalars, g = −I1 ⊥ In−1.

The next result is proved in [43, p.145].

Lemma 3.2.7. Let q = qk
0 and let V0 = F2m

q0
be equipped with a nondegenerate ε-type quadratic

form Q0. Then the quadratic form Q induced on V = V0 ⊗Fq0
Fq is εk-type.
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Proposition 3.2.8. Let G be an almost simple group with socle PSp2m(q) or Ω2m+1(q). Let
H 6 G be a maximal subfield subgroup. Let x ∈ G ∩ PGL2m(q) have prime order and satisfy
ν(x) = 1. Then

fpr(x, G/H) <
2

qm .

Proof. The possibilities for x are recorded in Lemma 3.2.6. Let us prove the result when
G = SO2m+1(q); the other cases are similar. Therefore, let H = SO2m+1(q0) where
qk

0 = q for a prime k dividing f . We may assume that x ∈ H has type I1 ⊥ −I2m and
centralises a decomposition F2m+1

q0
= U0 ⊥ W0. Then x, as an element of G, centralises

the decomposition F2m+1
q = U ⊥W, where U = U0 ⊗Fq0

Fq and W = W0 ⊗Fq0
Fq.

The G-class and H-class of x are characterised by the signs of the spaces W and W0,
respectively (see [17, Sections 3.5.2.1 and 3.5.2.2]). Write sgn(W) = ε and sgn(W0) = ε0.
By Lemma 3.2.7, εk

0 = ε. Therefore, if k is odd, then xG ∩ H = xG. However, if k = 2, then
for ε = − we have |xG ∩ H| = 0 and for ε = + we have xG ∩ H = xH

+ ∪ xH
− where xη is

an involution with an η-type −1-eigenspace.

Consequently,

|xG ∩ H|
|xG| 6

| SO2m+1(q1/2)|| SO+
2m(q)|

| SO2m+1(q)|

(
1

| SO+
2m(q1/2)|

+
1

| SO−2m(q1/2)|

)
6

2
qm + 1

and the result follows.
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4
Groups of Types Bm and Cm

The work in this chapter is heavily drawn from the publication

S. Harper, On the uniform spread of almost simple symplectic and orthogonal groups,
J. Algebra 490 (2017), 330–371.

We now begin to prove the main results of this thesis. This chapter will focus on almost
simple groups G of type Bm and Cm, or said otherwise groups G whose socle T is a
symplectic or odd-dimensional orthogonal group. These groups are structurally quite
similar and we aim to handle these two cases together in a reasonably uniform manner.

Before commencing with details of the proof, let us state the main results for groups of
type Bm and Cm and discuss some of the general ideas that arise in the proof.

In this chapter we write

T = TBC = {PSp2m(q) | m > 2 and (m, q) 6= (2, 2)} ∪ {Ω2m+1(q) | q odd, m > 3} (4.1)

A = ABC = {〈T, θ〉 | T ∈ TBC, θ ∈ Aut(T)}. (4.2)

Remark. In the definition of T , we exclude Sp4(2) ∼= S6, since this group is not simple.
For the avoidance of doubt, let us discuss the spread and uniform spread of Sp4(2)

′ ∼= A6

and its three cyclic extensions: S6, PGL2(9) and M10. It is well known that u(A6) = 2 and
u(S6) = 0 but s(S6) = 2. Moreover, by computing in MAGMA (see Section 2.8) we can
show that u(PGL2(9)) = 5 and u(M10) > 8.

The two main results of this chapter are the following.
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4. GROUPS OF TYPES Bm AND Cm

Theorem 4A. If G ∈ A, then u(G) > 2.

Theorem 4B. Let (Gi) be a sequence of groups in A with |Gi| → ∞. Then u(Gi)→ ∞ if and
only if (Gi) does not have an infinite subsequence of groups over a field of fixed size whose socles
are either symplectic groups in even characteristic or odd-dimensional orthogonal groups.

Moreover, in this chapter we will actually prove stronger results than the two headline
theorems above. If we exclude some cases, we can tighten the bound in Theorem 4A.

Theorem 4C. Let G ∈ A. Assume that q is odd and m > 3. If soc(G) = Ω2m+1(q) then
u(G) > 3, and if soc(G) = PSp2m(q) then u(G) > 4.

We can find explicit bounds for the groups in Theorem 4B with bounded uniform spread.

Theorem 4D. Let G ∈ A. If q is even, soc(G) = PSp2m(q) and θ is not a graph-field
automorphism, then s(G) 6 q. If soc(G) = Ω2m+1(q), then s(G) < q2+q

2 .

Remark. Let q be even. Write G = 〈T, θ〉 where T = Sp2m(q) and θ ∈ Aut(T).

(i) In [37, Proposition 2.5], Guralnick and Shalev prove that s(T) 6 q. Theorem 4D
extends this result by establishing that s(G) 6 q if θ is a field automorphism.

(ii) If m = 2, q = 4 and θ is an involutory field automorphism, then a MAGMA compu-
tation verifies that u(G) = 4, so the bound for symplectic groups in Theorem 4D
is sharp. Moreover, by Proposition 4.3.21(iii), if m > 16 and θ ∈ Aut(T) \ T, then
q− 1 6 u(G) 6 s(G) 6 q, so the upper bound for symplectic groups in Theorem 4D
is close to best possible in large rank.

(iii) The upper bound in Theorem 4D does not apply when m = p = 2 and θ is a
graph-field automorphism. Indeed, in this case, if q = 4 then u(G) > 10, and,
strikingly, if q = 8 and θ has order two then u(G) > 76. This behaviour is captured
by Proposition 4.4.8(iii), which establishes that if θ is an involutory graph-field
automorphism then u(G) > q2/18. In particular, this gives an infinite family of
groups G where |u(G)− u(soc(G))| is unbounded.

Let us now discuss the proofs. Let G = 〈T, θ〉 ∈ A with T ∈ T . To prove that u(G) > k,
we adopt the probabilistic approach introduced by Guralnick and Kantor in [33] (see
Section 2.1). Recall that this approach has three stages. First we must fix an element s ∈ G.
In order for sG to witness u(G) > k, the element s cannot be contained in a proper normal
subgroup of G, so we may assume that s ∈ Tθ. Consequently we need to understand the
conjugacy classes in the coset Tθ. We then study the setM(G, s) of maximal subgroups
of G that contain s, before showing that every prime order element x ∈ G satisfies

P(x, s) 6 ∑
H∈M(G,s)

fpr(x, G/H) <
1
k

.
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We can now sketch our proof.

Generically, the almost simple groups G we consider will be extensions of the socle
T by diagonal automorphisms (elements of Inndiag(T) \ T), field automorphisms and
products thereof. The precise cases to be considered will be determined in Section 4.1
(see Proposition 4.1.5 in particular).

If θ is diagonal, then G = 〈T, θ〉 6 PGL(V) and we can employ methods similar to those
used by Breuer, Guralnick and Kantor in [10]. In particular, we can think of the elements
in Tθ as matrices (modulo scalars). This is our focus in Section 4.2.

However, when θ is not a diagonal automorphism, then we adopt a different approach
and view G = 〈T, θ〉 from the perspective of algebraic groups, which we introduced
in Section 2.6. This viewpoint allows us to employ the technique of Shintani descent
described in Section 2.7. Central to this method is a bijection F with useful group theoretic
properties that, given a connected algebraic group X, a Steinberg endomorphism σ of
X and an integer e > 1, provides a correspondence between the conjugacy classes of
elements in the coset Xσe σ and in the subgroup Xσ. The main idea, therefore, is to write
Inndiag(T) = Xσ and θ ∈ Inndiag(T)σ for a suitable connected algebraic group X and
Steinberg endomorphism σ (see Example 2.7.2). We may then select an element s ∈ Tθ as
the preimage under F of a judiciously chosen element x ∈ Xσ (see Proposition 4.3.5).

Once we have thus selected s ∈ G, the idea is to exploit features of the element x = F(s)
and properties of the map F (see Section 2.7.3) in order to determine a superset ofM(G, s)
(see Theorem 4.3.7). Here Aschbacher’s subgroup structure theorem (Theorem 2.5.1)
provides our framework. This is the stage that will require the most work. Once this is
complete, we can bound the probability P(x, s) using the fixed point ratio estimates from
Chapter 3.

Let us highlight now some particularly interesting or subtle features of the proof.

Element orders

A common technique for identifying an element of a classical group that is contained
in few maximal overgroups, is to choose an element with a large and restrictive order.
For instance, if s ∈ GLn(q) has order divisible by a primitive prime divisor of qk − 1 for
k > n

2 , then the subgroups H 6 GLn(q) that contain s are classified by the main theorem
of [35] (see Theorem 2.5.5 for a convenient statement of a related result).

However, this technique will, in general, not be useful in our proofs. To see why, consider
the example where G = 〈PSp2m(p f ), ϕ〉 and ϕ is the standard order f field automorphism.
Then, via Shintani descent, we choose an element tϕ ∈ G such that (tϕ) f is conjugate
to an element of PSp2m(p). Therefore, tϕ, and even more so (tϕ) f , which is the element
we typically have better information about, has a small order compared with the order
of G. Consequently, we will need to use other properties of the element tϕ in order to
constrain its maximal overgroups.
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Shintani splitting

Assume that q is odd. As described above, Shintani descent will provide a bijection
F between the conjugacy classes in the coset Inndiag(T)θ and conjugacy classes in a
particular subgroup Inndiag(T0). Since we want to select an element s ∈ Tθ, we need
to know which elements in Inndiag(T0) have preimages under F in Tθ. By exploiting
properties of Shintani descent, we will see that F restricts to a bijection between classes in
Tθ and T0 (see Lemmas 4.3.2 and 4.3.3). For symplectic groups, there is a concrete means
of seeing this which naturally generalises work of Burness and Guest for linear groups
[18, Lemma 4.2] (see Remark 4.3.4); however, orthogonal groups are not amenable to this
approach, so we develop a new approach for establishing this restriction, which applies
uniformly to all classical groups (see Lemma 2.7.4 and Example 2.7.5).

Reducible subgroups

Subspace subgroups have comparatively large fixed point ratios. Therefore, we will pay
particular attention to determining the maximal subspace overgroups of s. For linear and
symplectic groups, subspace stabilisers arise from closed connected subgroups of the am-
bient algebraic group, so Lemma 2.7.9 is the key tool (see also Example 2.7.10). However,
the stabiliser of a nondegenerate subspace in an orthogonal group is disconnected, so we
need to modify our approach. The idea is to use the inclusion SO2m+1(Fp) 6 SL2m+1(Fp)

and lift the Shintani map for SO2m+1(Fp) to one for SL2m+1(Fp), where the corresponding
reducible subgroups are connected (see Proposition 4.3.9).

Orthogonal subgroups

If T = Sp2m(2
f ), then in addition to reducible subgroups, the subgroups of type O±2m(2

f )

are subspace subgroups of G. Determining which subgroups of this type contain s will
require particular attention and is a novel feature of our work (see Proposition 4.3.13).

Graph-field automorphisms

The group Sp4(q) is an exceptional case since when q is even it has a graph-field auto-
morphism. Since this automorphism naturally arises from a Steinberg endomorphism of
the associated algebraic group, we can still apply Shintani descent in the general setup.
However, the study ofM(G, s) will require arguments of a different style and we will
use the bespoke fixed point ratio bound obtained in Proposition 3.2.3 (see Section 4.4).

The above discussion motivates the following partition of the proof of our main theorems

I θ ∈ Inndiag(T)

II m > 3, θ ∈ Aut(T) \ Inndiag(T)

III m = 2, θ ∈ Aut(T) \ Inndiag(T)

In Section 4.1, we will determine the precise cases to be considered to prove Theorems 4A–
4D, and these theorems, in each of Cases I–III, will be proved in Sections 4.2–4.4.
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4.1. Automorphisms

4.1 Automorphisms

Let T ∈ T . This section’s principal aim is to determine the automorphisms θ ∈ Aut(T)
we need to consider in order to prove Theorems 4A and 4B, and the main result to this
end is Proposition 4.1.5.

4.1.1 Preliminaries

We begin with some preliminary observations, which we will also use in Section 5.1. For
g ∈ Aut(T), write g̈ for the set Tg. Therefore, Out(T) = {g̈ | g ∈ Aut(T)}. The following
is straightforward.

Lemma 4.1.1. Let T be a simple group and let g, h ∈ Aut(T). If the elements g̈ and ḧ are
Out(T)-conjugate, then the subgroups 〈T, g〉 and 〈T, h〉 are Aut(T)-conjugate.

The following elementary observation is useful.

Lemma 4.1.2. Let S = 〈a〉:〈b〉 be a semidirect product of finite cyclic groups. For all i > 0 there
exists j, k ∈ N such that 〈abi〉 = 〈ajbk〉 and k divides |b|.

Proof. Let i > 0. We will repeatedly use the fact that, since 〈a〉 P S, for all l ∈ N

(abi)l ∈ 〈a〉bil . (4.3)

Write |b| = n, and let k divide n and satisfy 〈bi〉 = 〈bk〉. Now let r be the least positive
integer such that bir = bk. By (4.3), |abi| = s|bi|. Let d be the product of the distinct prime
divisors of s which do not divide r. Then, by (4.3), (abi)r+d|bi | = ajbk for some j ∈ N.
Therefore, 〈ajbk〉 6 〈abi〉.

Recall that |abi| = s|bi|. Note that (r + d|bi|, |bi|) = (r, |bi|) = 1 as 〈bir〉 = 〈bi〉. Let t be a
prime divisor of s. If t does not divide r, then t does not divide r + d|bi| since t divides d.
Now assume that t divides r. If t divides r + d|bi|, then t divides d|bi|, so t divides |bi|
since t does not divide d. However, this implies that t divides (r, |bi|) = 1, which is a
contradiction. Therefore, t does not divide r + d|bi|. Consequently, (r + d|bi|, s) = 1. We
now conclude that (r + d|bi|, s|bi|) = 1, so 〈ajbk〉 = 〈abi〉, which proves the claim.

4.1.2 Symplectic groups

Let q = p f and let n = 2m. Let T be PSp2m(q). We recorded Aut(T) in Lemmas 2.6.18(i)
and 2.6.25. In this section, we give further information about Out(T).

For this section, we fix the standard Frobenius endomorphism ϕ = ϕB : (aij) 7→ (ap
ij) (see

Definition 2.6.9) defined with respect to the basis B = (e1, f1, . . . , em, fm) (see (2.4)). Write
F×q = 〈α〉. If q is odd, then let β ∈ F×q with |β| = (q− 1)2 and note α, β 6∈ (F×q )2.

We now define an element, which we will also make use of in Chapter 5.
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Definition 4.1.3. Let q be odd. With respect to the basis B for F2m
q , define δ̂+ ∈ GL2m(q)

as the element βIm ⊕ Im, centralising the decomposition 〈e1, . . . , em〉 ⊕ 〈 f1, . . . , fm〉 and
let δ+ ∈ PGL2m(q) be the image of δ̂+.

Remark 4.1.4. We comment on Definition 4.1.3.

(i) Note that δ̂+ is a similarity with τ(δ̂+) = β and det(δ̂+) = βm (see Lemma 2.3.21).

(ii) In Chapter 4, we will refer to δ+ simply as δ.

(iii) In [43, Section 2], the symbol δ refers to an element of GL2m(q), but we prefer to use
this symbol for an element of PGL2m(q). Our definition of δ also has a less cosmetic
difference: both versions centralise the decomposition 〈e1, . . . , em〉 ⊕ 〈 f1, . . . , fm〉,
but we work with βIm ⊕ Im rather than αIm ⊕ Im. However, both versions give the
same element δ̈. To see this, write k = ((q− 1)2′ − 1)/2 and note that

(αIm ⊕ Im) · (αk Im ⊕ α−k Im) · αk I2m = βIm ⊕ Im

where (αk Im ⊕ α−k Im) ∈ Sp2m(q) and αk I2m is a scalar. Therefore, our notation for
elements of Out(T) is consistent with [43].

By [43, Proposition 2.4.4], if (m, p) 6= (2, 2), then

Out(T) =

{
〈ϕ̈〉 ∼= C f if q is even
〈δ̈〉 × 〈ϕ̈〉 ∼= C2 × C f if q is odd.

(4.4)

Now suppose that m = p = 2. Then T = Sp4(q) has a graph-field automorphism ρ such
that ρ2 = ϕ (see [23, Proposition 12.3.3]) and

Out(T) = 〈ρ̈〉 ∼= C2 f . (4.5)

If i is an odd divisor of f , then ρi ∈ Aut(T) \ ΓSp4(q) and CT(ρ
i) = 2B2(pi), which is the

Suzuki group (often also denoted by Sz(pi)).

It follows from (2.17) that, for all m and q, the innerdiagonal group of T is

Inndiag(T) =

{
T if q is even
〈T, δ〉 if q is odd.

(4.6)

4.1.3 Orthogonal groups

Let q = p f be odd and let n = 2m+ 1. Let T be Ω2m+1(q). We gave Aut(T) in Lemma 2.6.18(ii),
and we now further describe Out(T).

Write ϕ = ϕB where B is the basis (e1, f1, . . . , em, fm, x) from (2.7). Fix r�, r� ∈ SO2m+1(q)
as reflections in vectors of square and nonsquare norms (see Section 2.2.4).
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Table 4.1: The relevant automorphisms in types Bm and Cm

I II/III

1 ϕi

θ δ δϕi

r�r� r�r�ϕi

(1)
(2)
(3)

[ i is a proper divisor of f ]

By [43, Proposition 2.6.3],

Out(T) = 〈r̈�r̈�〉 × 〈ϕ̈〉 ∼= C2 × C f . (4.7)

As a consequence of (2.18) we have

Inndiag(T) = 〈T, r�r�〉. (4.8)

4.1.4 Cases to consider

We now present a useful reduction of Theorems 4A and 4B.

Proposition 4.1.5. Let T ∈ T . To prove that u(G) > k for all G ∈ A with socle T, it suffices
to show u(〈T, θ〉) > k for all of the following

(i) θ in Row (1) of Table 4.1

(ii) θ in Row (2) of Table 4.1, if q is odd and T = PSp2m(q)

(iii) θ in Row (3) of Table 4.1, if q is odd and T = Ω2m+1(q)

(iv) θ = ρi for an odd proper divisor i of f , if q is even and T = Sp4(q).

Proof. Let G = 〈T, g〉 for an automorphism g ∈ Aut(T). For now assume that T is not
Sp4(2

f ). By inspecting the structure of Out(T) given in (4.4) and (4.7), it is manifest that
we may write g = thϕi where t ∈ T and h is 1 or δ (when T = PSp2m(q)) or r�r� (when
T = Ω2m+1(q)). Since 〈T, thϕi〉 = 〈T, hϕi〉, we may assume, in fact, that g = hϕi.

If i > 0, then, since 〈ḧ, ϕ̈〉 = 〈ḧ〉× 〈ϕ̈〉, by Lemma 4.1.2, there exist j, k ∈ N with k dividing
f such that 〈ḧϕ̈i〉 = 〈ḧj ϕ̈k〉 and, consequently, 〈T, hϕi〉 = 〈T, hj ϕk〉. Therefore, we may
assume that i = 0 or i divides f . This implies that 〈T, g〉 = 〈T, θ〉 for an automorphism θ

in Table 4.1.

It remains to assume that T = Sp4(2
f ). In this case g = tρi for t ∈ T and 0 6 i 6 2 f .

As before, we may assume that t = 1 and either i = 0 or i divides 2 f . If i = 2l, then
g = ρ2l = ϕl , and if i is odd, then g = ρi. Therefore, g is an automorphism featuring in
the statement. This completes the proof.

81



4. GROUPS OF TYPES Bm AND Cm

4.1.5 Element variants

For each automorphism θ in Table 4.1, to apply the probabilistic method described in Sec-
tion 2.1, we need to select an element tθ ∈ Tθ. Recall that in Definitions 2.3.26 and 2.3.28,
we defined standard types of elements denoted (2d)±q for some d > 1. Moreover, in
Definitions 2.3.32 and 2.3.34, for odd q we also defined variants indicated by superscripts
∆ and Σ. These variants have a very similar action on the natural module but crucially
are contained in a different coset of the simple group. By working with the latter, we will
be able to select an element that lies in the precise coset Tθ.

To this end, for each automorphism θ appearing in Table 4.1 we define three symbols,
which we will use in Chapter 5 also. The first two are

a = a(θ) =

{
if θ is in Row (1) or (3)

∆ if θ is in Row (2)
(4.9)

b = b(θ) =


if θ is in Row (1)

∆ if θ is in Row (2)
Σ if θ is in Row (3)

(4.10)

where we mean the empty symbol in both of the first cases.

In Case II we will have an ambient field size q0, and the dependence on whether q0

is Mersenne in Lemma 2.3.30 will have to be propagated throughout this thesis. We
have decided to handle this issue by defining a variant c on b which depends on both
the automorphism θ and whether q0 is Mersenne. It is convenient to define c slightly
differently for symplectic groups, so we allow a dependence on T also. The definition is

c = c(θ, q0, T) =


∆ if θ is in Row (2)
Σ if θ is in Row (3) and q0 is not Mersenne
Σ if θ is in Row (1), q0 is Mersenne and T 6= PSp2m(q)

otherwise

(4.11)

Remark 4.1.6. Let us comment on the symbols we have defined.

(i) Notice that a = b = c is empty when q is even. If T = PSp2m(q), then a = b = c.
Moreover, in this case, a = b = c = ∆ if and only if θ = δϕi.

(ii) As advised in Section 2.3, when one sees an expression of the form ∗(2m)± one
should focus on the general description of how (2m)± acts on the natural 2m-di-
mensional space and keep in the back of one’s mind that the ∗modifies the element
in order to place it in the appropriate coset.
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4.2 Case I

In this section we study the uniform spread of almost simple groups T 6 G 6 Inndiag(T)
for each T ∈ T . In [10], Breuer, Guralnick and Kantor proved that s(T) > 2. As they
point out [10, p.447], their proofs, in fact, prove that s(G) > 2. The following result is
motivated by this comment (see [18, Theorem 3.1] for a similar argument).

Proposition 4.2.1. Let G = 〈T, θ〉 ∈ A, where T ∈ T and θ ∈ Inndiag(T).

(i) In all cases, u(G) > 2

(ii) If T = Ω2m+1(q), then u(G) > 3.

(iii) If T = PSp2m(q) for m > 3 and odd q, then u(G) > 4.

(iv) In all cases, u(G)→ ∞ as q→ ∞.

Proof. If G = T, then the result holds by [10], except the claim that u(PSp2m(q)) > 4
when q is odd and m > 3, which we return to later. Therefore, assume that q is odd and
G = Inndiag(T). By computation in MAGMA (see Section 2.8) u(G) > k when

(G, k) ∈ {(PGSp4(3), 2), (PSp6(3), 4), (PGSp6(3), 4), (SO7(3), 3)}.

First assume that T = Ω2m+1(q) with q > 3. Write V = F2m+1
q . Let g = g1 ⊥ g2 ∈ G,

centralising the decomposition V = V1 ⊥ V⊥1 , where g1 acts trivially on the 1-space
V1 and g2 has order qm + 1 and acts irreducibly on V⊥1 . By [22, Theorem 4], qm + 1
does not divide the order of a maximal torus of T, so g ∈ G \ T. The order of g is
divisible by a primitive prime divisor r of q2m − 1 with r > 4m + 1 (see Lemma 2.3.15).
Therefore, by Theorem 2.5.5, we deduce that M(G, g) consists entirely of reducible
subgroups, noting that no subfield subgroups of G contain an element of order qm + 1.
By Lemma 2.3.3, the only proper nonzero subspaces of V stabilised by g are V1 and V⊥1 .
Therefore,M(G, g) = {H} where H has type O−2m(q). Consequently, by Theorem 3.1.1,
for all x ∈ G of prime order,

P(x, g) 6 fpr(x, G/H) <
1
q
+

3
qm−1 +

1
qm <

1
3

.

Now Lemma 2.1.1 implies that u(G) > 3 as claimed. Moreover, as q → ∞ we have
P(x, g) → 0 and thus u(G) → ∞. (In [10], the authors use the element s = g2 to prove
that u(T) > 3 in exactly the same manner.)

Now assume that T = PSp2m(q). Write T̂ and Ĝ for Sp2m(q) and GSp2m(q). For an
element x ∈ Ĝ write x for its image in G. In the proofs of [10, Propositions 5.10–5.20]
the authors identify a semisimple element s = s1 ⊥ · · · ⊥ sk ∈ T̂, centralising the
decomposition V = V1 ⊥ · · · ⊥ Vk, where each si lifts to an element of order qmi + 1 that
acts irreducibly on the 2mi-space Vi. For this element s, it is shown that P(x, s) < 1

2 for
all prime order elements x ∈ T. By Lemma 2.3.20, there exists an element g ∈ Ĝ such
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that τ(g) = α, so g ∈ Ĝ \ T̂, and gq−1 = s. By exactly the same argument as in [10], we
can determineM(Ĝ, g), whose members have the same types as those inM(T̂, s). The
bounds in Theorem 3.1.1 and Proposition 3.2.3 imply that P(x, g) < 1

4 for all prime order
x ∈ G. (In this manner we also see that P(x, s) < 1

4 for all prime order x ∈ T, which
proves the stronger claim for simple groups in the statement.)

For example, if m > 5 is odd, then k = 2, dim V1 = 2 and dim V2 = 2m − 2. There-
fore, the order of g is divisible by a primitive prime divisor of q2m−2 − 1, which by
Lemma 2.3.15 we can assume is strictly greater than 4m− 3. By Theorem 2.5.5, we de-
duce that M(Ĝ, g) = {Ĥ} where Ĥ has type Sp2(q) × Sp2m−2(q) and Theorem 3.1.1
implies that P(x, s) < 1

4 .

It remains to assume that T = Ω2m+1(3) with m > 4. For now assume that m is odd and
let g = g1 ⊥ g2 centralise V = V1 ⊥ V⊥1 where g1 = [J3] on the 3-space V1 and g2 has
order qm−1 + 1 and acts irreducibly on V⊥1 . Note that g ∈ G \ T. By the argument in [10,
Proposition 5.19], we deduce thatM(G, g) = {H, K}, where H has type P1 and K has
type O3(q)×O−2m−2(q), and that P(x, g) < 1

3 for all prime order x ∈ G.

Finally assume that T = Ω2m+1(3) for even m. Let g = g1 ⊥ g2 ∈ G centralise the
decomposition V = V1 ⊥ V⊥1 , where g1 acts trivially on the 1-space V1 and g2 has order
qm + 1 and acts irreducibly on V⊥1 . We saw earlier that g ∈ G \ T andM(G, g) = {H}
where H has type O−2m(q). In [10, Proposition 5.7] it is shown that P(x, s) 6 1

3 , for all
x ∈ T, with equality if and only if x is a reflection. In fact, this argument also proves that
P(x, g) 6 1

3 , for all x ∈ G, with equality if and only if x is a reflection. By the proof of
[10, Proposition 5.7], for all reflections x1, x2, x3 ∈ G, there exists a G-conjugate h of g for
which 〈x1, h〉 = 〈x2, h〉 = 〈x3, h〉 = G. Therefore, u(G) > 3.

With a view towards Theorem 4B we prove the following asymptotic result.

Proposition 4.2.2. Let (Gi) be a sequence in A where PSp2mi
(qi) 6 Gi 6 PGSp2mi

(qi) and
each qi is odd. Then u(Gi)→ ∞ if mi → ∞.

Proof. By [37, Theorem 1.1], the result is true if each Gi = PSp2mi
(qi). Therefore, it suffices

to prove the claim when each Gi = PGSp2mi
(qi). Fix G = Gi = PGSp2m(q). Assume

that m > 40 and fix m/2 < d < 3m/4 such that (d, m− d) = 1 and m− d is odd. Let
y ∈ G have type ∆(2d)− ⊥ ∆(2m − 2d)−. Since d > m/2, a power z of y has type
(2d)− ⊥ I2m−2d and the order of z is a primitive prime divisor r of q2d − 1, where 2d > m.
By Lemma 2.3.15, since 2d > 20, we may assume that r > 4d + 1.

By applying Theorem 2.5.5, we conclude thatM(G, y) contains only reducible subgroups,
and Lemma 2.3.3 implies thatM(G, y) = {H}, where H has type Sp2d(q)× Sp2m−2d(q).
Finally, we apply Lemma 2.1.1. Theorem 3.1.1 implies that for all prime order x ∈ G,

P(x, y) 6
3

qm−1 +
2

qm/2 → 0

as m→ ∞. Therefore, u(G)→ ∞ as m→ ∞.
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4.3 Case II

In this section, we prove Theorems 4A–4D in Case II. To this end, let T ∈ T and write
G = 〈T, θ〉 where θ ∈ Aut(T) \ Inndiag(T). From Section 4.3.2 onwards, we will assume
further that m > 3; however, it is convenient to allow T = PSp4(q) initially, so that we
may use some of the preliminary results from this section in Section 4.4.

4.3.1 Element selection

Shintani descent (see Section 2.7) will play an indispensable role in identifying appropri-
ate elements tθ ∈ Tθ for each automorphism θ (see Example 2.7.2). With this in mind let
us fix the following notation for Section 4.3.

Notation 4.3.1. Write q = p f where f > 2 and fix a proper divisor i of f .

Let V = Fn
q be the natural module for T (so n is 2m or 2m + 1).

Fix the simple algebraic group

X =

{
PSp2m(Fp) if T = PSp2m(q)
SO2m+1(Fp) if T = Ω2m+1(q).

Fix the standard Frobenius endomorphism ϕ of X, defined with respect to the
standard basis B, as (aij) 7→ (ap

ij), modulo scalars.

Write σ = ϕi and q0 = pi. Therefore, q = qe
0 for e = f /i.

Fix the Shintani map F of (X, σ, e), so σ̃ = σ|Xσe and

F : {(gσ̃)Xσe | g ∈ Xσe} → {xXσ | x ∈ Xσ}.

Observe that Xσe = Inndiag(T) and Xσ = Inndiag(T0) where

T0 =

{
PSp2m(q0) if T = PSp2m(q)
Ω2m+1(q0) if T = Ω2m+1(q).

The main idea is to select the element tθ ∈ Inndiag(T)σ as the preimage under F of a
carefully chosen element y ∈ Inndiag(T0). If q is even, then Inndiag(T) = T and this is a
transparent process. When q is odd, T < Inndiag(T) has index two and the following
two results facilitate this selection procedure.

Lemma 4.3.2. Let q be odd and T = PSp2m(q). The Shintani map F restricts to bijections

(i) F1 : {(gσ̃)PGSp2m(q) | g ∈ T} → {xPGSp2m(q0) | x ∈ T0}

(ii) F2 : {(gδσ̃)PGSp2m(q) | g ∈ T} → {xPGSp2m(q0) | x ∈ PGSp2m(q0) \ T0}.
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Proof. This is Lemma 2.7.4 applied to the natural isogeny π : Sp2m(Fp) → PSp2m(Fp),
noting that 〈PSp2m(q), σ̃〉 and PSp2m(q0) are index two subgroups of 〈PGSp2m(q), σ̃〉 and
PGSp2m(q0), respectively. (We proved this in Example 2.7.5.)

Lemma 4.3.3. Let q be odd and T = Ω2m+1(q). The Shintani map F restricts to bijections

(i) F1 : {(gσ̃)SO2m+1(q) | g ∈ T} → {xSO2m+1(q0) | x ∈ T0}

(ii) F2 : {(gr�r�σ̃)SO2m+1(q) | g ∈ T} → {xSO2m+1(q0) | x ∈ SO2m+1(q0) \ T0}.

Proof. This is Lemma 2.7.4 with the natural isogeny π : Spin2m+1(Fp) → SO2m+1(Fp),
noting that 〈Ω2m+1(q), σ̃〉 and Ω2m+1(q0) are index two subgroups of 〈SO2m+1(q), σ̃〉 and
SO2m+1(q0), respectively.

Remark 4.3.4. There is a more concrete means of seeing Lemma 4.3.2, which does not
apply to Lemma 4.3.3. As before, we note that 〈PSp2m(q), σ̃〉 P 〈PGSp2m(q), σ̃〉 and
PSp2m(q0) P PGSp2m(q0). Now let g ∈ PGSpn(q) and let F(gσ̃) = x, where we have
x = a−1(gσ̃)ea for a ∈ PSpn(Fp) such that g = aa−σ−1

. Let Z = 〈−In〉 and write a = âZ,
ĝ = ââ−σ−1

and ŷ = â−1(ĝσ̃)e â. Then

τ(ŷ) = τ(â−1(ĝσ̃)e â) = τ((ĝσ̃)e) = τ(ĝ)τ(ĝσe−1
) · · · τ(ĝσ) = τ(ĝ)1+σ+···+σe−1

.

In particular, τ(ĝ) is a square in F×q if and only if τ(ŷ) is a square in F×q0
. Consequently,

Lemma 2.2.6 implies that g ∈ PSpn(q) if and only if F(gσ̃) ∈ PSpn(q0).

We are now in a position to define the elements we will use to prove Theorems 4A and 4C.
In light of the probabilistic method outlined in Section 2.1, we need to select tθ ∈ G in a
way which allows us to control both the maximal subgroups of G which contain it and
the fixed point ratios associated with these subgroups.

Therefore, we will choose tθ such that it has the following two features, which place
significant restrictions on its maximal overgroups. First, tθ should not be contained in
many reducible subgroups, since subspace subgroups have comparatively large fixed
point ratios. Second, a power of tθ should have a 1-eigenspace of large dimension in its
action on the natural module for G, noting that eigenvalue patterns place tight restrictions
on possible maximal overgroups (see Section 2.5.2). These two conditions inform our
choice of the element y ∈ Xσ, which via Shintani descent yields an element tθ ∈ G.

Proposition 4.3.5. Let T ∈ T with m > 3 and let θ be an automorphism in Table 4.1 (in
Case II). For the element y ∈ Inndiag(T0) in Table 4.2 there exists t ∈ T such that (tθ)e is
X-conjugate to y.

Remark 4.3.6. Let us comment on the definition of y in Table 4.2. The parameters a and
c are defined in (4.9) and (4.11). The final bracketed summand should be excluded when
T = PSp2m(q) and included when T = Ω2m+1(q). The dependence on m implies that
elements of this type actually exist (see Lemmas 2.3.27 and 2.3.29); for example, (6)−2
never appears in the definition of an element y.
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Table 4.2: Case II: The element y for the automorphism θ

m y

odd a(2)− ⊥ c(2m− 2)− (⊥ I1)

even a(2)− ⊥ c(2m− 2)+ (⊥ I1)

[ we describe y by specifying the type of a lift of y, which is defined over Fq0 ]

Proof of Proposition 4.3.5. From Definitions 2.3.26, 2.3.28 and 2.3.32, we see that y truly
is an element of Inndiag(T0). Therefore, by Theorem 2.7.1, there exists g ∈ Inndiag(T)
such that (gσ̃)e is X-conjugate to y. If q is even, then T = Inndiag(T) and θ = ϕi = σ̃, so
gσ̃ ∈ Tθ, as required.

Next assume that q is odd and T = PSp2m(q). If θ = ϕi, then a = c is empty and
y ∈ PSp2m(q0), so Lemma 4.3.2 implies that gσ̃ ∈ Tσ̃ = Tθ, as required. If θ = δϕi, then
a = c = ∆, which implies that τ(y) = β 6∈ (F×q )2 and y 6∈ PSp2m(q0), so Lemma 4.3.2
gives gσ̃ ∈ Tδσ̃ = Tθ.

Now assume that T = Ω2m+1(q). For now assume that q0 is not Mersenne. Therefore,
by Lemma 2.3.30, an element of type (2)−q0

is contained in Ω−2 (q0). If θ = ϕi, then
noting the precise definition of c = c(θ, q0, T) in (4.11), we note that a = c is empty, so
y ∈ Ω2m+1(q0) and, by Lemma 4.3.3, gσ̃ ∈ Tθ. If θ = r�r�ϕi, then a is empty but c = Σ,
so y ∈ Ω2m+1(q0)r�r� and, by Lemma 4.3.3, gσ̃ ∈ Tθ.

Finally assume that T = Ω2m+1(q) and q0 is Mersenne. In this case an element of type
(2)−q0

is contained in SO−2 (q0) \Ω−2 (q0). However, c = Σ if and only if θ = ϕi in this case.
Consequently, by the argument in the previous paragraph gσ̃ ∈ Tθ in this case too, and
we have completed the proof.

4.3.2 Maximal subgroups

Continue to let T ∈ T with m > 3 and let θ be an automorphism from Table 4.1. Fix
y ∈ Inndiag(T0) from Table 4.2 and tθ ∈ G = 〈T, θ〉 from Proposition 4.3.5. We will now
study the setM(G, tθ) of maximal overgroups of tθ in G.

Theorem 4.3.7. The maximal subgroups of G that contain tθ are listed in Table 4.3, where m(H)

is an upper bound on the multiplicity of the subgroups of type H inM(G, tθ).

In Table 4.3 (and also Tables 4.4, 5.2, 5.5, 5.7 and 5.8) the conditions column provides
necessary conditions for a subgroup of the relevant type to be contained inM(G, tθ).

Let us outline the proof of Theorem 4.3.7. If T 6 H, then we deduce that θ ∈ H, since
tθ ∈ H, but then we would have H = G, which is not the case. Therefore, T 66 H, so
Theorem 2.5.1 implies that H is contained in one of the geometric families C1, . . . , C8 or is
an almost simple irreducible group in S .
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Table 4.3: Case II: Description ofM(G, tθ)

T type of H m(H) conditions

PSp2m(q) C1 Sp2(q)× Sp2m−2(q) 1
Pm−1 2 m even

C2 Sp2(q) o Sm 1 (m− 1)
∣∣ e

GLm(q) 2(m−1,e) q odd, e2 > (2m− 2)2 if m odd
Spm(q) o S2

1
2 (

m
m
2
) m even, (m− 1)

∣∣ e

C5 Sp2m(q
1/k) e2 k = e is prime

|CXσ(y)| k is prime, k
∣∣ f , k 6= e

C8 Oε
2m(q) 1 q even

Ω2m+1(q) C1 Oε1
2m(q) 1 for a unique sign ε1 ∈ {+,−}

Oε2
2 (q)×O2m−1(q) 1 for a unique sign ε2 ∈ {+,−}

O3(q)×Oε3
2m−2(q) 1 for a unique sign ε3 ∈ {+,−}

Pm−1 2 m even

C5 O2m+1(q1/k) e3 k = e is prime
|CXσ(y)| k is prime, k

∣∣ f , k 6= e

Our general idea is to consider each of these families in turn and determine which
possible types of subgroup could contain the element tθ, by exploiting the restrictive
properties that we have chosen tθ to have. For types of subgroups which could contain
the element tθ we will find an upper bound on the number of subgroups of this type
that contain tθ. We will not concern ourselves with determining exactly which subgroups
contain tθ; sometimes it will be sufficient, for example, to use an overestimate on the
number of subgroups of a given type which contain tθ.

In the following four sections, we will prove Theorem 4.3.7 for reducible subgroups
(C1), imprimitive subgroups (C2), classical subgroups (C8) and the remaining primitive
subgroups (C3–C7 and S). However, we begin by presenting a result on the multiplicities
of subgroups inM(G, tθ).

Write
G̃ = 〈Xσe , σ̃〉 (4.12)

noting that Inndiag(T) 6 G̃ 6 Aut(T) and G 6 G̃.

Proposition 4.3.8. Let T 6 A 6 Aut(T) and let H be a maximal geometric subgroup of A.
Then there is a unique G̃-conjugacy class of subgroups of A of type H.

Proof. Note that q is not prime since f > 2. If n 6 12, then the result follows from the
tables in [7, Chapter 8]. Now assume that n > 13. We will apply the Main Theorem of
[43] as described in Section 2.5.1 (see Example 2.5.3 in particular).
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Let H be a maximal geometric subgroup of G. LetH = {H1, . . . , Hc} be a set of represen-
tatives of the c distinct T-classes of subgroups of T of the same type as H, and let HG,i

be the G-associate of Hi. Recall the homomorphism π : Out(T)→ Sc associated to the
action of Out(T) onH.

By [43, Tables 3.5C and 3.5D], c = 1 and the G-classes of subgroups are precisely the
Aut(T)-classes, unless q is odd and H is a subfield subgroup over Fq1/2 . In this case,
c = 2, so the Aut(T)-class splits into two T-classes. By [43, Table 3.5G], δ̈ and r̈�r̈�
are not contained in the kernel of π when T is PSp2m(q) and Ω2m+1(q), respectively.
Therefore, the subfield subgroups over Fq1/2 are G̃-conjugate, as required.

Reducible subgroups

We now prove Theorem 4.3.7 in several parts, beginning with reducible subgroups.

Proposition 4.3.9. Theorem 4.3.7 is true for reducible subgroups.

Proof. We will apply Lemma 2.7.9 (see Example 2.7.10).

Case 1: stabilisers of totally singular subspaces

Let H be a maximal parabolic subgroup of G. Then H 6 H̃ = 〈Yσe , σ̃〉 for a σ̃-stable
parabolic subgroup Y 6 X. In particular, Y is a closed connected subgroup of X. More-
over, H̃ and Yσ are maximal (and hence self-normalising) subgroups of G̃ and Xσ, respec-
tively. Therefore, Lemma 2.7.9 implies that the number of Xσe -conjugates of H which
contain tθ equals the number of Xσ-conjugates of H ∩ Xσ which contain F(tθ) = y.

We use Lemma 2.3.3. If m is odd, then y does not stabilise any totally singular subspace
of Fn

q0
, so y is not contained in any parabolic subgroup of Xσ and consequently tθ is not

contained in any parabolic subgroups of Xσe . However, if m is even, then y stabilises
exactly two totally singular subspaces, of dimension m− 1, so tθ is contained in exactly
two parabolic subgroups of G, each of type Pm−1. This is what we claim in Theorem 4.3.7.

Case 2: stabilisers of nondegenerate subspaces

Now let H be the stabiliser in G of a nondegenerate k-space. If T = Ω2m+1(q), then
H arises from a disconnected subgroup of X, so we must alter our approach (when
T = PSp2m(q) these are connected subgroups, so we could have handled this case as
above, but for uniformity we handle both PSp2m(q) and Ω2m+1(q) together).

Let L = SLn(Fp)/〈−In〉 and extend the domain of σ to L. Let E be the Shintani map of
(L, σ, e). Observe that tθ ∈ G 6 〈Lσe , θ〉 and F(tθ) ∈ Xσ 6 Lσ. Accordingly, Lemma 2.7.3
implies that F(tθ) = E(tθ). Let M 6 L be a Pk parabolic subgroup. Applying Lemma 2.7.9
to the Shintani map E for L and the subgroup M 6 L, we see that the number of
k-spaces of V = Fn

q fixed by tθ equals the number of k-spaces of V0 = Fn
q0

fixed by
E(tθ) = F(tθ) = y.
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First assume that T = Ω2m+1(q). For now assume further that m is odd. Then, by
Lemma 2.3.3, y stabilises exactly six proper nonzero subspaces of V0, of dimensions 1, 2,
3, 2m− 2, 2m− 1 and 2m. Therefore, tθ stabilises exactly six subspaces of V of the same
dimensions. In Case 1, we demonstrated that tθ is not contained in a parabolic subgroup
of G. Therefore, each of these six subspaces of V must be nondegenerate, for otherwise
tθ would stabilise its (totally singular) radical and therefore be contained in a parabolic
subgroup. Consequently, tθ is contained in exactly three C1 subgroups of G, of types
Oε1

2m(q), Oε2
2 (q)×O2m−1(q) and O3(q)×Oε3

2m−2(q) for particular signs ε1, ε2 and ε3. (It is
exactly for the reason that we pass to the linear group L that we cannot determine the
signs.)

Continue to assume that T = Ω2m+1(q) and now let m be even. By arguing as above, we
see that tθ stabilises exactly 14 proper nonzero subspaces of V, of dimensions

1, 2, 3, 2m− 2, 2m− 1, 2m

m− 1 (2), m (2), m + 1 (2), m + 2 (2),

where the (2) in the second row denotes the fact that there are two subspaces of each of
these dimensions. From Case 1, we know that tθ stabilises exactly two totally singular
subspaces, each of dimension m− 1. Since tθ stabilises a (necessarily not totally singular)
1-, 2- and 3-space, we deduce that the stabilised m-, (m + 1)- and (m + 2)-spaces must be
the direct sum of the 1-, 2- and 3-spaces with the two (m− 1)-spaces. These subspaces
are neither totally singular (there are only two such subspaces stabilised by tθ) nor non-
degenerate (they have an (m− 1)-dimensional totally singular subspace). The subspaces
that we have not yet accounted for are the ones of dimension 1, 2, 3, 2m− 2, 2m− 1, 2m.
These give the same three subgroups we identified when m is odd. This completes the
proof for T = Ω2m+1(q).

If T = PSp2m(q), then we argue in the same manner but there are fewer subspaces
to consider. If m is odd, then tθ stabilises a (necessarily nondegenerate) 2-space and
(2m− 2)-space, so the only maximal reducible subgroup of G containing tθ has type
Sp2(q) × Sp2m−2(q). If m is even, tθ, in addition, stabilises two (m − 1)- and (m + 1)-
spaces. These must be the two totally singular subspaces from Case 1 together with their
direct sums with the nondegenerate 2-space, so these subspaces do not give rise to any
further maximal overgroups of tθ. This completes the proof.

Imprimitive subgroups

We now turn to irreducible imprimitive subgroups. Recall our terminology associated
with decompositions introduced in Section 2.3.1. Our proof is inspired by an argument
in the proof of [18, Lemma 4.5].

Proposition 4.3.10. Theorem 4.3.7 is true for irreducible imprimitive subgroups.
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Proof. Let H 6 G be a maximal imprimitive subgroup of G containing tθ. Let D be the
direct sum decomposition

Fn
q = V = V1 ⊕ · · · ⊕Vk (4.13)

of which H is the stabiliser in G. Note that k > 2 divides n and dim Vi = n
k for all

i ∈ {1, . . . , k}. Since H is maximal we know that either each Vi is nondegenerate or T =

PSp2m(q), k = 2 and V1 and V2 are maximal totally singular subspaces. If T = PSp2m(q),
then this evidently implies that dim Vi > 2. If T = Ω2m+1, then since q is not prime, the
maximality of H implies that dim Vi > 2 also (see [43, Table 3.5D]).

By construction, a suitable power x of tθ has type (2m− 2)ε
q0
⊥ I2+n−2m, where ε = (−)m.

Therefore, the order of x is a primitive prime divisor r of q`0− 1 where ` = (2m− 2)/(m, 2)
and the nontrivial eigenvalues of x are distinct. Therefore, Lemma 2.5.6 guarantees that
x centralises the decomposition D.

Let {u1, . . . , un} be a basis for V and let V = 〈u1, . . . , un〉Fp
. Extend the semilinear action

of G on V to an action on V by defining, for each g ∈ G ∩GL(V) and α1, . . . , αn ∈ Fp,

(α1u1 + · · ·+ αnun)gσ̃ = α
q0
1 (u1g) + · · ·+ α

q0
n (ung).

Then the decomposition in (4.13) gives rise to the corresponding decomposition D

V = V1 ⊕ · · · ⊕Vk. (4.14)

We now claim that y = F(tθ) centralises D. Suppose that x acts nontrivially on Vi and
1 6= µ ∈ Fp is an eigenvalue of x with µ-eigenvector v ∈ Vi. Since x and y commute,

(vy)x = (vx)y = (µv)y = µ(vy).

That is, vy is a µ-eigenvector of x. However, all nontrivial eigenvalues of x have mul-
tiplicity one, so vy ∈ Vi. Since y stabilises the decomposition in (4.14), y stabilises Vi.
However, V is y-stable, so y stabilises Vi ∩V = Vi. Since the 1-eigenspace of x is at most
3-dimensional and dim Vi > 2, x acts nontrivially on at least k− 1 summands. Therefore,
y stabilises at least k− 1 summands and, hence, all k summands.

Now we will find subspaces which are stabilised by tθ. The element y has an eigenvalue
λ of multiplicity one that is contained in Fq2

0
and in no proper subfield. Let Vi contain

the λ-eigenspace of y and V j contain the λq0-eigenspace of y. Since y and tθ commute, if
v ∈ Vi is a λ-eigenvector for y, then

(vtθ)y = (vy)(tθ) = (λv)(tθ) = λq0(vtθ),

so vtθ is a λq0-eigenvector for y. However, λq0 has multiplicity one so vtθ ∈ V j. Similarly,
if w ∈ V j is a λq0-eigenvector, then wθ is a λ-eigenvector, so wtθ ∈ Vi. Thus, since y
centralises D, tθ stabilises Vi + V j, and, since V is tθ-stable, tθ stabilises Vi + Vj.

For now assume that T = PSp2m(q). If i 6= j, then tθ stabilises Vi ⊕ Vj, so, by Proposi-
tion 4.3.9, 2 dim Vi = 4m/k ∈ {2, 2m− 2, 2m}. However, m > 3 and 2m/k divides 2m, so
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k = 2. Similarly, if i = j then tθ stabilises Vi, so dim Vi = 2m/k ∈ {2, m− 1, m+ 1, 2m− 2}.
Since 2m/k divides 2m, dim Vi = 2. By a similar line of reasoning, if T = Ω2m+1(q), then
dim Vi = 3. This implies that y = M1 ⊥ · · · ⊥ Mk where Mi ∈ SO3(q). Now Mi has
eigenvalues λi, µi, 1, which contradicts 1 being an eigenvalue of y with multiplicity 1.

To summarise, we have established that if T = Ω2m+1(q), then no imprimitive irreducible
subgroups arise, and if T = PSp2m(q), then either k = 2 or k = m. Therefore, for
the remainder of the proof we may assume that T = PSp2m(q) and we will focus on
establishing necessary conditions for these subgroups to arise and bounds on their
multiplicities when they do.

Let H and B be the stabiliser and centraliser in G of the decomposition D. Fix z as a
power of y of type (2m− 2)ε

q0
⊥ (2)−q0

where ε = (−)m. Note that z ∈ B.

Case 1: k = m

We may write z = M1 ⊥ · · · ⊥ Mm where Mi ∈ Sp2(q). By Lemma 2.3.36 this implies
that m− 1 divides e. Since the eigenvalues of y are distinct, by Corollary 2.3.5, |CG(y)| =
|CB(y)| = |CH(y)|. Moreover, yG ∩ H splits into m! B-classes (corresponding to the
possible permutations of M1, . . . , Mm), which are fused in H, so yG ∩ H = yH . Therefore,
by Lemma 2.1.3, the number of G-conjugates of H that contain y is

|yG ∩ H|
|yG|

|G|
|H| =

|yH |
|yG|
|G|
|H| =

|CG(y)|
|CH(y)|

= 1.

Consequently, tθ is contained in at most one G-conjugate of H.

Case 2: k = 2 and V1 and V2 are nondegenerate

Here m is even. Write z = M ⊥ N where M, N ∈ Spm(q). The set of eigenvalues of z is

{λ1, λ
q0
1 , λ2, λ−1

2 , . . . , λ
qm−2

0
2 , λ

−qm−2
0

2 }.

By Lemma 2.2.7, the eigenvalues of M are closed under taking inverses. Since λ
q0
1 = λ−1

1 ,
we may assume that λ1 and λ

q0
1 are eigenvalues of M.

Let d = (m − 1, e) and b = (m − 1)/d. By Lemma 2.3.36, the eigenvalue set of z is

Λ ∪ Λ1 ∪ · · · ∪ Λd, where Λ = {λ1, λ
q0
1 } and Λi = {λ

qi
0

2 , λ
−qi

0
2 , . . . , (λqi

0
2 )qb−1

, (λqi
0

2 )−qb−1},
for each i. Since the eigenvalue sets of M and N are closed under the map α 7→ αq, the
eigenvalue set of M is Λ∪Λa1 ∪ · · · ∪Λal and the eigenvalue set of N is Λal+1 ∪ · · · ∪Λad

where l > 1 and {a1, . . . , ad} = {1, . . . , d}. Therefore, b divides m and m− 2. Thus, b
divides 2, so Λi = {λ

qi
0

2 , λ
−qi

0
2 }, for each i. In particular, d = m− 1, which proves that

m− 1 divides e when these subgroups arise.

By arguing as in Case 1, we can show that |CG(z)| = |CH(z)| and that zG ∩ H splits into
(m

m
2
) B-classes (corresponding to the possible choices for m/2 of Λ, Λ1, . . . , Λm−1 for M)

which fuse to 1
2 (

m
m
2
) H-classes. Therefore, z, and thus tθ, lies in at most 1

2 (
m
m
2
) G-conjugates

of H.
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Case 3: k = 2 and V1 and V2 are totally singular

Assume that m is odd. Then a power z of y has type (2m− 2)−q0
⊥ (2)−q0

, and, since z ∈ B,
z = M⊕M−T for M ∈ GLm(q). Now the set of eigenvalues of z is

{λ1, λ
q0
1 , λ2, λ

q0
2 , . . . , λ

q2m−2
0

2 }.

Since λ
q0
1 = λ−1

1 , assume that λ1 is an eigenvalue of M and λ
q0
1 is an eigenvalue of M−T.

Let d = (2m− 2, e) and b = (2m− 2)/d. The eigenvalue set of z is Λ ∪ Λ1 ∪ · · · ∪ Λd,
where Λ = {λ1, λ

q0
1 } and where Λ1, . . . , Λd are the orbits of the eigenvalue set of an

element of type (2m− 2)− under the map α 7→ αq. Since the eigenvalue set of M is closed
under the map α 7→ αq, the eigenvalue set of M is {λ1} ∪Λa1 ∪ · · · ∪Λal where l = d

2 and
where a1, . . . , al ∈ {1, . . . , d} are distinct. If b is even, then Λ−1

i = Λi, for each i. However,
this contradicts the distinctness of the eigenvalues of z. Therefore, b is odd. In particular,
e2 > (2m− 2)2.

As in Case 1, we can show that |CG(z)| = |CH(z)|. Additionally, if N ∈ GLn(q) has
eigenvalue set {λε

1} ∪Λε1
1 ∪ · · · ∪Λε l

l , then a G-conjugate of y is B-conjugate to [N, N−T]
for exactly one choice of (ε, ε1, . . . , ε l) ∈ {+,−}l+1. Therefore, zG splits into 2l+1 B-classes,
which fuse to 2l H-classes. Consequently, z, and thus tθ, lies in at most 2l = 2(2m−2,e)/2 6

2(m−1,e) G-conjugates of H.

When m is even, the analysis is very similar but we work with an element of type
(2)−q0

⊥ (2m− 2)+q0
instead; we omit the details.

We have now completed the proof.

Orthogonal subgroups of symplectic groups

Before turning to primitive subgroups in general, let us first carefully consider the
classical C8 subgroups. In our context, these are the subgroups of type O±2m(2

f ) in almost
simple groups with socle Sp2m(2

f ). These subgroups merit special attention because,
on one hand, they are subspace subgroups and therefore have comparatively large
fixed point ratios (see Section 3.1), but on the other hand, they are not stabilisers of
subspaces of the natural module F2m

2 f and therefore are not amenable to Shintani descent
in a transparent way. The idea is to apply Shintani descent by exploiting the fact that
there is a bijective isogeny SO2m+1(F2) → Sp2m(F2) (see Remark 2.6.2). This section is
somewhat more technical than its environs.

For this section fix p = 2, so T = Sp2m(q) and θ = σ̃ = ϕi (where i = f /e). We will allow
m = 2 here, so that we can exploit the main result, Proposition 4.3.13, in Case III also.

We begin by introducing an auxiliary map E. Recall that X is the algebraic group Sp2m(F2).
Define Y = SO2m+1(F2) and let π−1 : Y → X be the isogeny that is given explicitly in
Lemma 2.6.2. Define τ : Y → Y as τ = π ◦ σ ◦ π−1.
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4. GROUPS OF TYPES Bm AND Cm

Lemma 4.3.11. With the notation above, τ is a Steinberg endomorphism of Y.

Proof. Let h ∈ Y. Then, by Lemma 2.6.2, we may write

h = π(g) =


a11 · · · a1(2m) (∑m

i=1 a1(2i−1)a1(2i))
1
2

...
. . .

...
...

a(2m)1 · · · a(2m)(2m) (∑m
i=1 a(2m)(2i−1)a(2m)(2i))

1
2

0 · · · 0 1

 = (bij)

where g = (aij) ∈ X. Since gσ = (aq0
ij ),

hτ = π(gσ) =


aq0

11 · · · aq0
1(2m)

(∑m
i=1 aq0

1(2i−1)a
q0
1(2i))

1
2

...
. . .

...
...

aq0
(2m)1 · · · aq0

(2m)(2m)
(∑m

i=1 aq0
(2m)(2i−1)a

q0
(2m)(2i))

1
2

0 · · · 0 1

 = (bq0
ij ).

Therefore, τ : Y → Y is nothing other than the map (bij) 7→ (bq0
ij ), which is evidently a

Steinberg endomorphism.

Recall the Shintani map

F : {(gσ̃)Xσe | g ∈ Xσe} → {xXσ | x ∈ Xσ}.

It is straightforward to verify that π : X → Y extends to an isomorphism (of abstract
groups) π : X:〈σ〉 → Y:〈τ〉 by defining π(σ) = τ. Therefore, we may define a map

E : {(hτ̃)Yτe | h ∈ Yτe} → {yYτ | y ∈ Yτ}.

as E = π ◦ F ◦ π−1, where τ̃ = τ|Yτe .

Lemma 4.3.12. With the notation above, E is the Shintani map of (Y, τ, e).

Proof. Let h ∈ Yτe and let g ∈ Xσe such that π(g) = h. By Corollary 2.6.6 (a consequence
of the Lang–Steinberg Theorem), we may fix a ∈ X such that aa−σ−1

= g. Then

E(hτ̃) = π(F(π−1(hτ̃))) = π(F(gσ̃)) = π(a−1(gσ̃)ea) = π(a)−1(hτ̃)eπ(a),

where

π(a)π(a)−τ−1
= π(a)π(a)−π(σ)−1

= π(aa−σ−1
) = π(g) = h.

This proves the claim.

We now use the map E to determine the multiplicities of orthogonal subgroups of G
(when T = Sp2m(2

f )). The author thanks Robert Guralnick for helpful comments on the
proof of the following proposition.

94



4.3. Case II

Proposition 4.3.13. Let q be even, m > 2, T = Sp2m(q), σ̃ = ϕi and G = 〈T, σ̃〉. For g ∈ T,
the total number of maximal subgroups of G of type O+

2m(q) or O−2m(q) that contain gσ̃ equals
the total number of subgroups of Sp2m(q0) of type O+

2m(q0) or O−2m(q0) which contain F(gσ̃).

Proof. The maximal subgroups of G of type O±2m(q) which contain gσ̃ correspond to the
maximal subgroups of O2m+1(q) of type O±2m(q) which are normalised by π(gσ̃), and
these are exactly the stabilisers of nondegenerate hyperplanes of W = F2m+1

q .

If a hyperplane U is nondegenerate, then U does not contain the radical W ∩W⊥ = 〈x〉.
We claim that the converse also holds. To see this, assume x 6∈ U and suppose that
v ∈ U ∩U⊥ is nonzero. Since x 6∈ U, we know that v 6∈ rad(W). Hence, there exists
w ∈ W such that (v, w) 6= 0. Therefore, w 6∈ U and, hence, W = 〈U, w〉. In particular,
x = u + λw for some u ∈ U and λ 6= 0. Then (v, x) = (v, u) + λ(v, w) = 0 + λ(v, w) 6= 0
since λ 6= 0 and (v, w) 6= 0. However, (v, x) = 0 since x ∈ W ∩W⊥, which is a
contradiction. Therefore, U ∩U⊥ = 0, so U is nondegenerate. To summarise, the maximal
subgroups of O2m+1(q) of type O±2m(q) are exactly the stabilisers of hyperplanes not
containing x.

Therefore, the maximal subgroups of G of type O±2m(q) which contain gσ̃ correspond
to the stabilisers in O2m+1(q) of hyperplanes not containing x that are normalised by
π(gσ̃). By Lemma 2.7.3, we may lift to SL2m+1(q) and apply Lemma 2.7.9 (see the proof
of Proposition 4.3.9), which demonstrates that the stabilisers in SL2m+1(q) of hyperplanes
not containing x that are normalised by π(gσ̃) correspond to the stabilisers in SL2m+1(q0)

of hyperplanes not containing the radical of F2m+1
q0

that contain E(π−1(gσ̃)). By the argu-
ment of the previous paragraph, the intersections of these subgroups with O2m+1(q0) are
exactly the maximal subgroups of O2m+1(q0) of type O±2m(q0) which contain E(π−1(gσ̃)).
These subgroups correspond to the maximal subgroups of Sp2m(q0) of type O±2m(q0) that
contain π−1(E(π(gσ̃))) = F(gσ̃).

Remark 4.3.14. Let us clarify what we mean in the statement of Proposition 4.3.13. We
are only claiming that the total number of C8 subgroups of Sp2m(q) containing gσ̃ is equals
the total number of C8 subgroups of Sp2m(q0) containing F(gσ̃). We are not claiming
that the subgroups of G of type O−2m(q) that contain gσ̃ correspond to the subgroups
of Sp2m(q0) of type O−2m(q0) that contain F(gσ̃) (and the analogous claim for plus-type
orthogonal groups).

Indeed, this stronger claim is, in general, false. For example, let e = 2 and consider g = 1.
Then F(σ̃) = a−1σ̃2a = 1 is contained in every subgroup of Sp2m(q0) and in particular
in all subgroups of type O−2m(q0) (of which there are 1

2 qm(qm + 1)). However, we saw in
Lemma 2.6.24 that there are no involutions in the coset O−2m(q)σ̃, so σ̃ is not contained in
any subgroup of Sp2m(q) of type O−2m(q).

Recall the following well-known result [27, Theorem 2].
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Theorem 4.3.15. Let q be even and m > 2. Then every element of Sp2m(q) is contained in at
least one subgroup of type O+

2m(q) or O−2m(q).

Using Proposition 4.3.13, we can establish a generalisation of Theorem 4.3.15.

Corollary 4.3.16. Let q = 2 f and m > 2. Let G = 〈Sp2m(q), ϕj〉 for a proper divisor j of f .
Every element of G is contained in at least one maximal subgroup of type O+

2m(q) or O−2m(q).

Proof. Let x ∈ G. If x ∈ Sp2m(q), then, by Theorem 4.3.15, x is contained in at least one
subgroup H of type O±2m(q) and, thus, x ∈ NG(H), a maximal subgroup of G of type
O±2m(q). Now assume that x ∈ G \ Sp2m(q). By Lemma 4.1.2, we may write 〈x〉 = 〈y〉
where y = gϕi and i is a proper divisor of f . Writing σ̃ = ϕi, by Proposition 4.3.13, the
number of subgroups of G of type O±2m(q) containing gσ̃ equals the number of subgroups
of Sp2m(q0) of type O±2m(q0) containing F(gσ̃), which, by Theorem 4.3.15, is at least
one.

The following is the application of Proposition 4.3.13 that feeds into our immediate
concern of studyingM(G, tθ). We return to assuming that m > 3. Recall that F(tθ) = y
has type (2)−q0

⊥ (2m− 2)ε
q0

where ε = (−)m.

Corollary 4.3.17. Let q be even, m > 3, T = Sp2m(q) and G = 〈T, θ〉. Then tθ is contained in
exactly one C8 subgroup of G (either of type O+

2m(q) or of type O−2m(q)).

Proof. By Proposition 4.3.13, it suffices to show that y is contained in exactly one subgroup
of T0 = Sp2m(q0) of type O+

2m(q0) or O−2m(q0).

First let H0 be a subgroup of type Oη
2m(q0) containing y. We can write y = y1 ⊥ y2,

centralising a decomposition F2m
q0

= V0 = V1 ⊥ V2. Now y1 acts irreducibly on V1 and
has order r1 ∈ ppd(q0, 2). Therefore, equipping V0 with the nondegenerate quadratic
form defining H0, we see that V1 is minus-type, since O+

2 (q0) does not contain an element
of order r1 (for |O+

2 (q0)| = 2(q0 − 1)). Similarly, if m is odd, then we deduce that V2

is minus-type, and if m is even, then we deduce that V2 is plus-type. Therefore, V0 is
plus-type if m is odd and minus-type if m is even. That is, η = (−)m+1.

Continue to assume that H0 ∼= Oη
2m(q0) contains y; we now know that η = (−)m+1. If

A is either Sp2m(q0) or Oη
2m(q0), then two semisimple elements of odd order in A are

A-conjugate if and only if they are similar, by Theorem 2.3.10. Therefore, yT0 ∩ H0 = yH0 .
Moreover, by Corollary 2.3.5 and Lemma 2.4.4, we deduce that

|CT0(y)| = (q0 + 1)(qm−1
0 − ε) = |CH0(y)|,

so Lemma 2.1.3 implies that y is contained in exactly one T0-conjugate of H0. Said
otherwise, y = F(tθ) is contained in a unique subgroup of Sp2m(q0) of type Oη

2m(q0).
Proposition 4.3.13 now implies that tθ is contained in a unique C8 subgroup of Sp2m(q),
as claimed.
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Primitive subgroups

We now turn to general primitive subgroups. We begin with a lemma about powers of
the element y = F(tθ).

Lemma 4.3.18. A suitable power of y has type A ⊥ In−2 where

A =

{
(2)−q0

if q0 is not Mersenne, or T = PSp2m(q) and m is even
−I2 otherwise.

Proof. Write ε = (−)m. All element types we discuss are over Fq0 and we omit the
subscripts q0 for clarity.

Case 1: q0 is not Mersenne

First assume that θ = ϕi. Then y = y1 ⊥ y2(⊥ I1), where y1 has type (2)− and order
r1 ∈ ppd(q0, 2), and y2 has type (2m− 2)ε and order r2 ∈ ppd(q0, `), where we write
` = (2m− 2)/(m− 1, 2). In particular, ` > 2, so r1 and r2 are coprime. Consequently, yr2

has type (2)− ⊥ In−2 as required.

Next assume that T = PSp2m(q) and θ = δϕi, so y has type ∆(2)− ⊥ ∆(2m− 2)ε. Noting
that (2)− has odd order, by Definition 2.3.32, y(q

m−1
0 +1)2(q0−1)2 has type (2)− ⊥ (2m− 2)ε,

which reduces to the previous case.

Now assume that T = Ω2m+1(q) and θ = r�r�ϕi, so y has type (2)− ⊥ Σ(2m− 2)ε ⊥ I1.
Therefore, by Definition 2.3.34, yk has type (2)− ⊥ (2m− 2)ε ⊥ I1 for some k that is a
power of two. This reduces to the first case.

Case 2: q0 is Mersenne

In this case, an element of type (2)− = (2)−q0
has order q0 + 1, which is a power of two,

so we must be more careful when raising elements to even powers. However, note that
elements of type (2)− and (2m− 2)ε still have coprime order.

The following observation will be useful. Since q0 is Mersenne, q0 ≡ −1 (mod 4), and
hence qm−1

0 ≡ (−1)m−1 (mod 4). This gives qm−1
0 6≡ ε (mod 4) and (qm−1

0 − ε)2 = 2.

If T = PSp2m(q) and θ = ϕi, then y has type (2)− ⊥ (2m− 2)ε and a power of y has type
(2)− ⊥ I2m−2.

If T = Ω2m+1(q) and θ = r�r�ϕi, then y has type (2)− ⊥ (2m− 2)ε ⊥ I1, a power of
which has type (2)− ⊥ I2m−1.

Now assume that T = PSp2m(q) and θ = δϕi. Then y has type ∆(2)− ⊥ ∆(2m − 2)ε.
First assume that m is even. Then ε = + and y(q0−1)2 has type (2)− ⊥ (2m − 2)ε, a
suitable power of which has type (2)− ⊥ I2m−2. Next assume that m is odd. In this case,
ε = − and y(q

m−1
0 +1)2(q0−1)2 has type w ⊥ I2m−2, where w has order 1

2 (q0 + 1) > 2, since
(qm−1

0 + 1)2 = 2. This implies that a suitable power of this element has type −I2 ⊥ In−2.
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Finally assume that T = Ω2m+1(q) and θ = ϕi. Then y has type (2)− ⊥ Σ(2m− 2)ε ⊥ I1.
Definition 2.3.34 informs us that y2 has type w ⊥ (2m− 2)ε ⊥ I1, where w has order
1
2 (q0 + 1) > 2, so a power of y2 has type −I2 ⊥ In−2. This completes the proof.

One special case requires techniques of a different flavour, so we handle it separately.

Proposition 4.3.19. Let G = 〈T, θ〉 where T = Sp6(q) with p = 2 or T = Ω7(q) with p odd.
Then tθ is not contained in an almost simple subgroup of G with socle G2(q).

Proof. Assume that T = Ω7(q) since a very similar argument can be applied to Sp6(q).
For a contradiction, suppose that tθ is contained in a subgroup H of G with socle G2(q).
A power of tθ is SO7(Fp)-conjugate to y = F(tθ), and by Lemma 4.3.18, z = −I2 ⊥ I5 is
a power of y.

The subgroup H 6 G arises from the embedding G2(Fp) 6 SO7(Fp) afforded by an
irreducible representation of G2(Fp) on V = F7

p. It is well known that SL3(Fp) is a
maximal rank subgroup of G2(Fp) and the restriction of V to SL3(Fp) decomposes as
V = U ⊕U∗ ⊕ 0 where U and 0 are the natural and trivial modules for SL3(Fp).

Now z ∈ G2(Fq) 6 G2(Fp) is a semisimple element. Therefore, z is contained in a
maximal torus of G2(Fp) and all maximal tori of G2(Fp) are conjugate. Since SL3(Fp)

is a maximal rank subgroup of G2(Fp) we deduce that z is conjugate to an element of
SL3(Fp). From the action of SL3(Fp) on V, we see that we may write

z = [α1, α2, α3, α−1
1 , α−1

2 , α−1
3 , 1].

Without loss of generality, we may assume that α1 = −1 and α2 = α3 = 1. This implies
that α1α2α3 = −1, which is a contradiction to [α1, α2, α3] ∈ SL3(Fp). Therefore, z, and
hence y, and hence tθ, is not contained in a subgroup of G of type G2(q).

We now complete the proof of Theorem 4.3.7.

Proposition 4.3.20. Theorem 4.3.7 is true for primitive subgroups.

Proof. Write ε = (−)m. By construction, a suitable power of tθ is X-conjugate to y. By
Lemma 4.3.18, we may fix a power z = z1 ⊥ In−2 of y where

z1 =

{
(2)− if q0 is not Mersenne
−I2 otherwise

and a power w = w1 ⊥ In−2 of y where

w1 =


(2)− if q0 is not Mersenne
[λ, λ−1] if q0 is Mersenne and T = PSp2m(q)
−I2 otherwise

for an element λ ∈ F×q0
of order 4. Note that z has prime order.
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Let H ∈ M(G, tθ) be primitive. By Theorem 2.5.1, H is contained in one of the geometric
families C3, . . . , C8 or is an almost simple irreducible group in the S family. We consider
each family in turn.

Consider C3 subgroups. Suppose that H is a field extension subgroup of prime degree k.
Let H0 = H ∩ PGL(V) and write H0 = B.k.

First suppose that H has type Spn/k(q
k) or On/k(qk), where k is odd in the latter case.

Lemma 2.5.7(ii) implies that z ∈ B. Moreover, since ν(z) = 2, Lemma 2.5.7(i) implies that
k = 2, which in turn implies that T = PSp2m(q). If q0 is not Mersenne, then we obtain
a contradiction to Corollary 2.5.9(i). If q0 is Mersenne, then Lemma 2.5.7(i) implies that
z arises from an element in Spm(q

2) with exactly one nontrivial eigenvalue, which is
impossible. Therefore, H is not contained in a subgroup of type Spn/k(q

k) or On/k(qk).

Now suppose that T = PSp2m(q) and H has type GUm(q). As we argued in the proof of
Lemma 4.3.18, we can fix g as a power of y of type (2m− 2)ε ⊥ I2. Since g has odd prime
order, g ∈ B. Now we apply Corollary 2.5.9. If m is even, then ε = + and we contradict
(ii)(a), and if m is odd, then ε = − and we contradict (ii)(b) if e is odd. If m is odd and e is
even, then z contradicts (ii)(c). Therefore, H 6∈ C3.

Now let us turn to C4 subgroups. Suppose that H is the centraliser of a decomposition
V = V1 ⊗ V2 where dim V1 > dim V2 > 1. Since w ∈ H, we may write w = w1 ⊗ w2.
Since ν(w) = 2, Lemma 2.5.13 implies that ν(w1) = 1, ν(w2) = 0 and dim V2 = 2. If
T = Ω2m+1(q), then this is immediately a contradiction since dim V = 2m + 1 is odd.
If T = PSp2m(q), then ν(w2) = 0 and Lemma 2.5.10 implies that every eigenvalue of w
appears with even multiplicity, but this is a contradiction, since the nontrivial eigenvalues
of w are distinct. Therefore, H 6∈ C4

If H ∈ C5, then H has type Sp2m(q1) or O2m+1(q1) (depending on T), where q = qk
1 for a

prime k. By Proposition 4.3.8, there is a unique G̃-class of subgroups of a given type and
Lemma 2.7.11 implies that the number of G̃-conjugates of H that contain tθ is at most
|CXσ(y)|. Moreover, if k = e, then Lemma 2.7.12 implies that tθ is contained in at most e2

subgroups of type Sp2m(q0) or at most e3 subgroups of type O2m+1(q0).

The C6 family is empty since q is not prime.

We now treat C7 subgroups. Suppose that H is the stabiliser of a decomposition

V = U1 ⊗U2 ⊗ · · · ⊗Uk

with k < n. Let H0 = H ∩ PGL(V) and write H0 = B.Sk. Since w does not centralise a
tensor product decomposition (see the discussion of C4 subgroups), w 6∈ B. Therefore, w
cyclically permutes the k factors.

If q0 is not Mersenne, then w has prime order and the two nontrivial eigenvalues of w are
distinct, which is inconsistent with the eigenvalue pattern required by Lemma 2.5.11(ii).
Similarly, we obtain a contradiction when q0 is Mersenne and T = Ω2m+1(q).

99



4. GROUPS OF TYPES Bm AND Cm

Now assume that q0 is Mersenne and T = PSp2m(q). Since w acts transitively on the k ten-
sor factors, k is even and without loss of generality w2 = z centralises the decomposition
V = V1 ⊗ V2 where V1 = ⊗i oddUi and V2 = ⊗i evenUi. In particular, dim V1 = dim V2.
However, ν(z) = 2, so Lemma 2.5.13 implies that dim V1 = dim V2 = 2, which is
impossible since dim V = 2m > 6. Therefore, H 6∈ C7.

If H ∈ C8, then T = Sp2m(q), q is even and H has type Oε
2m(q) for ε ∈ {+,−}. Moreover,

by Corollary 4.3.17, tθ is contained in a unique C8 subgroup.

It remains to consider the S family. Since ν(z) = 2, n > 6 and q is not prime, H is an
exception in Theorem 2.5.14(iii). By Table 2.3, the possibilities are

(i) T = Sp6(q) (p = 2) or T = Ω7(q): H = G2(q)

(ii) T = PSp6(p2) (p odd): H = J2

We excluded the possibility of case (i) in Proposition 4.3.19.

Now consider case (ii). If q0 6= 3, then |w| is at least 2 · 9 = 18 (see Lemma 2.3.15), and if
q0 = 3, the |w| = 4 · 5 = 20. Therefore, w is not contained in a subgroup of type J2 since
the maximum order of an element of J2 is 15 (see [24]).

We have now considered each possible type of maximal subgroup of G and have, there-
fore, completed the proof.

We have now proved Theorem 4.3.7.

4.3.3 Probabilistic method

Continue to let T ∈ T with m > 3 and let θ be an automorphism from Table 4.1. Fix
y ∈ Inndiag(T0) from Table 4.2 and tθ ∈ G = 〈T, θ〉 from Proposition 4.3.5. Recall that
M(G, tθ) is the set of maximal subgroups of G that contain tθ, which is described in
Theorem 4.3.7.

In this section, we prove Theorems 4A and 4C in Case II. We will also collect together
results that will feed into the proof of Theorem 4B, which is further discussed in Sec-
tion 4.3.4. For an integer k, define πk = (k, 2)− 1.

Proposition 4.3.21. Let G = 〈PSp2m(q), θ〉 ∈ A where m > 3 and θ 6∈ PGSp2m(q). Then

(i) u(G) > 2

(ii) u(G) > 4 if q is odd

(iii) u(G) > q− 1 if m > 16

(iv) u(G)→ ∞ as q→ ∞.
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Proof. We apply the probabilistic method encapsulated by Lemma 2.1.1. Let x ∈ G have
prime order. We will obtain an upper bound on

P(x, tθ) 6 ∑
H∈M(G,tθ)

fpr(x, G/H).

By Lemma 2.1.1 we need to show that P(x, tθ) < 1
2 when q is even and P(x, tθ) < 1

4

when q is odd. In addition, we will establish that P(x, tθ)→ 0 as q→ ∞.

Theorem 4.3.7 gives a superset ofM(G, tθ) and the bounds on the fixed point ratios
fpr(x, G/H) are given in Chapter 3. In particular, by Theorem 3.1.1 and Proposition 3.1.3,
the C1 subgroups contribute(

1
q2 +

1
q4 +

2
q2m−2

)
+ πm

(
6

qm−1 +
2

qm

)
to the upper bound on P(x, tθ), and by Proposition 3.1.5, the C8 subgroups contribute

πq

(
1
q
+

1
qm − 1

)
.

Now let H ∈ M(G, tθ) be a nonsubspace subgroup. Then Proposition 3.2.3 implies that

fpr(x, G/H) <
√

5 q−(m−3/2−`).

where ` = 0, unless H has type Spm(q) o S2, in which case ` = 1. From the description of
the possibilities for H in Table 4.3, we see that tθ is contained in at most

1 + Mnd + Mti + Ms

nonsubspace subgroups, where Mnd, Mti and Ms are the numbers of subgroups in
M(G, tθ) of type Spm(q) o S2, GLm(q) and subfield subgroups, respectively.

Write
M = 1 + Mnd · q + Mti + Ms

where the factor of q associated with Mnd is to account for the fact that ` = 1 in this case.
Then we have deduced that

P(x, tθ) <
(

1
q2 +

1
q4 +

2
q2m−2

)
+ πm

(
6

qm−1 +
2

qm

)
+ πq

(
1
q
+

1
qm − 1

)
+

M
√

5
qm−3/2−` .

Writing ε = (−)m, Theorem 4.3.7 gives

Mnd 6
1
2

(
m
m
2

)
Mti 6 2(m−1,e) Ms 6 log log q · (q0 + 1)(qm−1

0 − ε).

noting that, by Corollary 2.3.4 and Lemma 2.4.4,

|CPGSp2m(q0)(y)| = (q0 + 1)(qm−1
0 − ε).
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From here we see that if m > 16, then P(x, tθ) < 1
q−1 , so u(G) > q− 1, as claimed in

part (iii). Therefore, we may now focus on parts (i), (ii) and (iv).

First assume that e > 4. Then the above bounds demonstrate that P(x, tθ)→ 0 as q→ ∞.
If e > 5, then these bounds also give P(x, tθ) < 1

2 when q is even and P(x, tθ) < 1
4 when

q is odd. If H is a subfield subgroup, Propositions 3.2.3 and 3.2.8 allow us to improve the
fixed point ratio to

fpr(x, G/H) <

{ √
5 q−2 if m = 3

2 q−m if m > 4

This gives P(x, tθ) < 1
2 if q is even and P(x, tθ) < 1

4 if q is odd, when e = 4.

From now on we can assume that e ∈ {2, 3}. Since e is prime, by Theorem 4.3.7, we
have Ms 6 e2. With this, we can now see that P(x, tθ) → 0 as q → ∞. Moreover, we
obtain P(x, tθ) < 1

2 when q is even and P(x, tθ) < 1
4 when q is odd, unless (m, q) ∈

{(4, 4), (3, 8)} or (e, m) = (2, 3). In the former cases, we can discount the C2 subgroups
since m− 1 does not divide e and we obtain the result.

Finally assume that e = 2 and m = 3. Here, Theorem 4.3.7 indicates that Mti = 0
since m is odd. With this we obtain the desired bounds on P(x, tθ) unless q = 4. In
this case, G = 〈Sp6(4), ϕ〉 = Aut(Sp6(4)) and we prove that u(G) > 2 in MAGMA (see
Section 2.8).

Proposition 4.3.22. Let G = 〈T, θ〉 ∈ A where T = Ω2m+1(q) and θ 6∈ Inndiag(T). Then

(i) u(G) > 3

(ii) u(G)→ ∞ as q→ ∞.

Proof. We adopt the same approach as in the proof of Proposition 4.3.21 but we do not
need to divide into as many cases. Let x ∈ G have prime order. Theorem 4.3.7 gives
a superset of M(G, tθ) and Theorem 3.1.1 together with Propositions 3.2.4 and 3.2.8
provide bounds on the corresponding fixed point ratios. This gives

P(x, tθ) <
1
q
+

1
q2 +

1
q3 +

1
qm−2 +

14
qm−1 +

5
qm + M

√
5

qm−1 ,

where M is the number of subfield subgroups of G containing tθ. Now

M 6 log log q · q0(q0 + 1)(qm−1
0 + 1).

If e > 4, then this shows that P(x, tθ) < 1
3 and P(x, tθ)→ 0 and q→ ∞. If e ∈ {2, 3}, then

M 6 e3 and we obtain our desired bound unless (m, q) = (3, 9). In this exceptional case,
we obtain our desired result by determining the fixed point ratios using MAGMA.

4.3.4 Asymptotic results

We now prove some asymptotic results towards a proof of Theorem 4B, which will be
completed in Section 4.4.4.
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Proposition 4.3.23. Let (Gi) be a sequence inA and such that soc(Gi) = PSp2mi
(qi). Assume

that qi is odd and Gi 66 PGSp2mi
(qi) for all i. Then u(Gi)→ ∞ if mi → ∞.

Proof. Fix Gi = G = 〈T, θ〉 with T = PSp2m(q). Since we may assume that m > 3, we
will use the notation from earlier in this section. In particular, by Proposition 4.1.5, we
may assume that θ appears in Table 4.1.

As before, we will apply the probabilistic method given by Lemma 2.1.1. Assume that
m is large enough so that we may fix d satisfying 1 6

√
2m/8 < d <

√
2m/4. Let y ∈

PGSp2m(q0) have type a(2d)− ⊥ a(2m− 2d)−. Then as in the proof of Proposition 4.3.5,
there exists t ∈ T such that tθ is X-conjugate to y.

As in the proof of Proposition 4.3.9, by applying Lemma 2.7.9, the unique C1 subgroup of
G containing tθ has type Sp2d(q)× Sp2m−2d(q). There are at most 2m types of subgroup
in each of C2, C3, C4, C7 and at most log log q in C5. In each of these cases, by Lemma 2.7.11
and Proposition 4.3.8, there are at most (qd

0 + 1)(qm−d
0 + 1) 6 2qm/2 subgroups of each

type inM(G, tθ). Note that the classes C6 and C8 are empty. Since 1 < d < m− d a power
of y has type (2d)− ⊥ I2m−2d. By Theorem 2.5.14, since ν(z) = 2d <

√
2m/2, we deduce

thatM(G, tθ) contains no subgroups from S .

The fixed point ratio bounds in Theorem 3.1.1 and Proposition 3.2.3 imply that for all
prime order elements x ∈ G,

P(x, tθ) 6
3

qm−2 +
1

q
√

2m/4
+

1

qm−
√

2m/4
+ (8m + log log q) · 2qm/2 · 1

qm−3 → 0

as m→ ∞. Therefore, u(G)→ ∞ as m→ ∞.

With a view to Theorem 4D, we now turn to upper bounds on spread, where we allow
T = PSp4(q). In [37, Proposition 2.5], Guralnick and Shalev prove the following.

Theorem 4.3.24. Let T ∈ T .

(i) If q is even and T = PSp2m(q), then s(T) 6 q.

(ii) If T = Ω2m+1(q), then s(T) < q2+q
2 .

We now establish a generalisation of Theorem 4.3.24.

Proposition 4.3.25. Let G ∈ A and write T = soc(G).

(i) If q is even, T = PSp2m(q) and θ ∈ PΓSp2m(q), then s(G) 6 q.

(ii) If T = Ω2m+1(q), then s(G) < q2+q
2 .

Proof. First consider (i). In the proof of Theorem 4.3.24(i), a set X of q + 1 transvections
in T is constructed with the property that for all subgroups H0 of T with type O+

2m(q) or
O−2m(q) there exists x ∈ X such that x ∈ H0. Let g ∈ G. By Corollary 4.3.17, G has at least
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one subgroup H of type O+
2m(q) or O−2m(q) such that g ∈ H. Therefore, there exists x ∈ X

such that x ∈ H. As a result, 〈x, g〉 6= G and s(G) 6 q.

Now consider (ii). Let V = F2m+1
q and consider the semilinear action of G on V. Write ` =

(q2 + q)/2. In the proof of Theorem 4.3.24(ii), a set Y of ` reflections in T is constructed
such that for all vectors v ∈ V there exists y ∈ Y such that vy = v. Let g ∈ G. We will
show that g stabilises a 1-space. If g ∈ SO2m+1(q), then the set of eigenvalues of g is
closed under taking inverses. Therefore, g must have an eigenvalue in {1,−1}, which
implies that g stabilises a 1-space. If g ∈ G \ SO2m+1(q), then without loss of generality,
we may write g = hσ̃ where h ∈ SO2m+1(q) and σ̃ = ϕi

B , where q = p f and i divides
f . Let X = SO2m+1(Fp), let e = f /i and let F be the Shintani map of (X, σ, e). Then
F(hσ̃) ∈ Xσ

∼= SO2m+1(pi), so F(hσ̃) stabilises a 1-space of F2m+1
pi by the argument above.

Therefore, Lemma 2.7.9 implies that hσ̃ stabilises a 1-space of V. Consequently, in both
cases there exists y ∈ Y such that 〈g, y〉 6= G. Hence, s(G) < `.

We will see in Proposition 4.4.8(iii), that the condition θ ∈ PΓSp2m(q) appearing in
Proposition 4.3.25(i) is necessary.
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4.4 Case III

In this section, we will complete the proofs of Theorems 4A–4D by considering Case III.
Write G = 〈T, θ〉 where T = PSp4(q) and θ ∈ Aut(T) \ T. It will be convenient to make
the case distinction

(a) G 6 PΓSp4(q)

(b) G 66 PΓSp4(q).

4.4.1 Element selection

As in Case II, Shintani descent plays an indispensable role in identifying an element tθ.
Let us fix our notation for Section 4.4.

Notation 4.4.1. Write q = p f where f > 2.

Let V = F4
q be the natural module for T = PSp4(q).

Fix the simple algebraic group X = PSp4(Fp).

Fix the standard Frobenius endomorphism ϕ of X, defined with respect to the
standard basis B = 〈e1, f1, e2, f2〉, as (aij) 7→ (ap

ij), modulo scalars.

If q is even, let ρ be the graph-field endomorphism of X such that ρ2 = ϕ (see (4.5)).

By Proposition 4.1.5, in Case (a) we may assume θ = ϕi or q is odd and θ = δϕi, where
in both cases i is a proper divisor of f . In Case (b), we may assume that q > 2 is even and
θ = ρi where i is an odd (not necessarily proper) divisor of f .

Notation 4.4.1. (continued) Write q = qe
0 and e = f /i.

Fix the pair

(σ, d) =

{
(ϕi, 1) in Case (a)
(ρi, 2) in Case (b).

Let F be the Shintani map of (X, σ, de), so σ̃ = σ|X
σde and

F : {(gσ̃)X
σde | g ∈ Xσde} → {xXσ | x ∈ Xσ}.

Observe that Xσe = Inndiag(T) and Xσ = Inndiag(T0) where

T0 =

{
PSp4(q0) in Case (a)
2B2(q0) in Case (b)

(Note that Xσ = T0 in Case (b).)
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We now define our elements. We begin with a comment on Suzuki groups.

Remark 4.4.2. Consider Case (b). The order of 2B2(q0) is q2
0(q0 − 1)(q2

0 + 1). Since any
primitive prime divisor r of q4

0 − 1 divides q2
0 + 1, we deduce that 2B2(q0) contains an

element of order r, which is necessarily an element of type (4)−q0
, thought of as an element

of Sp4(q0).

Let us now use Shintani descent to fix an element tθ. (Note that the definition of a in (4.9)
implies that a is the empty symbol unless θ = δϕi in which case a = ∆.)

Proposition 4.4.3. Let T = PSp4(q) and let θ ∈ {ϕi, δϕi, ρi} where i divides f . Let y ∈
Inndiag(T0) have type a(4)−q0

. Then there exists t ∈ T such that (tθ)de is X-conjugate to y.

Proof. This follows from Theorem 2.7.1 in conjunction with Lemma 4.3.2 (see the proof
of Proposition 4.3.5).

4.4.2 Maximal subgroups

Continue to let T = PSp4(q) and let θ ∈ {ϕi, δϕi, ρi} where i is a proper divisor of f . Fix
y ∈ Inndiag(T0) and tθ ∈ G = 〈T, θ〉 from Proposition 4.4.3. We now describeM(G, tθ).

Theorem 4.4.4. The maximal subgroups of G that contain tθ are listed in Table 4.4, where m(H)

is an upper bound on the multiplicity of subgroups of type H inM(G, tθ).

Before we prove Theorem 4.4.4, let us deal with two special cases that occur in Case (b).

Proposition 4.4.5. Let q = 2 f and let i be a proper odd divisor of f such that e = f /i is prime.
Let G = 〈T, θ〉 where T = Sp4(q) and θ = ρi. Then tθ is contained in at most e subgroups of G
of type Sp4(2

i).

Proof. Recall that X = Sp4(F2) and q = qe
0. In addition,

F : {(gρi)Sp4(q) | g ∈ Sp4(q)} → {x
2B2(q0) | x ∈ 2B2(q0)}

is the Shintani map of (X, ρi, 2e). Define

E : {(gϕi)Sp4(q) | g ∈ Sp4(q)} → {x
Sp4(q0) | x ∈ Sp4(q0)}

as the Shintani map of (X, ϕi, e). Now y ∈ 2B2(q0) and F(tρi) = y. By Lemma 2.7.6,
E((tρi)2) = y. Let H = 〈Sp4(q0), ρi〉, and write G1 = 〈Sp4(q), ϕi〉 and H1 = 〈Sp4(q0), ϕi〉.
By Lemma 2.7.12 (applied to E), tρi is contained in at most e G1-conjugates of H1. Since
H1 and G1 are index two subgroups of H and G, the subgroups of type Sp4(q0) in G1 and
G are in bijection, with each G-conjugate of H in G having exactly one G1-conjugate of
H1 as an index two subgroup. Consequently, tρi is contained in at most e G-conjugates
of H, as required.

Before we handle the next case, let us present the following technical lemma.
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4.4. Case III

Table 4.4: Case III: Description ofM(G, tθ)

case type of H m(H) conditions

(a) C2 Sp2(q) o S2 1 e even
GL2(q) N q odd

C3 Sp2(q
2) 1 e odd

GU2(q) N q odd

C5 Sp4(q
1/k) e k = e

N k 6= e

C8 Oε
4(q) 1 q even

S 2B2(q) N q even, f odd
PSL2(q) N q odd

(b) C5 Sp4(q
1/k) e k = e

N k 6= e

S 2B2(q) 1 e = 1
N e 6= 1

N O+
2 (q) o S2 N e 6= 1

O−2 (q) o S2 N e 6= 1
O−2 (q

2) N

[ N = |CXσ (y)| and k is prime ]

Lemma 4.4.6. Let q = 2 f where f is odd. Let T = Sp4(q) and S = 2B2(q). Let r be a primitive
prime divisor of q4 − 1. Then every element of T of order r is T-conjugate to an element of S.

Proof. This is a consequence of Sylow’s Theorem. Let x ∈ T have order r. Let R be a Sylow
r-subgroup of S. Let rk be the largest r-power dividing |T| = q4(q2 − 1)(q4 − 1). Since r
is a primitive prime divisor of q4 − 1 we know that r divides q2 + 1 and consequently rk

divides q2 + 1. Therefore, rk divides |S| = q2(q− 1)(q2 + 1). Consequently, R is also a
Sylow r-subgroup of T. Now x is contained in a Sylow r-subgroup Q of T. Since all Sylow
r-subgroups of T are T-conjugate, there exists g ∈ T such that Qg = R and, therefore,
xg ∈ R 6 S, as claimed.

Proposition 4.4.7. Let q = 2 f where f is odd. Let G = 〈T, θ〉 where T = Sp4(q) and θ = ρ f .
Then tθ is contained in exactly one subgroup of G of type 2B2(q).

Proof. There is a unique G-class of subgroups of type 2B2(q) in G (see [7, Table 8.14]).
Let T0 = CT(θ) ∼= 2B2(q) and H = CG(θ) = CT(θ) × 〈θ〉. We need to show that tθ
is contained in exactly one G-conjugate of H. Thus, if we assume that tθ ∈ H, by
Lemma 2.1.3, it suffices to show that |CG(tθ)| = |CH(tθ)| and (tθ)G ∩ H = (tθ)H.
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4. GROUPS OF TYPES Bm AND Cm

Let us first show that |CG(tθ)| = |CH(tθ)|. The Shintani map

F : {(gθ)T | t ∈ T} → {xT0 | x ∈ T0}

is defined as F(gθ) = a−1(gθ)2a where a−θ−1
a = g. By Theorem 2.7.1,

|CG(tθ)| = 2|CT(tθ)| = 2|CT0(F(tθ))|.

By construction, the order of F(tθ) ∈ T0 is a primitive prime divisor r of q4 − 1. Since r
divides q + ε

√
2q + 1 for some ε ∈ {+,−}, by [61, Proposition 16],

|CT0(x)| = q + ε
√

2q + 1,

for every element x ∈ T0 of order r. Since tθ has order 2r, t has order r and

2|CT0(F(tθ))| = 2(q + ε
√

2q + 1) = 2|CT0(tθ)| = |CH(tθ)|.

We will now prove that (tθ)G ∩ H = (tθ)H. Let sθ ∈ H be G-conjugate to tθ. We will
first show that s and t are T-conjugate. By Remark 2.7.7(i), sθ and tθ are T-conjugate.
Therefore, s2 = (sθ)2 and t2 = (tθ)2 are T-conjugate. Record that s, t ∈ CT(θ) 6 T have
order r. Since r is odd, the square map on T permutes the T-classes of order r. Therefore,
since s2 and t2 are T-conjugate, s and t are T-conjugate.

We will now verify that sθ and tθ are CT(θ)-conjugate. Observe that it suffices to show
that s and t are CT(θ)-conjugate. Since s and t are T-conjugate it suffices to show that
no two CT(θ)-classes of elements of order r are fused into one T-class. By Lemma 4.4.6,
every element of T of order r is T-conjugate to an element of CT(θ). Hence, it suffices to
verify that there are the same number of classes of elements of order r in CT(θ) ∼= 2B2(q)
and T ∼= Sp4(q).

First consider 2B2(q). Let K be the set of centralisers of elements of order r in 2B2(q).
By [61, Proposition 16], for all K ∈ K, |K| = q + ε

√
2q + 1 and C2B2(q)(K) = K. In

particular, two members of K are either equal or intersect trivially. Moreover, by [61,
Theorem 9], all members of K are 2B2(q)-conjugate. Since |N2B2(q)(K)| = 4|K|, for all
x ∈ K, |x2B2(q) ∩ K| = 4. Therefore, there are (r− 1)/4 conjugacy classes of elements of
order r in 2B2(q). Now consider Sp4(q). The conjugacy classes of elements of order r in
Sp4(q) are represented by the elements [λ, λq, λq2

, λq3
] where λ ∈ Fq4 is a nontrivial rth

root of unity. Hence, there are (r− 1)/4 conjugacy classes of elements of order r. This
establishes that (tθ)G ∩ H = (tθ)H and, thus, proves the result.

Proof of Theorem 4.4.4. Let H ∈ M(G, tθ). Evidently T 66 H, so, by Theorem 2.5.1, H is
contained in one of the families C1, . . . , C8 of geometric subgroups, S of almost simple
subgroups orN of novelty subgroups. A complete list of the possible types of subgroups
is given in [7, Tables 8.12–8.14]. In particular, note that there is a unique 〈Xσe , σ̃〉-conjugacy
class of subgroups of each type. Write V = F4

q and V0 = F4
q0

.
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We begin with reducible subgroups. As in the proof of Proposition 4.3.9, if H has type
P1 or P2 in Case (a) or type P1 ∩ P2 in type Case (b), then H 6 〈Yσde , σ̃〉, where Y is a
closed connected subgroup of X of type P1, P2 or P1 ∩ P2, respectively. Therefore, by
Lemma 2.7.9, the number of Xσe -conjugates of H which contain tθ is equal to the number
of Xσ-conjugates of H ∩ Xσ which contain y. However, y acts irreducibly on V0, so tθ is
not contained in a parabolic subgroup.

We next let q be even and turn to orthogonal subgroups in Case (a). By Proposition 4.3.13,
the total number of C8 subgroups of G that contain tθ equals the total number of C8

subgroups of T0 that contain y. Now the order of y is a primitive prime divisor of q4
0− 1, so

y is not contained in any subgroups of type O+
4 (q0). Moreover, ySp4(q0) ∩O−4 (q0) = yO−4 (q0)

and |CSp4(q0)(y)| = q2
0 + 1 = |CO−4 (q0)

(y)|, so Lemma 2.1.3 implies that y is contained in a
unique subgroup of type O−4 (q0). Therefore, we conclude that tθ is contained in a unique
C8 subgroup of G.

The remaining types of subgroups of G all appear in Table 4.4. Let us now justify the
conditions and multiplicities that are stronger than those given by Lemma 2.7.11.

Assume that H has type Sp2(q) o S2 in Case (a). We will show that e is even and tθ is
contained in a unique G-conjugate of H. The argument is similar to, but briefer than,
the proof of Proposition 4.3.10. Suppose that H is the stabiliser of a decomposition
V = V1 ⊕ V2 where V1 and V2 are nondegenerate 2-spaces and let B be the index two
centraliser of the decomposition. A power g of y has type (4)−q0

. Since g stabilises the
decomposition and has odd order, g centralises the decomposition. Therefore, each of the
eigenvalues of g is contained in Fq2 . In particular, since q = qe

0 and the eigenvalues of g are
not contained in a proper subfield of Fq4

0
, it must be that e is even. Therefore, Lemma 2.3.36

implies that y has type (2)ε
q ⊥ (2)ε

q for some ε ∈ {+,−}. Now Corollary 2.3.4 and
Lemma 2.4.4 give

|CG(g)| = |GLε
1(q)||GLε

1(q)| = |CB(g)| = |CH(g)|.

Moreover, as in Case 1 of the proof of Proposition 4.3.10, gG ∩ H = gH. Therefore,
Lemma 2.1.3 implies that g, and thus tθ, lies in at most one G-conjugate of H.

Next assume that H has type Sp2(q
2) in Case (a). Write H0 = H∩PGSp4(q) and H0 = B.2.

Since y has odd order, y ∈ B. Suppose that e is even. Then Lemma 2.3.36 implies that y
has type (4)−q0

= (2)η
q ⊥ (2)η

q , where η = (−)e/2. Therefore, Corollary 2.5.8 implies that
y 6∈ B, which is a contradiction. Therefore, e is odd. In this case Lemma 2.3.36 implies
that y has type (4)−q . Therefore, y = [λ, λq, λq2

, λq3
] where y ∈ Fq4 . Now y arises from

an element x ∈ B with eigenvalues [λ, λq2
] or [λq, λq3

]. Now [λ, λq2
] and [λq, λq3

] are
H0-conjugate (although not B-conjugate), so yL ∩ H0 = yH0 , where L = G ∩ PGSp4(q).
Moreover, |CL(x)| = q2 + 1 = |CH0(y)|, by Lemma 2.4.4. Hence, by Lemma 2.1.3, y, and
hence tθ, is contained in at most one G-conjugate of H.
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4. GROUPS OF TYPES Bm AND Cm

Now assume that e is prime and H has type Sp4(q0). We claim that tθ is contained in at
most e conjugates of H. In Case (a) this is a consequence of Lemma 2.7.12, and in Case (b)
this is Proposition 4.4.5.

Finally assume that q is even, θ = ρi and e = 1. In this case, the uniqueness of the
subgroup of type 2B2(q) follows from Proposition 4.4.7 and there are no subgroups of
type Oε

2(q) o S2 inM(G, tθ) since the order of y is a primitive prime divisor of of q4 − 1,
which does not divide the order of these groups. This completes the proof.

4.4.3 Probabilistic method

The following is the final part of the proof of Theorem 4A.

Proposition 4.4.8. Let G = 〈PSp4(q), θ〉 where θ ∈ Aut(PSp4(q)) \ PSp4(q). Then

(i) u(G) > 2

(ii) u(G)→ ∞ as q→ ∞

(iii) u(G) > q2/18 if θ is an involutory graph-field automorphism.

Proof. For q ∈ {4, 8, 9, 16, 25, 27} the result can be verified computationally in MAGMA

(see Section 2.8 for a description of our computational methods). Therefore, we may
assume that q > 32. Let x ∈ G have prime order.

First assume that θ is a field automorphism. Theorem 4.4.4 gives a superset ofM(G, tθ)
and together with the fixed point ratios in Theorem 3.1.1 and Proposition 3.2.5 we obtain

P(x, tθ) 6
4(q2

0 + 1)(3 + 2 + log log q)
q(q− 1)

+
q

q2 − 1
+

1
q
+

1
q2 − 1

(4.15)

6
4(q + 1)(3 + 2 + log log q)

q(q− 1)
+

q
q2 − 1

+
1
q
+

1
q2 − 1

. (4.16)

The asymptotic statement in (ii) now follows from (4.16). If q > 64, then P(x, tθ) < 1
2 by

(4.15). If q = 32, then q0 = 2 and P(x, tθ) < 1
2 , by (4.15). Therefore, u(G) > 2.

Now assume that θ is a graph-field automorphism. Therefore, q = 2 f and

P(x, tθ) 6
4 · 5(q0 +

√
2q0 + 1)

q(q− 1)
6

20(q +
√

2q + 1)
q(q− 1)

which gives (ii). If θ does not have order two, then P(x, tθ) < 1
2 and (i) follows. (If

q = 32, then we use the observation that q0 = 2 since θ does not have order 2.) If
θ is an involutory graph-field automorphism, then, e = 1, so Theorem 4.4.4 gives
refined subgroup multiplicities and Proposition 3.2.5 has refined fixed point ratios,
which together give

P(x, tθ) 6
8(q +

√
2q + 1)

q2(q− 1)
+

1
q2 6

16
q2 +

1
q2 <

18
q2 .

Therefore, u(G) > q2/18. This proves (i) and (iii), thus completing the proof.
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4.4.4 Proofs of Main Results

Let us demonstrate that we have now proved Theorems 4A–4D.

Proof of Theorems 4A and 4C. Proposition 4.1.5 details the groups G = 〈T, θ〉 that must be
considered in order to prove Theorem 4A. If soc(G) = PSp2m(q) and p = 2 or m = 2,
then u(G) > 2 is shown in Propositions 4.2.1, 4.3.21 and 4.4.8. If soc(G) = PSp2m(q)
and m > 2 and p > 2, then u(G) > 4 is shown in Propositions 4.2.1 and 4.3.21. If
soc(G) = Ω2m+1(q), then u(G) > 3 is shown in Proposition 4.3.22.

Proof of Theorems 4B and 4D. Let (Gi) be a sequence of groups in A with |Gi| → ∞. First
assume that (Gi) has no subsequence of odd-dimensional orthogonal groups or even
characteristic symplectic groups, over a field of fixed size. Then (Gi) is the union of two
sequences: groups for which the field size q tends to infinity and symplectic groups in
odd characteristic whose dimension n tends to infinity. In both cases the uniform spread
is unbounded, by Proposition 4.3.23 in the latter case and by Propositions 4.2.1, 4.3.21,
4.3.22 and 4.4.8 in the former cases.

Now assume that (Gi) has a subsequence (Gij) of odd-dimensional orthogonal groups or
even characteristic symplectic groups, over a field of fixed size q. Then Proposition 4.3.25
implies that u(Gij) 6 s(Gij) < (q2 + q)/2, so u(Gi) does not tend to infinity.

In particular, we have proved Theorems A and B for almost simple groups whose socles
are symplectic or odd-dimensional orthogonal groups. In the next, and final, chapter we
turn our attention to almost simple even-dimensional orthogonal groups.

As noted at the beginning of this chapter, much of this work appears in the author’s published
single-author paper [38]. To abide by the University’s antiplagiarism procedures, we indicate
which individual results in this chapter correspond to ones in that paper. In each case, the first
reference is to this thesis and the second is to the roughly equivalent result in [38]. Here we go:
4.2.1 is 4.2; 4.3.2 is 2.4; 4.3.3 is 2.5; 4.3.7 is 4.6; 4.3.8 is 4.7; 4.3.9 is 4.9; 4.3.10 is 4.11; 4.3.13 is
2.10; 4.3.15 is 2.11; 4.3.17 is 4.14; 4.3.20 is 4.15; 4.3.21 is 4.20; 4.3.22 is 4.21; 4.3.23 is 4.23;
4.3.25 is 4.25; 4.4.4 is 4.18; 4.4.7 is 4.16; 4.4.8 is 4.22. Phew.
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5
Groups of Type Dm

The work in this chapter is original and unpublished.

Let us now turn to the groups of type Dm, or said otherwise groups G whose socle T is
an even-dimensional orthogonal group. In this chapter, we write q = p f and

T = TD = {PΩε
2m(q) | m > 4 and ε ∈ {+,−} where (m, ε) 6= (4,+)} (5.1)

A = AD = {〈T, θ〉 | T ∈ T , θ ∈ Aut(T)}. (5.2)

The main results of this chapter are the following.

Theorem 5A. If G ∈ A, then u(G) > 2.

Theorem 5B. Let (Gi) be a sequence of groups in A with |Gi| → ∞. Then u(Gi)→ ∞ unless
(Gi) has an infinite subsequence of groups such that soc(Gi) = PΩεi

2mi
(q) for some fixed q and

Gi ∩ PGOεi
2mi

(q) 66 PDOεi
2mi

(q).

The author suspects that, in Theorem 5B, the sufficient condition on the sequence (Gi)

for u(Gi)→ ∞ is necessary and we refer to Remark 5.3.25 for further comments.

We now discuss how we prove these results. Our general approach to showing that
G = 〈T, θ〉 ∈ A satisfies u(G) > k is the same as in Chapter 4. In particular, we adopt
the probabilistic method from Section 2.1, which involves selecting an element s ∈ Tθ,
studying the setM(G, s) of the maximal overgroups of s and bounding a probability via
fixed point ratios. However, let us highlight the various new obstacles that we need to
surmount in this case.
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Determination of cases

First, the structure of the automorphism group of T is particularly complicated, so
determining exactly which cases it suffices to consider requires a detailed analysis, which
is the focus on Section 5.1. Here Proposition 5.1.12 is the main result. We will need to
consider diagonal, graph and field automorphisms, together with products thereof.

Graph automorphisms

If θ is a diagonal or graph automorphism, then G 6 PGL(V) and we can work in terms
of matrices. When θ is diagonal, then, as in Chapter 4, the argument mirrors the work
in [10]. However, when θ is a graph automorphism (for example, a reflection), then
we must necessarily select an element s ∈ Tθ that fixes a 1-space of F2m

q , which makes
bounding P(x, s) more difficult (recall from Chapter 3 that the fixed point ratio of an
element of prime order on 1-spaces can be as large as roughly q−1). Consequently, we
give a constructive proof that some specific pairs of elements generate G in addition to a
probabilistic argument which deals with the general case (see Proposition 5.2.12). This
constructive argument is of a different flavour to much of the rest of this thesis.

Obstructions to Shintani descent

When θ 6∈ PGO±2m(q), then we apply Shintani descent. However, unlike in Chapter 4,
complications arise here. Recall that the premise of Shintani descent is that we can
write θ ∈ Inndiag(T)σ̃ and Inndiag(T) = Xω for an algebraic group X and Steinberg
endomorphisms σ and ω, where σ̃ = σ|Inndiag(T). In Chapter 4 we could always arrange
this setup such that ω = σe for some e > 1. However, in this chapter, this will not always
be the case.

For instance, assume that q = 2e, T = Ω+
2m(q) and θ = rσ̃, where σ is the field auto-

morphism (aij) 7→ (a2
ij) and r is a reflection (see Definition 2.6.15). Then σ is a Steinberg

endomorphism of X = Ω2m(Fp) and we have T = Xσe . If e is even, then σ̃e = (rσ̃)e and
we can apply Shintani descent as in Chapter 4. However, if e is odd, then we cannot write
σ̃e as a power of rσ̃ and we need a different approach (see Example 2.7.2). In the latter
case, we need to be more flexible with our application of Shintani descent and we will
use Lemma 2.7.13 (see Example 2.7.14).

Minus-type orthogonal groups

There are two natural definitions the minus-type orthogonal group O−2m(q). On one hand,
it is the isometry group of a minus-type quadratic form on the vector space F2m

q and
consequently is naturally a subgroup of GL2m(q). This perspective affords a concrete
means of studying the group via its action on F2m

q . On the other hand, this group is the
fixed points under a Steinberg endomorphism of the algebraic group O2m(Fp), and the
group obtained in this way is not a subgroup of GL2m(q) but is naturally a subgroup of
O+

2m(q
2). This viewpoint allows one to exploit the theory of algebraic groups, in particular,

Shintani descent. In this chapter, we need to translate between these two (isomorphic)
groups and the isomorphism Ψ from Lemma 2.6.17 is the key tool for this.
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Let us now turn to the organisation of this chapter. To prove Theorems 5A and 5B, we
consider two natural cases

I θ ∈ PGOε
2m(q)

II θ ∈ Aut(T) \ PGOε
2m(q).

In both Cases I and II, we define the following two subcases

(a) G ∩ PGOε
2m(q) 6 PDOε

2m(q)

(b) G ∩ PGOε
2m(q) 66 PDOε

2m(q).

Recall that PDOε
2m(q) is our nonstandard notation for the group defined in Section 2.2.6.

In (2.20) in Section 2.6.5, we observed that PDOε
2m(q) = Inndiag(PΩε

2m(q)).

In short, Cases I(b) and II(b) are more difficult than Cases I(a) and II(a). In Case I(b) we
encounter the obstacle of graph automorphisms we discussed above, and Case II(b) is
exactly the situation in which Shintani descent does not apply directly.

The structure of this chapter mirrors that of Chapter 4. In particular, in Section 5.1, we
will determine the precise cases that must be considered, then Theorems 5A and 5B in
Cases I and II will be proved in Sections 5.2 and 5.3.

Remark. In the definition of T , we exclude PΩ+
8 (q). This is the most exotic classical

simple group since it admits a triality automorphism. Consequently, there are additional
almost simple groups to consider in this case (see Remark 5.1.15) and while the techniques
of Shintani descent that feature in this chapter are general enough to encompass these
cases, the triality automorphism imposes further restrictions on how we may select the
element s (see Remark 5.3.26).

Moreover, the effects of triality can be seen even when we consider extensions G of
PΩ+

8 (q) by field and involutory graph automorphisms. In particular, there are subgroups
of G that one might not expect to be Aut(T)-conjugate (for example, subgroups in
different geometric families) that are conjugate under triality. This, together with the
usual restrictions imposed by working with a group of small rank, has the consequence
of making the analysis of these groups more intricate.

Almost simple groups with socle PΩ+
8 (q) will be the focus of future work.
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5.1 Automorphisms

Let T ∈ T . The main result of this section is Proposition 5.1.12, which details the
automorphisms θ ∈ Aut(T) it suffices to consider in order to prove Theorems 5A and 5B.

For the entire section, write n = 2m, q = p f and V = Fn
q . Further, let Bε be the basis from

(2.5) or (2.6). Write F×q = 〈α〉. In addition, if q is odd, then let β ∈ F×q with |β| = (q− 1)2

and note that α, β 6∈ (F×q )2.

5.1.1 Plus-type

Let T = PΩ+
2m(q) and assume that m > 5. The automorphism group of T was recorded

in Lemma 2.6.18(iii). We now describe Out(T) in more detail.

For this section, we fix the standard Frobenius endomorphism ϕ = ϕB+ : (aij) 7→ (ap
ij)

and the reflection r ∈ PO+
2m(q) from Definitions 2.6.9 and 2.6.15. It will be useful to fix r�

and r� as the images in PO+
2m(q) of reflections in vectors of square and nonsquare norm

respectively (evidently, if q is even, then we do not use the notation r�). In [43, Section 2],
the symbols r� and r� (and also δ, introduced below) refer to elements of GO+

2m(q), but
we prefer to use these symbols for elements of PGO+

2m(q).

If q is odd, then observe that the element δ+ ∈ PGL2m(q) defined in Definition 4.1.3
is an element of PDO+

2m(q). We make use of the element δ+ in this chapter also. As in
Chapter 4, we will refer to δ+ simply as δ if the sign is understood. (A different element
δ− ∈ PDO−2m(q) will be introduced in Section 5.1.2.) The information in Remark 4.1.4
holds true in the context of plus-type orthogonal groups.

A description of Out(T) is given in [43, Proposition 2.7.3].

Lemma 5.1.1. Let T = PΩ+
2m(q) and assume that m > 5. Then

Out(T) =


〈r̈�〉 × 〈ϕ̈〉 ∼= C2 × C f if q is even
〈δ̈〉 × 〈r̈�〉 × 〈ϕ̈〉 ∼= C2 × C2 × C f if q is odd and D(Q) = �

〈δ̈, r̈�, r̈�, ϕ̈〉 ∼= D8 × C f if q is odd and D(Q) = �.

Remark 5.1.2. Let T = PΩ+
2m(q). Assume that q is odd and D(Q) = �. By [43, Proposi-

tion 2.7.3(iii)], 〈r̈�, r̈�, δ̈〉 ∼= D8. Moreover, if m is even, then

|r̈�δ̈| = 4, |δ̈| = 2, (r̈�δ̈)δ̈ = (r̈�δ̈)−1, (r̈�δ̈)2 = r̈�r̈�

and if m is odd, then

|δ̈| = 4, |r̈�δ̈| = 2, δ̈r̈� δ̈ = δ̈−1, δ̈2 = r̈�r̈�.

In both cases, Z(〈r̈�, r̈�, δ̈〉) = 〈r̈�r̈�〉.

Since ϕ arises from an automorphism of GL2m(q), Out(T) splits as the semidirect product
〈r̈�, r̈�, δ̈〉:〈ϕ̈〉. If ϕ̈ ∈ Z(Out(T)), then evidently Out(T) ∼= D8 × C f . However, ϕ̈ need
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not be central in Out(T). In particular, by [43, Proposition 2.7.3(iii)],

[r̈�, ϕ̈] = [r̈�, ϕ̈] = 1

but
ϕ̈ 6∈ Z(Out(T)) ⇐⇒ [δ̈, ϕ̈] 6= 1 ⇐⇒ m is odd and p ≡ 3 (mod 4).

If ϕ̈ 6∈ Z(Out(T)), then δ̈ has order 4 and δ̈ϕ̈ = δ̈−1, which implies that Out(T) =

〈r̈�, r̈�, δ̈〉 × 〈r̈� ϕ̈〉. In this case, p ≡ 3 (mod 4) and q ≡ 1 (mod 4), so f is even and r̈� ϕ̈

has order f ; this shows that Out(T) ∼= D8 × C f in this case also.

The following lemma provides further information when q is odd and D(Q) = �. It is
useful to record the following set of conditions

m is odd and p ≡ 3 (mod 4) and i is odd and f is even. (5.3)

Lemma 5.1.3. Let T = PΩ+
2m(q). Assume that q is odd and D(Q) = �. For 0 6 i < f , the

following hold

(i) δ̈ϕ̈i and r̈�r̈�δ̈ϕ̈i are Out(T)-conjugate

(ii) δ̈r̈� ϕ̈i and δ̈r̈� ϕ̈i are Out(T)-conjugate

(iii) ϕ̈i and r̈�r̈� ϕ̈i are Out(T)-conjugate if (5.3) holds

(iv) r̈� ϕ̈i and r̈� ϕ̈i are Out(T)-conjugate if (5.3) does not hold.

Proof. Write A = 〈r̈�, r̈�, δ̈〉. From the description of Out(T) in Remark 5.1.2, the conju-
gacy classes of A are

{1̈}, {r̈�r̈�}, {r̈�, r̈�}, {δ̈, r̈�r̈�δ̈}, {δ̈r̈�, δ̈r̈�}.

If the condition (5.3) is not satisfied, then ϕ̈ ∈ Z(Out(T)) and (i), (ii) and (iv) follow. Now
assume that condition (5.3) is satisfied. In this case r̈� ϕ̈ ∈ Z(Out(T)). Writing

δ̈ϕ̈i = r̈�δ̈(r̈� ϕ̈i) and r̈�r̈�δ̈ϕ̈i = r̈�δ̈(r̈� ϕ̈i)

δ̈r̈� ϕ̈i = δ̈(r̈� ϕ̈i) and δ̈r̈� ϕ̈i = r̈�r̈�δ̈(r̈� ϕ̈i)

ϕ̈i = r̈�(r̈� ϕ̈i) and r̈�r̈� ϕ̈i = r̈�(r̈� ϕ̈i)

reveals that (i), (ii) and (iii) hold.

Recall the definition of PDO+
2m(q) from Section 2.2.6 (see (2.11) and (2.12)). The following

is [43, Proposition 2.7.4], but it can be quickly deduced from (2.20).

Lemma 5.1.4. Let T = PΩ+
2m(q). Then

Inndiag(T) = PDO+
2m(q) =


T if q is even
〈T, δ〉 if q is odd and D(Q) = �

〈T, r�r�, δ〉 if q is odd and D(Q) = �.
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5. GROUPS OF TYPE Dm

5.1.2 Minus-type

Now let T = PΩ−2m(q) and assume that m > 4. The automorphism group of T was
recorded in Lemma 2.6.21. To describe Out(T) in this case we deviate from [43] and work
more in the spirit of [31]. This is because we want to work with a copy of PΩ−2m(q) that
arises naturally from the perspective of algebraic groups. However, we do want to be
able to concretely work with the action of PΩ−2m(q) on the natural module F2m

q , so we will
recover some of the key results from [43, Section 2.8] in our context. In this section, the
isomorphism Ψ from Lemma 2.6.17 will be the key tool for relating our two viewpoints.

Recall the standard Frobenius endomorphism ϕ = ϕB+ : (aij) 7→ (ap
ij) and the reflection

r ∈ PO+
2m(q) from Definitions 2.6.9 and 2.6.15. Define ψ = Ψ ◦ ϕ ◦Ψ−1 (see (2.21)) and

note that ψ f = r (see Lemma 2.6.23). We use r� and r� as in plus-type, but we often,
instead, work with the reflection r, which we may assume is contained in {r�, r�}.

If q is odd, then we define a further element.

Definition 5.1.5. Let q be odd. With respect to the basis B+, define ∆ ∈ GO+
2m(q

2) as
βIm−1 ⊕ Im−1 ⊥ [β2, β

q
2], centralising 〈e1, . . . , em−1〉 ⊕ 〈 f1, . . . , fm−1〉 ⊥ 〈em, fm〉, where

β2 ∈ F×q2 has order (q2 − 1)2. Let δ̂− = Ψ(∆) and let δ− ∈ PGO−2m(q
2) be the image of δ̂−.

Remark 5.1.6. We comment on Definition 5.1.5.

(i) If the sign − is understood, then we omit reference to it.

(ii) That ∆ ∈ GO+
2m(q

2) is fixed by the automorphism rϕ f implies that δ̂ ∈ GO−2m(q).

(iii) Evidently, det(∆) = βm and Ψ, being simply a change of basis, keeps the determi-
nant invariant, so det(δ̂) = βm.

(iv) It is also straightforward to verify that τ(∆) = β
q+1
2 = β, with respect to the

standard plus-type form on F2m
q2 (defined in terms of B+). From the definition of

Ψ, this implies that τ(δ̂) = β with respect to the standard minus-type form on F2m
q

(defined in terms of B−).

Let us describe the innerdiagonal group.

Lemma 5.1.7. Let T = PΩ−2m(q). Then

Inndiag(T) = PDO−2m(q) =

{
T if q is even
〈T, δ〉 if q is odd.

Proof. By (2.20), Inndiag(T) = PDO−2m(q). If q is even, then PDO−2m(q) = T (see (2.12)).
Now assume that q is odd. Note that τ(δ̂) = β, which is not a square in F×q . There-
fore, by Lemma 2.2.6, δ 6∈ PO−2m(q). Since |PGO−2m(q) : PO−2m(q)| = 2, we deduce that
PGO−2m(q) = 〈PO−2m(q), δ〉. Now PDO−2m(q) ∩ PO−2m(q) = PSO−2m(q) and δ− ∈ PDO−2m(q)
since det(δ̂) = βm = τ(δ̂)m, so PDO−2m(q) = 〈PSO−2m(q), δ〉. Since Inndiag(T)/T is cyclic
(see [31, Theorem 2.5.12]) in fact, PDO−2m(q) = 〈T, δ〉, which completes the proof.
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5.1. Automorphisms

Remark 5.1.8. In light of Lemma 5.1.7, let us compare our notation for PGO−2m(q) with
the notation in [43, Section 2.8]. Their symbol r̈� is also our r̈�, but their δ̈ is our r̈mδ̈.
Therefore, we may conclude from [43, Section 2.8] that, in our notation, if D(Q) = �

then |δ̈| = 2, and if D(Q) = � then |δ̈| = 4 with
...
δ

2
= r̈�r̈�.

Let us describe Out(T).

Lemma 5.1.9. Let T = PΩ−2m(q). Then

Out(T) =


〈ψ̈〉 ∼= C2 f if q is even
〈δ̈〉 × 〈ψ̈〉 ∼= C2 × C2 f if q is odd and D(Q) = �

〈δ̈〉:〈ψ̈〉 ∼= C4:C2 f if q is odd and D(Q) = �

Proof. By Lemma 2.6.21, Aut(T) = Inndiag(T):〈ψ〉. From the description of Inndiag(T)
in Lemma 5.1.7 we see that Out(T) = 〈ψ̈〉 when q is even and Out(T) = 〈δ̈〉:〈ψ̈〉 when q
is odd. By Lemma 2.6.23, |ψ̈| = |ψ| = 2 f , so we have proved the claim when q is even.

Now assume that q is odd. If D(Q) = �, then, by Remark 5.1.8, |δ̈| = 2, so ψ̈ centralises
δ̈. It remains to assume that D(Q) = �. In this case, f is necessarily odd (see (2.9) in
Remark 2.2.2), so 〈ψ̈〉 = 〈r̈ψ̈2〉, since ψ f = r. By Remark 5.1.8, |δ̈| = 4, so ψ̈2, having odd
order, centralises δ̈. Since rδ

v = rvδ, for any v ∈ V, we know that r̈δ̈
� = r̈�. Therefore,

δ̈ψ̈ = δ̈r̈ = δ̈r̈�r̈� = δ̈−1.

This completes the proof.

Remark 5.1.10. Let T = PΩ−2m(q). Assume that q is odd and D(Q) = �. From the proof
of Lemma 5.1.9, |δ̈| = 4, |r̈�| = 2 and δ̈r̈� = δ̈−1, so 〈δ̈, r̈〉 ∼= D8. Moreover, [δ̈, ψ2] = 1, so

Out(T) ∼= 〈δ̈, r̈〉 × 〈ψ̈2〉 ∼= D8 × C f .

Let us record further information in the case where q is odd and D(Q) = �.

Lemma 5.1.11. Let T = PΩ−2m(q). Assume that q is odd and D(Q) = �. For 0 6 i < 2 f , the
following hold

(i) δ̈ψ̈i and δ̈−1ψ̈i are Out(T)-conjugate

(ii) if i is odd, then ψ̈i and r̈�r̈�ψ̈i are Out(T)-conjugate.

Proof. From Remark 5.1.10, δ̈r̈ = δ̈−1 and [r̈, ψ̈] = 1, so (δ̈ψ̈i)r̈ = δ̈−1ψ̈i. Moreover, if i is
odd, then (ψ̈i)δ̈ = δ̈−1δ̈ψ̈i

ψ̈i = δ̈−1δ̈−1ψ̈i = r̈�r̈�ψ̈i.

5.1.3 Cases to consider

For this section, define

d =

{
1 if ε = +

2 if ε = −
(5.4)
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5. GROUPS OF TYPE Dm

Table 5.1: The relevant automorphisms θ in type Dm

I(a) I(b) II(i) II(ii) II(iii) II(iv) II(v)

ε + + + − −

1 ιr ϕi rϕi ιrϕi ψi ιψi

θ ιδ ιδr ιδϕi ιδrϕi ιδrϕi ιδψi ιδψi

r�r� r�r�ϕi r�r�rϕi r�r�ψi

d f /i any even odd odd even
notes ? †

(1)
(2)
(3)

[ i is a proper divisor of d f , the notes are given in Remark 5.1.13 ]

We can now enumerate the automorphisms that it suffices to consider in order to prove
Theorems 5A and 5B.

Proposition 5.1.12. Let T = PΩε
2m(q) ∈ T . To prove that u(G) > k for all G ∈ A with socle

T, it suffices to show that u(〈T, θ〉) > k for all of the following

(i) θ in Row (1) of Table 5.1

(ii) θ in Row (2) of Table 5.1, if q is odd

(iii) θ in Row (3) of Table 5.1, if q is odd and D(Q) = �.

Before proving Proposition 5.1.12 we must comment on Table 5.1.

Remark 5.1.13. Let us explain how to read Table 5.1.

(i) The symbol ι should be interpreted as 1, unless q is odd and D(Q) = �, in which
it suffices to consider either the automorphism θ obtained by letting ι be 1 or by
letting ι be r�r�. We will exploit this flexibility in our later arguments.

(ii) In Case I, the description is uniform for both signs ε, but we have noted which of
Cases I(a) and I(b) the automorphism θ arises in.

(iii) In Case II, the possibilities for θ depend on whether ε is + or −. Moreover, we have
used the conditions on ε and i to define five subcases. Observe that Case II(a) is the
union of Cases II(i), II(ii) and II(iv), whereas Case II(b) is the union of Cases II(iii)
and II(v). We will often refer to these subcases.

(iv) We now comment on the notes.

? We need only consider one of ϕi and r�r�ϕi in the very special case when the
condition (5.3) holds.

† We need only consider one of rϕi and r�r�rϕi unless the condition (5.3) holds.

120



5.1. Automorphisms

Proof of Proposition 5.1.12. Let g ∈ Aut(T) and write G = 〈T, g〉. Begin by assuming that
ε = +. By inspecting the structure of Out(T) given above, it is manifest that we may
write g = thϕi where t ∈ T and h is a product of diagonal and graph automorphisms.
Since 〈T, thϕi〉 = 〈T, hϕi〉, we may assume, in fact, that g = hϕi. Assume for now that
i > 0. Since 〈Th, Tϕ〉 = 〈Th〉:〈Tϕ〉, by Lemma 4.1.2, there exist j, k ∈ N with k dividing f
such that 〈Thϕi〉 = 〈Thj ϕk〉 and, consequently, 〈T, hϕi〉 = 〈T, hj ϕk〉. Therefore, we may
assume that i divides f .

To summarise, for all G ∈ A with socle T, we may, and will, write G = 〈T, g〉 for an
automorphism g = hϕi where h is a product of diagonal and graph automorphisms and
where either i = 0 or i divides f .

Let us now fix an automorphism θ from the statement of the proposition, such that
g̈ = ḧϕ̈i is Out(T)-conjugate to θ̈. We can evidently do this if q is even or q is odd with
D(Q) = �. Moreover, if q is odd and D(Q) = �, then Lemma 5.1.3 implies that we can
still do this. Now, by Lemma 4.1.1, 〈T, g〉 and 〈T, θ〉 are Aut(T)-conjugate. In particular,
u(〈T, g〉) = u(〈T, θ〉). This proves the result when ε = +.

Now assume that ε = −. As in plus-type, we can assume that g = hψi where h is a
diagonal automorphism and where either i = 0 or i divides 2 f . Noting that ψ f = r,
it follows that g̈ is Out(T)-conjugate to an automorphism θ̈ in the statement, where
we apply Lemma 5.1.11 when q is odd and D(Q) = �. Therefore, 〈T, g〉 and 〈T, θ〉 are
Aut(T)-conjugate and the result follows as in the previous case.

Remark 5.1.14. We note in passing that our approach of considering each simple group T
and each automorphism θ ∈ Aut(T) (with the reductions justified by Proposition 5.1.12)
allows us to avoid mentioning the classical groups that Bray, Holt and Roney-Dougal [6]
highlight are not well-defined (such as the one often referred to as PΣO+

2m(q)).

Remark 5.1.15. Let us comment on the almost simple groups with socle T = PΩ+
8 (q),

which are excluded from our main theorems. The group PΩ+
8 (q) has a triality automor-

phism τ such that CG(τ) ∼= G2(q) (see [23, pp.200–202]). By [42, Section 1.4],

Out(T) =

{
〈r̈�, τ̈〉 × 〈ϕ̈〉 ∼= S3 × C f if q is even
〈r̈�, τ̈, δ̈〉 × 〈ϕ̈〉 ∼= S4 × C f if q is odd.

(5.5)

In particular, τ̈Out(T) is the unique conjugacy class of elements in Out(T) \ (PΓO+
8 (q)/T).

Therefore, to show that u(G) > k for all groups G = 〈T, θ〉 with θ ∈ Aut(T), it suffices to
assume that θ appears in Proposition 5.1.12 or θ is τϕi for a divisor i of f . If θ appears in
Proposition 5.1.12, then the general approach is the same as for the plus-type orthogonal
groups that are handled in this paper, but we will need to work with different elements.
In Remark 5.3.26, we outline how we will approach the case θ = τϕi in future work.
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5. GROUPS OF TYPE Dm

5.2 Case I

Having established the cases to consider, we now turn to the proofs of Theorems 5A
and 5B. In this section, we begin with Case I. Accordingly, write G = 〈T, θ〉 where
T = PΩε

2m(q) for m > 4 and ε ∈ {+,−} and where θ ∈ PGOε
2m(q). Recall that we

assume that T 6= PΩ+
8 (q).

We make the case distinction

(a) G 6 PDOε
2m(q)

(b) G 66 PDOε
2m(q).

We will continue to refer to the types of elements introduced in Section 2.3.6, and in
Section 5.2.1 we define some further elements that we will use in this chapter. Then
we consider Cases I(a) and I(b) in Sections 5.2.2 and 5.2.3, with the aim of proving
Theorems 5A and 5B in Case I.

5.2.1 Further element definitions

To choose the elements in Cases I(b) and II(b) we need to introduce more elements.

Recall that the standard bases B+ and B− were introduced in (2.5) and (2.6). If q is
odd, β ∈ F×q has order (q− 1)2, so β 6∈ (F×q )2. If ε = −, then we will make use of the
isomorphism Ψ : 〈Xrϕ f , r〉 → PGO−2m(q) (see Lemma 2.6.17).

Definition 5.2.1. With respect to the basis Bε for F2
q, define

rε =

(
0 1
1 0

)
∈ Oε

2(q)

and if q is odd, then also

∆r+q =

(
0 β

1 0

)
∈ GO+

2 (q)

and
∆r−q = Ψ(R) ∈ GO−2 (q) where R =

(
0 β2

β
q
2 0

)
∈ GO+

2 (q
2)

and where β2 ∈ F×q2 has order (q2 − 1)2.

Let us establish some properties of the elements introduced in Definition 5.2.1.

Lemma 5.2.2. Let q be even and let F be a finite extension of Fq. Then rε is a reflection that
stabilises a unique (nonsingular) 1-space of F2.

Proof. Evidently rε is the reflection that stabilises the nonsingular 1-space 〈e1 + f1〉 if
ε = + and 〈u1 + v1〉 if ε = −. Moreover, it is easy to check that this 1-space is the unique
subspace stabilised by rε.
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5.2. Case I

Lemma 5.2.3. Let q be odd and let F be a finite extension of Fq. Then

(i) r+ is a reflection in a vector of norm −2

(ii) r− is a reflection in a vector of norm −2λ2 for some λ ∈ F×q

(iii) rε stabilises exactly two (orthogonal nondegenerate) 1-spaces of F2.

(iv) ∆rε acts irreducibly on F2 if |F : Fq| is odd

(v) ∆rε stabilises exactly two (orthogonal nondegenerate) 1-spaces of F2 if |F : Fq| is even

(vi) τ( ∆rε) = β and det( ∆rε) = −β.

Proof. Observe that r+ = re1− f1 and (e1 − f1, e1 − f1) = −2. Similarly, r− = ru1−v1 and

(u1 − v1, u1 − v1) = 2− 2(ξ2 + ξ−2) + 2 = −2(ξ − ξ−1)2

(see the definition of B− in (2.6)). This proves (i) and (ii).

For (iii), the characteristic polynomial of rε is X2− 1, so rε has a 1-dimensional 1- and −1-
eigenspace and these two 1-spaces are exactly the proper nonzero subspaces stabilised
by rε. Smilarly, (iv) and (v) hold since the characteristic polynomial of ∆rε is X2 − β.

Finally consider (vi). If ε = +, then this is a straightforward calculation. If ε = −, then
we easily see that det([β2, β

q
2]) = −β

q+1
2 = −β and Ψ is induced by conjugation, so

det( ∆rε) = −β. Similarly, τ([β2, β
q
2]) = β

q+1
2 = β, with respect to the standard plus-type

form on F2m
q2 (defined in terms of B+) and the definition of Ψ implies that τ(δ̂) = β with

respect to the standard minus-type form on F2m
q (defined in terms of B−).

Remark 5.2.4. Let us comment on reflections.

(i) The element r ∈ GO2m(Fp) from Definition 2.6.15 is simply I2m−2 ⊥ r+, central-
ising 〈e1, . . . , fm−1〉 ⊥ 〈em, fm〉. Additionally, Ψ(r) = I2m−2 ⊥ r−, centralising
〈e1, . . . , fm−1〉 ⊥ 〈um, vm〉. Thus, we often identify r and rε as elements of Oε

2m(q).

(ii) Assume q is odd. By Lemma 5.2.3, the norm of rε is square if and only if−2 ∈ (F×q )2.
This latter condition holds if and only if

f is even or p ≡ 1 or 3 (mod 8). (5.6)

Therefore, r̈ε is r̈� if (5.6) holds and r̈ε is r̈� otherwise.

(iii) If q is odd, then ∆r+ = δ+r and ∆r− = δ−r (see Definitions 4.1.3 and 5.1.5).
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5.2.2 Case I(a)

Let m > 4 and ε ∈ {+,−}, and assume that (m, ε) 6= (4,+). In this section, we fo-
cus on the groups PΩε

2m(q) 6 G 6 PDOε
2m(q) and prove two results, which establish

Theorems 5A and 5B in Case I(a). Our approach is similar to that of Section 4.2.

Proposition 5.2.5. Let G = 〈PΩε
2m(q), θ〉 ∈ A where θ ∈ PDOε

2m(q). Then

(i) u(G) > 2

(ii) u(G)→ ∞ as q→ ∞.

Proof. Consider part (i). In the proofs of [10, Propositions 5.13–5.18], it is shown that for
all prime order elements x ∈ T, P(x, s) < 1

2 , for a suitable semisimple element s ∈ T. In
each case, by Lemmas 2.3.18, 2.3.18 and 2.3.20, there exists g ∈ Tθ such that a suitable
power of g is s. As in the proof of Proposition 4.2.1, we can verify that for all x ∈ G, we
also have P(x, g) < 1

2 and consequently u(G) > 2. For part (ii), we proceed in the same
manner, except we use the element s from [33, Proposition 4.1], where it is shown that
P(x, s)→ 0 as q→ ∞. This gives the desired result.

For an example, let ε = +, let m > 7 be odd, let q be odd and let θ ∈ {δ, r�r�δ}. Let
V be the natural module for T. By Lemma 2.3.20, there exists x = x1 ⊥ x2 ∈ DO+

2m(q)
centralising V1 ⊥ V2, where V1 and V2 are nondegenerate subspaces of dimensions m− 1
and m + 1, x1 has order (q − 1)(q(m−1)/2 + 1) acting irreducibly on V1, x2 has order
(q− 1)(q(m+1)/2 + 1) acting irreducibly on V2 and τ(x1) = τ(x2) = α (where F×q = 〈α〉).
Since τ(x) = α 6∈ (F×q )2, by Lemma 2.2.6, g = xZ(DO+

2m(q)) ∈ PDO+
2m(q) \ PSO+

2m(q).
Consequently, g ∈ Tιδ for some choice of ι ∈ {1, r�r�}.

The order of g is divisible a primitive prime divisor ` of qm+1− 1, which by Lemma 2.3.15
we may assume satisfies ` > 2m + 3. Therefore, by Theorem 2.5.5, all of the subgroups
inM(G, g) are reducible, subfield or field extension subgroups. Since m + 1 > m and
(m + 1, m) = 1, the prime ` does not divide the order of any subfield or field exten-
sion subgroup of G. Therefore, we conclude thatM(G, g) contains only reducible sub-
groups. Moreover, Lemma 2.3.3 implies that the only proper nonzero subspaces of V
that are stabilised by g are V1 and V2. Consequently,M(G, g) = {H}, where H has type
O−m−1(q)×O−m+1(q).

Now Theorem 3.1.1 implies that for each prime order element x ∈ G we have

P(x, g) 6 fpr(x, G//H) <
1

q(m+1)/2
+

2
qm−2 +

2
qm−1 <

1
2

,

so by Lemma 2.1.1 we conclude that u(G) > 2.

We will now prove an asymptotic statement, to the end of ultimately proving Theorem 5B.

Proposition 5.2.6. Let (Gi) be a sequence in A and write Ti = soc(Gi) = PΩεi
2mi

(qi). Assume
that Gi 6 PDOεi

2mi
(qi). Then u(Gi)→ ∞ if mi → ∞.
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5.2. Case I

Proof. Fix Gi = G = 〈T, θ〉 with T = PΩε
2m(q). The condition G 6 PDOε

2m(q) implies
that we are in Case I(a). By Proposition 5.1.12, we may assume that θ appears in Table 5.1.
Assume that m > 40 and fix a positive integer m/2 < d < 3m/4 and for which m− d is
odd and (d, m− d) = 1. Let y ∈ PDOε

2m(q) have type a(2d)− ⊥ b(2m− 2d)−ε.

We claim that y ∈ Tθ. If θ = 1, then y has type (2d)− ⊥ (2m− 2d)−ε, so Lemma 2.3.30
implies that y ∈ T. If θ = r�r�, then y has type (2d)− ⊥ Σ(2m− 2d)−ε, so, in light of
the definition of elements of type Σ(2k)± in Definition 2.3.34, y ∈ Tr�r�. Finally, assume
that θ = ιδ. In this case, y has type ∆(2d)− ⊥ ∆(2m− 2d)−ε. Recalling Definition 2.3.32,
we see that τ(y) is nonsquare in F×q . Therefore, y ∈ PSOε

2m(q)δ, which is exactly to say
that y ∈ Tιδ for a suitable choice of ι ∈ {1, r�r�}. In summary, in every case, y ∈ Tθ.

Since d > m/2 a power z of y has type (2d)− ⊥ I2m−2d and the order of z is a primitive
prime divisor ` of q2d − 1, where 2d > m. By Lemma 2.3.15, since 2d > 20, we may
assume that ` > 4d + 1. By Theorem 2.5.5, all of the subgroups inM(G, g) are reducible,
subfield or field extension subgroups. Since d > m and (d, m) = 1, the prime ` does not
divide the order of any subfield or field extension subgroup of G. Thus, we may conclude,
by Lemma 2.3.3, thatM(G, y) consists of a subgroup of type O−2d(q)×O−ε

2m−2d(q) and if
ε = − also two Pm−d parabolic subgroups. Now the bounds in Theorem 3.1.1 imply that
for all prime order elements x ∈ G,

P(x, y) 6
11

qm−2 +
2

qm/2 → 0

as m→ ∞. Therefore, u(G)→ ∞ as m→ ∞.

5.2.3 Case I(b)

We now turn to Case I(b). Therefore, by Proposition 5.1.12, we may assume that G is
〈T, θ〉 where T ∈ T and θ ∈ {r, ιδr} (recall that we write ι ∈ {1, r�r�}).

Recall the reflection rε defined in Definition 2.6.15, and if q is odd, the diagonal element
δε defined in Definitions 4.1.3 and 5.1.5. Unless there is ambiguity, we write r = rε and
δ = δε. If q is odd, fix the the element β ∈ F×q of order (q− 1)2 and note that β 6∈ (F×q )2.

Remark 5.2.7. A computation in MAGMA proves that u(G) > 2 when G is one of

O−8 (2), PO−8 (3), O±10(2), O±12(2). (5.7)

See Section 2.8 for further details of our computational methods. Therefore, for the
remainder of this section, we may assume that G does not appear in (5.7).

We apply the probabilistic method, so we begin by selecting an element. Let

y =

{
A ⊥ r if θ = r
∆(2m− 2)− ⊥ ∆r if θ = ιδr

where A has type (2m− 2)−, unless q = 2, in which case A has order 2m−1 + 1.
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Table 5.2: Case I(b): Description ofM(G, y)

type of H m(H) conditions

O−ε
2 (q)×O−2m−2(q) 1

O2m−1(q) 2 q odd, θ = r
Sp2m−2(q) 1 q even

Om(q2) 4 q odd, m odd, θ = ιδr

Proposition 5.2.8. Let G = 〈T, θ〉 for T ∈ T and θ ∈ {r, ιδr}. Assume that G is not one of
the groups in (5.7).

(i) If θ = r, then y ∈ Tr.

(ii) If q is odd and y has type ∆(2m − 2)− ⊥ ∆r, then y ∈ Tιδr for a suitable choice of
ι ∈ {1, r�r�}.

Proof. Part (i) is immediate since I2 ⊥ (2m− 2)− ∈ T, by Lemma 2.3.30, and I2 ⊥ A is
clearly in T when q = 2. Now consider part (ii), so q is odd. Let x1 ∈ DO−2m−2(q) have
type ∆(2m− 2)−, so τ(x1) = β and det(x1) = βm−1. Additionally, by Lemma 5.2.3(vi),
τ( ∆r−ε) = β and det( ∆r−ε) = −β. Therefore, the element x = x1 ⊥ ∆r−ε has type
∆(2m− 2)− ⊥ ∆r−ε and satisfies τ(x) = β and det(x) = −βm. Let y = xZ(DOε

2m(q)).
Now τ(r) = 1 and det(r) = −1. Moreover, we saw in Remarks 4.1.4 and 5.1.6 that
τ(δ) = β and det(δ) = βm. Therefore, τ(δr) = β and det(δr) = −βm. Consequently,
y ∈ PSOε

2m(q)δr, or in other words y ∈ Tιδr for a suitable choice of ι ∈ {1, r�r�}.

We now determine the maximal overgroups of y in G.

Theorem 5.2.9. The maximal subgroups of G that contain y are listed in Table 5.2, where m(H)

is an upper bound on the multiplicity of the subgroups of type H inM(G, y).

We will prove Theorem 5.2.9 in two parts, considering the reducible and irreducible
maximal overgroups of y separately. We begin with reducible subgroups.

Proposition 5.2.10. Theorem 5.2.9 is true for reducible subgroups.

Proof. First assume that q is odd and θ = ιδr. Then y centralises an orthogonal decompo-
sition V = U ⊥ U⊥, where U is a nondegenerate 2-space. Moreover, y acts irreducibly
on U and U⊥ (see Lemma 5.2.3(iv)). Therefore, by Lemma 2.3.3, the only proper nonzero
subspaces of V stabilised by y are U and U⊥, so the only reducible maximal overgroup
of y is one of type O−ε

2 (q)×O−2m−2(q).

Next assume that q is odd and θ = r. In this case, the element y centralises a decom-
position V = U1 ⊥ U2 ⊥ (U1 + U2)⊥, where U1 and U2 are nondegenerate 1-spaces.
Moreover, y acts irreducibly on (U1 + U2)⊥, and acts as 1 and −1 on U1 and U2, respec-
tively. Therefore, by Lemma 2.3.3, the only subspaces stabilised by y are direct sums of
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U1, U2 and (U1 + U2)⊥. Consequently, the reducible maximal overgroups of y are two
of type O2m−1(q) (the stabilisers of U1 and U2) and one of type O−ε

2 (q)×O−2m−2(q) (the
stabiliser U1 + U2).

Finally assume that q is even and θ = r. In this case, y centralises the decomposition
V = U ⊥ U⊥, where U is a nondegenerate 2-space. In this case, y acts irreducibly on U⊥.
However, y acts indecomposably on U and stabilises a unique 1-dimensional (nonsin-
gular) subspace W of U (see Lemma 5.2.2). Since there are no Fq〈y〉-homomorphisms
between U⊥ and any Fq〈y〉-subquotient of U, Corollary 2.3.2 implies that the only proper
nonzero subspaces of V stabilised by y are W, U, U⊥ and U⊥ + W. From this we deduce
that the reducible maximal overgroups of y are one of type Sp2m−2(q) (the stabiliser of
W) and one of type O−ε

2 (q)×O−2m−2(q) (the stabiliser of U).

We now turn to the irreducible maximal overgroups of y.

Proposition 5.2.11. Theorem 5.2.9 is true for irreducible subgroups.

Proof. Let H ∈ M(G, y) be an irreducible subgroup. If θ = r, then y = y1 ⊥ r where |y1|
is divisible by a primitive prime divisor of q2m−2− 1 (in fact, |y1| ∈ ppd(q, 2m− 2) unless
q = 2). Now assume that q is odd and θ = ιδr. Recall that ∆r has order 2(q− 1)2 and
|y1| = (qm−1 + 1)2(q− 1)2` for ` ∈ ppd(q, 2m− 2). Therefore, y(q

m+1)2(q−1)2 has order `.
Consequently, in both cases, we can fix a power z of y of order ` ∈ ppd(q, 2m− 2).

Let us also note that if θ = r, then a power of y` is r and ν(r) = 1.

We begin by considering the geometric maximal overgroups H of y in G. Since y has order
divisible by ` ∈ ppd(q, 2m− 2), the main theorem of [35] implies that the possibilities
for H feature in [35, Examples 2.1–2.5]. Let us consider these possibilities in turn.

For orthogonal groups, Example 2.1 consists of subfield subgroups, none of which arise
since for all proper divisors k of f , if q0 = pk, then ` does not divide

|Oε
2m(q0)| = 2qm2−m

0 (qm
0 − ε)

m−1

∏
i=1

(q2i
0 − 1).

All subgroups in Example 2.2 are reducible.

Example 2.3 features the imprimitive subgroups of type O1(q) o Sn. For these we insist
that ε = +, q = p > 3 and ` = 2m− 1; however, by Lemma 2.3.15, this implies that
m = 4, which is a case that we are not considering.

The only possible field extension subgroup H in Example 2.4 is Oη
m(q2) where η = ε if

m is even and η = ◦ if m is odd. If θ = r, then ν(y`) = 1, so y is not contained in such a
subgroup, by Lemma 2.5.7. Now assume that θ = ιδr. If m is even, then ` does not divide
the order of H.
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Therefore, if H is a field extension subgroup containing y, then q is odd, θ = ιδr, m
is odd and H has type Om(q2). We will now prove that, in this case, y is contained in
four G-conjugates of H. Note that y is a semisimple element with eigenvalue multiset
Λ ∪ Λq ∪ {µ, µq}, where Λ = {λq2i | 0 6 i 6 m − 1} for a scalar λ ∈ F×p of order

(qm + 1)2(q− 1)2` (where ` ∈ ppd(q, 2m)) and µ ∈ F×p has order 2(q− 1)2. Let π : H → G
be the field extension embedding and write H = B.φ, where φ is the field automorphism
ξ 7→ ξq. By Lemma 2.5.7, if π(ỹ) = y, then ỹ has one of the following eigenvalue sets

S1 = Λ ∪ {µ}, S2 = Λ ∪ {µq}, S3 = Λq ∪ {µq}, S4 = Λq ∪ {µ}.

Let ỹi have eigenvalue set Si. By Lemma 2.4.3,

yG ∩ H =
4⋃

i=1

ỹB
i

Note that φ fuses ỹB
1 with ỹB

3 and fuses ỹB
2 with ỹB

4 . Therefore, yG ∩ H = ỹH
1 ∪ ỹH

2 . Since an
element of type ∆rε is self-centralising in GOε

2(q), Corollary 2.3.5 and Lemma 2.4.4 yield

|CG(y)| = (qm−1 + 1)(q− 1)2 = 2|CH(y)|,

Now Lemma 2.1.1 implies that the number of G-conjugates of H that contain y is

|yG ∩ H|
|yG|

|G|
|H| =

2|CG(y)|
|CH(y)|

= 4.

We now consider subgroups H contained in the S family. First assume that θ = r. Since
ν(y`) = 1, Theorem 2.5.14 implies that q is prime and H arises from the fully deleted
permutation module ([14, Table 2.3] highlights that no exceptions from part (iii) arise). If
q > 2, then, by Lemma 2.3.15, y has order 2` where ` > 4m− 3 is prime. If q = 2, then y
has order 2(2m−1 + 1), which is divisible by a prime at least 2m− 1. In both cases, S2m+2

does not contain an element of order |y|, so we conclude that H 6∈ S .

Now assume that θ = ιδr. Since T 6= PΩ−8 (3) (see Remark 5.2.7), by Theorem 2.3.14,
` > 4m− 3. Consequently, Theorem 2.5.5 forces us to have T = PΩ−8 (q) and H being
an exception featured in (iii). Consulting [7, Table 8.53], we see that the only possibility
for H is a subgroup with socle PSL3(q) if q ≡ 2 (mod 3) or PSU3(q) if q ≡ 1 (mod 3).
However, we also see from this table that such subgroups are not maximal in G = 〈T, δr〉.
Therefore, no S family subgroups occur in this case either.

Next we handle a special case in a more concrete fashion.

Proposition 5.2.12. Let G = 〈T, r〉 with m > 5. Let x1, x2 ∈ G have prime order and satisfy
ν(x1) = 1 and ν(x2) 6 2. Then there exists g ∈ G such that 〈x1, yg〉 = 〈x2, yg〉 = G.

Proof. We prove the claim when q is odd; the case where q is even is similar. We work in
terms of the bases Bε in (2.5) and (2.6).
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It will be useful to fix three particular vectors. First let t1, tm−1 ∈ 〈e1, f1, em−1, fm−1〉 be
nonsingular vectors such that (ei − fi, ti) = 0 and 〈ei − fi, ti〉 is a nondegenerate minus-
type 2-space. Next let t2 ∈ 〈e1, f1, e2− f2, em−1, fm−1〉⊥ with the property that 〈e2− f2, t2〉
is a nondegenerate minus-type 2-space.

Recall that the element y has type rε ⊥ (2m− 2)−, centralising a decomposition U1 ⊥ U2.
If ε = −, then we may assume that r+ = re1− f1 and

U1 = 〈e1, f1〉 and U2 = 〈e2, . . . , fm−1, um, vm〉.

If ε = +, then we may assume that r− = re1− f1 and

U1 = 〈e1 − f1, t1〉 and U2 = 〈e2, . . . , fm−2, em−1 − fm−1, tm−1, em, fm〉.

Case 1: ν(x2) = 1

Lemma 3.2.6 implies that x1 and x2 are reflections in nonsingular vectors. If u1 and u2

are nonsingular vectors, then ru1 = ru2 if and only if 〈u1〉 = 〈u2〉. Therefore, it suffices
to prove the claim for x1 = ru1 and x2 = ru2 for orbit representatives (〈u1〉, 〈u2〉) for
the action of G on pairs of distinct nonsingular 1-spaces of V. We may assume that
u1 = e1 − f1. Now V = 〈u1〉 ⊥ 〈u1〉⊥ and G〈u1〉 acts transitively on the sets of nonzero
vectors of a given norm in 〈u1〉⊥. Therefore, we may assume that u2 = ξu1 + η(e1 + f1)

or u2 = ξu1 + ηe3 for scalars ξ, η ∈ Fq. This amounts to the following two cases

(i) u2 = e1 − λ f1 for λ ∈ Fq \ {0, 1}

(ii) u2 = e1 + f1 + λe3 for λ ∈ F×q

First assume that ε = −. Let z have type rv ⊥ (2m − 2)− centralising the decom-
position 〈v, w〉 ⊥ 〈v, w〉⊥ where v = e1 + e2 − f2 and w = e1 + e2 + f2. Note that
v is nonsingular and 〈v, w〉 is a nondegenerate plus-type 2-space. By Theorem 5.2.9,
M(G, z) ⊆ {G〈v〉, G〈w〉, G〈v,w〉}. Observe that vx1 = f1 + e2 + f2 and wx1 = f1 + e2 − f2,
neither of which is contained in 〈v, w〉. Therefore, x1 does not stabilise 〈v〉, 〈w〉 nor 〈v, w〉.
Consequently, 〈x1, z〉 = G. Moreover, in the two possible cases above

(i) vx2 = λ f1 + e2 + f2 and wx2 = λ f1 + e2 − f2

(ii) vx2 = − f1 + e2 + f2 − λe3 and wx2 = − f1 + e2 + f2 − λe3

In both cases, vx2 and wx2 are not contained in 〈v, w〉, so, as above, 〈x2, z〉 = G. It
remains to observe that since Q(e1− f1) = −2 = Q(e1 + e2− f2), there exists g ∈ G such
that 〈e1, f1〉g = 〈v, w〉 and (e1 − f1)g = e1 + e2 − f2. This implies that r(e1− f1)g = rv and
yg = z.

Now assume that ε = +. In this case, let z have type rv ⊥ (2m− 2)− centralising 〈v, w〉 ⊥
〈v, w〉⊥ where v = e1 + e2 − f2 and w = e1 + t2, noting that 〈v, w〉 is a nondegenerate
minus-type 2-space. Arguing as in the previous case we see that 〈x1, z〉 = 〈x2, z〉 = G.
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Moreover, there exists g ∈ G such that 〈e1 + f1, t1〉g = 〈v, w〉 and (e1− f1)g = e1 + e2− f2,
so yg = z. This completes the proof in Case 1.

Case 2: ν(x2) = 2 and x2 is semisimple

In this case, x1 is a reflection and x2 centralises a decomposition W ⊥W⊥ where W is a
nondegenerate 2-space. Moreover, if |x2| = 2, then we may assume that x2 = −I2 ⊥ I2m−2

and if |x2| is odd, then x2 = A ⊥ I2m−2 where A is irreducible. As in Case 1, it suffices
to assume that x1 = ru where u = e1 − f1 and consider orbit representatives W of the
action of G〈u〉 on nondegenerate 2-subspaces of V. Considering that W is either plus- or
minus-type, and by separating into the cases where

(i) 〈u〉 6W (ii) W 6 〈u〉⊥ (iii) 〈u〉 66W 66 〈u〉⊥

we may assume that W is one of the following

(i) W = 〈e1, f1〉 or W = 〈e1 − f1, t1〉

(ii) W = 〈e2, f2〉 or W = 〈e2 − f2, t2〉

(iii) W = 〈e2 − f2 + λu, e2 + f2〉 or W = 〈e2 − f2 + λu, t2〉 where λ ∈ F×q .

As in Case 1, let z be an element of type rv ⊥ (2m− 2)−, centralising a decomposition
〈v, w〉 ⊥ 〈v, w〉⊥ where v = e1 + e2 − f2. Moreover, let w = e1 + e2 + f2 if ε = − and
w = e1 + t2 if ε = +. Note that 〈v, w〉 is a nondegenerate (−ε)-type 2-space. Consequently,
we have 〈x1, z〉 = G. Since x2 fixes W⊥ pointwise and either negates or acts irreducibly
on W, we see that 〈x2, z〉 = G also.

Case 3: ν(x2) = 2 and x2 is unipotent

By Lemma 2.4.7, we need to consider the cases where x2 has Jordan form [J2
2 , J2m−4

1 ] and
[J3, J2m−3

1 ]. The latter case is very similar to Case 2, so we provide the details in the case
where x2 has Jordan form [J2

2 , J2m−4
1 ].

As before, x1 is a reflection. In this case, x2 centralises a decomposition W ⊥ W⊥ where
W = W1 ⊕W2 for totally singular 2-spaces W1 and W2. Moreover, x2 acts trivially on
W⊥ and acts indecomposably on Wi stabilising a unique 1-space 〈wi〉 6 Wi. As in the
previous cases, it suffices to assume that x1 = ru where u = e1 − f1 and consider orbits
of the action of G〈u〉. In this way, we may assume that one of the following holds

(i) W1 = 〈e1, e2〉 with w1 = e1 and W2 = 〈 f1, f2〉 with w2 = f2

(ii) W1 = 〈e1, e2〉 with w1 = e1 + e2 and W2 = 〈 f1, f2〉 with w2 = f2

(iii) W1 = 〈e2, e3〉 with w1 = e2, and W2 = 〈 f2, f3〉 with w2 = f3

(iv) W1 = 〈e2, e1 + e3〉 with w1 = e2 and W2 = 〈 f2, f3〉 with w2 = f3

(v) W1 = 〈e1 + e2, e3〉 with w1 = e1 + e2 and W2 = 〈 f2, f3〉 with w2 = f3
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As in the previous cases, let z have type rv ⊥ (2m− 2)− centralising a decomposition
〈v, w〉 ⊥ 〈v, w〉⊥ where v = e1 + e2− f2, and let w = e1 + e2 + f2 if ε = − and w = e1 + t2

if ε = +. Consequently, we have 〈x1, z〉 = G. It is also easy to see that the action of x2

on the decomposition (W1 ⊕W2) ⊥W⊥ ensures that x2 stabilises none of 〈v〉, 〈w〉 and
〈v, w〉.

For example, consider case (i). Here

x2 =

(
1 0
1 1

)
⊕
(

1 −1
0 1

)
⊥ I2m−4.

with respect to (〈e1, e2〉⊕ 〈 f1, f2〉) ⊥ 〈e1, f1, e2, f2〉⊥. Therefore, x2 fixes e1 and f2 and maps
e2 7→ e1 + e2 and f1 7→ f1 − f2. Therefore, vx2, wx2 6∈ 〈v, w〉. Therefore, we conclude that
〈x2, z〉 = G.

Proposition 5.2.13. Let G = 〈PΩε
2m(q), θ〉 ∈ A where θ ∈ PGOε

2m(q) \ PDOε
2m(q). Then

(i) u(G) > 2

(ii) u(G)→ ∞ as q→ ∞.

Proof. We will apply the probabilistic method encapsulated by Lemma 2.1.1. Theo-
rem 5.2.9 gives the members ofM(G, y). Let x ∈ G have prime order. We now use fixed
point ratio bounds from Section 3.1 to obtain an upper bound on P(x, y).

If θ = δr, then q is odd and

P(x, y) 6
1
q2 +

1
qm−1 − 1

+
4

q2m−3 +
1

q2m−2 + Nm
2

qm−2 <
1
2

where Nm is 4 if m is odd and 0 if m is even. In addition, P(x, y)→ 0 as q→ ∞.

From now on we may assume that θ = r. By Remark 5.2.7, we may assume that G does
not appear in (5.7). First assume that q is odd. For brevity, write

P1(m, q) =
1

qm−1 − 1
+

4
qm − 1

+
4

q2m−3 .

In this case,

P(x, y) 6 2q−1 + q−2 + q−(2m−2) + 2q−(2m−1) + P1(m, q).

Now P(x, y)→ 0 as q→ ∞, and if q > 3, then P(x, y) < 1
2 . Now assume that q = 3 and

therefore m > 5. Making use of the dependence on ν(x) in the fixed point ratio bounds
in Proposition 3.1.4, we obtain

P(x, y) 6


2q−3 + q−6 + q−(2m−6) + 2q−(2m−3) + P1(m, q) < 0.120 if ν(x) > 3
2q−2 + q−4 + q−(2m−4) + 2q−(2m−2) + P1(m, q) < 0.268 if ν(x) = 2
2q−1 + q−2 + q−(2m−2) + 2q−(2m−1) + P1(m, q) < 0.809 if ν(x) = 1
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Now let x1, x2 ∈ G have prime order. If

P(x1, y) + P(x2, y) > 1

then we can assume that ν(x1) = 1 and ν(x2) 6 2. In the latter case, Proposition 5.2.12
implies that there exists y ∈ G such that 〈x1, y〉 = 〈x2, y〉 = G. Therefore, u(G) > 2.

Now assume that q is even. We proceed as when q is odd. In this case, write

P2(m, q) =
1

qm−1 − 1
+

2
qm − 1

+
4

q2m−3 .

Here
P(x, y) 6 q−1 + q−2 + P2(m, q).

Now P(x, y)→ 0 as q→ ∞, and if q > 2, then P(x, y) < 1
2 . Now assume that q = 2 and

therefore m > 7. Now

P(x, y) 6


q−3 + q−6 + P2(m, q) < 0.175 if ν(x) > 3
q−2 + q−4 + P2(m, q) < 0.347 if ν(x) = 2
q−1 + q−2 + P2(m, q) < 0.784 if ν(x) = 1

As above, for x1, x2 ∈ G of prime order, if

P(x1, y) + P(x2, y) > 1

then we can assume that ν(x1) = 1 and ν(x2) 6 2, in which case, Proposition 5.2.12
implies that there exists y ∈ G such that 〈x1, y〉 = 〈x2, y〉 = G. Therefore, u(G) > 2.
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5.3 Case II

In this section, we will prove Theorems 5A and 5B in Case II. To this end, write G = 〈T, θ〉
where T = PΩε

2m(q) for m > 4 and θ ∈ Aut(T) \ PGOε
2m(q). Assume that T 6= PΩ+

8 (q).

Recall that we make the case distinction

(a) G ∩ PGOε
2m(q) 6 PDOε

2m(q)

(b) G ∩ PGOε
2m(q) 66 PDOε

2m(q).

The main motivation for this case distinction is that Shintani descent applies directly
in Case II(a) but in Case II(b) we need to use this technique in a more flexible manner.
A side effect of this distinction is that in Case II(a), as in Case I(a), ν(x) > 1 for all
x ∈ G ∩ PGL(V) and this makes the probabilistic method easier to apply.

Recall that Table 5.1 further partitions Cases II(a) and II(b). In particular, II(a) is the
union of II(i), (ii) and (iv), and II(b) is the union of II(iii) and (v), where Cases II(i)-(v) are
defined in terms of the sign ε and the automorphism θ, as summarised in Table 5.3.

We consider Cases II(a) and II(b) in Sections 5.3.1 and 5.3.2. In both sections, we begin by
defining an element tθ ∈ Tθ for each automorphism θ in Table 5.1 (in Case II), and then
we use tθ to study the uniform spread of G = 〈T, θ〉. In doing this we will complete the
proofs of Theorems 5A and 5B in Case II.

5.3.1 Case II(a)

In this section, we first we identify an element tθ ∈ G, then we determineM(G, tθ) and
apply the probabilistic method. We will conclude with an asymptotic result.

Element selection

As in Case II of Chapter 4, Shintani descent (see Section 2.7) is the central tool in the
identification of the element tθ. Consequently, we need to fix our notation relating to
Shintani descent in Case II(a).

Table 5.3: Definition of Cases II(i)–(v)

case ε θ condition

(i) + θ0ϕi none

(ii) θ0rϕi f /i is even

(iii) f /i is odd

(iv) − θ0ψi 2 f /i is odd

(v) 2 f /i is even

[ θ0 ∈ Inndiag(T) ]
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Notation 5.3.1. Write q = p f where f > 2.

Let V = F2m
q be the natural module for T.

Fix the simple algebraic group

X =

{
Ω2m(F2) if p = 2
PSO2m(Fp) if p is odd.

Fix the standard Frobenius endomorphism ϕ = ϕB+ of X, defined with respect to
the standard basis B+, as (aij) 7→ (ap

ij), modulo scalars.

Fix the diagonal element δ+ and the reflection r (see Definitions 2.6.15 and 4.1.3).

If ε = −, fix the map Ψ from Lemma 2.6.17, which restricts to an isomorphism
Ψ : 〈Xrϕ f , r〉 → PGO−2m(q). Moreover, fix ψ = Ψ ◦ ϕ ◦Ψ−1 and δ− = Ψ(δ+) (see (2.21)
and Definition 5.1.5).

As a consequence of Proposition 5.1.12, we can assume that θ ∈ PGO+
2m(q)ϕi when ε = +

and θ ∈ PGO−2m(q)ψ
i when ε = −. In the latter case, the definition of Case II(a) ensures

that 2 f /i is odd, so i is even and it is straightforward to show, for j = i/2, we have
2 f /(2 f , f + j) = 2 f /(2 f , i). Consequently, when ε = −, we may, and will, work with

θ = θ0ψ f+j = θ0rψj

instead of θ0ψi, noting that j divides f and 2 f /i = f /j is odd.

Notation 5.3.1. (continued) Write q = qe
0, where (η, σ, e) are as follows

case η σ e

(i) + ϕi f /i

(ii) − rϕi f /i

(iv) − rϕj 2 f /i

Let F be the Shintani map of (X, σ, e), so

F : {(gσ̃)Xσe | g ∈ Xσe} → {xXσ | x ∈ Xσ}.

Observe that Xσe ∼= Inndiag(T) and Xσ = Inndiag(T0) for a subgroup T0 of T
isomorphic to PΩη

2m(q0). We will harmlessly identify T0 with PΩη
2m(q0) and write

Inndiag(T0) = PDOη
2m(q0) = 〈PSOη

2m(q0), δ0〉.
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Remark 5.3.2. Let us make some observations regarding Notation 5.3.1.

(i) The definition of Case II(a) implies that ε = ηe.

(ii) If ε = +, then Inndiag(T)θ = Xσe σ̃.

(iii) If ε = −, then, via the isomorphism Ψ, we can identify Xσe with Inndiag(T) and
we can identify σ̃ = rϕj with θ = rψj, so Inndiag(T)θ = Xσe σ̃ in this case also.

In light of Remark 5.3.2, the main idea is to select the element tθ ∈ Tθ as the preimage
under F of a carefully chosen element y ∈ Inndiag(T0). If q is even, then Inndiag(T) = T
and this is straightforward. When q is odd, we use the following two results.

Lemma 5.3.3. Let q be odd. The Shintani map F restricts to bijections

(i) F1 : {(gσ̃)PDOε
2m(q) | g ∈ PSOε

2m(q)} → {xPDOη
2m(q0) | x ∈ PSOη

2m(q0)}

(ii) F2 : {(gδσ̃)PDOε
2m(q) | g ∈ PSOε

2m(q)} → {(xδ0)PDOη
2m(q0) | x ∈ PSOη

2m(q0)}.

Proof. This is Lemma 2.7.4 with π : SO2m(Fq)→ PSO2m(Fq), noting that 〈PSOε
2m(q), σ̃〉

and PSOη
2m(q0) are index two subgroups of 〈PDOε

2m(q), σ̃〉 and PDOη
2m(q0).

Lemma 5.3.4. Let q be odd and assume that qm
0 ≡ η (mod 4). The map F1 restricts to bijections

(i) F11 : {(gσ̃)PDOε
2m(q) | g ∈ T} → {xPDOη

2m(q0) | x ∈ T0}

(ii) F12 : {(gσ̃)PDOε
2m(q) | g ∈ PSOε

2m(q) \ T} → {xPDOη
2m(q0) | x ∈ PSOη

2m(q0) \ T0}.

Proof. The condition qm
0 ≡ η (mod 4) ensures |PSOη

2m(q0) : T0| = 2 (see (2.9)). We claim
|PSOε

2m(q) : T| = 2. If ε = η = +, then qm ≡ 1 (mod 4) and |PSO+
2m(q) : T| = 2. Next,

if ε = + and η = −, then e is even, so again qm ≡ 1 (mod 4) and |PSO+
2m(q) : T| = 2.

Finally, if ε = η = −, then e is odd and qm ≡ 3 (mod 4), so |PSO−2m(q) : T| = 2.

Write W = Spin2m(Fq) and let π : W → X be the natural isogeny (see Section 2.6.2). Now
π(Wσe) = T where Wσe = Spinε

2m(q), and π(Wσ) = T0 where Wσ = Spinη
2m(q0) (see

Theorem 2.6.3(iii)). Evidently, T0 P Inndiag(T0). Moreover, if ε = +, then the condition
qm

0 ≡ η (mod 4) implies that condition (5.3) is satisfied, so, in light of Remark 5.1.2,
〈σ̈〉 P 〈Inndiag(T)/T, σ̈〉 and hence 〈T, σ̃〉 P 〈Inndiag(T), σ̃〉. Similarly, if ε = −, then
i is even, so [ψ̈i, δ̈] = 1 (see Lemma 5.1.9), which implies that 〈σ̈〉 P 〈Inndiag(T)/T, σ̈〉
and hence, again, 〈T, σ̃〉 P 〈Inndiag(T), σ̃〉. Therefore, by Lemma 2.7.4, the Shintani map
F of (X, σ, e) restricts to the map F11. By Lemma 5.3.3, F restricts to F1, so, in fact, F1

restricts to the bijections F11 and F12, as required.

We are now in a position to define the elements we will use in our proof of Theorem 5A
in Case II(a).

Proposition 5.3.5. Let T = PΩε
2m(q) and let θ be an automorphism in Table 5.1 (in Case II(i),

II(ii) or II(iv)). Let y ∈ PDOη
2m(q0) be the element in Table 5.4, unless (η, m) = (−, 5), in which

case let y have type a(4)− ⊥ c(6)+. Then there exists t ∈ T such that (tθ)e is X-conjugate to y.
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Table 5.4: Case II(a): The element y for the automorphism θ

m (mod 4)
y

η = + η = −

0
2

c(m)− ⊥ a(m− 2)+ ⊥ a(2)−
c(m)+ ⊥ a(m− 2)− ⊥ a(2)−

c(2m− 2)+ ⊥ a(2)−

3
1

c(2m− 2)− ⊥ a(2)−
c(m + 1)− ⊥ a(m− 3)− ⊥ a(2)−

c(m + 3)− ⊥ a(m− 5)− ⊥ a(2)−

[ we exclude (η, m) = (−, 5) in this table, we describe y by specifying its type over Fq0 ]

Remark 5.3.6. Let us comment on how to read Tables 5.1 and 5.4 (and later Table 5.6) in
conjunction with Proposition 5.3.5 (and later Proposition 5.3.17).

(i) In Table 5.4 and elsewhere in Chapter 5, we will use symbols a, b and c introduced
in (4.9), (4.10) and (4.11), but now we refer to the Rows (1)–(3) in Table 5.1 (rather
than Table 4.1).

(ii) For each of Cases II(i)–(v), each of Rows (1)–(3) (in Table 5.1) and each valid choice
of i, there is at most one choice of (X, σ, e) (giving a Shintani map) and an at most
one choice of element y ∈ PDOη

2m(q0). However, when q is odd and D(Q) = �,
then recall that we use the notation ι for “1 or r�r�”. In this case, there may be two
possibilities for θ (for instance ψ42 and r�r�ψ42). The point is that Proposition 5.1.12
informs us that we can consider either of these possibilities for θ: we only need to
consider one of them and it does not matter which one (see Remark 5.1.13(iii)). In
this case, Proposition 5.3.5 states that for one of these possibilities for θ, there exists
t ∈ T such that (tθ)e is X-conjugate to y. We do not know which choice of θ works
and it does not matter. It does, however, mean that we need to carry around lots of
iotas in our arguments.

Proof of Proposition 5.3.5. Since y ∈ PDOη
2m(q0) = Xσ, by Theorem 2.7.1, there exists

g ∈ Inndiag(T) such that (gσ̃)e is X-conjugate to y. Therefore, the aim of this proof is
to demonstrate that gσ̃ is contained in the coset Tθ. By arguments akin to those in the
proof of Proposition 5.2.6, it is routine to determine τ(y), and if y ∈ PSOη

2m(q0) to also
determine sp(y), and, therefore gain information about which coset of T0 contains y. We
will use Shintani descent (in particular Lemmas 5.3.3 and 5.3.4) to deduce information
about which coset of T contains gσ̃.

If q is even, then σ̃ = θ (one of ϕi, rϕi and ψi) and Xσe = T, so gσ̃ ∈ Tθ.

Therefore, from now on we may assume that q is odd. Assume that θ appears in Row (2).
Then τ(y) = β0, so y ∈ PSOη

2m(q0)δ0. By Lemma 5.3.3, this implies that gσ̃ ∈ PSOε
2m(q)δσ̃.

Therefore, gσ̃ = tθ where t ∈ T and θ = ιδσ̃. In Case II(i), θ = ιδϕi, in Case II(ii) θ = ιδrϕi

and in Case II(iv) θ = ιδψi, which suffices to prove the claim.
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Now assume θ appears in Row (1) or (3). Then τ(y) = 1, so y ∈ PSOη
2m(q0) and gσ̃ ∈

PSOε
2m(q)σ̃, by Lemma 5.3.3. If D(Q) = �, then σ̃ = θ (one of ϕi, rϕi and ψi) and

T = PSOε
2m(q), so gσ̃ ∈ Tθ.

Therefore, it remains to assume that D(Q) = �. In this case, qm ≡ ε (mod 4). For now
assume that qm

0 ≡ η (mod 4), so that we may apply Lemma 5.3.4 (this always holds
when ε = −). By the choice of a and c, if θ is in Row (1), then sp(y) = �, so y ∈ PΩη

2m(q0)

and gσ̃ ∈ Tσ̃, by Lemma 5.3.4, and, since θ = σ̃ (one of ϕi, rϕi and ψi), we conclude that
gσ̃ ∈ Tθ. Similarly, if θ is in Row (3), then y ∈ PSOη

2m(q0) \ PΩη
2m(q0) and gσ̃ ∈ Tr�r�σ̃,

so gσ̃ ∈ Tθ since θ = σ̃ (one of r�r�ϕi, r�r�rϕi or r�r�ψi).

We now need to assume that qm ≡ ε (mod 4) but qm
0 6≡ η (mod 4). In this case ε = +. First

assume that η = +. Therefore, q0 ≡ 3 (mod 4) and m is odd. This forces q ≡ 1 (mod 4).
Together this implies that m is odd, p ≡ 3 (mod 4), i is odd, f is even. Under these
conditions, we need only consider one of ϕi and r�r�ϕi (see Remark 5.1.13(iv)), so we
can choose θ such that gσ̃ ∈ Tθ. Now assume that η = −. Therefore, q0 ≡ 1 (mod 4), so
m is even or i is even or p ≡ 1 (mod 4). This allows us to only consider one of rϕi and
r�r�rϕi (see Remark 5.1.13(iv)), so, as above, we can choose θ such that gσ̃ ∈ Tθ. This
completes the proof.

Probabilistic method

Continue to let T be the simple group PΩε
2m(q) and let θ be an automorphism from

Table 5.1. Fix y ∈ PDOη
2m(q0) from Table 5.4 and tθ ∈ G = 〈T, θ〉 from Proposition 5.3.5.

We will now study the setM(G, tθ) of maximal overgroups of tθ in G.

Theorem 5.3.7. The maximal subgroups of G which contain tθ are listed in Table 5.5, where
m(H) is an upper bound on the multiplicity of the subgroups of type H inM(G, tθ).

We will present a result on multiplicities of subgroups in M(G, tθ), before proving
Theorem 5.3.7 in three parts, by considering the cases where H ∈ M(G, tθ) is reducible,
irreducible imprimitive and primitive. As in Chapter 4, we write

G̃ = 〈Xσe , σ̃〉

noting that Inndiag(T) 6 G̃ 6 Aut(T) and G 6 G̃.

The following result will apply to Case II(b) also.

Proposition 5.3.8. Let T 6 A 6 Aut(T) and let H be a maximal C1, C2, C3 or C5 subgroup of
A. Then there is a unique G̃-conjugacy class of subgroups of type H, unless H has one of the
following types, in which case there are two G̃-classes:

type Pm GLm(q) GUm(q) O+
m(q2) Om(q2)

ε + + + + −
m any odd even even odd
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Table 5.5: Case II(a): Description ofM(G, tθ)

type of H m(H) conditions

C1 Oυ
2(q)×Oευ

2m−2(q) 1 (η, m) 6= (−, 5)

Pm/2 2 η = + and m ≡ 0 (mod 4)
Pm/2−1 2 η = + and m ≡ 2 (mod 4)
Oυ

m−2(q)×Oευ
m+2(q) 1 η = + and m even

Pm−1 2 η = − and m even
Oυ

m−3(q)×Oευ
m+3(q) 1 η = − and m odd

Oυ
m−5(q)×Oευ

m+5(q) 1 η = − and m ≡ 1 (mod 4) with m 6= 5
Oυ

m−1(q)×Oευ
m+1(q) 1 η = − and m ≡ 3 (mod 4)

Oυ
4(q)×Oευ

6 (q) 1 η = − and m = 5
P3 2 η = − and m = 5

C2 Oυ
2m/k(q) o Sk N k

∣∣ m, k > 1, υk = ε

O2m/k(q) o Sk N k
∣∣ 2m, 2m/k > 1 odd

GLm(q) 2N η = +, m even
N ε = +, η = −, m odd

C3 Om(q2) 2N m > 5 odd
GUm(q) 2N ε = η = +, m even

N ε = η = −, m odd

C5 Oυ
2m(q1/k) N k

∣∣ f , k is prime, υk = ε

S PSp4(q) 2N η = −, m = 5, q ≡ ε (mod 4)

[ N = |CPDOη
2m(q0)

(y)|, in C1 there is a unique choice of υ ]

Proof. If m 6 6, then the result follows from the tables in [7, Chapter 8]. Now assume
that m > 7. We will apply the Main Theorem of [43], which we described Section 2.5.1
(see Example 2.5.3 and also the proof of Proposition 4.3.8).

Let H be a maximal geometric subgroup of G. Recall π : Out(T)→ Sc associated to the
action of Out(T) on the set representatives of the c distinct T-classes of subgroups of T
of the same type as H. By [43, Tables 3.5E and 3.5G], π(G̃/T) is transitive, except for the
exceptional cases in the statement, when c = 2 and π(G̃/T) is intransitive. This proves
the statement, but we provide some examples, with ε = +.

For example, consider the case where m is odd, H has type O−2m(q
1/2) and p ≡ 1 (mod 4).

In this situation, c = 4, ker(π) = 〈ϕ̈〉 and the stabiliser of H1 is 〈ϕ̈, r̈�〉. Therefore,
π(G̃/T) = 〈δ̈〉 ∼= C4 is transitive, so there is exactly one G̃-class of subgroups of G of the
same type as H.
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For another example, let m be even and let H have type GLm(q). In this situation, c = 2,
ker(π) = 〈Inndiag(T)/T, ϕ̈〉 and the stabiliser of H1 is 〈ϕ̈, r̈�〉. Therefore, π(G̃/T) = 1,
so there are exactly two G̃-classes of subgroups of G of the same type as H.

Proposition 5.3.9. Theorem 5.3.7 is true for reducible subgroups.

Proof. The proof is almost identical to the proof of Proposition 4.3.9, so we summarise
the argument. If H is a maximal parabolic subgroup of G, then H 6 〈Yσ, σ̃〉 for a (closed
connected) σ-stable parabolic subgroup Y of X, so Lemma 2.7.9 implies that the number
of Xσe -conjugates of H which contain tθ is equal to the number of Xσ-conjugates of H∩Xσ

that contain F(tθ), which can be easily determined by inspecting the maximal reducible
overgroups of y in Xσ, using Lemma 2.3.3. If H is the stabiliser of a nondegenerate k-
space, then we let L = SL2m(Fp)/〈−I2m〉 and the result follows by applying Lemma 2.7.9
to the Shintani map of (L, σ, e) as described in detail in the proof of Proposition 4.3.9.

Proposition 5.3.10. Theorem 5.3.7 is true for irreducible imprimitive subgroups.

Proof. By [43, Table 3.5.E], the possible types of irreducible imprimitive subgroup are
the types featured in Table 5.5. If ε = +, then we claim that maximal subgroups of type
GLm(q) only arise if η = + and m is even, or η = − and m is odd.

First consider η = + and m odd. In this case, G 6 〈Inndiag(T), ϕi〉, so there are no ele-
ments in G which interchange the totally singular subspaces 〈e1, . . . , em〉 and 〈 f1, . . . , fm〉
(see Remark 2.3.23). Therefore, a subgroup of G of type GLm(q) is contained in two
subgroups of type of Pm, and no maximal subgroups of type GLm(q) occur.

Now consider η = − and m even. In this case, G 66 〈Inndiag(T), ϕi〉, so by [43, Ta-
bles 3.5.E and 3.5.G], any subgroup of G of type GLm(q) is contained in a proper normal
subgroup of G and is, therefore, not maximal.

The multiplicities follow quickly from Lemma 2.7.11 and Proposition 5.3.8.

The following lemma can be proved in exactly the same manner as Lemma 4.3.18

Lemma 5.3.11. Assume that (η, m) 6= (−, 5). A suitable power of y has type A ⊥ In−2 where

A =

{
(2)−q0

if q0 is not Mersenne
−I2 otherwise.

Proposition 5.3.12. Theorem 5.3.7 is true for primitive subgroups.

Proof. For now assume that (η, m) 6= (−, 5). By construction, a suitable power of tθ is
X-conjugate to y. By Lemma 5.3.11, we may fix a power z = z1 ⊥ I2m−2 of y where

z1 =

{
(2)−q0

if q0 is not Mersenne
−I2 otherwise,

noting that z ∈ T has prime order.
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Now let H ∈ M(G, tθ) be primitive. By Theorem 2.5.1, H is contained in one of the
geometric families C3, . . . , C8 or is an almost simple irreducible group in the S family. As
in the proof of Theorem 4.3.7, we consider each family in turn.

Consider C3 subgroups. First suppose that H has type Oυ
2m/k(q

k) for a prime divisor k of
2m and a sign υ ∈ {◦, ε}. Write H ∩ T = B.k. From the definition of z, Lemma 2.5.7(ii)
implies that z ∈ B. Moreover, since ν(z) = 2, Lemma 2.5.7(i) implies that k = 2. Therefore,
to verify the claim in Table 5.5, we can assume that m is even. In this case, a power of y has
type (2d)+ ⊥ I2m−2d, where d ∈ {m

2 , m−2
2 , m− 1} is odd, which contradicts Corollary 2.5.9.

Therefore, H does not have type Oυ
2m/k(q

k) unless m is odd and k = 2.

Now suppose that H has type GUm(q). These maximal subgroups only occur when
ε = + and m is even, or ε = − and m is odd (see [43, Tables 3.5.E and 3.5.F]). Suppose
that ε = + but η = − (and m is even). In this case a power of y has type I2 ⊥ (2m− 2)−,
but this is a contradiction to Corollary 2.5.9(ii)(a). Therefore, H has type GUm(q) and
ε = η = (−)m.

Now let us turn to C4 subgroups. Suppose that H is the centraliser of a decomposition
V1 ⊗ V2 where dim V1 > dim V2 > 1. Since z ∈ H, we may write z = z1 ⊗ z2. Since
ν(z) = 2, Lemma 2.5.13 implies that ν(z1) = 1, ν(z2) = 0 and dim V2 = 2. Inspecting the
conditions on dim V1 and dim V2 in [43, Tables 3.5.E and 3.5.F], this is impossible unless
ε = + and H has type Sp2(q)⊗ Spm(q). Since ν(z2) = 0, Lemma 2.5.10 implies that z1

is a semisimple element of Spm(q) such that ν(z1) = 1, and there are no such elements.
Therefore, H 6∈ C4.

If H ∈ C5, then H has type Oυ
2m(q1) where q = qk

1 for a prime divisor k of f and a sign
υ ∈ {+,−} such that υk = ε.

The C6 family is empty since q is not prime.

We now treat C7 subgroups, which only arise when ε = +. Suppose that H is the stabiliser
of a decomposition U1⊗U2⊗ · · · ⊗Uk with dim Ui > 1. Let H0 = H∩PGL(V) and write
H0 = B.Sk. Since z does not centralise a tensor product decomposition (see the discussion
of C4 subgroups), z 6∈ B. Therefore, z cyclically permutes the k factors. However, z has
prime order and exactly two nontrivial eigenvalues which contradicts the eigenvalue
pattern required by Lemma 2.5.11. Therefore, H 6∈ C7.

The C8 family is empty.

Finally, consider the S family. Since ν(z) = 2, 2m > 10 and q is not prime, Theorem 2.5.14
implies that no such subgroups arise.

It remains to assume that (η, m) = (−, 5). To prove the result in this case, we simply
note that y has type a(4)− ⊥ c(6)+, so a power of y has type (6)+ ⊥ I4, which, in light
of Corollary 2.5.9, implies that y is not contained in subgroups of type O5(q2) or GU5(q).
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To complete the proof, we note that the stated upper bounds on the multiplicities of
nonsubspace subgroups follow from Lemma 2.7.11 and Proposition 5.3.8.

We have now proved Theorem 5.3.7 and are, consequently, in the position to prove
Theorem 5A in Case II(a).

Proposition 5.3.13. Let G = 〈T, θ〉 ∈ A where T = PΩε
2m(q) and θ 6∈ PGOε

2m(q). In
Case II(a),

(i) u(G) > 2

(ii) u(G)→ ∞ as q→ ∞.

Proof. We will use Lemma 2.1.1. Let x ∈ G have prime order.

Theorem 5.3.7 gives a superset ofM(G, tθ). Moreover, referring to Table 5.5, it is straight-
forward to show that

N = |CPDOη
2m(q0)

(y)| 6 2qm
0 .

For instance, if η = − and m is even, then Corollary 2.3.5 and Lemma 2.4.4 imply that

|CXσ(y)| 6 (q0 + 1)(qm−1
0 − 1) 6 2qm

0 .

The relevant fixed point ratios are given in Theorem 3.1.1 and Proposition 3.2.4, where
we make use of the observation that ν(x) > 2 for all x ∈ G ∩ PGOε

2m(q) 6 PDOε
2m(q).

With this information, we will prove that P(x, tθ) < 1
2 and P(x, tθ)→ 0 as q→ ∞, where,

as usual,
P(x, tθ) 6 ∑

H∈M(G,tθ)
fpr(x, G/H).

By Lemma 2.1.1, this will establish the desired result.

Write d(n) for the number of proper divisors of a number n.

First assume that η = + and m is odd, or η = − and m is even. Then

P(x, tθ) 6
1
q2 +

7
qm−2 +

5
qm−1 + (2 + log log q + 2d(2m)) · 2qm

0 ·
3

q2m−5 ,

which proves P(x, tθ)→ 0 as q→ ∞ and P(x, tθ) < 1
2 unless (η, m, q) = (+, 5, 4). (Here

we make use of the fact that when ε = −, we know that 2 f /i is odd, so i > 1 and
consequently q0 > p.)

In the exceptional case, tθ is not contained in a maximal parabolic subgroup, and we can
discount subgroups of type O−10(2) since they do not contain elements of order |y| = 51.
These observations, together with a refined bound on the centraliser |CXσ(y)|, give

P(x, tθ) 6
1
42 +

3
43 +

1
44 + (1 + 1) · (2 + 1)(24 + 1) · 3

45 <
1
2

.
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Next assume that η = + and m is even. Then

P(x, tθ) 6
1
q2 +

3
qm/2−1 +

14
qm−2 + (1 + log log q + 2d(2m)) · 2qm

0 ·
3

q2m−5 + 8qm
0 ·

3
q2m−7 ,

and we conclude that P(x, tθ)→ 0 as q→ ∞ and P(x, tθ) < 1
2 , unless (m, q) = (6, 4).

In this exceptional case, we will show that tθ is contained in no subgroups of type
GL6(4) or GU6(4); omitting the corresponding term gives P(x, θ) < 1

2 . The type of y is
2−2 ⊥ 4−2 ⊥ 6+2 . First suppose that y is contained in a subgroup H of type GU6(4). Write
H ∩ PGL(V) = B.2. A power y1 of y has type 2−2 ⊥ I10, whose order is 3. Therefore,
y1 ∈ B; however, e = 2, so this contradicts Corollary 2.5.9, so tθ is not contained in a
GU6(4) subgroup. Next suppose that y is contained in a subgroup H of type GL6(4).
Again we write H ∩ PGL(V) = B.2. A power y2 of y has type 4−2 ⊥ I8, whose order is 5.
Therefore y2 ∈ B. This implies that y2 = M⊕M−T. The four nontrivial eigenvalues of
y2 are λ, λ2, λ22

, λ23
, where |λ| = 5. Without loss of generality, λ is an eigenvalue of M.

On the one hand, λ4 must be an eigenvalue of M, but, on the other hand, λ−1 = λ4 is an
eigenvalue of M−T, which is a contradiction. Therefore, tθ is not contained in a GL6(4)
subgroup.

Now assume that η = − and m > 7 is odd. Then

P(x, tθ) 6
1
q2 +

2
q(m−1)/2

+
11

qm−3 +
1

qm−5

+ (2 + log log q + 2d(2m)) · 2qm
0 ·

3
q2m−5 + 2qm

0 ·
3

q2m−7 <
1
2

and P(x, tθ)→ 0 as q→ ∞.

Finally assume that (η, m) = (−, 5). Then

P(x, tθ) 6
1
q2 +

8
q3 +

4
q4 + (6 + log log q) · 2q5

0 ·
3
q5 + 2q5

0 ·
3
q3 ,

which proves P(x, tθ) → 0 as q → ∞ and P(x, tθ) < 1
2 unless ε = + and e = 2. By

arguing as above we can show that y is not contained in a subgroup of type GL5(q)
and omitting the corresponding term gives P(x, tθ) < 1

2 unless q = 4. In this case, we
can discount subgroups of type O+

10(2) since they do not contain elements of order
|y| = 35 and, by Lemma 2.7.12, tθ is contained in at most e2 = 4 subgroups of type
O−10(2). Therefore,

P(x, tθ) 6
1
42 +

8
43 +

4
44 + (2 · (22 + 1)(23 − 1) + 4) · 3

45 <
1
2

.

and P(x, tθ)→ 0 as q→ ∞. This completes the proof.

Asymptotic result

We now now record an asymptotic result that will feed into the eventual proof of
Theorem 5B in Section 5.3.3. The result, and its proof, is similar to the analogous result
for symplectic groups (see Proposition 4.3.23).
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5.3. Case II

Proposition 5.3.14. Let (Gi) be a sequence in A with soc(Gi) = PΩεi
2mi

(qi). For all i, assume
that Gi 66 PGOεi

2mi
(qi) and Gi ∩ PGOεi

2mi
(q) 6 PDOεi

2mi
(qi). Then u(Gi)→ ∞ if mi → ∞.

Proof. Fix Gi = G = 〈T, θ〉 with T = PΩε
2m(q). The conditions G 66 PGOε

2m(q) and
G∩PGOε

2m(q) 6 PDOε
2m(q) imply that we are in Case II(a) and we can, therefore, use the

notation from earlier in this section. In particular, by Proposition 5.1.12, we may assume
that θ appears in Table 5.1.

We apply Lemma 2.1.1. Assume that m is large enough so that we may fix a positive
integer d for which 1 6

√
2m/8 < d <

√
2m/4 and m− d is odd. Let y ∈ PDOη

2m(q0)

have type a(2d)− ⊥ b(2m− 2d)−η . By the proof of Proposition 5.3.5, there exists t ∈ T
such that tθ is X-conjugate to y.

The C1 subgroups of G containing tθ are one of type Oυ
2d(q)×Oευ

2m−2d(q) and, if η = −,
two of type Pm−d (see the proof of Proposition 5.3.9). There are at most 4m types of
maximal subgroup in each of C2, C3, C4, C7 and at most 1 + log log q in C5. Moreover,
by Lemma 2.7.11 and Proposition 5.3.8, there are at most (qd

0 + 1)(qm−d
0 + η) 6 2qm/2

subgroups of each type inM(G, tθ). Now C6 and C8 are empty and, since a power z of y
has type (2d)− ⊥ I2m−2d and satisfies ν(z) = 2d <

√
2m/2, Theorem 2.5.14 implies that

M(G, tθ) contains no subgroups from S .

Now Theorem 3.1.1 and Proposition 3.2.4 imply that for all prime order elements x ∈ G,

P(x, tθ) 6
11

qm−2 +
1

q
√

2m/4
+

1

qm−
√

2m/4−1
+ (16m + 1 + log log q) · 2qm/2 · 2

qm−3 → 0

as m→ ∞. Therefore, u(G)→ ∞ as m→ ∞.
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5. GROUPS OF TYPE Dm

5.3.2 Case II(b)

Element selection

For Case II(b), we cannot select an element tθ ∈ Tθ by directly considering a Shintani
map as we did in Case II(a). Indeed, this is precisely the reason for the distinction
between Cases II(a) and II(b). Nevertheless, we can use Shintani descent indirectly to
select appropriate elements in Tθ by applying Lemma 2.7.13 (see Example 2.7.14).

Notation 5.3.15. Write q = p f where f > 2.

Let V = F2m
q be the natural module for O+

2m(q).

Fix the simple algebraic group

X =

{
Ω2m(F2) if p = 2
PSO2m(Fp) if p is odd.

Fix the standard Frobenius endomorphism ϕ = ϕB+ of X, defined with respect to
the standard basis B+, as (aij) 7→ (ap

ij), modulo scalars.

With respect to the B+, write VE = 〈e1, . . . , em−1〉 and VF = 〈 f1, . . . , fm−1〉. With
respect to the decomposition

V = (VE ⊕VF) ⊥ 〈em, fm〉

recall that r = I2m−2 ⊥ r+ and δ = δ+ = (βIm−1 ⊕ Im−1) ⊥ [β, 1], where, in the latter
case q is odd and β ∈ F×q has order (q− 1)2.

Fix Z1 = X(〈em, fm〉)
∼= SO2m−2(Fp) and Z2 = (Z1)(VE⊕VF)

∼= GLm−1(Fp), so Z1 acts
trivially on 〈em, fm〉 and Z2 6 Z1 centralises VE ⊕VF.

By Proposition 5.1.12, assume θ ∈ PGO+
2m(q)ϕi if ε = + and θ ∈ PGO−2m(q)ψ

i if ε = −.

Notation 5.3.15. (continued) Write q = qe
0 and e = f /i.

Fix (σ, γ, d, Z) as follows, where ∆ = δδσ−1
δσ−2 · · · δσ−(e−1)

ε θ σ γ d Z

+ ιrϕi rϕi r 2 Z1

ιδ−rϕi δrϕi r∆−1 2(q0 − 1)2 Z2

− ιψi ϕi r 2 Z1

ιδ−ψi δϕi r∆−1 2(q0 − 1)2 Z2
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5.3. Case II

Table 5.6: Case II(b): The element y for the automorphism θ

Generic case

m (mod 4) y

0 or 2 a(2m− 2)+ ⊥ arε

1 a(m− 3)+ ⊥ a(m + 1)+ ⊥ arε

3 a(m− 5)+ ⊥ a(m + 3)+ ⊥ arε

Specific cases

m θ y

5 or 7 ιrϕi, ιψi (4)− ⊥ (2m− 6)− ⊥ rε

ιδrϕi, ιδψi D+
2m−2 ⊥ ∆rε

[ we describe y by specifying its type over Fq0 , D+
2m−2 is defined in Remark 5.3.18(ii) ]

Remark 5.3.16. Let us comment on Notation 5.3.15.

(i) Note that Z1 and Z2 are connected ϕ-stable subgroups of X.

(ii) We have Z1 6 CX(r) since the map r is supported on 〈em, fm〉.

(iii) If q is odd, then Z2 6 CZ1(δ|VE⊕VF) since δ|VE⊕VF centralises the decomposition
VE ⊕VF and acts as a scalar on each summand.

(iv) The automorphisms ψ and δ− of PΩ−2m(q), where q is odd in the latter case, were
introduced in (2.21) and Definition 5.1.5.

(v) Write σ̃ = σ|Xγσe and γ̃ = γ|Xγσe . Observe that Xγσe σ̃ = PDOε
2m(q)θ, noting that

when ε = − we are making the usual identifications justified by the isomorphism
Ψ : Xrϕ f → PDO−2m(q) given in Lemma 2.6.17 (see Remark 5.3.2(iii)).

We now choose the elements for Case II(b) in the following proposition (see Remark 5.1.13
for an explanation of the statement and Table 5.6).

Proposition 5.3.17. Let T = PΩε
2m(q) and let θ be an automorphism from Table 5.1 (in

Case II(iii) or (v)). If y is the element in Table 5.6, then there exists t ∈ T that centralises
the decomposition 〈e1, . . . , fm−1〉 ⊥ 〈em, fm〉 such that (tθ)e is X-conjugate to y. Moreover, if
H 6 G, then the number of G-conjugates of H that contain tθ is at most |CPDO−ε

2m(q0)
(yd)|.

Proof. In each case, (γσe)d = σed. For instance, if ε = + and θ = ιδrϕi, then

(γσe)d = (r∆−1∆(rϕi)e)d = (ϕ f )2(q0−1)2 = (ϕ2 f )(q0−1)2

and

σed = (δrϕi)ed = (∆(rϕi)e)d = (∆rϕ f )d = (∆∆r ϕ2 f )(q0−1)2 = (ϕ2 f )(q0−1)2 .
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5. GROUPS OF TYPE Dm

It is also easy to verify that yγ̃ ∈ Zσ. Therefore, Lemma 2.7.13 implies that there exists
g ∈ Zσe 6 PSOε

2m(q) 6 Xγσe such that (gσ̃)e is X-conjugate (indeed Z-conjugate) to y and
if H 6 G, then the number of conjugates of H that contain gσ̃ is at most |CPDO−ε

2m(q0)
(yd)|.

If qm 6≡ ε (mod 4), then PSOε
2m(q) = T and σ̃ = θ, so gσ̃ ∈ Tθ, as required (see (2.9)).

Otherwise, g ∈ PSOε
2m(q) = T ∪ Tr�r�, so we may choose θ ∈ {σ̃, ισ̃} such that gσ̃ ∈ Tθ,

which is sufficient to prove the claim.

Remark 5.3.18. We comment on the definition of tθ when m ∈ {5, 7}.

(i) Let q be odd and let θ ∈ {ιδrϕi, ιδψi}. We need to define D+
2m−2. We define D+

2m−2

to be an element βA ⊥ A−T where A is an irreducible element, whose order is a
primitive prime divisor of qm−1

0 − 1. This is like, but not exactly the same as, an
element of type ∆(2m− 2)+ (which does not exist when m is odd).

(ii) Let m = 5 and let θ ∈ {ιrϕi, ιψi}. By Table 5.6, y = y1 ⊥ y2 ⊥ r−, centralising a
decomposition F10

q0
= U1 ⊥ U2 ⊥ U3, where y1 and y2 both have type ∆(4)−. By

Lemma 2.3.15, we can fix a primitive prime divisor ` of q4
0− 1 that is strictly greater

than 5. Let Λ be the set of elements of order ` in F×q0
. Then |Λ| > 8, so we can, and

will, assume that y1 and y2 have distinct sets of eigenvalues. This implies that U1

and U2 are nonisomorphic Fq0〈y〉-modules.

Probabilistic method

Continue to let T be the simple group PΩε
2m(q) and let θ be an automorphism from

Table 5.1. Fix the element y from Table 5.6 and tθ ∈ G = 〈T, θ〉 from Proposition 5.3.17.
The following result describesM(G, tθ).

Theorem 5.3.19. The maximal subgroups of G which contain tθ are listed in Tables 5.7 and 5.8,
where m(H) is an upper bound on the multiplicity of the subgroups of type H inM(G, tθ).

Theorem 5.3.19 will be proved in parts. As before, write G̃ = 〈Xσe , σ̃〉. We will make use
of Proposition 5.3.8 in this section. We begin with reducible subgroups.

Proposition 5.3.20. Theorem 5.3.19 is true for reducible subgroups.

Proof. Let us divide this proof into four parts.

Part 1: Setup

Let D be the decomposition

V = V1 ⊥ V2 where V1 = 〈e1, . . . , fm−1〉 and V2 = 〈em, fm〉.

Observe that θ centralises D, and write θi = θ|Vi . By Proposition 5.3.17, t also centralises
D, so we may write tθ = t1θ1 ⊥ t2θ2 with respect to D. Let us also write y = y1 ⊥ arε.
We begin by studying the 〈tiθi〉-invariant subspaces of Vi.
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5.3. Case II

Table 5.7: Case II(b): Description ofM(G, tθ) for m 6∈ {5, 7}

type of H m(H) conditions

C1 m (mod 4) q

Oυ
2(q)×Oευ

2m−2(q) 1
Sp2m−2(q) 1 even
O2m−1(q) 2 odd

Pm−1 2 even
4 odd

Oυ
m−3(q)×Oευ

m+3(q) 1 1
Om−2×Om+2 2 1 odd
Oυ

m−1(q)×Oευ
m+1(q) 1 1

P(m−3)/2 2 1
P(m+1)/2 2 1

Oυ
m−5(q)×Oευ

m+5(q) 1 3
Om−4×Om+4 2 3 odd
Oυ

m−3(q)×Oευ
m+3(q) 1 3

P(m−5)/2 2 3
P(m+3)/2 2 3

C2 Oυ
2m/k(q) o Sk N k

∣∣ m, k > 1, υk ∈ ε

O2m/k(q) o Sk N k
∣∣ 2m, 2m/k > 1 odd

GLm(q) N m odd, ε = +

C5 Oυ
2m(q1/k) N k

∣∣ f , k is prime, υk = ε

[ N = |CPDO−ε
2m(q0)

(y2)|, in C1 there is a unique choice of υ ]

Part 2: Subspaces of V1

Let U1 be a 〈t1θ1〉-invariant subspace of V1. The key part of the proof of Lemma 2.7.13
gives us that F(t1θ1) = y1, where F is the Shintani map of (Z, σ, e). Therefore, we can use
Lemma 2.7.9 applied to F.

For the sake of exposition, let us assume that m > 9 and m ≡ 1 (mod 4); the other
cases are very similar and we comment on them below. In this case, the element y1 has
type a(m− 3)+q0

⊥ a(m + 1)+q0
, where a is empty or ∆. Write S = 〈e1, . . . , fm−1〉Fq0

. Then
y1 centralises a decomposition S = (S1 ⊕ S2) ⊥ (S3 ⊕ S4), where the Si are pairwise
nonisomorphic irreducible Fq0〈y1〉-modules (here dim S1 = dim S2 = m−3

2 and dim S3 =

dim S4 = m+1
2 ). Therefore, by Lemma 2.3.3, the only 〈y1〉-invariant subspaces of W are

direct sums of S1, S2, S3 and S4.
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Table 5.8: Case II(b): Description ofM(G, tθ) for m ∈ {5, 7}

type of H m(H) conditions

C1 θ m q

Oυ
2(q)×Oευ

2m−2(q) 1
O2m−1(q) 2 odd
Sp2m−1(q) 1 even

Pm−1 2 ιδrϕi or ιδψi

Oυ
4(q)×Oευ

2m−4(q) 1 ιrϕi or ιψi

Oυ
6(q)×Oευ

2m−6(q) 1 ιrϕi or ιψi

O5(q)×O7(q) 2 ιrϕi or ιψi 7 odd

C2 O−2 (q) o Sm N e is even, ε = −
(e = 2 only if m = 5 and θ ∈ {ιrϕi, ιψi})

Om(q) o S2 N q is odd

C3 Om(q2) N θ ∈ {ιδrϕi, ιδψi}, e is odd
GUm(q) N θ ∈ {ιδrϕi, ιδψi}, e is odd, ε = −

C5 Oυ
2m(q1/k) N k

∣∣ f , k is prime, υk = ε

[ N = |CPDO−ε
2m(q0)

(y2)| ]

We now proceed as in the proof of Proposition 4.3.9 (see that proof for more details).
Lemma 2.7.9 establishes that the only possibilities for U1 are direct sums of four pairwise
nonisomorphic irreducible 〈tθ1〉-invariant subspaces U1,1, U1,2, U1,3 and U1,4 (where
dim U1,1 = dim U1,2 = m−3

2 and dim U1,3 = dim U1,4 = m+1
2 ). Moreover, we can deduce

that these subspaces are totally singular but U1,1⊕U1,2 and U1,3⊕U1,4 are nondegenerate.

The other cases are very similar. In all cases U1 is a direct sum of pairwise nonisomorphic
irreducible Fq〈y1〉-submodules of dimension at least three. In particular, this implies that

dim V1 − dim U1 6∈ {1, 2}. (5.8)

Part 3: Subspaces of V2

Next let U2 be a 〈t2θ2〉-invariant subspace of V2. Note that a power of t2θ2 is arε. Therefore,
if q is even, then Lemma 5.2.2 implies that there is at most one proper nonzero Fq〈t2θ2〉-
invariant subspace of V2. Similarly, if q is odd, then Lemma 5.2.3 implies that there are at
most two Fq〈t2θ2〉-invariant proper nonzero subspaces of V2.

Part 4: Subspaces of V

Now let U be a 〈tθ〉-invariant subspace of V. Let πi : U → Vi be the projection map of U
onto Vi. Then Ui = πi(U) is a 〈tiθi〉-invariant subspace of Vi.
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5.3. Case II

Suppose that U2 6= 0 and U2 66 U. We mimic the proof of Lemma 2.3.1. Let Wi = U ∩Ui.
Let u1 ∈ U1 and let u2, v2 ∈ U2 satisfy u1 + u2 ∈ U and u1 + v2 ∈ U. Then u2 − v2 ∈ U,
so u2 − v2 ∈ W2. Therefore, there is a well-defined function L : U1 → U2/W2 where
L(u1) = {u2 ∈ U2 | u1 + u2 ∈ U}.

If u1, v1 ∈ U1 and u2, v2 ∈ U2 satisfy u1 + u2 ∈ U and v1 + v2 ∈ U, then for all λ ∈ Fq we
have (u1 + u2) + λ(v1 + v2) = (u1 + λv1) + (u2 + λv2), so

L(u1 + λv1) = W + (u2 + λv2) = L(u1) + λL(v1).

Therefore, L is linear.

For u1 ∈ U1, L(u1) = W2 if and only if u1 ∈ U, so ker L = W1. Since U2 66 U we know
that U2/W2 6= 0. This implies that dim W1 = dim U1 − dim U2/W2 ∈ {2m− 3, 2m− 4}.
However, W1 is a 〈t1θ1〉-invariant subspace of V1 and (5.8) implies that V1 does not
have a 〈t1θ1〉-invariant subspace of dimension 2m− 3 or 2m− 4, so we have obtained a
contradiction.

Therefore, either U2 = 0 or U2 6 U. This implies that U = U1 ⊕U2, the possibilities for
which follow from Parts 2 and 3. These exactly correspond to the subgroups given in
Tables 5.7 and 5.8.

We now turn to irreducible subgroups.

Proposition 5.3.21. Theorem 5.3.19 is true for irreducible subgroups when m 6∈ {5, 7}.

Proof. By construction, a suitable power of tθ is X-conjugate to y. We begin by demon-
strating that we can fix a power z of y satisfying |z| = 2 and 1 6 ν(z) 6 2. If
(ε, θ) ∈ {(+, ιrϕi), (−, ιψi)}, then a power z of y has type I2m−2 ⊥ rε and evidently
ν(z) = 1. Otherwise (ε, θ) ∈ {(+, ιδrϕi), (−, ιδψi)} and raising y(q−1)2 to a suitable
power gives an element of type I2m−2 ⊥ −I2 and ν(z) = 2.

Let H ∈ M(G, tθ) be irreducible. We proceed as in the proof of Proposition 5.3.12, using
Theorem 2.5.1. In particular, let us quickly handle the cases that are essentially identical
to those in that previous proof. Observe that C6 and C8 are empty, z is not contained in
an S family subgroup by Theorem 2.5.14 and C5 subgroups have type Oυ

2m(q1) where
q = qk

1 for a prime k and a sign υ ∈ {+,−} such that υk = ε.

The possible types of C2 subgroups are those given in Table 5.7 (see [43, Tables 3.5.E
and 3.5.F]). The restriction on GLm(q) subgroups arises for the reason given in the proof
of Proposition 5.3.10 for (ε, η) = (+,−).

Consider C3 subgroups. In this case, H is a field extension subgroup of type Oυ
2m/k(q

k)

or GUm(q). Write H ∩ T = B.k. Lemma 2.5.7(ii) implies that z ∈ B, and Lemma 2.5.7(i)
implies that k = 2 since ν(z) 6 2. Now let w be a power of y of type (2d)+ ⊥ I2m−2d where
d ∈ {m− 1, m+1

2 , m+3
2 } is odd. Lemma 2.5.7(ii) implies that w ∈ B and Corollary 2.5.9

implies that z 6∈ B since d is odd, which is a contradiction. Therefore, H 6∈ C3.
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For C4 subgroups, suppose that H is the centraliser of a decomposition V1 ⊗V2 where
dim V1 > dim V2 > 1. Since z ∈ H, we may write z = z1 ⊗ z2. If ν(z) = 1, then we have
a contradiction to Lemma 2.5.13. Otherwise z = −I2 ⊥ I2m−2 and we quickly deduce
that ε = +, H has type Sp2(q)⊗ Spm(q) and ν(z1) = 1, which is not possible. Therefore,
H 6∈ C4.

For C7 subgroups we may assume that ε = +. Suppose that H = B.Sk is the stabiliser
of a decomposition U1 ⊗ U2 ⊗ · · · ⊗ Uk. From the previous paragraph, z 6∈ B. How-
ever, Lemma 2.5.11 implies that z does not cyclically permute the k factors, which is a
contradiction. Therefore, H 6∈ C7.

To complete the proof, we note that the stated upper bounds on the multiplicities of
nonsubspace subgroups follow from Propositions 5.3.8 and 5.3.17.

Proposition 5.3.22. Theorem 5.3.19 is true for irreducible subgroups when m ∈ {5, 7}.

Proof. Let H ∈ M(G, tθ) be irreducible. We proceed as in the proof of the previous
proposition. In particular, note that a power z of y satisfies ν(z) 6 2, so by Theorem 2.5.14
H 6∈ S . Therefore, H is a geometric subgroup and by considering the possible types
we see that it suffices to consider subgroups in C2, C3 and C5. The result is clear for C5

subgroups. Note also that the multiplicities, as usual, follow from Propositions 5.3.8
and 5.3.17.

First assume that H has type Oε
2(q) o Sm stabilising a decomposition D of V into m

nondegenerate 2-spaces. If e is odd, then a power of y has one of the following types:

I2 ⊥ (4)−q ⊥ (2m− 6)−q , I2 ⊥ (8)+q , I2 ⊥ (12)+q , I2 ⊥ (6)+q ⊥ (6)+q .

By Lemma 2.5.6, y must centralise D, which is a contradiction, since elements of these
types act irreducibly on a space of dimension strictly greater than 2. Therefore, e is even.
Now assume that m = 7 or θ ∈ {ιδr�ϕi, ιδψi}. If e = 2, then a power of y has one of the
following types

I6 ⊥ (4)−q ⊥ (4)−q , I2 ⊥ (4)+q ⊥ (4)+q , I2 ⊥ (6)+q ⊥ (6)+q ,

and again we obtain a contradiction.

Next assume that ε = + and H has type GLm(q). Let H be the stabiliser of the de-
composition V = V1 ⊕ V2, where V1 and V2 are maximal totally singular subspaces
of V. Record that e is odd since ε = +. If θ ∈ {ιrϕi, ιψi}, then a power of y has type
I2 ⊥ (4)−q ⊥ (2m− 6)−q , noting that 2m− 6 ∈ {4, 8}, so y has odd order and does not
stabilise a maximal totally singular subspace, which is a contradiction. Now assume
that θ ∈ {ιδr�ϕi, ιδψi}. In this case, y has type ∆r ⊥ ∆(2m− 2)+q0

. Therefore, y has type
M ⊥ (8)+q or M ⊥ (6)+q ⊥ (6)+q , depending on whether m is 5 or 7, where M acts
irreducibly on a 2-space (see Lemma 5.2.3). Now y2 centralises the decomposition and
we may assume that U ⊆ V1, where U is a totally singular subspace of dimension 4 or
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3 that is stabilised by y2 and on which y2 acts irreducibly. However, U is stabilised by
y, so y stabilises V1 and hence centralises the decomposition. However, since M is irre-
ducible, y does not stabilise a maximal totally singular subspace, which is a contradiction.
Therefore, tθ is not contained in a subgroup of type GLm(q).

Now we may assume that H is a C3 subgroup. If θ ∈ {ιrϕi, ιψi}, then a power z of
y satisfies ν(z) = 1, so y is not contained in H (see Lemma 2.5.7). Now assume θ ∈
{ιδrϕi, ιδψi} and H has type Om(q) or GUm(q). Note that ε = − in the latter case (see [43,
Table 3.5.E]). Since y has type ∆(2m− 2)+q0

⊥ ∆rq0 , y has exactly two eigenvalues, λ and
−λ, of order 2(q0 + 1)2. Lemma 2.5.7 implies that y arises from an element g ∈ CUm(q2)

(see Remark 2.2.3) or GOm(q2) with exactly one eigenvalue of order 2(q0 + 1)2. Therefore,
λq = −λ, so e is odd. This completes the proof.

We have now proved Theorem 5.3.19 and are, consequently, in the position to prove
Theorem 5A in Case II(b). We consider two cases depending on whether m ∈ {5, 7}.

Proposition 5.3.23. Let G = 〈T, θ〉 ∈ A where T = PΩε
2m(q) and θ 6∈ PGOε

2m(q). In
Case II(b) when m 6∈ {5, 7},

(i) u(G) > 2

(ii) u(G)→ ∞ as q→ ∞.

Proof. Let x ∈ G have prime order. Theorem 5.3.19 gives a superset ofM(G, tθ). Using
the fixed point ratios from Theorem 3.1.1 and Proposition 3.2.4(i), we will prove that
P(x, tθ) < 1

2 and P(x, tθ) → 0 as q → ∞. For brevity, we will not explicitly note that
P(x, tθ) → 0 as q → ∞ separately in each case. Write d(n) for the number of proper
divisors of n.

Case 1: m is even

In this case,

P(x, tθ) 6
(2, q− 1)

q
+

1
q2 +

20
qm−2 + (1+ log log q + 2d(2m)) · (q0 + 1)(qm−1

0 − 1) · 2
qm−2 ,

so P(x, tθ) < 1
2 unless either (m, q) ∈ {(4, 8), (4, 27), (6, 8)}, or e = f = 2 and m 6 10.

Consider the former case. The unique type of C5 subgroup is Oε
2m(p). First assume m = 6

and q = 8, then a suitable power z of y has type 10+2 ⊥ I2 = 10+8 ⊥ I2, which has odd
prime order and acts irreducibly on a totally singular 5-space. This implies that z, and
hence tθ, is not contained in a C2 subgroup. Therefore, in this case,

P(x, tθ) 6
1
8
+

1
82 +

20
84 + (2 + 1)(25 − 1) · 2

84 <
1
2

.

Next assume that m = 4 and q ∈ {8, 27}, so ε = −. The subgroups of type O−8 (p) are
the only nonsubspace subgroups containing tθ. By Proposition 3.2.4, for subgroups H of
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this type we have fpr(x, G/H) < 3/q3 provided that ν(x) 6= 1 and a direct calculation
demonstrates that this bound also holds when ν(x) = 1 in this case (see Proposition 3.2.8).
With this, together with better bounds extracted from Theorem 3.1.1, we obtain

P(x, tθ) 6
(2, q− 1)

q
+

9
q2 +

14
q3 + (q0 + 1)(q3

0 − 1) · 3
q3 <

1
2

.

Now assume that e = f = 2 and m ∈ {4, 6, 8, 10}. Here ε = − since e is even. Therefore,
since f = 2, G has no C5 subgroups. We will now show that tθ is not contained in any
C2 subgroups. Note that D(Q) = � since qm ≡ 1 (mod 4), so any C2 subgroup has type
O−2m/k(q) o Sk where k is odd and 2m/k is even (see [43, Table 3.5.F]). If m ∈ {4, 8}, then
no such subgroups arise. Now assume that m ∈ {6, 10}. The unique possible type of C2

subgroup is O−4 (q) o Sm/2. A power z of y has type (2m− 2)+q0
⊥ I2 = (2m− 2)+q ⊥ I2

since e = 2 and m− 1 is odd (see Lemma 2.3.36). By Lemma 2.5.6, z must centralise a
decomposition U1 ⊥ · · · ⊥ Um/2 where dim Ui = 4, which is impossible since y acts
irreducibly on a totally singular subspace of dimension m − 1 > 5. Therefore, tθ is
contained in no nonsubspace subgroups. Accordingly,

P(x, tθ) 6
(2, q− 1)

q
+

1
q2 +

20
qm−2 ,

so P(x, tθ) < 1
2 unless (m, q) = (4, 4). If T = Ω−8 (4), then θ = ψ and we can verify that

P(x, tθ) < 1
2 in MAGMA (see Section 2.8).

Case 2: m is odd

If m ≡ 1 (mod 4) and m > 9, then

P(x, tθ) 6
(2, q− 1)

q
+

1
q2 +

2
q(m−3)/2

+
6

q(m−1)/2
+

56
qm−3

+ (1 + log log q + 2d(2m) + q) · (q0 + 1)(q(m−3)/2
0 − 1)(q(m+1)/2

0 − 1) · 2
qm−2 ,

which proves that P(x, tθ) < 1
2 unless (m, q) = (9, 4). In this exceptional case, ε = −

since e is even, so the only nonsubspace subgroup to arise has type O−2 (q) o S9, so

P(x, tθ) 6
1
4
+

1
42 +

2
q3 +

6
44 +

56
46 + (2 + 1)(23 − 1)(25 − 1) · 2

47 <
1
2

.

If m ≡ 3 (mod 4) and m > 11, then

P(x, tθ) 6
(2, q− 1)

q
+

1
q2 +

2
q(m−5)/2

+
6

q(m+1)/2
+

56
qm−5

+ (1 + log log q + 2d(2m) + q) · (q0 + 1)(q(m−5)/2
0 − 1)(q(m+3)/2

0 − 1) · 2
qm−2 ,

which proves that P(x, tθ) < 1
2 unless (m, q) = (11, 4). In this case, as above, ε = −,

the only type of nonsubspace subgroup to occur is O−2 (q) o S11 and adjusting the bound
accordingly demonstrates that P(x, tθ) < 1

2 . This completes the proof.
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Proposition 5.3.24. Let G = 〈T, θ〉 ∈ A where T = PΩε
2m(q) and θ 6∈ PGOε

2m(q). In
Case II(b) when m ∈ {5, 7},

(i) u(G) > 2

(ii) u(G)→ ∞ as q→ ∞.

Proof. Let x ∈ G have prime order. We proceed as in the previous proof. Theorem 5.3.19
gives a superset ofM(G, tθ), Theorem 3.1.1 and Proposition 3.2.4 give bounds on the
associated fixed point ratios, and we will use this information to prove that P(x, tθ) < 1

2

and P(x, θ)→ 0 as q→ ∞.

Case 1: θ ∈ {ιδrϕi, ιδψi}

In this case q is odd and

P(x, tθ) 6
2
q
+

1
q2 +

10
qm−2 +

10
qm−1 + (3 + q + M) · (q0 + 1)(qm−1

0 − 1) · 2
qm−2 ,

where M is the number of types of subfield subgroups. Notice that

M 6


0 if f is a power of 2
1 if f is an odd prime power
1 + log log q otherwise

where in the first case ε = − since e is even. With this bound on M we see that P(x, tθ) < 1
2

unless (m, q) ∈ {(7, 32), (7, 52)}, or m = 5 and either f = e = 3 or e = 2. If (m, q) ∈
{(7, 32), (7, 52)}, then tθ is contained in no C3 or C5 subgroups; adjusting the bound on
P(x, tθ) accordingly proves that P(x, tθ) < 1

2 .

Next assume that m = 5 and f = e = 3. If ε = +, then there are no subgroups of type
GUm(q), so

P(x, tθ) 6
2
q
+

1
q2 +

10
q3 +

10
q4 + 4 · (q0 + 1)(q4

0 − 1) · 2
q3 <

1
2

.

Therefore, assume that ε = −. If x 6∈ PGL(V) or ν(x) > 2, then by Proposition 3.2.4(ii)

P(x, tθ) 6
2
q
+

1
q2 +

10
q3 +

10
q4 + (4 + q2) · (q0 + 1)(q4

0 − 1) · 3
q5 <

1
2

,

while if x ∈ PGL(V) and ν(x) = 1, then fpr(x, G/H) = 0 for C3 subgroups H (see
Lemma 2.5.7) and

P(x, tθ) 6
2
q
+

1
q2 +

10
q3 +

10
q4 + 3 · (q0 + 1)(q4

0 − 1) · 2
q3 <

1
2

.

Now assume that m = 5 and e = 2. In this case, the only type of nonsubspace subgroup
to arise is O5(q) o S2. We will now bound the number of subgroups of this type that
contain tθ. Note that a suitable power z of y has type

I2 ⊥ (8)+q0
= I2 ⊥ (4)+q ⊥ (4)+q .
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Let E be the 1-eigenspace of z. Then z stabilises q− 1 nondegenerate subspaces of E and
consequently stablises exactly 2(q− 1) nondegenerate 5-spaces of V (see Lemma 2.3.1).
Therefore, z is contained in at most q− 1 subgroups of type O5(q) o S2, and thus

P(x, tθ) <
2
q
+

1
q2 +

10
q3 +

10
q4 + (1 + 3(q− 1)) · 2

q3 <
1
2

.

Case 2: θ ∈ {ιrϕi, ιψi}

If q is even, then

P(x, tθ) 6
1
q
+

1
q2 +

1
q4 +

1
q(m−1)/2

+
1

qm−3 +
9

qm−2 +
6

qm−1

+ (2 + log log q) · (q0 + 1)(q2
0 + 1)(qm−3

0 + 1) · 2
qm−2 ,

and if q is odd, then

P(x, tθ) 6
2
q
+

1
q2 +

1
q4 +

2
q5 +

1
q(m−1)/2

+
3

qm−3 +
15

qm−2 +
10

qm−1

+ (3 + log log q) · (q0 + 1)(q2
0 + 1)(qm−3

0 + 1) · 2
qm−2 .

This proves that P(x, tθ) < 1
2 unless (m, q) = (5, 8) or e = 2. If (m, q) = (5, 8), then there

is a unique type of subfield subgroups and tθ is not contained in a subgroup of type
Oε

2(q) o S5; adjusting the bound accordingly gives P(x, tθ) < 1
2 .

Finally assume that e = 2. In this case ε = − and no subfield subgroups arise. If m = 7,
then tθ is not contained in a subgroup of type O−2 (q) o S7, and adjusting the bound above
accordingly, proves that P(x, tθ) < 1

2 . If m = 5, then y has type

(4)−q0
⊥ (4)−q0

⊥ r− = (2)−q ⊥ (2)−q ⊥ (2)−q ⊥ (2)−q ⊥ r−,

so y is contained in a unique C2 subgroup of type Oε
2(q) o S5. Therefore, if q is even, then

P(x, tθ) 6
1
q
+

3
q2 +

9
q3 +

7
q4 +

2
q3 <

1
2

.

Now assume that q is odd. Let H be a subgroup of type O5(q) o S2 stabilising a decompo-
sition V1 ⊥ V2. Now y2 centralises the decomposition and we may assume that U ⊆ V1,
where U is one of the 2-spaces y2 stabilises and on which y acts irreducibly. However, U
is stabilised by y, so y stabilises V1 and hence centralises the decomposition. However, by
considering the number of choices for the stabilised 5-space containing the 1-eigenspace
of y, we see that y is contained in at most (4

2) = 6 subgroups of type O5(q) o S2. Therefore,

P(x, tθ) 6
2
q
+

3
q2 +

1
q3 +

4
q4 +

15
q8 + 7 · 2

qm−2 <
1
2

.

This completes the proof.
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Remark 5.3.25. Let G = 〈PΩε
2m(q), θ〉 satisfy G ∩ PGOε

2m(q) 66 PDOε
2m(q). Let us com-

ment on a possible approach to proving that u(G) is bounded if q is. This idea is similar to
the proof of Proposition 4.3.25. First we show that there exists some fixed k (independent
of m) such that for all g ∈ Tθ there exists a k-subspace of F2m

q that is stabilised by g.
Second we construct a set X of elements of G for which |X | is bounded independently
of m (say as a polynomial in q) and every k-space of V is stabilised by some element
of X . This would imply that u(G) < |X |. It is not difficult to see that every element in
POε

2m(q) \ PSOε
2m(q) stabilises a 1-space.

5.3.3 Proofs of Main Results

We can now complete the proofs of Theorems 5A and 5B.

Proof of Theorem 5A. Proposition 5.1.12 details the groups G = 〈T, θ〉 that must be con-
sidered in order to prove Theorem 5A. For each such group, the bound u(G) > 2 is
established in one of Propositions 5.2.5, 5.2.13, 5.3.13 and 5.3.23.

Proof of Theorem 5B. Let (Gi) be a sequence of groups in A such that |Gi| → ∞, and
write Ti = soc(Gi). Assume that (Gi) does not have an infinite subsequence of groups
such that Gi ∩ PGOεi

2mi
(q) 66 PDOεi

2mi
(qi) where Ti = PΩεi

2mi
(q) for a fixed q. Then (Gi)

is the union of three sequences: groups Gi 6 PDOεi
2mi

(qi), groups Gi 66 PGOεi
2mi

but
Gi ∩ PGOεi

2mi
(qi) 6 PDOεi

2mi
(qi) and groups for which the field size tends to infinity. In

all three cases, the uniform spread diverges to infinity, by Propositions 5.2.6 and 5.3.14 in
the first two cases, and Propositions 5.2.5, 5.2.13, 5.3.13 and 5.3.23 in the final case.

In particular, we have now completed the proofs of Theorems A and B.

Let us comment on how the general approach in this thesis, and this section in particular,
will apply in future work.

Remark 5.3.26. This remark continues on from Remark 5.1.15. Let T = PΩ+
8 (q) and

recall that T has a triality automorphism τ such that CG(τ) ∼= G2(q). Moreover, to show
that u(G) > k for all groups G = 〈T, θ〉 with θ ∈ Aut(T), it suffices to assume that θ

appears in Proposition 5.1.12 or θ is τϕi for a divisor i of f . We now comment on the
latter case.

Assume that θ = τϕi for a divisor i of f . To study the uniform spread of G = 〈T, θ〉 we
consider three cases.

(i) Assume that i = f . In this case, θ = τ and we proceed as in Case I(b). That is, we
carefully select an element t ∈ CT(τ) and then work with the element tτ, noting
that (tτ)3 = t3, so we can exploit properties of t in order to restrict the possible
maximal overgroups of tτ.

(ii) Assume that i < f . Let X = PSO8(Fp), σ = θ = ϕiτ and e = f /i. Write q = qe
0 and

let F be the Shintani map of (X, σ, e).
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(a) Assume that 3 divides e. Here we can apply Shintani descent as in Case II(a).
In particular, Xσe = Xϕ f = Inndiag(T) and

F : {(gθ)Inndiag(T) | g ∈ Inndiag(T)} → {xT0 | x ∈ T0}

where T0 is CT(ϕiτ) = 3D4(q0), the Steinberg triality group.

(b) Assume that 3 does not divide e. We follow Case II(b). Let Z = CX(τ) = G2,
an exceptional simple algebraic group. Lemma 2.7.13, with γ = τ−1 and
d = 3, implies that for all x ∈ Zϕi = G2(q0) 6 Inndiag(T), there exists
t ∈ Inndiag(T) such that (tθ)e is X-conjugate to τx.

Remark 5.3.27. The approach of using Lemma 2.7.13 when the Steinberg endomor-
phisms defining T and θ are inconsistent is a general one and applies to the remaining
families of almost simple groups when Shintani descent cannot be applied directly.

In particular, we can work with unitary groups. For instance, assume that T = PSUn(q)
and θ = ϕi, where ϕ is an automorphism of T for which ϕ f = ι, the inverse-transpose
automorphism, and i is a proper divisor of 2 f . Let X = PSLn(Fp).

(a) Assume that 2 f /i is odd. Here we can apply Shintani descent as in Case II(a).
In particular, since 2 f /i is odd, we may write θ = ιϕj, where j = i/2, noting
that j divides f and f /j is odd. Let σ = θ = ιϕj, e = f /j and q = qe

0. Now
Xσe = Xιϕ f = Inndiag(T), Xσ = Xιϕj = Inndiag(T0) where T0 = PSUn(q0) and

F : {(gθ)Inndiag(T) | g ∈ Inndiag(T)} → {xInndiag(T0) | x ∈ Inndiag(T0)}.

(b) Assume that 2 f /i is even. We follow Case II(b). Let Z = CX(ι), which is PSpn(Fp)

if n is even, PSpn−1(Fp) if n is odd and p = 2, and SOn(Fp) if n is odd and p is odd.
Since 2 f /i is even, i divides f . Lemma 2.7.13, with e = f /i, σ = θ = ϕi, γ = ι and
d = 2, implies that for all x ∈ Zϕi 6 Inndiag(T), there exists t ∈ Inndiag(T) such
that (tθ)e is X-conjugate to ιx.

Let us now briefly mention the general framework for studying the uniform spread of
the exceptional groups of Lie type. We expect to be able handle the untwisted groups E7

and E8 like the symplectic group PSp2m(q), the untwisted group E6 (admitting a graph
automorphism) like the plus-type orthogonal group PΩ+

2m(q), the untwisted groups F4

and G2 (admitting a graph-field automorphism) like Sp4(2
f ) and the twisted groups 2B2,

3D4, 2E6, 2F4, 2G2 like the minus-type orthogonal group PΩ−2m(q).

This completes the thesis.
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A
MAGMA Code

In this appendix, we present the MAGMA [5] code for our computational methods. See
Section 2.8 for a brief summary of these methods and the previous work they build on.

The function FixedPointRatio calculates the fixed point ratio fpr(g, G/H) of an element
g ∈ G in the action of G on G/H. It takes as input a group G, a subgroup H 6 G and an
element g ∈ G. The function returns the fixed point ratio fpr(g, G/H).

function FixedPointRatio( G, H, g )

count:=0;

classreps:=Classes(H);

for rep in classreps do

if (rep[1] eq Order(g)) then

if IsConjugate(G,g,rep[3]) then

count:=count+rep[2];

end if;

end if;

end for;

return count*Order(Centraliser(G,g))/Order(G);

end function;

The function MaximalOvergroups provides information about the maximal overgroups
of an element. The input is a group G and an element s ∈ G. The function returns a
pair of lists [H1, . . . , Hm] and [k1, . . . , km] where Hi are pairwise non-conjugate maximal
subgroups of G and ki is the number of conjugates of Hi which contain s.
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function MaximalOvergroups( G, s )

groups:=[];

mults:=[];

maxes:=MaximalSubgroups(G : OrderMultipleOf:=Order(s));

for M in maxes do

H:=M‘subgroup;

count:=FixedPointRatio(G,H,s)*Order(G)/Order(H);

if (count ne 0) then

groups:=Append(groups,H);

mults:=Append(mults,count);

end if;

end for;

return <groups, mults>;

end function;

The function ClassRepTuples is based heavily on an algorithm of Breuer [9, Section 3.3].
The input is a group G and a list [x1, . . . , xk] of elements of G. The function returns a list
of orbit representatives for the diagonal conjugation action of G on xG

1 × · · · × xG
k .

function ClassRepTuples( G, list )

cents:=[];

for x in list do

cents:=Append(cents,Centraliser(G,x));

end for;

function OrbReps(G, reps, intersect, i, cents, list )

if (i gt #list) then

L:=[reps];

else

L:=[];

for r in DoubleCosetRepresentatives(G, cents[i], intersect) do

L:=L cat OrbReps(G, Append(reps,list[i]^r),

(intersect meet cents[i]^r), i+1, cents, list );

end for;

end if;

return L;

end function;

return OrbReps(G,[list[1]],cents[1],2,cents,list);

end function;

The function RandomCheck is a randomised algorithm that plays a role in determining the
uniform spread of a group. The input is a group G, an element s ∈ G, a list [x1, . . . , xk]
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of elements in G and a nonnegative integer N. The claim to be tested is: for every list
[y1, . . . , yk] with yi ∈ xG

i , there exists z ∈ sG such that 〈y1, z〉 = · · · = 〈yk, z〉 = G. If the
function returns true, then this claim is true, and if the function returns false, then the
result is inconclusive. The claim is tested by random selections of elements in G, the
number of which depends on the parameter N.

function RandomCheck( G, s, list, N )

classtuples:=ClassRepTuples(G,list);

for X in classtuples do

found:=false;

for i in [1..N] do

h:=Random(G);

found:=true;

for x in X do

H:=sub<G|[x,s^h]>;

if not (Order(H) eq Order(G)) then

found:=false;

break;

end if;

end for;

if (found) then

break;

end if;

end for;

if (not found) then

return false;

end if;

end for;

return true;

end function;

The function ProbabilisticMethod is our main computational tool for studying the
uniform spread of a group. The input is a group G, an element s ∈ G and nonnegative
integers k and N. First, the function implements the probabilistic method described in
Section 2.1 to determine whether u(G) > k with respect to the class sG. If successful,
the function returns true; otherwise the second phase commences. Here RandomCheck

is employed to verify that for all (y1, . . . , yk) with yi ∈ xG
i there exists z ∈ sG such that

〈y1, z〉 = · · · = 〈yk, z〉, for all k-tuples (xG
1 , . . . , xG

k ) of conjugacy classes for which this
was not proved in the first phase. If successful, the function returns true. If false is
returned, then the result is inconclusive. A variety of helpful data from the computation
is printed to the standard output.
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function ProbabilisticMethod( G, s, k, N )

maxandmult:=MaximalOvergroups(G,s);

max:=maxandmult[1];

mult:=maxandmult[2];

print "-------------- \nMAXIMALSUBGROUPS \n-------------- \n ";

for i in [1..#max] do

print [Order(max[i]), mult[i]];

end for;

print " ";

classes:=Classes(G);

primeclasses:=[];

sums:=[];

print "-------------- \nCONJUGACY CLASSES \n-------------- \n ";

for class in classes do

if (IsPrime(class[1])) then

primeclasses:=Append(primeclasses,class[3]);

ratios:=[];

for H in max do

ratios:=Append(ratios,FixedPointRatio(G,H,class[3]));

end for;

sum:=0;

for i in [1..#max] do

sum:=sum+ratios[i]*mult[i];

end for;

sums:=Append(sums,sum);

print "Order:", class[1];

print "Size:", class[2];

print "Fixed Point Ratios:", ratios;

print "Sum of FPRs:", sum;

print " \n--------------\n ";

end if;

end for;

print "-------------- \nBAD TUPLES \n-------------- \n ";

tuples:=[];

if exists{sum: sum in sums | sum ge 1/k} then

markers:=[1 .. #sums];
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ind:=[[]];

for i in [1 .. k] do

newind:=[];

for y in ind do

for x in markers do

if (i eq 1) or (x ge y[i-1]) then

z:=Append(y,x);

newind:=Append(newind,z);

end if;

end for;

end for;

ind:=newind;

end for;

seq:=[];

for I in ind do

elt:=[];

for i in I do

elt:=Append(elt,sums[i]);

end for;

seq:=Append(seq,elt);

end for;

for i in [1 .. #seq] do

tot:=0;

for x in seq[i] do

tot:=tot+x;

end for;

if tot ge 1 then

tuples:=Append(tuples,ind[i]);

end if;

end for;

end if;

print "Bad Tuples:", tuples;

print " ";

if N gt 0 then

badtuples:=[];

for tuple in tuples do

list:=[];

for t in tuple do

list:=Append(list, primeclasses[t]);

end for;
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if not RandomCheck(G,s,list,N) then

badtuples:=Append(badtuples,tuple);

end if;

end for;

print "Bad tuples remaining after", N, "random checks:", badtuples;

print " ";

else

badtuples:=tuples;

end if;

return (badtuples eq []);

end function;

We sometimes want to work with groups that cannot be handled with MaximalSubgroups.
In this case, we use the function ClassicalMaximals. For example, to obtain the maximal
subgroups of O+

12(2) we use

ClassicalMaximals("O+", 12, 2 : general:=true);

MAGMA handles permutation groups more efficiently than matrix groups. Therefore,
when working with O+

12(2) it would be advantageous to do the following, which uses
ClassicalMaximals to obtain the maximal subgroups of O+

12(2) in its permutation group
representation.

X:=GOPlus(12,2);

f, G, K:=PermutationRepresentation(X : ModScalars:=true);

mX:=ClassicalMaximals("O+", 12, 2 : general:=true);

mG:={f(H) : H in mX};

We manually change the relevant line in MaximalOvergroups to use ClassicalMaximals

instead of MaximalSubgroups when we need to.
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