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Abstract

Artificial Intelligence (AI) is acquiring more recognition than ever by researchers

and machine learning practitioners. AI has found significance in many applications

like biomedical research for cancer diagnosis using image analysis, pharmaceutical

research, and, diagnosis and prognosis of diseases based on knowledge about patients’

previous conditions. Due to the increased computational power of modern computers

implementing AI, there has been an increase in the feasibility of performing more

complex research.

Within the field of orthopedic biomechanics, this research considers complex time-

series dataset of the “sit-to-stand” motion of 48 Total Hip Arthroplasty (THA) pa-

tients that was collected by the Human Dynamics Laboratory at the University of

Denver. The research focuses on predicting the motion quality of the THA patients

by analyzing the loads acting on muscles and joints during one motion cycle. We have

classified the motion quality into two classes: “Fair” and “Poor”, based on muscle

forces, and have predicted the motion quality using joint angles.

We address different types of Machine Learning techniques: Artificial Neural Net-

works (LSTM - long short-term memory, CNN - convolutional neural network, and

merged CNN-LSTM) and data science approach (principal component analysis and

parallel factor analysis), that utilize remodeled datasets: heatmaps and 3-dimensional

vectors. These techniques have been demonstrated efficient for the classification and

prediction of the motion quality.

The research proposes time-based optimization by predicting the motion quality at

an initial stage of musculoskeletal model simulation, thereby, saving time and efforts

required to perform multiple model simulations to generate a complete musculoskele-

tal modeling dataset. The research has provided efficient techniques for modeling neu-

ral networks and predicting post-operative musculoskeletal inference. We observed
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the accuracy of 83.33% for the prediction of the motion quality under the merged

LSTM and CNN network, and autoencoder followed by feedforward neural network.

The research work not only helps in realizing AI as an important tool for biomedical

research but also introduces various techniques that can be utilized and incorporated

by engineers and AI practitioners while working on a multi-variate time-series wide

shaped data set with high variance.

iii



Acknowledgements

It gives me great pleasure to thank all the important people who have helped

me during the thesis, without whom, thesis completion would have been next to

impossible.

My heartiest thanks to my parents, Jagdish and Jyotsna, and my brother, Ateet,

for their endless love and faith in me that always inspired me to work harder.

I want to express my sincere gratitude towards my research advisor, Dr. Matthew

Rutherford, who has been very generous in providing me the knowledge and his time

for troubleshooting and brainstorming. While working on the research, he scheduled

numerous meetings with me and always guided me in the right direction; applying

that in the research work produced tremendously improved and accurate results. I

could not think of any better mentor than Dr. Matt.

I would also like to thank my defense committee members, Rinku Dewri and Laleh

Mehran, for reviewing my thesis and for being part of my oral defense committee.

Their valuable insights have helped me incredibly in delivering the work.

The University of Denver is a wonderful school that has always maintained an

accomplishing sentiment in my heart. I feel proud to be a graduate student at the

school where I have learned a great deal of science.

Last but not the least, I would like to thank my friends and colleagues for their

continuous encouragement.

iv



Table of Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work and Background 7
2.1 Total Hip Arthroplasty . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Musculoskeletal Modeling . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Statistics : Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Mean Centering . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Relative Variation Scaling . . . . . . . . . . . . . . . . . . . . 13

2.5 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . 16
2.5.2 Parallel Factor Analysis (PARAFAC) . . . . . . . . . . . . . . 21

2.6 Statistical Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 22
2.6.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Neural Networks : Overview . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 ANN Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9.1 Feedforward Neural Network . . . . . . . . . . . . . . . . . . . 29
2.9.2 Recurrent Neural Network - Long Short Term Memory . . . . 29
2.9.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 31
2.9.4 Undercomplete Autoencoder . . . . . . . . . . . . . . . . . . . 33

2.10 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.10.1 Non-Linear Activation Functions . . . . . . . . . . . . . . . . 37
2.10.2 Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10.3 Hyperbolic Tangent (tanh) . . . . . . . . . . . . . . . . . . . . 38
2.10.4 Rectified Linear Unit (ReLu) . . . . . . . . . . . . . . . . . . 39
2.10.5 Softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 System Description 42

v



3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Musculoskeletal Modelling . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Data Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Inverse kinematics . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Inverse dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Muscle forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Body segment parameters . . . . . . . . . . . . . . . . . . . . 48

3.4 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Patient Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Feature Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Research and Analysis - Phase 1 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Motion Quality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Motion Quality Quantification . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Motion Quality Classification . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . 66

4.5.1 PCA - Inverse Kinematics . . . . . . . . . . . . . . . . . . . . 66
4.6 Parallel Factor Analysis (PARAFAC) . . . . . . . . . . . . . . . . . . 70

4.6.1 Data Remodeling . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Motion Quality Evolution . . . . . . . . . . . . . . . . . . . . . . . . 73
4.8 Input Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Research and Analysis - Phase 2 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Logistic Regression - Motion Quality Prediction . . . . . . . . . . . . 83
5.3 ANN - Motion Quality Prediction . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Cross Validation: . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Undercomplete Autoencoder . . . . . . . . . . . . . . . . . . . 85
5.3.3 Feedforward Neural Network: . . . . . . . . . . . . . . . . . . 94
5.3.4 Convolutional Neural Network: . . . . . . . . . . . . . . . . . 97
5.3.5 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . 102
5.3.6 Merged CNN LSTM . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusions and Future Work 110

Bibliography 112

Appendix 117
A.1 Building ANN - Bias Variance Dilemma . . . . . . . . . . . . . . . . 117
A.2 Medical Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2.1 Osteoarthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vi



A.2.2 Inflammatory arthritis . . . . . . . . . . . . . . . . . . . . . . 119
A.2.3 Osteonecrosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2.4 Patellofemoral joint . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3 Variable Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3.1 Inverse kinematics . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3.2 Inverse dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.3.3 Muscle force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.4 PCA on mean centered inverse kinematics for all feature sets . . . . . 129
A.5 PCA on relative variation scaled inverse kinematics for all feature sets 133
A.6 PARAFAC on mean centered inverse kinematics for all feature sets . 137
A.7 PARAFAC on relative variation scaled inverse kinematics for all feature

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

vii



List of Figures

2.1 Total Hip Arthroplasty : Before surgery 1 . . . . . . . . . . . . . . . . 8
2.2 Total Hip Arthroplasty : After surgery 1 . . . . . . . . . . . . . . . . 8
2.3 Types of motion [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Motion capture system 2 . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Before normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 After mean centering . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 After relative variation scaling . . . . . . . . . . . . . . . . . . . . . . 15
2.8 PCA, mean squared error minimization on two components . . . . . . 18
2.9 Logistic regression curve [23] . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Schematic of biological neuron [38] . . . . . . . . . . . . . . . . . . . 25
2.11 Schematic of ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.12 Schematic of artificial neuron [37] . . . . . . . . . . . . . . . . . . . . 26
2.13 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . 30
2.14 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . 30
2.15 LeNet5 [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.16 AlexNet [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.17 Undercomplete autoencoder . . . . . . . . . . . . . . . . . . . . . . . 34
2.18 Autoencoder contrast with PCA 2.5.1 . . . . . . . . . . . . . . . . . . 34
2.19 ANN approach by Danaee et. al for cancer detection [42] . . . . . . . 36
2.20 Logistic sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.21 Hyperbolic tangent function . . . . . . . . . . . . . . . . . . . . . . . 39
2.22 Rectified linear unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Sit To Stand Motion Cycle . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Three stages of OpenSim motion analysis [40] . . . . . . . . . . . . . 44
3.3 Hip Musculature 1 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Quadriceps femoris muscles 3 . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Supervised learning using the dataset . . . . . . . . . . . . . . . . . . 48
3.6 Original input sequence for patient 1 . . . . . . . . . . . . . . . . . . 50
3.7 Mean centered input sequence for patient 1 . . . . . . . . . . . . . . . 51
3.8 Relative variation scaled sequence for patient 1 . . . . . . . . . . . . . 51
3.9 Patient 1 profile with selected features . . . . . . . . . . . . . . . . . 53
3.10 Patient 32 profile with selected features . . . . . . . . . . . . . . . . . 54

viii



3.11 Patient 46 profile with selected features . . . . . . . . . . . . . . . . . 54
3.12 Contrasting forces on left knee joint of patient 32 with other patients 55

4.1 Research and Analysis flow chart, Phase 1 . . . . . . . . . . . . . . . 58
4.2 Vastus Medialis Load Delta, Patient 29 . . . . . . . . . . . . . . . . . 60
4.3 Dominant section occurrences for all the patients using the Feature Set 1 62
4.4 (a) Feature delta contrast for patient 3 using Feature Set 1 . . . . . . 63
4.5 (b) Feature delta contrast for patient 3 using Feature Set 1 . . . . . . 64
4.6 Variance in the components generated by the PCA on the mean cen-

tered inverse kinematic features . . . . . . . . . . . . . . . . . . . . . 67
4.7 Clustering of the patients using motion quality categories using the

Feature Set 1, and components generated using all the mean centered
inverse kinematics features . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Variance in the components generated by the PCA on the relative
variation scaled inverse kinematic features . . . . . . . . . . . . . . . 69

4.9 Clustering of the patients using motion quality categories using the
Feature Set 1, and components generated using all the relative variation
scaled inverse kinematics features . . . . . . . . . . . . . . . . . . . . 70

4.10 3D model of original inverse kinematic features for patient 1 . . . . . 71
4.11 3D visualization of mean centered inverse kinematic features for patient 1 72
4.12 Clustering of the patients using motion quality categories using the

Feature Set 1, and PARAFAC components generated using all the
mean centered inverse kinematics features . . . . . . . . . . . . . . . 72

4.13 3D model of relative variation scaled inverse kinematic features for
patient 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.14 Clustering of the patients using motion quality categories using the
Feature Set 1, and PARAFAC components generated using all the
relative variation scaled inverse kinematics features . . . . . . . . . . 74

4.15 PC1 loadings for mean centered inverse kinematics features . . . . . . 79
4.16 Clustering form by PCA using mean centered top 6 inverse kinematics

features and motion quality quantified using Feature Set 3 . . . . . . 80

5.1 Bridging the gap between inverse kinematics and motion quality . . . 81
5.2 Research and Analysis, Phase 2, work flow . . . . . . . . . . . . . . . 82
5.3 Undercomplete autoencoder used for dimensionality and noise reduc-

tion on inverse kinematics dataset . . . . . . . . . . . . . . . . . . . . 86
5.4 Mean centered feature set 3 . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Feature set 3, Remodeled, Range 0 to 1 . . . . . . . . . . . . . . . . . 87
5.6 Reconstructed input dataset using the autoencoder . . . . . . . . . . 88
5.7 Output of the encoding layer for patient 1 . . . . . . . . . . . . . . . 89
5.8 Feedforward followed by autoencoder, iteration 1, 64.58% accuracy . . 90
5.9 Feedforward followed by autoencoder, iteration 2, 70.83% accuracy . . 90
5.10 Feedforward followed by autoencoder, iteration 3, 75% accuracy . . . 91

ix



5.11 Feedforward followed by autoencoder, iteration 4, 70.83% accuracy . . 92
5.12 Feedforward followed by Autoencoder, final iteration, 83.33% accuracy 93
5.13 Loss curve of the 48 cross-validation training steps using network in

the final iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.14 Feedforward, iteration 1, 75.0% accuracy . . . . . . . . . . . . . . . . 95
5.15 Feedforward, iteration 2, 75% accuracy . . . . . . . . . . . . . . . . . 96
5.16 Feedforward, iteration 3, 77% accuracy . . . . . . . . . . . . . . . . . 97
5.17 Feedforward, final iteration, 81.25 % accuracy . . . . . . . . . . . . . 98
5.18 Loss curve of the 48 cross-validation training steps using the feedfor-

ward network in the final iteration . . . . . . . . . . . . . . . . . . . . 99
5.19 Convolutional neural network, iteration 1, accuracy 58.33% . . . . . . 99
5.20 Convolutional neural network, iteration 2, accuracy 72.91% . . . . . . 100
5.21 Convolutional neural network, iteration 3, accuracy 72.91% . . . . . . 101
5.22 Convolutional Neural Network, final iteration, accuracy 79.16% . . . 101
5.23 Loss curve of the 48 cross-validation training steps using the CNN

network in the final iteration . . . . . . . . . . . . . . . . . . . . . . . 102
5.24 LSTM, iteration 1, accuracy 60.41% . . . . . . . . . . . . . . . . . . . 103
5.25 LSTM, iteration 2, accuracy 72.91% . . . . . . . . . . . . . . . . . . . 104
5.26 LSTM, iteration 3, accuracy 68.75% . . . . . . . . . . . . . . . . . . . 105
5.27 LSTM, iteration 4, accuracy 77.08% . . . . . . . . . . . . . . . . . . . 106
5.28 Loss curve of the 48 cross-validation training steps using the LSTM

network in the final iteration . . . . . . . . . . . . . . . . . . . . . . . 107
5.29 Merged CNN LSTM, accuracy 83.33% . . . . . . . . . . . . . . . . . 108
5.30 Loss curve of the 48 cross-validation training steps using the merged

CNN LSTM network . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

1 Bias-variance dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2 Bias-variance error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3 Clustering by PCA using inverse kinematic mean centered features and

motion quality quantified using feature set 2 . . . . . . . . . . . . . . 129
4 Clustering by PCA using inverse kinematic mean centered features and

motion quality quantified using feature set 3 . . . . . . . . . . . . . . 129
5 Clustering by PCA using inverse kinematic mean centered features and

motion quality quantified using feature set 4 . . . . . . . . . . . . . . 130
6 Clustering by PCA using inverse kinematic mean centered features and

motion quality quantified using feature set 5 . . . . . . . . . . . . . . 130
7 Clustering by PCA using inverse kinematic mean centered features and

motion quality quantified using feature set 6 . . . . . . . . . . . . . . 131
8 Clustering by PCA using inverse kinematic mean centered features and

motion quality quantified using feature set 7 . . . . . . . . . . . . . . 131
9 Clustering by PCA using inverse kinematic mean centered features and

motion quality quantified using feature set 8 . . . . . . . . . . . . . . 132

x



10 Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 9 . . . . . . . . . . . . . . 132

11 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 2 . . . . . . . 133

12 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 3 . . . . . . . 133

13 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 4 . . . . . . . 134

14 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 5 . . . . . . . 134

15 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 6 . . . . . . . 135

16 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 7 . . . . . . . 135

17 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 8 . . . . . . . 136

18 Clustering by PCA using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 9 . . . . . . . 136

19 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 2 . . . . . . . . 137

20 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 3 . . . . . . . . 137

21 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 4 . . . . . . . . 138

22 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 5 . . . . . . . . 138

23 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 6 . . . . . . . . 139

24 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 7 . . . . . . . . 139

25 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 8 . . . . . . . . 140

26 Clustering by PARAFAC using inverse kinematic mean centered fea-
tures and motion quality quantified using feature set 9 . . . . . . . . 140

27 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 2 . . . 141

28 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 3 . . . 141

29 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 4 . . . 142

30 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 5 . . . 142

xi



31 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 6 . . . 143

32 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 7 . . . 143

33 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 8 . . . 144

34 Clustering by PARAFAC using inverse kinematic relative variation
scaled features and motion quality quantified using feature set 9 . . . 144

xii



Chapter 1

Introduction

Machine Learning (ML), a subfield of Artificial Intelligence (AI), is the field of

computer science that attempts to mimic the cognitive functions like learning and

problem solving that a human brain does. With the help of AI techniques, machines

have been successful in demonstrating intelligent behavior imitating human intelli-

gence. Based on past experience, the machines can make decisions on a new set of

information that represents the analytical ability to respond to a new environment.

Some of the practical applications of AI are natural language processing like Siri,

Alexa and Cortana, image analysis for object recognition, medical diagnosis, time-

series predictions for stock markets, and so on. Recently, AI is powered by Artificial

Neural Networks (ANN) to analyze big data and enable such applications.

ANN is a self-learning programming framework loosely inspired by the biological

organization of animal brains. The design of ANN is such that they are meant to

replicate the way humans learn. ANN aid the computing systems to assimilate and

learn using observational data and ML algorithms. The ANN model performs tasks

by “learning” from a set of input-output examples, rather than being programmed

with a set of rules. The accuracy of a neural network depends on multiple factors,

one of which is the size of the dataset (number of input-output examples) available

as input to the network. A larger dataset gives more information on the input test

cases, and hence, it enables robust learning.

1



Due to the increasing availability of data, AI has also flourished in the field of med-

ical science by helping doctors and clinicians improve different aspects of health care

like prevention of diseases, providing effective treatments to patients, disease progno-

sis, pre-operative and post-operative care of surgical procedures and pharmaceutical

drugs, among others. The availability of a patient’s medical history and previous

medical cases allows systems to extract knowledge and analyze future instances. In

the biomedical orthopedic industry, scientists are using the latest technologies exten-

sively to improve orthopedics with robot-assisted surgery, improved designs of pros-

thetic implants, shoe designing for different purposes for the best comfort of users,

and many more.

Human dynamics, a branch of orthopedic biomechanics, focuses on studying the

human musculoskeletal system to improve clinical diagnosis and treatment through

biomechanical measurement and analysis. A human musculoskeletal system encom-

passes the organ system that gives humans the ability to perform movements using

the muscular and skeletal systems. It consists of joints, bones, muscles, ligaments,

cartilage, and various other connective tissues. The availability of software for biome-

chanical modeling, simulation, and analysis has helped in improving the study of

human dynamics with efficient data collection of the human body movements [3].

Human motion analysis of a subject’s gait, sit-to-stand, and step-down movements

has been useful in the field of sports, kinesiology, physical therapy, and surgical anal-

ysis. Surgeries like knee arthroplasty, hip joint replacement, laminectomy, and spinal

fusion are the consequences of reduced mobility of human body movements and are

common in United States [1]. Motion analysis has enabled clinicians to assess and

treat patients with deficiencies in body movement. Motion discrepancy in the mus-

culoskeletal system can be observed at a fine level of detail with the help of advanced

machinery that captures the motion of patients, which is further analyzed by simu-

lating a virtual musculoskeletal model. Quantifying the human motion into joint and

muscle forces helps in assessing post-operative impacts on the patients.

Total Hip Arthroplasty (THA) or hip replacement surgery is a common surgical

procedure used for the treatment of joint failure caused by osteoarthritis. The hip

joint is the amalgamation of the femoral head (the highest part of the thigh bone) and

acetabulum (cavity where femoral head and pelvis meet). THA involves the substitu-
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tion of both femoral head and acetabulum with prosthetic implants. The alignment

of the three synthetic components significantly influences post-surgical motion qual-

ity [4]. To study the component alignment for the hip replacement surgery, scientists

and researchers in the Human Dynamics Laboratory (HDL) at the University of Den-

ver have collected the musculoskeletal data of THA patients using equipment like

force platforms, electronic markers, motion capture systems, and OpenSim software.

We use the same musculoskeletal dataset to assess the motion quality of THA patients

with ML.

1.1 Problem Statement
This research addresses the application of machine learning and data science in the

field of orthopedic biomechanics by utilizing various ANN architectures and applying

data science approaches. The work comprises of the quantitative analysis of the

THA patients’ body movements and assessment of their motion quality, based on

data science and ML models. The resulting motion quality metric can help modify

the component alignment to improve the results of a surgical procedure and enable

improved prosthetic implantation.

We have used the musculoskeletal data quantified by the HDL for the post-surgical

“sit-to-stand” motion of 48 THA patients. The dataset contains variables corre-

sponding to skeletal joints (pelvis, hip, knee, ankle and lumbar) and muscles (biceps

femoris, semimembranosus, semitendinosus, gluteus, rectus, vastus, gastrocnemius,

and soleus) of the lower extremity. Thus, the attributes of the patient dataset en-

tirely correspond to the bio-medical field and are more understandable to the doctors

and the clinicians. We, being the researchers in the field of Computer Science, at-

tempt to comprehend the data and make inferences using ML techniques. The dataset

has 48 records each with 7502 columns, with 75 time-series features, each having 100

time units. However, standard ML algorithms prefer many thousands of records, and

to account for that, we have analyzed the data efficiently by applying various ANN

models.

The motion quality of THA patients is quantified using data science approaches like

principal component analysis and parallel factor analysis, and it is classified into two

classes: “Fair” and “Poor”. The research proposes to predict the quantified motion
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quality from the first stage of data simulation, inverse kinematics, instead of simulat-

ing the variables of the other two consecutive stages - inverse dynamics and muscle

force prediction. The motion quality is thus, predicted from time-series variables of

inverse kinematics using ANN models like feedforward, CNN (Convolutional neural

network), LSTM (Long short-term memory), and auto-encoders.

1.2 Summary of Contributions
The research work has addressed various methods, techniques, and approaches, for

engineers and researchers engaged in the field of machine learning. The contributions

can be summarized as follows:

• Motion quality quantification: This work discusses how we use the THA

patients’ dataset and remodel it by applying various techniques to quantify the

motion quality. As there is no standard way to assess the motion quality from

the available muscle force attributes of the dataset, we have devised a method

for relative analysis between the patients that can help us quantify the motion

quality.

• Motion quality discovery: Using component analysis techniques, we dis-

covered the existence of quantified motion quality in the joint angle dataset of

the lower extremity. Further, we used the results of the analysis for inverse

kinematics feature selection and to improve the motion quality quantification.

• Shortened process to predict motion quality: This research describes the

application of various ANN models to predict the quantified motion quality from

the time-series variables of inverse kinematics (the first stage of musculoskeletal

data simulation). It eliminates the need to calculate the variables of inverse

dynamics and muscle force prediction.

• Wide-shaped and high variance data utilization: The dataset used is

wide-shaped and has high variance; such a dataset is considered unreliable in

machine learning. This work demonstrates efficient data science techniques and

neural network models for such an input dataset.

• Remodeled time-series data analysis: We remodeled the time-series dataset

into 2-dimensional and 3-dimensional vectors and used them in two different

component analysis techniques for the discovery of motion quality in the joint
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angle dataset. Also, we used the remodeled datasets along with heatmaps to

train the neural network models to learn and classify the motion quality of each

patient efficiently.

• Motion quality prediction: We have predicted the classified motion quality

via muscle forces, using the joint angles by ANN, with an accuracy of 83.33%.

1.3 Organization of Thesis
The thesis work is structured around the following chapters:

• Related Work and Background: This chapter explores the previous research

work and relevant contributions made in the field of ANN and musculoskeletal

modeling. It also describes various ANN models and data science approaches,

and concepts related to them, that are used in this research.

• System Description: This chapter encompasses the data collection process

and data normalization techniques. It has a description of the data simulation

stages for musculoskeletal modeling viz inverse kinematics, inverse dynamics,

and muscle force predictions. It also focuses on narrowing the body features

that are most relevant to the motion quality analysis. The chapter also presents

the relative motion analysis of one patient against other patients.

• Research and Analysis: This chapter constitutes the primary research work

and analysis that builds this thesis. It consists of the following:

– Motion quality analysis, quantification, classification, and verification.

– Application of the component analysis to get the most concentrated and

relevant information from the wide-shaped dataset, achieved by data re-

modeling.

– Motion quality evolution by selection of relevant features for prediction

and classification.

– Assessment of conventional regression methods over the dataset in appli-

cation.

– Exploration and application of ANN models to perform data compression

and prediction of motion quality, using different remodeled datasets like

heatmaps, time-series, 2-dimensional and 3-dimensional vectors.
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– Development of good performance networks to achieve high accuracy for

motion quality prediction.

• Conclusions and Future Work: This chapter summarizes the contributions

of the research work and talks about the ways to explore this work further.
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Chapter 2

Related Work and Background

2.1 Total Hip Arthroplasty
The hip joint is analogous to a ball-socket joint where the spherical ball lying in the

socket enables the rotation and multi-directional movement of the coupling. In a hip

joint, the femoral head (top of the thigh bone) acts as the ball, and the acetabulum

(cavity where femoral head and pelvis meets) serves as the socket, allowing the smooth

movement of the hip joint [20]. Figure 2.1 depicts the hip joint and its components.

Hip joint deterioration can be caused by osteoarthritis A.2.1, inflammatory arthritis

A.2.2, infancy hip disorders, trauma and osteonecrosis A.2.3. Non-surgical treatments

like physical therapy, weight loss, using a walker, medications or steroid injections are

recommended to treat a bad hip before resorting to the surgical procedure of Total

Hip Arthroplasty (THA).

In the procedure of THA, prosthetic implants made from metal or plastic replace

the deteriorated hip joint. The femoral head and the acetabulum are replaced with

a prosthetic femoral component and an acetabular cup respectively. The femoral

component is made of the femoral head and femoral stem. In the surgical procedure,

the acetabular cup is fitted with the femoral component with a plastic liner to enable

a smooth, realistic movement of the prosthetic hip joint. Figure 2.2 depicts the post-

surgical view of the hip joint along with the prosthetic components.

Hip replacement surgeries have been one of the most common orthopedic surgical

operations in the United States with a reliable success rate [16]. As THA involves
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Figure 2.1: Total Hip Arthroplasty : Before surgery 1

Figure 2.2: Total Hip Arthroplasty : After surgery 1

the replacement of the hip with prosthetic implantation, the component alignment

significantly impacts the post-surgical quality of motion. Component mishaps like

impingement, dislocation, component degradation, and edge loading, affect the com-

ponent alignment which consecutively incurs changes in femoral anteversion and in-

creases hip joint contact forces [17]. Such issues lead to a revision THA which is

undesirable. Inferring knowledge about the post-surgical quality of motion can be

beneficial to reduce the number of revision THA, and also perform the first THA in

other patients with more precision.

1https://orthoinfo.aaos.org/
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Machine learning techniques have been used for the optimization of joint replace-

ments. Cilla et al. [41] used the following two techniques to solve the prosthetic

implant optimization problem:

• Artificial Neural Networks (ANN)

• Support Vector Machines (SVM)

They investigated the geometry of a commercial short stem hip prosthesis using the

following implant geometrical parameters:

• Total stem length

• Thickness in the lateral and medial stem sides

• Distance between the central stem surface and the implant neck

The machine learning techniques they used on these parameters showed that opti-

mization in the prosthetic implant is significantly dependent on the decrease in stem

length and reduction in the length of the surface in contact with the bone.

2.2 Motion Capture
The process of capturing the human body movements into a digital environment,

using motion capture equipment like high-resolution cameras and electronic markers

(sensors) is known as motion capture. The process of motion capture involves record-

ing the motion using marker placements, transforming the data into digital form and

integrating the data using analytical software.

There are three types of motion capture systems:

1. Magnetic: Sensor-based system where sensors are placed on different body

parts. The sensors are wired to a computer that fetch the data correspond-

ing to marker coordinates.

2. Mechanical: Motion is captured using a skeleton-shaped body suit. Each joint

is attached with a sensor that gives the relative coordinates of the sensors.

3. Optical: Motion is captured digitally using reflective and pulse LEDs. Multiple

cameras are placed at different angles in the environment to create a sense of

three dimensions. The sensors are placed on the body, and their positions are

mapped into a 3D environment using a computer software.
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Researchers working with the Human Dynamics Lab at the University of Denver

have used an optoelectronic sensor-based motion capture system to record the “sit-

to-stand” motion of THA patients. The sensors attached to the body are called

markers. Figure 2.4 gives an overview of the working of the marker-based motion

capture system.

Vicon motion capture [13] is one of the most precise marker based optoelectronic

motion capture system with a system error of less than 2mm (between actual marker

position and software generated marker coordinates) [19]. During the process of mo-

tion capture, each body movement is captured across multiple time frames (many

times per second) by the electronic markers placed at different places on the body.

The markers, acting as sensors, broadcast the captured data to the motion capture

software which then generates a 3-dimensional simulated skeleton model correspond-

ing to the body motion.

2.3 Musculoskeletal Modeling
The musculoskeletal models are computational models simulating the human skele-

tal system that are composed of rigid bodies replicating the bones bridged by me-

chanical joints. Actuators represent the muscles to provide joint torques mirroring

the body movement. Figure 2.3 depicts a simulated musculoskeletal model for three

types of motion: gait, step down and sit-to-stand.

External forces on the human body have an impact on the internal muscle loads.

To observe the relation between the human body movements and loads on the muscles

during the movements, motion analysis is performed using musculoskeletal models.

With the advancement in technology, the external forces are quantifiable with the

force platforms (instruments to measure the ground reaction forces generated by the

motion of the body) but quantifying internal muscle loads, and joint reaction forces

are not feasible due to its invasiveness. Musculoskeletal models have been introduced

to reach an almost accurate estimation of the parameters.

Musculoskeletal Simulation

The marker-based motion capture system records the human motion and trans-

forms it into a musculoskeletal model with the motion capture software. The ex-
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Figure 2.3: Types of motion [23]

Figure 2.4: Motion capture system 2

perimental techniques performed using the marker placement lack to bridge the gap

between the muscular dynamics and human motion, and hence, the human body

motion analysis is performed by mirroring the recorded human motion into a mus-

culoskeletal simulation using tools like OpenSim [11], which is then segmented into

three consecutive stages for motion analysis:

2https://cmasuki.org/
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• Inverse Kinematics

• Inverse Dynamics

• Muscle Force Prediction

Inverse Kinematics

In inverse kinematics modeling, the best fit model is generated to match the ex-

perimental markers with the model markers for the simulated motion by minimizing

the sum of weighted squared errors of the markers and coordinates throughout the

motion cycle. The Inverse Kinematics (IK) toolkit, available with the OpenSim soft-

ware, enables the implementation of the inverse kinematics stage. The output of

this simulation stage contains generalized coordinate trajectories in the form of joint

angles and translations of the motion.

Inverse Dynamics

In inverse dynamics, forces and torques, that produce the body movement, are

measured at each joint, based on the kinematics information available for the motion

of the model. The inverse dynamics analysis is performed using the Inverse Dynamics

(ID) toolkit of OpenSim. The output of this simulation stage contains time-based

joint forces and torques that produces the accelerations based on measured exper-

imental movement and external forces acting on the model. Overall, the inverse

dynamics stage focuses on solving the equation of motions for the unknown general-

ized forces by using the known motion of the model, where the positions, velocities,

and accelerations define the motion of the model.

Muscle Force Prediction

Using the outputs of the inverse kinematics stage and the inverse dynamics stage,

along with a Hill-type muscle model, the muscle forces are predicted. A Hill-type

muscle model corresponds to the Hill’s equations for the tetanic muscle contraction

in investigations over cadavers [22].

To perform post-surgical motion analysis of the THA patients, the quality of the

motion is measured based on the forces acting on the muscles during the body move-

ment. Due to the infeasibility of the process to measure such forces, musculoskeletal
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simulation is used to estimate the forces acting on the muscles during the human

body movement.

2.4 Statistics : Prerequisites

2.4.1 Mean Centering

A subject dataset in an application can consist of multiple features having different

measuring units and magnitude ranges. The difference in magnitude ranges will affect

the significance of the features when analyzed all together. To overcome this issue,

we perform mean centering on the data so that the values of features bounds around

the mean zero. This process introduces a new dataset with a comparable range of

magnitudes of the features that enhance the overall significance of the data.

Algorithm 1 is used to perform mean centering on every data point in a time series

by subtracted by the mean of the complete series.

Algorithm 1 Mean Centering

Input: F1 . . . Fm for P1 . . . Pn

Output: Zero Mean Centered Series

1: function MeanCentering(F )
2: for p← 1 to n do

3: mean[p] =
∑m

to=1 F [p,to]

m

4: for t← 1 to m do
5: F [p, t] = F [p, t]−mean[p]
6: end for
7: end for
8: return F
9: end function

Figure 2.5 represents three time series with different range of magnitudes. After

performing mean centering, the series transforms to a comparable magnitude range

as shown in Figure 2.6.

2.4.2 Relative Variation Scaling

Relative Variation Scaling, algorithm 2, is a technique to normalize the data by

calculating the factor of change in a time series with respect to the initial data point
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Figure 2.6: After mean centering

in the series. Applying this technique, a time series transforms to originate from

value 1 and the overall magnitude range of the series gets minimized by the factor

of the initial data point of the original series. By concatenating multiple time series,

variability in each series can be compared.

If the time series starts with a negative number, before performing the normal-

ization, the time series should be transformed so that every data point in the series

becomes positive. This preserves the relative variation in the series, viz growth or

descent.
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Algorithm 2 Relative Variation Scaling

Input: F1 . . . Fm for P1 . . . Pn

Output: Relative V ariation Scaled Series

1: function Relative Variation Scaling(F )
2: for p← 1 to n do
3: for t← 1 to m do
4: F [p, t] = F [p, t]/F [p, 0]
5: end for
6: end for
7: return F
8: end function

Taking the same example in Figure 2.5, after relative variation scaling, the three

time series will be transformed as depicted in Figure 2.7. The overall range of con-

catenated series will be between the highest growth factor and the smallest descent

factor.
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Figure 2.7: After relative variation scaling

2.5 Dimensionality Reduction
When working with multivariate time series data, the count of columns exceeds by

the factor of time series intervals and increases the complexity of data by adding more

dimensions to statistical regression models. To simplify the regression methods and
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condense the information included in the original data to a more comprehensible form,

dimensionality reduction [30] plays an important role. Principal Component Analysis

(PCA) and Parallel Factor Analysis (PARAFAC) are the techniques we explore to

perform dimensionality reduction. Both the methods work similarly by projecting

the original data points to a set of orthogonal vectors called principal components.

PCA is an efficient technique for a dataset with a shape like a 2-dimensional matrix,

whereas, PARAFAC is an advanced version of PCA which applies to a more complex,

multi-way dataset that has more than two dimensions. Both the techniques are used

to perform dimensionality reduction on the musculoskeletal time series data. The

compressed information is used to visualize the relationship between musculoskeletal

inferences and the input time series data.

2.5.1 Principal Component Analysis (PCA)

Pearson coined the idea of PCA in 1901 [31]. It was also independently developed

by Hotelling in 1936 [32, 33]. Phinyomark et al. provided a review of how the PCA

techniques were used for gait analysis for various research questions [44] as follows:

• Differentiating between healthy and unhealthy female runners

• Predicting the response to exercise treatment for patients with patellofemoral

pain and knee osteoarthritis

• Analyzing body movement differences occurring due to wearing shoes with dif-

ferent midsoles

Kirkwood et al. applied PCA on the gait kinematics data of elderly women suffering

from knee osteoarthritis. They found the PCA technique to be effective to analyze the

kinematic gait form during the gait cycle. They were able to find the most significant

component which acted as the discriminatory factor between the group of females

with and without osteoarthritis. This component could be used for physical therapy

evaluation and treatment of the women with osteoarthritis [45].

PCA is a linear technique for dimensionality reduction of a large number of data

points correlated with each other that maps the original data points to a lower dimen-

sional linear vector called Principal Component (PC), such that the variance of the

data points in the lower dimension maximizes. The variance of the original dataset is
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condensed and retained cumulatively in all the PCs. The new calculated components

are a transformed representation of the original data on orthogonal vectors.

When multiple PCs are calculated, the PCA algorithm orders the principal compo-

nents such that retention of original variation decreases with PCs. Therefore, the first

principal component will have maximum variance, and the second principal compo-

nent will have the second highest variance and so on. The last principal component

will account to minimum variation of the original dataset but cumulatively accounts

for 100% variance of the original dataset. The PCs are the eigenvectors of a covariance

matrix and hence are orthogonal to each other.

PCA is characterized by the following generative model:

xp,q =
F∑
f

ap,fbp,f + εp,q

where xp,q is the measured value, ap,f and bp,f are parameters to estimate, εp,q is the

residual and F is the number of components extracted.

Data scaling is an essential and required step before applying PCA to the original

dataset. PCA is not sensitive to the units of data points but is sensitive to the

magnitude of data points. Hence, not performing scaling on the original dataset

can lead to loss of information and variables with higher magnitude will become the

deciding factors of the final analysis. Therefore, techniques like mean centering and

relative variation scaling can be applied to the dataset before performing PCA.

Figure 2.8 illustrates the PCA with a 2-dimensional dataset by reducing the dimen-

sions from two viz x and y, to two seperate 1-dimensional vectors called components

viz PC1 and PC2. The initial random state of the components is shown by two

orthogonal lines respectively. The data points are projected on the components per-

pendicularly, indicated by the dotted lines, and by using the length of projections,

the mean squared error is computed for both components. For minimizing the mean

squared error, components are adjusted spatially by translation and rotation. The

final components generated by the PCA model has a minimum mean squared error

of projected data points.

The two components cumulatively consist of a 100% variance of the original dataset.

In Figure 2.8, PC1 has a higher variance than PC2 as depicted by an oval circum-
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Figure 2.8: PCA, mean squared error minimization on two components

scribing the projected data points. Considering the components separately, we achieve

dimensionality reduction, and each component addresses some condensed information

contained the original dataset.

PCA Algorithm and Implementation

Let the dataset be

D = {x(1), x(2), ..., x(m)}

with n dimensional inputs such that :

x(i) ∈ R(n)

1. Data Normalization:

Mean is calculated across each dimension, and it is subtracted from each of the

data dimension. This produces a dataset whose mean is zero. Let the mean
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vector be m, such that :

m =
1

n

n∑
k=1

(xk)

Let the new dataset be

Dnorm = {x′(1), x′(2), ..., x′(m)}

where,

x′(i) = x(i) −m

2. Compute Covariance Matrix:

Covariance matrix is computed between 2 dimensions. If the dataset has more

than 2 dimensions, then multiple covariance matrices are computed.

Σ =
1

m

m∑
i=1

(x′(i))(x′(i))T

3. Compute Eigenvectors and Eigenvalues from the Covariance Matrix:

As the covariance matrix is a square matrix, eigenvectors and eigenvalues can

be calculated. The eigenvector u1 becomes the top eigenvector for principal

component 1 and subsequently u2 becomes the second eigenvector for principal

component 2. The matrix of eigenvectors can be shown as:

U =


| | |
u1 u2 ... un

| | |


Let eigenvalues be λ1, λ2, ..., λn. Here, u1 corresponds to the largest eigenvalue

λ1, u2 corresponds to the second largest eigenvalue λ2 and so on. The eigen-

vectors are unit vectors and they help in getting useful information about the

dataset. The eigenvectors forms a new basis in which the data can be repre-

sented. Using eigenvectors, length of projection of normalized data points can

be calculated as following :
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Let the magnitude of projection of x′(i) on u1 be Mag(x′(i), u1), then:

Mag(x′(i), u1) = uT1 .x
′(i)

Similarly, the magnitude of projection of x′(i) on u2 will be:

Mag(x′(i), u2) = uT2 .x
′(i)

4. Data Rotation:

The magnitude of projections calculated for the normalized data on eigenvectors

produces a rotation of data points around the eigenvectors, and the data points

are now scattered around the eigenvector. The rotated normalized data points

can be calculated as follows:

x′rotated = UTx′ =


uT1 x

′

uT2 x
′

|
uTnx

′



The eigenvectors are orthogonal to each other which satisfies the following :

UTU = UUT = I

From which, it is possible to calculate back the original normalized data points

as follows:

x′ = Ux′rotated

as,

Ux′rotated = UUTx′ = x′

5. Dimension Reduction:
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The direction of the principal component 1 will be the direction of the rotated

data on the first eigenvector. Let x̃(i)1 be the transformed dataset on first

principal component, Therefore:

x̃
′(i)
1 = x′rotated,1

(i) = uT1 x
′(i) ∈ R

For reduction of n dimensions to p dimensions, where p < n, we can choose the

first p eigenvectors. Computing them with original normalized data will convert

the dataset to be projected on p dimensions:

x̃′ =



x′rotated,1

x′rotated,2

|
x′rotated,p

0

|
0


≈



x′rotated,1

x′rotated,2

|
x′rotated,p

x′rotated,p+1

|
x′rotated,n


= x′rotated

Since, remaining n− p components are zeros, we define x̃′ as a p− dimensional
vector with only the first p non-zero components.

The maximum number of principal components will be:

Max PCs = min(Num cols, Num rows)

where,

Max PCs = Maximum number of components that can be calculated using PCA

Num cols = Number of columns in the dataset used in PCA

Num rows = Number of rows in the dataset used in PCA

2.5.2 Parallel Factor Analysis (PARAFAC)

PARAFAC [23] has been proved to be helpful in gait analysis of a normal person

and a person with a motion discrepancy. Helwig et al. showed how PARAFAC could

be used for distinguishing ankle and knee motion for the above two categories of
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people [46]. It proved to be a descriptive model to interpret such shape differences

with high accuracy.

Hsiao-Wecksler et al. used the PARAFAC analysis technique to distinguish sym-

metric and asymmetric gaits among infants, and, typical and atypical developing

children [47]. They also used the method to analyze gaits of the people whose walk-

ing ability was affected due to injuries. Moreover, they also correlated the asymmetric

movement with increased stress which could result in harmful effects to other body

parts.

PARAFAC is a dimensionality reduction technique which is superior to PCA as it

can be used with dataset having higher dimensions than two-dimensional matrices.

PARAFAC simultaneously fits multiple two-way arrays or slices of a multi-way array

in terms of common set of factors with different relative weights in each slice [34].

Mathematically, it is straight generalization of bi-linear model of component analy-

sis to a tri-linear model. The PARAFAC analysis is characterized by the following

generative model:

xp,q,r =
F∑
f

ap,fbp,fcr,f + εp,q,r

with an associated sum of squares loss:

min
A,B,C

∑
p,q,r

‖xp,q,r −
F∑
f

ap,fbp,fcr,f‖2

or:

Loss(a11, a12, ...cRF ) =
P∑

p=1

Q∑
q=1

R∑
r=1

(xp,q,r −
F∑
f

ap,fbp,fcr,f )2

where, xp,q,r is the measured value, ap,f , bp,f and cr,f are the parameters to estimate,

εp,q,r is the residual and F is the number of factors extracted.

2.6 Statistical Regression Analysis
Regression analysis is a type of statistical modeling that estimates the relationship

amongst the variables of a multivariate dataset. It examines the influence of the ex-

planatory variables (independent/predictors) on the response variable (dependent/to

be predicted) by estimating the average value of the dependent variable based on the
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fixed values of the independent variables. It is significantly used for prediction and

forecasting in the field of machine learning where it can determine the significant and

non-significant factors in the dataset. There are two types of techniques to perform

a regression:

To perform regression, data points of the response variable v/s explanatory variable

are plotted to generate a best-fit regression line/curve (an equation) which depicts the

correlation between the two variables. There are various types of regression models

like:

• Linear Regression

• Logistic Regression

• Polynomial Regression

• Stepwise Regression

2.6.1 Logistic Regression

Logistic regression is one of the statistical regression models for predictive analysis

where the dependent variable is a binary indicator variable (variable can have only

two possibilities). The logistic regression method corresponds to predicting the pa-

rameters of a binomial regression based logistic model. In binomial regression, the

response variable is the outcome of Bernoulli trials (success/failure or 1/0). For ex-

ample, do the explanatory variables like body weight, calorie intake, exertion, and

age affect the probability of having a heart attack?

Logistic regression has found many applications in the field of machine learning,

medical science, and social science. For example, Boyd et al. developed a logistic

regression-based method to measure the trauma and severity score of a patient with

injuries [26].

Logistic regression uses a logistic function to gauge the correlation between the re-

sponse variable and the explanatory variable. The logistic function/curve is a sigmoid

(S-shaped) curve [27]:

f(x) =
L

1 + e−k(x−x0)
(2.1)
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where,

e = natural logarithm base

x ∈ [−∞, +∞]

x0 = x-value of sigmoid’s midpoint

L = maximum value of the curve

k = logistic growth rate or curve steepness

Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5Threshold = 0.5
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Figure 2.9: Logistic regression curve [23]

Figure 2.9 depicts the sigmoid logistic regression curve where the red dots represent

the predictions corresponding to the variable value based on the threshold of 0.5. It

can be seen that there are five misclassified predictions - three on the top and two at

the bottom.

2.7 Neural Networks : Overview
Artificial Neural Network(ANN) is modeled into a network of interconnected ar-

tificial neurons inspired by the biological neurons of the brain. Each connection,

mirroring the biological synapses of the brain, is enabled for signal transmission be-

tween the artificial neurons. The biological neurons are devised into artificial neurons

in the form of mathematical functions where one or more inputs (simulating post-

synaptic potentials of the biological neurons) are given to the artificial neurons which
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are processed to output the results (simulating action potential of the biological neu-

rons) depending on the input and activation (change in their internal state). Figure

2.10 represents a neuron with input-output flow via dendrites and axons respectively.

Figure 2.10: Schematic of biological neuron [38]

In 1943, McCulloch and Pitts gave an explanation of the nervous system based on

the propositional logic built from the boolean characteristic of the nervous activity [5].

They used electrical circuits to model a simple neural network that functioned on the

outcomes of various logical expressions that mirrored the behavior of the neurons in

the brain. The model proposed by them opened the gates for exploring research in

the field of applied neural networks in AI.

The ANN can be viewed as a directed, weighted graph where the network is formed

by connecting the outputs of some neurons to the input of other neurons. The process

of learning aims to modify the synaptic weights and the weights act as a memory in the

network. Figure 2.11 represents the schematic of the ANN where the circular nodes

represent the artificial neurons, and the arrows represent the connection between the

artificial neurons (output of one neuron given as input to another neuron), simulating

the synaptic connections in a biological brain. Each connection holds some weight

(strength of the connection) which adjusts itself as the process of learning moves

further. The artificial neurons are aggregated into multiple layers where each layer

corresponds to a different transformation of the inputs. The signals travel from the
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Figure 2.11: Schematic of ANN

first layer (input layer) to the last layer (output layer), traversing through multiple

layers in between.

Figure 2.12: Schematic of artificial neuron [37]

Each artificial neuron can be represented as shown in Figure 2.12. Let the number

of inputs given to the artificial neuron be n with input signals x0, x1, ..., xn and

weights w0, w1, ..., wn for respective inputs. The input signals x0, x1, ..., xn are the

output of the predecessor neurons, and the weights are the synaptic weights of neural

connections. The output of the kth neuron will be calculated as follows:

yk = φ(
n∑

j=0

wkjxj + bias)
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where, φ is the activation function. The output of the artificial neuron simulates the

axon of the biological neuron, the output value propagates as input to the next layer

in the ANN via synaptic connection or exits as the final output of the ANN.

A multilayer ANN like one in Figure 2.11 responds to the input data with an output

that corresponds to the learning of the model. It can be imitated by a mathematical

function that calculates an output for a given set of input variables. Hence, a neural

network is similar to an unknown function, and each layer in an ANN adds up to the

composition of functions. The unknown function for the network in Figure 2.11 can

be represented as follows:

f(X) = g(h(k(X)))

where X is the input vector with multiple variables or features and three function

composition corresponds to the functions for each layer in the network respectively.

Learning Models

There are two major learning models used in the ANN depending on the input

data:

• Supervised Learning: This learning paradigm uses example input-output pairs

and designs a learning function using these pairs, where the mapping is derived

from the input training data.

• Unsupervised Learning: This learning paradigm learns from the given unclas-

sified, non-categorized and non-labeled data. Unsupervised learning identifies

the common aspects present in the data and designs the learning function ac-

cordingly.

This research focuses on the supervised learning paradigm. Rosenblatt initially

proposed the algorithm for pattern matching called Perceptron, a supervised learning

algorithm mirroring a biological neuron [8]. Mathematically, a perceptron is a learning

algorithm to learn a threshold function (a binary classifier), which maps the input

vector x with weights w and bias b, to the binary output values:

f(x) =

{
1 if (w · x+ b) > 0

0 otherwise
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where,

w · x =
∑n

i=1wixi for n inputs.

Although the idea of collaborating the biological aspects into programming ma-

chines seemed to transfigure the world of AI, Minsky and Papert discovered the

infeasibility of applied neural networks because of the limited processing power of

computers and the inability of perceptrons to process the exclusive-OR circuit back

in 1969 [7]. Hence research in the field of ANN became dormant until 1975 when

Werbos’s backpropagation algorithm resolved the exclusive-OR problem by optimiz-

ing the training of multi-layer networks [10].

Backpropagation

Backpropagation involves distributing the errors throughout the layers of the ANN

in the backward direction where the errors are computed at the output. The gradient

descent optimization algorithm uses the backpropagation [39] to adjust the synaptic

weights of a neural network by calculating the derivative of the loss function.

The significance behind applying backpropagation is to train a multi-layered ANN

in such a way that the ANN can make appropriate adjustments to weights of the

connections and be able to learn to map arbitrary input to output.

2.8 Supervised Learning
Russell and Norvig gave a study of Supervised Learning where the learning function

uses the example input-output pairs to learn and build an inferred function to map

new inputs to outputs [6]. An optimal learning function, in this case, would be the

one which can label all the new, unseen instances based on the provided input-output

pairs [9].

Solving a supervised learning problem involves the determination of the following

aspects:

• Type of data in the training set.

• Accumulation of the training set (collection of input-output object pairs).

• Input object representation (Input object representation significantly impacts

the learning function accuracy).

• Structure and algorithm of the learning function.
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• Control parameters via cross-validation.

• Accuracy on the test set.

A brief description of the working of the supervised algorithm is as follows: Consider

a training set with n example input-output pairs of the form (xi, yi) where xi ∈ X,

X corresponds to the input feature vector (input space) and yi ∈ Y , Y corresponds

to the output label (output space) of the ith example pair. A supervised learning

algorithm seeks a mapping function

f : X → Y

The idea is to improve the approximation of this mapping function such that it can

map an input data X to respective output variable Y .

2.9 ANN Variants

2.9.1 Feedforward Neural Network

The ANN described in Figure 2.11 is a feedforward network. It is the simplest form

of neural network where the input data is forwarded from the input layer towards the

output layer of artificial neurons to adjust the synaptic weights to perform learning.

The layers other than input and output are called hidden layers which can help reduce

noise in the data while propagating towards the output layer.

2.9.2 Recurrent Neural Network - Long Short Term Memory

Recurrent Neural Network(RNN) works on the principle of saving the output of

a layer to use it as feedback to the same layer along with the next inputs. This

helps in predicting the outcome of the layer for the input data that has subsequent

information dependent on the preceding data points. The saved output from previous

data maintains the persistence of information looping in the network as a short term

memory.

In Figure 2.13, the first layer is formed similar to a feedforward network that is

then connected to the RNN model. The RNN process starts with the arrival of output

from the previous layer, and each neuron remembers the information from the last

time-step to be used as feedback for the current time-step. Similar to feedforward,
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Figure 2.13: Recurrent neural network

RNN uses loss and optimization functions to reduce the error rate and gradually tunes

the network to make correct predictions with the help of back-propagation. Figure

2.13 shows a basic network for prediction of the next word in a sentence.

Long Short Term Memory (LSTM) is a special kind of RNN that is competent in

learning long term dependencies. Hochreiter and Schimidhuber first introduced it in

1997 [21] which further got improved by researchers. An RNN is formed by a chain

of repeating modules of the LSTM units.

Figure 2.14: Long Short-Term Memory

Figure 2.14 is a chain of three LSTM units each having the same structure as

the middle one. The grey boxes are neural network layers, circles with x and + are

pointwise operators for vector multiplication and addition respectively, and the arrows

are vector transfers. Each arrow carries output from one node to another as an input

vector. The line running at the top carries a cell state throughout the chain which

undergoes minor operations. LSTM can add or remove information in the cell state

regulated by a gate which is composed of the output of the sigmoid neural network
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layer and pointwise multiplication operator. The LSTM has three of these gates to

control information in the cell state.

The first gate decides which information needs to be removed from the cell state,

which is called as the “forgot gate layer”. The next gate controls the new information

that will be added in the cell state, which is called as the “input gate layer”. The

third gate is the “output gate layer” which decides information that should be the

output from the cell. Tanh function is used to convert the vectors to a range of

numbers between -1 and 1.

2.9.3 Convolutional Neural Network

Convolutional Neural Networks (CNN) are an advanced version of feedforward

neural networks. CNN have proven efficient in the areas such as image recognition,

classification and signal processing. CNN have had successful applications in face

recognition, object identifications and combining many applications, CNN has been

powering the robotics significantly. CNN has become an important tool for machine

learning researchers and practitioners due to its wide variety of capabilities.

Yann LeCun developed one of the very first CNN [24] and was named LeNet5

after many previous successful iterations since 1988. It was mainly used for character

recognition for applications like reading zip codes, digits, and so on.

Figure 2.15: LeNet5 [24]

Figure 2.15 depicts the CNN developed by Yann LeCun [24] which illustrates a

character recognition application using a handwritten letter “A”. CNN layers are the

composition of 3 different layers namely convolution, pooling, and non-linearity. The

convolutions are responsible for extracting spatial features of the input image, pooling
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extracts average of the pool of a particular size from the output of convolutions and

non-linearity is the output formed by non-linear activation functions like tanh or

sigmoid. The result is further flattened into a 1-dimensional vector to be forwarded

to a feedforward part of the network which is the final classifier.

During 1988, the computation power we had was inadequate for heavy computa-

tional models of neural networks. With the advent of powerful CPUs, neural network

architectures support better applications with faster computations and better re-

sults. In 2012, Alex Krizhevsky invented a deeper and wider version of LeNet called

AlexNet [25].

Figure 2.16: AlexNet [25]

Figure 2.16 illustrates the AlexNet CNN which is a more extensive neural network

than LeNet that could be used to learn much more complex figures than alphabets

and digits. The work in AlexNet contributed in use of rectified linear unit (ReLu) as

non-linearities, use of dropout techniques to discard some neurons during training,

back-propagation that could be a way to circumvent over-fitting the model, and use

of max-pooling instead of average pooling which selects the most significant pixel

from the output of convolution parts. The “Deep Neural Network” term was coined

after the larger network was used for more complex learning with 10x faster training

speeds by deploying Graphics Processing Units (GPUs).

The parts of CNN are defined as follows:

1. Kernel: It refers to a restricted subarea of input receptive field which is the

output of the previous layer. It is a two-dimensional n × n matrix, typically

square-shaped, which is called the size of a kernel, for example, 5 × 5. The

kernel moves around the input space to all possible locations projecting smaller
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input shapes to the pooling layer. A kernel is also called as a filter or a neuron.

It is called neuron because the subarea of the receptive field acts as a specific

input vector for a neuron in the convolutional layer.

2. Stride: The kernel slides over the input receptive field, which is called con-

volving, and the number of pixels the kernel shifts is called a stride. The stride

governs the size of the output of a convolutional layer which can help reduce

spatial dimension and with different number of shifts, it can provide a better

sectional separation to the kernels.

2.9.4 Undercomplete Autoencoder

This type of feedforward neural network works on the principle of supervised learn-

ing, Section 2.8, where the input data and output data is provided, and the neural

network is trained to yield the same results. While training, the input data and

output data provided to the network are the same, that is, the network tries to recon-

struct the provided input data. The structure of an undercomplete autoencoder, as

shown in Figure 2.17, is such that the hidden layers have a lesser number of neurons

than the input and output layers. In the first part of the network, called encoder,

subsequent layers have a decreasing number of neurons, and in the second part of the

network, called decoder, subsequent layers have an increasing number of neurons and

have the exact opposite architecture as that of an encoder. Therefore, the middle

layer has the least number of neurons that can yield the most significant information

contained in the original input in an encoded format, that can be used to reconstruct

the original input with reduced noise.

The result of undercomplete autoencoder is fetched from the middle layer, and that

is why undercomplete autoencoder is a type of dimensionality reduction technique

that uses neural networks. For example, if the input and output layer has total 200

neurons, which should be the size of an input vector, and the middle layer has a total

of 20 neurons, the output generated from the middle layer will have a total of 20

data points per sample. That is how the undercomplete autoencoder helps reduce

the dimension by 10x.

Undercomplete autoencoder is inspired by the idea of a statistical dimensionality

reduction technique called PCA 2.5.1 where the reduced dimensions are known as
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Input Output

Figure 2.17: Undercomplete autoencoder

components. Using this neural network encoding technique, the most important

information about the input dataset can be concentrated in the middle layer which

can be further used for classification using neural networks with improved accuracy

and minimized training duration.

Figure 2.18: Autoencoder contrast with PCA 2.5.1
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In contrast with PCA 2.5.1, neural networks can learn non-linearity and hence,

autoencoders are more powerful than the linear dimensionality reduction technique

PCA 2.5.1. The components extracted from a PCA model are orthogonal and linear,

but the components extracted from an autoencoder can be non-linear in nature and

can describe the original dataset with better information than that of a PCA model.

This is illustrated in Figure 2.18.

Artificial Neural Networks have been helpful in cancer diagnosis for various cancers

like lung cancer, prostate cancer, and breast cancer. Floyd et al. developed a neural

network model to predict breast cancer from the mammography of 260 patients. They

had these biopsies analyzed by radiologists as well as fed them to the ANN model and

found that the network predicted cancer with more accuracy than the radiologist [43].

Danaee and et al. devised a deep learning approach for detecting breast cancer

by identifying the critical genes [42]. They used the autoencoder to extract relevant

features from the high dimensional and complex gene expression profiles. They used

supervised classification models to evaluate the performance of the extracted features

to use for cancer detection.

Figure 2.19 depicts the ANN approach used over the gene representation dataset

for breast cancer detection. The original dataset was divided into training and testing

datasets. The training dataset was used in autoencoder for noise reduction and fetch-

ing the most relevant information in the dataset using dimensionality reduction. The

results of this process were then used for the classification in breast cancer detection.

2.10 Activation functions
In ANN, the activation function defines the output of a neuron for a given set of

inputs. This output of a neuron acts as an input to a neuron in the next layer, and

successively the activation function makes transformations to the neuron’s output

until a final desired output is found for the original problem. The activation function

maps the calculated value of a neuron to the desired range of numbers depending on

the activation function used. The transformations can be linear, that is binary: ON

and OFF, or non-linear, that is a continuous range of numbers, for example, numbers

between 0 to 1. Generally, non-linear activation functions produce better learning for

non-trivial problems with a comparatively smaller size of the network and a lot less
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Figure 2.19: ANN approach by Danaee et. al for cancer detection [42]

computation. With non-linear activation functions, it makes it easy for the model to

generalize with a variety of data and to differentiate between the output [35]. The

magnitude of the output of a neuron can be considered as to how active the neuron

is for a particular input. In the case of linear activation function, it comes down to

whether the neuron is firing or not.

For this research, the following activation functions are used for experimental anal-

ysis.
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2.10.1 Non-Linear Activation Functions

The following terminologies can be used to understand and differentiate the non-

linear activation functions:

1. Differentiable: A function that has a change in y-axis with respect to change

in the x-axis, more precisely, the slope of the curve changes w.r.t change in the

x-axis, falls in the category of differentiable activation functions [36].

Let φ(x) be the activation function and I be the input dataset, then

δφ(x)

δx
6= 0 , ∀ x : {x ∈ I}

The derivatives are helpful to understand about the direction and magnitude

of change in learning curve of a neural network.

2. Monotonic: A function is monotonic when it is either entirely non-decreasing

or non-increasing:
δφ(x)

δx
≥ 0 , ∀ x : {x ∈ I}

or

δφ(x)

δx
≤ 0 , ∀ x : {x ∈ I}

2.10.2 Sigmoid

φ(x) =
1

1 + e−x

Sigmoid, a type of logistic activation function, is non-linear that has a range be-

tween [0, 1]. Therefore, it is useful for the models that predict the probability as

output, generally for multi-class classification problems. The probabilities received

from sigmoid might not sum up to 1. Therefore, it is used mostly as the activation

function of input and hidden layers rather than the output layer. It a Differentiable

function and the slope of the sigmoid curve can be found at any two points. It is

also Monotonic in nature but the differential of the curve at any two points is not

monotonic.

One limitation of the sigmoid function is the possibility of neural networks getting

stuck during the training. The reason for these limitations derives from the range of
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Figure 2.20: Logistic sigmoid function

the output of the sigmoid function, which is [0, 1]. In the case of strongly-negative

inputs, the output of the function will be close to zero that consistently keeps the

neurons in the inactive state, due to that it inhibits the neural network learning and

gets stuck in its current state.

2.10.3 Hyperbolic Tangent (tanh)

φ(x) = tanh (x) =
2

1 + e−2x
− 1

Tanh function is similar to sigmoid, being a scaled version of it.

tanh (x) = 2sigmoid(2x)− 1

This variation of the logistic activation function is also non-linear, having a range

between [−1, 1]. It a Differentiable function and the slope of the tanh curve can

be found at any two points. It is also Monotonic in nature and derivatives are

steeper as compared to sigmoid. As the output range of tanh covers negative and

positive values, it eliminates the limitation of the sigmoid function. When the inputs

are strongly negative, the output of tanh will be close to -1 and when the inputs are
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Figure 2.21: Hyperbolic tangent function

strongly positive, the output will be close to +1. Similarly, if the inputs are close to

zero, the output of tanh will reflect a similar output being close to zero. Therefore,

it covers the whole range of input values and makes the neural network less likely to

get stuck during training.

2.10.4 Rectified Linear Unit (ReLu)

φ(x) = max (0, x)

ReLu, also known as the ramp function, only covers the positive part of the input

and eliminates the negative by substituting it with zero. Its output range is [0, ∞].

When the output of ReLu is zero, the neurons are not firing and that affects the

learning of a feedforward neural network. Relu is non-linear when both positive and

negative axes are considered.

In neural networks, when the emphasis is on the positive input values, it can

produce sparse activation of network’s units. Approximately, 50% of units in the

network will not have any activation, and the other neurons will be firing an output
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Figure 2.22: Rectified linear unit

with an infinite numerical range. About, half of the network remains in an idle state

during the learning process that significantly lowers the computation.

2.10.5 Softmax

φ(x)i =
exi∑J
j=1 e

xj

∀ j : {j ∈ {1, ..., J}}

Also a generalization of logistic function, softmax function takes an unnormalized

vector and converts it into a probability distribution. Similar to sigmoid, the range of

the output of softmax is also between [0, 1]. Irrespective of the sign and magnitude

of input vector elements, softmax function normalizes the input vector such that:

∑
i

xi = 1

Since the sum of all predictions equals to 1, softmax is a suitable option for activation

function to be used for multi-class classification problems and should be used in the

output layer of a neural network that predicts a class of an input set. The predictions
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for all the classes are compared, and the class with the highest probability becomes

the predicted class for that input set.
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Chapter 3

System Description

3.1 Data Collection
The Human Dynamics Laboratory at the University of Denver collected the data

for the “sit-to-stand” motion of 48 patients who had undergone the THA (Total Hip

Arthroplasty). Patients were eligible to participate in the research if their age was

between 45 and 80 years, with body mass index less than 40 kg/m2. Apart from

these constraints, the participating patient should be void of history with diabetes,

hypertension, orthopedic pathology, and neurological disorders. The 12 weeks long

post-operative surgical analysis (performed after ten weeks post surgery), approved by

the Colorado Multiple Institutional Board, was performed with the patient’s written

consent [3].

Thirty-two reflective markers were placed on each patient to capture the “sit-to-

stand” motion anatomically, from a chair of height 43 cm, into a simulated muscu-

loskeletal model. For the “sit-to-stand” task, the motion cycle under analysis started

from the static sitting position on the chair. The markers were placed on the torso,

pelvis, thigh, shank, and foot. The body motion was performed on a Bertec force plat-

form [12] embedded in the floor which collected the data of ground reaction force at

2000 Hz while the Vicon motion capture system [13] consisting of 8 cameras recorded

the data of marker placements for one motion cycle at 100 Hz.
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Figure 3.1: Sit To Stand Motion Cycle

The isometric strength of the hip flexors, extensors, abductors, and knee flexors

and extensors, of the affected limb, were gauged with the help of electromechanical

dynamometer [14] connected to a Biopac data acquisition system [15].

3.2 Musculoskeletal Modelling
The muscle strength of each patient’s lower extremity is quantified with the help

of a musculoskeletal model which is inspired by the hip musculature system. A

combination of Gait2932 and lower limb extremity model available with OpenSim

software was used for the examination and analysis of the three different stages of

musculoskeletal modeling:

• Inverse Kinematics

• Inverse Dynamics

• Muscle Force Predictions

Figure 3.2 depicts the calculation of the variables comprising the three stages of

musculoskeletal modeling.

The marker-base motion capture system is used for measuring inverse kinematics,

which is a dataset consisting of joint angle time series The measured inverse kinematics

and estimated body segment parameters (mass, the center of mass and moment of
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Figure 3.2: Three stages of OpenSim motion analysis [40]

Figure 3.3: Hip Musculature 1 3
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Figure 3.4: Quadriceps femoris muscles 3

inertia) are used to calculate the inverse dynamics, which is a dataset consisting of

joint forces during a motion cycle. The third stage of muscle force predictions utilizes

the data of inverse kinematics, inverse dynamics and measured isometric strength of

skeletal joints along with the data from the Hill type muscle model to generate muscle

force predictions.

The musculoskeletal models used are 3-D computer models for the human muscu-

loskeletal system with 23 degrees of freedom. The model comprises of 92 musculoten-

don actuators which represent various muscles present in the lower extremities. The

analysis has been centered around the following muscles from the hip musculature as

shown in Figure 3.3 and 3.4:

• Gluetus maximums

• Gluetus minimus

3https://lumenlearning.com/
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• Gluetus medius

• Semimembraneous

• Semitendinosus

• Tensor faciae latae

• Quadriceps femoris muscles

– Rectus femoris

– Vastus intermedius

– Vastus lateralis

– Vastus medialis

To mirror a patient’s musculoskeletal structure on the virtual musculoskeletal

model, scaling was performed to match the relative distances between the experimen-

tal markers on the patient’s body. Body segment dimensions, mass properties, muscle

actuators, and wrapping objects of the virtual model were also scaled according to the

actual values of the patient’s body segment parameters. Baseline simulation was used

to measure kinematics and ground reaction forces for each patient’s musculoskeletal

model which helps to estimate the joint contact forces and muscle forces.

3.3 Data Definition
The data collection and simulation process created a numerical dataset of 48 pa-

tients that is composed of time-series features like joint angles, joint forces and muscle

forces for one cycle of “sit-to-stand” motion, where each feature consists of values for

100 time units. The features are categorized under inverse kinematics, inverse dy-

namics, muscle forces, and body segment parameters as follows:

3.3.1 Inverse kinematics

The following features (unit: degrees) are related to the pelvis.

1. Pelvis tilt

2. Pelvis list

3. Pelvis rotation

The following joint angles (unit: degrees) are simulated for the right and left sides

of the lower extremity.
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1. Hip flexion

2. Hip adduction

3. Hip rotation

4. Knee flexion

5. Ankle angle

The features (unit: degrees) related to the rotation of the abdominal segment are

as follows:

1. Lumbar bending

2. Lumbar rotation

The following features (unit: meters) are related to the translation and extension

of the abdominal segment.

1. Pelvis translation (3-dimensional)

2. Lumbar extension

3.3.2 Inverse dynamics

The following joint forces (unit: newtons) are simulated for right and left side of

the lower extremity.

1. Hip joint force (3-dimensional)

2. Hip joint force magnitude

3. Knee joint force (3-dimensional)

4. Knee joint force magnitude

3.3.3 Muscle forces

The following muscle forces (unit: newtons) are simulated for right and left side of

the lower extremity.

1. Semimembranosus force

2. Semitendinosus force

3. Biceps femoris-long head force

4. Biceps femoris-short head force

5. Gluteus maximus force

6. Rectus femoris force
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7. Vastus medialis force

8. Vastus intermedius force

9. Vastus lateralis force

10. Medial gastrocnemius force

11. Lateral gastrocnemius force

12. Soleus force

3.3.4 Body segment parameters

The following features are recorded in the motion capture system.

1. Mass (unit: kilo-grams)

2. Ground reaction force (right and left leg) (3-dimensional), (unit: newtons)

3. Center of pressure (right and left feet) (2-dimensional), (unit: meters)

4. Moment (right and left leg), (unit: newton-meters)

Detailed information about the features can be found in Appendix A.3.

The original dataset is provided in a file with 7502 columns and 48 rows that consists

of time-series musculoskeletal information of 48 patients for one “sit-to-stand” motion

cycle. There are a total of 75 time series features for a motion cycle, each divided

into 100 time units and two singular value features, weight and height of patients.

Figure 3.5: Supervised learning using the dataset

For this research, we perform supervised learning for motion quality prediction

using Inverse kinematics as the input feature and motion quality, quantified using

muscle forces and joint forces, as the output feature.
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3.4 Data Normalization

Weight Normalization

Features with units in newtons and newton-meters have a direct correlation with

the weight of the patient. Hence, it is essential to normalize the features such that

the values are independent of the weight of the patients and this makes it possible

to compare features like muscle forces or joint forces of different patients with each

other. The final values that will be received by weight normalization will be a factor

of the weight of the patient. So, the forces acting on the muscles and joints will be

proportional to body weight.

Let F be a matrix of a feature with unit either newtons or newton-meters for all

48 patients. Let M be a vector of patients’ mass. The following approach is used to

perform weight normalization:

Algorithm 3 Weight Normalization

Input: F1 . . . F100 for P1 . . . P48, M1 . . .M48

Output: Weight Normalized Series for each Patient

1: function NormalizeByWeight(F,M)
2: for p← 1 to 48 do
3: for t← 1 to 100 do
4: F [p, t] = F [p, t]/(M [p] ∗ 9.8)
5: end for
6: end for
7: return F
8: end function

Mean Centering

As discussed in Section 2.4.1, mean centering is an important step to be performed

when a combination of variables is formed by selecting relevant features from different

sets of units like newton-meters, newtons, meters, and degrees as there can be a

difference in the magnitude ranges which can affect regression models and neural

network predictions. Even if the features have the same unit, the magnitude can

differ based on the application on different subjects. After applying this process,

the overall maximum and minimum range can be compressed significantly, and every

variable will have an increased significance of its properties.
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Figure 3.6: Original input sequence for patient 1

Figure 3.6 represents a combination of 31 time-series consisting of original inverse

kinematics and body segment parameters, stacked one after the other in the form of a

one-dimensional vector. The plot shows variable magnitudes having units in newtons,

degrees, and meters. The figure suggests that there is a scope of normalization as

peaks with higher magnitudes are present along with lower magnitude values.

Mean centering if performed for all the features of 48 patients using Algorithm 1

where each data point in a series is subtracted by the mean value of that series.

After performing weight normalization on some features and then mean centering

on all the features, the original sequence of 31 features, as shown in Figure 3.6,

transforms to a sequence of new values as shown in Figure 3.7.

Relative Variation Scaling

As discussed in Section 2.4.2 for performing relative variation scaling, every data

point in each time-series is divided by the value of the first data point of the series.

Applying this normalization approach transforms the dataset to a new data consisting

of relative growth factors in each time-series.

After performing the normalization using Algorithm 2 on the time-series as shown

in Figure 3.6 transforms the sequence to a new sequence as shown in Figure 3.8.
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Figure 3.7: Mean centered input sequence for patient 1
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Figure 3.8: Relative variation scaled sequence for patient 1

3.5 Feature Selection
For analyzing the motion quality of THA patients, a meaningful selection of features

should be made that corresponds to the most relevant information for a type of

motion. For “sit-to-stand” motion, the focus is on the lower extremity of the human

body which is the most active part during the motion. Lower extremity governs the

forces acting on various parts including joints and muscles.

For human bodies with artificial peripherals embedded in their musculoskeletal

system, the focus of interest is on the joint forces and the forces acting on the muscles

that function as actuators. The lower extremity joints active during a “sit-to-stand”
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motion are hip joints and knee joints, and these joints are connected via the quadriceps

femoris muscle group that consists of the following:

• Rectus femoris

• Vastus intermedius

• Vastus lateralis

• Vastus medialis

Accounting the role of the quadriceps femoris muscles as strong extensors in the

patellofemoral joint function, Appendix A.2.4, these muscles significantly impact the

ability to stand and walk, and thus the motion quality of the human body [18]. The

hip joint replacement will primarily affect the post-surgical motion of the body, and

the variables specific to the quadriceps femoris muscles will hold higher significance

in motion analysis.

3.6 Patient Profiles
Each patient has unique body structure, complimenting that, patients could have

different or same symptoms leading to THA and will have different post-surgical

consequences on the body movements and forces acting on the body parts. Post-

surgical motion can be analyzed by visualizing forces acting on the hip joints, knee

joints and the quadriceps femoris muscles collectively called a patient’s profile. Based

on different patient profiles, different inferences can be observed corresponding to

their post-surgical motion quality. Following are the patient-specific discussions for

three patients, on how the loads on joints and muscles affect the motion quality by

observing the plots of the forces.

Figure 3.9 illustrates forces acting on the joints and muscles of patient 1 during

one cycle of “sit-to-stand” motion. It is evident that the magnitudes of forces are

ascending just after the patient initiated the activity to stand up from a chair and

then gradually descending towards the end of the motion. Overall this is a satisfactory

motion as the last state of the body is static standing and we expect the body forces

to stabilize as there is no motion in progress.

The downside of this profile is that the maximum magnitude of forces acting on hip

joints and knee joints are more than five times the body weight and is more than ten

times on the right hip joint. This explains the efforts made by the patient to stand up
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Figure 3.9: Patient 1 profile with selected features

from a static sitting position. From this profile, an imbalance in the lower extremity

is noticeable by looking at the peaks of hip joint forces acting on both sides. There

is a considerable difference in the forces acting on both the hip joints and is a cause

of imbalance which affects the overall motion quality.

Figure 3.10 illustrates forces acting on the joints and muscles of patient 32 during

one cycle of “sit-to-stand” motion. This profile is different from that of patient 1

as, during the start of the motion, the magnitudes of all forces are less than 3 times

the body weight, that suggests less efforts made to stand up from a chair, but after

40 time units, the forces have increased significantly for all the features and are

inconsistent. When the patient is in a static standing position, the forces are not

normalized and are at higher peaks as compared to when the motion started. Patient

32 is more comfortable in a sitting position and requires additional efforts to stand.

This is possibly a case of an unsatisfactory hip replacement surgery because, during

static standing position, the body is still applying forces to attain an equilibrium.

Moreover, the imbalance is evident from this profile as the magnitudes of forces on

all features on both sides respectively are significantly different.
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Figure 3.10: Patient 32 profile with selected features
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Figure 3.11: Patient 46 profile with selected features

Figure 3.11 illustrates forces acting on the joints and muscles of patient 46 during

one cycle of “sit-to-stand” motion. This profile suggests a difficult start of the motion
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while standing up from a chair as the magnitudes of forces acting on joints and some

muscles are higher during the start of the motion. Similar to the other patients, the

forces acting on the hip and knee joints are considerably higher than the load on the

muscles.

This profile has a converging pattern of forces where the motion start was not as

good as the end of the motion. The patient’s standing stance is quite stable as all

the forces are converging to their minimum magnitudes at the time step 100. This

patient has a satisfactory static position, but when the body is in motion, the forces

are imbalanced and seem to be a laborious task.

3.7 Feature Contrast

Figure 3.12: Contrasting forces on left knee joint of patient 32 with other patients

To establish a relation between a specific patient and all other patients to analyze

the relative motion quality, we constructed an analysis shown in Figure 3.12 that

represents box plots of a feature of 47 patients at each time step, contrasting the

same feature of a specific patient with a time series illustrated using dots. It can be

seen that where, during the motion, the force acting on a feature is higher or lower

as compared to the other patients’ forces.
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Figure 3.12 is a contrast between patient 32 and all other patients, illustrating the

distribution of force acting on the left knee joint. The force on the joint is shown

using dots which lies in every zone of the overall distribution of the other 47 patients.

The points in the zone between the first(0%) and second quartile(25%) are colored

with green and are lying in the safe zone as these loads are lower than the average

loads of other patients.

The points lying between the second(25%) and fourth quartile(75%) are marked

with yellow (for points less than the median(50%)) and orange (for points greater

than the median(50%)). This zone is the average zone since, in this zone, the load

on the left knee joint is in the average magnitude interval of load distribution of all

other patients.

Points that are between fourth quartile(75%) and fifth quartile(100%) are colored

in red, as they lie in the zone where points exceed the average magnitudes of the force

acting on the same feature for other 47 patients at each time step. Any point lying

in this zone contributes to a poor motion quality.

This approach of feature contrast is used for analyzing all the features of the 48

THA patients to understand their “sit-to-stand” motion profiles with more insights

about load patterns and relative motion qualities.
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Chapter 4

Research and Analysis - Phase 1

4.1 Introduction
In this section, we attempt to analyze the patients’ profiles by visualizing the forces

acting on the joints and muscles of the lower extremity during one cycle of the “sit-

to-stand” motion and discuss how it can affect a patient’s motion quality. We also

explain how we can create a motion quality metric using the available dataset of

muscle and joint forces for the motion. Further, we discover that the motion quality,

quantified by remodeling the muscle and joint forces data, is embedded in the inverse

kinematics dataset by visualizing the cluster formation with the help of component

analysis techniques like PCA and PARAFAC. The discovery of motion quality in the

inverse kinematics dataset leads to the motivation of improving the motion quality

assessment and recreating the metric of patients’ distribution in the motion quality

categories: “Fair” and “Poor”. This section also explains about some data remodeling

techniques that can be utilized while working on a wide-shaped dataset.

Figure 4.1 shows the flow of research and analysis we perform to achieve a set of

relevant features from the inverse kinematics dataset and muscle forces that resemble

the body balance during the “sit-to-stand” motion. These features are further used

with a regression model and ANN to predict the classified motion quality, as explained

in Chapter 5.
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Figure 4.1: Research and Analysis flow chart, Phase 1

4.2 Motion Quality Analysis
The profile of patients is used to categorize the motion quality by analyzing the

loads on the muscles and joints of both sides of the lower extremity. The profiles

explain the inconsistency in the load patterns of muscles and joints, which is a sign

of instability of motion. Also, there are different ranges of high load magnitudes at
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different time steps which tells about efforts exerted by the body during various stages

of a “sit-to-stand” motion.

To address the instability of forces during the motion and inconsistent load patterns

together, we use the difference in the magnitude of each feature of both sides of the

human body for motion quality analysis. The differences, which are referred to as

deltas, allow the consideration of discrepancies in muscle and joint loads on both sides

of the human body. In this way, the body balance can be analyzed by looking at load

dominance on either side of the lower extremity during one cycle of the motion.

Algorithm 4 Feature Delta Calculation

Input: Fright, Fleft for P1 . . . P48

Output: Feature Delta Series for all Patients

1: function CalculateFeatureDelta(Fright, Fleft)
2: Let δ be a 2D vector
3: for p← 1 to 48 do
4: for t← 1 to 100 do
5: δ[p, t] = Fright[p, t] − Fleft[p, t]
6: end for
7: end for
8: return δ
9: end function

Algorithm 4 is used to calculate the delta of a feature for all the patients by

subtracting the loads on the left side from the loads on the right side of the lower

extremity.

Figure 4.2 represents a delta data of the vastus medialis muscle load for patient 29,

which is contrasted with the other 47 patients’ delta distribution at each time step.

It has two parts :

1. Collective box plot

2. Muscle load delta dot plot

Collective box plot

The box plot shown in Figure 4.2 represents the distribution of vastus medialis

muscle load for the other 47 patients at each time unit. There are a total of 100 box

plots for a complete motion cycle, and for each time unit, they represent a distribution
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Figure 4.2: Vastus Medialis Load Delta, Patient 29

of delta force acting on the muscle for every patient except patient 29. This plot is

used to compare the load dominance of patient 29 by contrasting with the delta series

of the same delta feature of all the other 47 patients.

Muscle load delta dot plot

The curve represented by the dots is the delta series of vastus medialis muscle load

of patient 29 that describes a pattern of load dominance on the muscles of the left and

right side of the patient. It is evident that during the “sit-to-stand” motion, the load

dominance oscillates from one side to the other. As these delta values are a result

of subtraction between the loads on two muscles, it represents a continuous change

in the load dominance moving from one side to another. The plot shows that during

the motion, at different stages, the patient shifts the load to either side to attain a

balance to get up from the chair and stand.

Unlike the feature contrast in Figure 3.12, there are two “dominant” regions in

Figure 4.2, one less than the second quartile and one greater than the fourth quartile.

Any point lying in either of the regions represents the load dominance on either side

of the lower extremity.

By comparing the delta plot of patient 29 with all other patients’ load distribution,

we infer about the dominance of load on each side. At each time step, if the delta

force has a magnitude less than the second quartile value, the force is dominant on
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the muscle of the left side, and if it is greater than the fourth quartile, the force is

dominant on the muscle of the right side.

The “dominant” region is in the outer region of the average interval of the load

distribution of all other patients at each time step, and we are interested in the

occurrences of the load in that region. Any point lying in the “dominant” region

accounts for the degraded quality of motion as it represents load imbalance in the

lower extremity during the motion cycle.

4.3 Motion Quality Quantification
To quantify the motion quality of the patients for a “sit-to-stand” motion, selection

of features that are most relevant is done from the features of inverse dynamics and

muscle forces. As discussed in the section for feature selection, Section 3.5, the

quadriceps femoris muscles are the significant entities of the musculoskeletal system

to focus on to perform the motion analysis. Hip joints and knee joints are also

substantial and active parts of the body while performing the “sit-to-stand” motion.

Hence, the following features are selected among all other time-series features, for the

initial analysis and quantification of the motion quality:

1. Rectus femoris force

2. Vastus medialis force

3. Vastus intermedius force

4. Vastus lateralis force

5. Knee loint force

6. Hip joint force

Let the above set of features be the Feature Set 1. This selection of variables covers

the forces acting on the hip and knee joints and the muscles connecting them.

Finally, the quantification of the relative motion quality for each patient is per-

formed using Algorithm 5 by counting the delta force occurrences in the “dominant”

region for all the delta series that constitutes Feature Set 1. Figure 4.3 represents the

result of the motion quality quantification for each patient.

Figure 4.3 represents the percentage of total “dominant” region occurrences for

each patient for 6 features in Feature Set 1 that can have total 600 “dominant”
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Algorithm 5 Motion Quality Quantification

Input: δF1 . . . δFn for P1 . . . P48

Output: Quantified Motion Quality Array σ

1: function QuantifyMotionQuality(δF [])
2: Let σ be a 1D vector
3: for p← 1 to 48 do
4: for δ ← δF [] do
5: δp ← δ[p, ]
6: δquartile ← GetQuartiles(δ[−(p), ])
7: for t← 1 to 100 do
8: if (δp[t] < δqaurtile[2, t]) Or (δp[t] > δqaurtile[4, t])
9: then σ[p] + = 1
10: end for
11: end for
12: end for
13: return σ
14: end function
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Figure 4.3: Dominant section occurrences for all the patients using the Feature Set 1

region occurrences. It can be seen that the highest percentage of “dominant” region

occurrences, which is 89%, is for patient 3. To understand it more, Figures 4.4 and

4.5 illustrate the profile of patient 3 by contrasting the delta features in Feature Set

1 with other patients. Most of the “dominant” region occurrences have a negative
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magnitude which means that the load dominance is on the left of the lower extremity

throughout the “sit-to-stand” motion. It may be inferred from this profile that the

THA would have been done on the right hip joint as the patient prefers to put more

load on the left side. The consequence of deliberate dominance on either of the sides

affects the motion quality significantly.

Figure 4.4: (a) Feature delta contrast for patient 3 using Feature Set 1
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Figure 4.5: (b) Feature delta contrast for patient 3 using Feature Set 1

4.4 Motion Quality Classification
The quantified motion quality, in Figure 4.3, is a continuous variable where every

patient can have the “dominant” region occurrences ranging from zero to 600 (6 fea-

tures with 100 time-series each). The continuous variable is converted to a categorical

variable to classify the motion quality.

The motion quality of THA patients is affected by the surgery as the prosthetic

implants don’t perform as natural hip joints; therefore, the motion quality is classified
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into the categories: “Fair” and “Poor”. The “Fair” motion quality category suggests

that there is an irregular pattern of forces acting on the muscles that cause some

immobility in the motion, whereas “Poor” motion quality indicates that possibly the

THA surgery was not satisfactory for the patient and had affected the movements

with a high degree of instability.

We chose only two classes for motion quality because increasing the number of

classes will decrease the number of patients falling in each category. The data we use

is for 48 patients, which is a small dataset for machine learning algorithms.

Algorithm 6 is used to classify the patients in the categories of motion quality, which

divides the patients based on the count of occurrences in the “dominant” region into a

given number of categories. The numerical values calculated for the categories “Fair”

and “Poor” are 0 and 1 respectively.

Algorithm 6 Motion Quality Classification

Input: Quantified motion quality vector σ
Output: Motion quality classification vector

1: function MotionQualityClassifier(σ[], Categories, FeatureCount)
2: Let QualityV ector = []
3: for count← σ do

4: QualityV ector[i] =

⌊
count

(FeatureCount ∗ 100)
∗ Categories

⌋
5: end for
6: return QualityV ector
7: end function

Table 4.1 shows the distribution of patients into the categories “Fair” and “Poor”.

From this analysis, we can divide the patients into two groups, where the patients in

group “Fair” are more than the patients in group “Poor”. This classification is further

used to analyze the inverse kinematics dataset to observe any information that can

be useful to form clusters that separate the patients based on these categories.

Fair Poor

26 22

Table 4.1: Distribution of patients in motion quality categories using Feature Set 1
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4.5 Principal Component Analysis (PCA)
For the initial analysis, we have used all the features of the inverse kinematics

dataset and tried to visualize the components generated by the PCA algorithm with

classified motion quality to see any cluster formation of both classes respectively.

This technique requires the input dataset in the form of a 2-dimensional vector.

Hence, mean centered and relative variation scaled data is used for PCA separately

to determine the suitable dataset among the two for the motion quality classification.

All the features are stacked one after the other for all patients in separate rows that

form a 2-dimensional vector.

There is a total of 19 time-series features with 100 time units each in the inverse

kinematics dataset for 48 THA patients’ observations. Therefore, according to the

rule of maximum components, discussed in Section 2.5.1, the maximum number of

components that can be generated by the PCA is 48.

4.5.1 PCA - Inverse Kinematics

Mean Centered

The mean centered time-series, as shown in Figure 3.7, is used for the analysis.

Figure 4.6 shows variance in each component and a cumulative variance on the top

of each bar plot. It is evident that the variance in each component is decreasing

exponentially from the first to the forty-eighth component. The cumulative variance

for the last component is 100%, which shows that all the components cumulatively

represents the variance in the original inverse kinematics dataset.

Each component has 48 data points that represent the original data points for each

patient. Figure 4.7 is the representation of PC1 and PC2 where the dots and trian-

gles represent patients classified in the motion quality categories “Fair” and “Poor”

respectively. From this plot, it is observable that the patients in both categories are

grouped in their respective clusters. There is a high amount of intersection between

both the clusters that causes misclassifications, and hence, the analysis using motion

quality from the Feature Set 1 and all inverse kinematics features can be improved.

Result: The cluster formation of the two classes is a good sign which represents

the existence of motion quality information in the inverse kinematics dataset. In

Figure 4.7, PC1 is the component which separates the two clusters and according

66



 2
6

.1
1

 %

 4
0

.7
0

 %

 5
0

.4
6

 %

 5
8

.0
9

 %

 6
4

.2
3

 %

 6
9

.0
5

 %

 7
3

.1
0

 %

 7
6

.2
4

 %

 7
9

.1
5

 %

 8
1

.8
0

 %

 8
4

.1
2

 %

 8
6

.2
0

 %

 8
7

.7
7

 %

 8
9

.2
4

 %

 9
0

.6
4

 %

 9
1

.8
2

 %

 9
2

.7
7

 %

 9
3

.5
3

 %

 9
4

.2
6

 %

 9
4

.9
5

 %

 9
5

.5
6

 %

 9
6

.0
6

 %

 9
6

.5
5

 %

 9
6

.9
7

 %

 9
7

.3
5

 %

 9
7

.7
0

 %

 9
7

.9
9

 %

 9
8

.2
6

 %

 9
8

.5
0

 %

 9
8

.7
1

 %

 9
8

.8
9

 %

 9
9

.0
5

 %

 9
9

.2
0

 %

 9
9

.3
1

 %

 9
9

.4
2

 %

 9
9

.5
2

 %

 9
9

.6
2

 %

 9
9

.6
9

 %

 9
9

.7
5

 %

 9
9

.8
0

 %

 9
9

.8
4

 %

 9
9

.8
8

 %

 9
9

.9
1

 %

 9
9

.9
5

 %

 9
9

.9
7

 %

 9
9

.9
9

 %

1
0

0
.0

0
 %

1
0

0
.0

0
 %

0.0

0.1

0.2

0.3

0 10 20 30 40 50

Component

V
a
ri

a
n
c
e

Figure 4.6: Variance in the components generated by the PCA on the mean centered
inverse kinematic features

to Figure 4.6, PC1 accounts to 26.11% of the variance in the original dataset. The

projected data points of each patient on the PC1 are in such an order that forms a

grouping according to the motion quality categories. Hence, PC1 becomes the most

important component out of the 48 components that also accounts to the maximum

variance of the original dataset than others. From this result, we can infer that the

motion quality does exist in the inverse kinematics dataset with a significant amount

of variance.

In the next steps, we try to improve the motion quality quantification and select

the relevant inverse kinematics features for component analysis that can improve the

clustering significantly.

Relative Variation Scaled

The relative variation scaled time-series, as shown in Figure 2.7, is used for the

analysis. Figure 4.8 shows variance in each component and a cumulative variance
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Figure 4.7: Clustering of the patients using motion quality categories using the Fea-
ture Set 1, and components generated using all the mean centered inverse kinematics
features

on the top of each bar. It is observable that the variance is decreasing exponentially

from the first component to the forty-eighth component. The cumulative variance

for the last component is 100%, which shows that all the components cumulatively

represents the variance in the original inverse kinematics dataset.

Figure 4.9 is the representation of PC1 and PC2 where the dots and triangles

represent patients classified in the motion quality categories “Fair” and “Poor” re-

spectively. This plot depicts that data points in both the classes are grouped in their

respective clusters. There is a high amount of intersection between both the clus-

ters, and hence, the analysis using motion quality from the Feature Set 1 and all the

relative variation scaled inverse kinematics features can be improved.

Result: The cluster formation using relative variation scaled inverse kinematics

data has a high degree of the intersection. In Figure 4.7, PC1 is the component which

separates the two clusters and according to Figure 4.6, PC1 accounts to 22.84% of the
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Figure 4.8: Variance in the components generated by the PCA on the relative varia-
tion scaled inverse kinematic features

variance in the original dataset. From this result, we infer that the relative variation

scaled dataset can be used for further improvements in the motion quality analysis.

PCA Result: Motion Quality Discovery

The inverse kinematics dataset can classify the patients in their respective motion

quality categories, which were derived by the delta features of joint loads and muscle

loads. Both the mean centered and the relative variation scaled dataset produced

clustering where the mean centered has better cluster separation.

The result so far is not satisfactory as there are many misclassified patients in

the clustering. Possibly, the Feature Set 1 has unnecessary information about the

musculoskeletal forces that do not resemble the balance of the human body during

the “sit-to-stand” motion.

For the process of improving the motion quality quantification, in the next steps,

we form different feature sets that represent information about different parts of the
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Figure 4.9: Clustering of the patients using motion quality categories using the Fea-
ture Set 1, and components generated using all the relative variation scaled inverse
kinematics features

musculoskeletal system. We aim to find the set of features from the muscle and joint

forces that can accurately resemble the body balance, which in turn will improve the

cluster formation.

4.6 Parallel Factor Analysis (PARAFAC)
PARAFAC is another technique for dimensionality reduction that we use to explore

and analyze the motion quality of all the patients in both the normalized variants of

the inverse kinematics dataset. PARAFAC works on a multi-way dataset, and there-

fore, a 2-dimensional vector of inverse kinematics is remodeled into a 3-dimensional

vector.

4.6.1 Data Remodeling

The inverse kinematics dataset is logically a 3-dimensional dataset where the di-

mensions are patient’s index, features, and time-series values of the features. Figure
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4.10 represents the 3-dimensional surface for the remodeled original inverse kinematics

dataset for patient 1.

(a) 3D viewpoint 1 (b) 3D viewpoint 2

Figure 4.10: 3D model of original inverse kinematic features for patient 1

Mean Centered

Figure 4.11 is the 3-dimensional representation of mean centered inverse kinematics

dataset for patient 1, which is used for the PARAFAC analysis.

Figure 4.12 represents clustering formed by the two components extracted from

PARAFAC on a mean centered inverse kinematics dataset with motion quality quan-

tified using Feature Set 1. There are two clusters in the plot with a high degree of

mixed data points of each category. This analysis with 3-dimensional data does not

yield the information that we seek because the remodeled dataset is prone to loss of

information pertaining to the classification of motion quality.

Relative Variation Scaled

Figure 4.13 is the 3-dimensional representation of relative variation scaled inverse

kinematics dataset for patient 1 which is used for the PARAFAC analysis.

Figure 4.14 represents clustering formed by two components extracted from the

PARAFAC analysis on relative variation scaled inverse kinematics dataset with mo-

tion quality quantified using Feature Set 1. The clustering for both the classes has
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(a) 3D viewpoint 1
(b) 3D viewpoint 2

Figure 4.11: 3D visualization of mean centered inverse kinematic features for patient
1
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Figure 4.12: Clustering of the patients using motion quality categories using the
Feature Set 1, and PARAFAC components generated using all the mean centered
inverse kinematics features
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(a) 3D viewpoint 1 (b) 3D viewpoint 2

Figure 4.13: 3D model of relative variation scaled inverse kinematic features for
patient 1

a high degree of overlap. Therefore, PARAFAC analysis on relative variation scaled

dataset is not a suitable option for further analysis.

4.7 Motion Quality Evolution
With the help of PCA and PARAFAC, we are to able to achieve the dimension-

ality reduction of the dataset from 600 attributes to 48 attributes called principal

components. Each patient has it’s unique projected location on every component.

Therefore, for a type of dataset, for example, mean centered dataset, the relative

position of each data point in Figure 4.7 is fixed. To achieve better clustering of the

patients in their respective motion quality categories, represented by the labeling of

the data points in Figure 4.7, we aim to improve the motion quantification process

by refining the selection of features used to calculate the motion quality metric.

From the previous analysis, we discovered that PCA with mean centered dataset

has produced a good clustering of motion quality quantified using Feature Set 1 as

compared to the analysis on relative variation scaled inverse kinematics dataset. On

the other hand, PARAFAC has also produced better clustering with mean centered

dataset as compared to the relative variation scaled dataset. Therefore, we perform all
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Figure 4.14: Clustering of the patients using motion quality categories using the
Feature Set 1, and PARAFAC components generated using all the relative variation
scaled inverse kinematics features

possible analysis using PCA and PARAFAC on mean centered, and relative variation

scaled dataset with new feature sets, to ensure the achievement of the best clustering

for motion quality.

The previous analysis has proved that the body balance can be detected using two

classes “Fair” and “Poor”, as the component analysis techniques produced separate

clusters of each class, but with the intersection between the clusters, which can lead

to misclassifications. Previous analysis inspires the idea of quantifying motion quality

using different feature sets. It infers that the motion quality quantified using Feature

Set 1 may not be the best feature set that resembles body balance during the “sit-

to-stand” motion. Therefore, we develop different kinds of feature sets that may

be related to body balance during the motion cycle. The confirmation of the most

relevant feature set is achieved by performing component analysis techniques and

visualizing the motion quality classification using respective feature sets. Different

feature sets developed are as follows:
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1. Feature set 2 : All muscle loads

(a) Rectus femoris delta force

(b) Vastus medialis delta force

(c) Vastus intermedius delta force

(d) Vastus lateralis delta force

This feature set contains only the delta forces on muscles included in the quadri-

ceps femoris muscle group. As the muscles acts as actuators to control the

motion, this set of muscles can be a good set to analyze the motion balance.

2. Feature Set 3 : Selected muscle loads

(a) Vastus medialis delta force

(b) Vastus intermedius delta force

(c) Vastus lateralis delta force

This feature set is similar to the Feature Set 2 but excludes the rectus femoris

muscle which may not be the most important muscle to be considered while

analyzing the body balance.

3. Feature Set 4 : Joint loads

(a) Hip joint delta force

(b) Knee joint delta force

This feature set contains only the forces on the joints of the most active part

of the lower extremity during the “sit-to-stand” motion. Considering only the

joint loads could produce interesting results.

4. Feature Set 5: Vastus medialis delta force

5. Feature Set 6: Vastus intermedius delta force

6. Feature Set 7: Vastus lateralis delta force

The Feature Sets 5, 6, and 7 have only one muscle that will help us understand

if they are the most important features pertaining to the body balance.

7. Feature Set 8: Hip joint delta force

8. Feature Set 9: Knee joint delta force

The Feature Sets 8 and 9 have only one joint load that will help us understand

the significance of the hip and knee join loads for the analysis of motion quality.
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Performing analysis on the above feature sets helps identify any noise we have

included in the Feature Set 1, as the new feature sets contain selective features and

exclude different sets of features which could be the source of the noise.

Figures in Appendix A.4 represents clustering formed by PCA on mean-centered

inverse kinematics dataset and motion quality classified using all the new feature sets.

Among these plots including Figure 4.7 for Feature Set 1, it can be seen that the best

clustering is formed using Feature Set 3.

Figures in Appendix A.5 represents clustering formed by PCA on relative variation

scaled inverse kinematics dataset and motion quality classified using all the new

feature sets. Among these plots including Figure 4.9 for Feature Set 1, it can be

seen that the best clustering is formed using Feature Set 3 but still has a high degree

of overlap between the clusters.

Figures in Appendix A.6 represent clustering formed by PARAFAC on mean-

centered inverse kinematics dataset and motion quality classified using all the new

feature sets. Among these plots including Figure 4.12 for Feature Set 1, it is evident

that the best clustering is formed using Feature Set 3 in this analysis as well, but

since there is a high degree of the mix in the clustering, we do not take PARAFAC

along with mean centered dataset for further analysis.

From the analysis using PCA and PARAFAC using all the feature sets, it is found

that the Feature Set 3 resembles the body balance well as compared to the other

feature sets. It also proves that the muscles between the hip joint and knee joints are

responsible for attaining the body balance during the “sit-to-stand” motion and hip

joint loads and knee joint loads do not contribute in the attainment of body balance.

Table 4.2 shows the result of feature set selection after analysis on mean-centered

and relative variation scaled datasets using PCA and PARAFAC. It is found that the

best clustering of patient using motion quality categories if formed using Feature Set

3 by performing PCA. We are interested in selecting only one feature set using either

PCA or PARAFAC to get the best results, therefore, any other clustering which is

close but not as good as PCA on the Feature Set 3 is not considered for the further

analysis.

It can be understood from the analysis that PCA is a better dimensionality re-

duction technique for the analysis of motion quality than the PARAFAC technique
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Mean Centered

Analysis

Feature Set
FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9

PCA No No Yes No No No No No No

PARAFAC No No No No No No No No No

Relative Variation Scaled

Analysis

Feature Set
FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9

PCA No No No No No No No No No

PARAFAC No No No No No No No No No

Table 4.2: Selection of feature sets based on PCA and PARAFAC analysis

as PCA works with a 2-way vector whereas PARAFAC works with a 3-way vector.

There is a loss of information while remodeling the data in 3 dimensions which affects

the motion quality analysis.

Hence, the motion quality quantification is evolved by removing the hip joint loads,

knee joint loads and rectus femoris muscle loads from the Feature Set 1, which acts as

noise when considering the motion quality analysis based on body balance. Therefore,

the most important muscles responsible for the body balance of lower extremity during

a “sit-to-stand” motion are vastus medialis, vastus intermedius, and vastus lateralis.

Table 4.3 shows the new distribution of patients in the motion quality classes “Fair”

and “Poor” quantified using Feature Set 3.

Fair Poor

23 25

Table 4.3: Distribution of patients in motion quality categories using Feature Set 3

4.8 Input Feature Selection
From the analysis in Section 4.7, we achieved a clustering for further investigation

by applying PCA on mean-centered inverse kinematics features. The current input

set of inverse kinematics consists of 19 features that represent the joint angles of

the lower extremity during a “sit-to-stand” motion cycle. It is not necessary that

77



all the features are relevant for the study of motion quality that depicts the body

balance, hence, selection of most relevant features from the inverse kinematics dataset

is performed using the results of the PCA.

From Figure 4, it can be seen that the important principal components out of PC1

and PC2 is PC1 as the cluster separation is achieved by the distribution of data

points on the PC1. Also, PC1 consists of the maximum variance of the original 19

inverse kinematics features as compared to the other principal components, hence,

we perform the feature selection using the information collected in the PC1, .

As discussed in Section 2.5.1, during the PCA, the original data points are projected

to the orthogonal vectors called principal components, and after minimization of

the mean squared error of all the projections, the final principal components are

generated. The distance between the point of projection on the principal component

and the center of principal component, “zero”, is called a loading for the original

data point. These loadings are responsible for accumulating the variance from the

original dataset onto the principal components. The bigger the loading, the more is

the relevance of the feature for the principal component. Hence, feature selection is

performed by sorting the loading magnitudes and selecting the features with higher

magnitudes.

Figure 4.15 shows a bar plot of PCA loadings for 19 inverse kinematics features

with the magnitude of loading on the y-axis and the indices of the linearly stacked

time series feature on the x-axis. The feature indices with higher loadings are shown

above the peaks from which the feature selection is performed. We selected the top

6 features with maximum loadings whose index and feature mapping is shown as

follows:

1. Index 437 - Pelvis tilt on y-axis

2. Index 346 - Pelvis tilt on x-axis

3. Index 941 - Knee flexion of right leg

4. Index 1440 - Knee flexion of left leg

5. Index 1088 - Right ankle angle

6. Index 1594 - Left ankle angle
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Figure 4.15: PC1 loadings for mean centered inverse kinematics features

It can be seen from the above selection that the top 6 features are in pairs of the

same kind of feature on a different axis and both sides of the lower extremity. This

is a good result which resembles the quantified motion quality using delta forces on

the muscles that depict the balance of the lower extremity of the human body during

the “sit-to-stand” motion cycle.

From this analysis, we understand the features like pelvis tilt, knee flexion, and

ankle angle resembles the motion quality quantified using the quadriceps femoris

muscles. The motion quality can be predicted using ANN models using these selected

joint angles.

Figure 4.16 shows PCA results using the top 6 inverse kinematics features, and

cluster formation using the Feature Set 3. It has a total of 9 misclassifications in

both the clusters when visualized with the PC1 and PC2.
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Figure 4.16: Clustering form by PCA using mean centered top 6 inverse kinematics
features and motion quality quantified using Feature Set 3
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Chapter 5

Research and Analysis - Phase 2

5.1 Introduction
To bridge the gap between the inverse kinematics stage of musculoskeletal data

simulation and the motion quality quantification, by eliminating the inverse dynamics

and muscle force prediction stages, we utilize ANN by performing supervised learning

with the inverse kinematics features as the predictors and the classified motion quality

as the predictions. The ANN training is conducted using such a technique that, even

though the training is performed using a small number of records, it can efficiently

predict the motion quality from any unseen dataset. For this purpose, we use some of

the muscle forces and joint angles of the lower extremity that are the result of motion

quality evolution and input feature selection, as discussed in Chapter 3.

Figure 5.1: Bridging the gap between inverse kinematics and motion quality
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Apart from deploying multiple variants of ANN for the prediction of motion quality,

we also attempt to contrast a conventional regression technique - Logistic regression

with ANN in terms of their performance on the same dataset.

The outcome of this section explains how we can approach to improve the ANN

models like feedforward, CNN, and LSTM that uses the wide-shaped dataset for

supervised learning. Moreover, it also explores experimental techniques like autoen-

coders and merged networks of different ANN variants like CNN and LSTM for effi-

cient supervised learning.

Figure 5.2: Research and Analysis, Phase 2, work flow

Figure 5.2 describes the flow of research and analysis we perform using multiple

machine learning techniques to predict the motion quality of THA patients using the

refined input dataset and motion quality classified in Phase 1.
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5.2 Logistic Regression - Motion Quality Predic-

tion
Logistic regression is one of the conventional regression method for binary classi-

fication. As the motion quality is divided into 2 categories: “Fair” and “Poor”, and

the dataset contains 600 columns per row, logistic regression is a suitable regression

technique to use for the binary classification using multivariate dataset.

For the classification, we trained the logistic regression model for 48 iterations

leaving out one patient from the training dataset to be used as testing dataset. This

is how we can effectively analyze the performance of the regression on the unseen

joint angle dataset.

The combined accuracy produced by 48 regression iterations for the correct mo-

tion quality prediction is 60.42% by misclassifying 29 patients. Hence, multi-variate

conventional regression analysis are unable to analyze the dataset for an effective

motion quality prediction, therefore we try to improve the prediction using ANN in

the further sections to contrast the effectiveness of ANN over regression techniques.

5.3 ANN - Motion Quality Prediction
The classification of patients’ motion quality was performed using the muscle forces

of the lower extremity. The muscle force prediction stage is dependent on the second

stage inverse dynamics, which was used to calculate the forces on joints during a

motion cycle. This simulation process is time-consuming, which can take weeks to

simulate the data to classify a patient’s motion quality.

To bridge the gap between motion quality and inverse kinematics, ANN are used

that are trained using 6 inverse kinematics time-series features and classified motion

quality using Feature Set 3. Different kinds of networks are used to predict patients’

motion quality which addresses different ML approaches that can be used for many

types of application.

For training a neural network, input dataset requires segregation into three different

sets, namely: training data, validation data, and testing data.

1. Training dataset:
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The training dataset is a part of the original dataset which is used to train the

neural network. The classification of patients in the training dataset is used

to verify the learning. According to the result of the network’s output and the

actual motion quality, the neural network performs back propagation, implicitly,

to tune the network by adjusting the weights of synaptic connections between

the neurons.

2. Validation dataset:

The validation dataset is a part of the original dataset which is used to validate

the learning of neural network by predicting the category of motion quality

of the patients in the validation dataset after the network is trained using a

training dataset. During the learning iterations, called epochs, the validation

dataset is used to understand about network’s performance on unseen data. It

helps in deciding the number of times a neural network should be trained to

predict the quality of motion of unseen data correctly.

3. Testing dataset:

The testing dataset is a part of the original dataset which is used to test the

learning of the network based on the training dataset. This unseen data is used

to report the final accuracy of the network’s prediction. The accuracy is the

measure of correct predictions reported as a percentage of total data points in

the testing dataset.

The ANN training requires the right balance between the number of features and

the number of data points, where a data point refers to a patient for this research.

As we use six time-series with 100 points each, the neural network assumes that 600

features have been provided for 48 data points for learning. This kind of dataset is

called a wide dataset, which has a minimal number of rows as compared to the total

number of columns. In the AI research, this is an interesting problem as conven-

tionally the neural networks trains over a large dataset consisting of more rows than

columns. Moreover, the dataset of THA patients’ “sit-to-stand” motion is even more

complicated being a set of deterministic time-series features. For such a dataset, a

technique called cross-validation has been used to train and test the neural networks.
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5.3.1 Cross Validation:

During the training of the ANN, it is essential that the network understands most

of the information embedded in the dataset pertaining to the prediction of motion

quality. Instead of dividing the dataset in training, validation and testing subsets, 48

iterations are performed, and in each iteration, one patient is left out from the training

dataset and is used to test the network’s training by acting as a testing dataset with

only one row. Hence, we do not use validation dataset. The accuracy reported will

be the percentage of the total number of correct predictions of the category of motion

quality among 48 patients. This approach is called as cross-validation and is useful

for the ANN training with wide datasets.

5.3.2 Undercomplete Autoencoder

Undercomplete autoencoder is an ANN dimensionality reduction technique that is

inspired by the idea of principal component analysis. As discussed in Section 2.9.4,

neural networks can learn non-linear relationships. Therefore, the ANN autoencoder

is a better dimensionality reduction technique as compared to the linear techniques;

PCA and PARAFAC.

For constructing an autoencoder network, the first step is to decide the number of

neurons in the encoding layer as the number of data points in the encoded format

will be equal to the number of neurons in the encoding layer. As discussed in Section

2.5.1, the maximum number of components that can be extracted using PCA is 48

according to the shape of the dataset in the application. Therefore, we decided the

closest rounding of 48, which is 50 neurons in the encoding layer.

The architecture of an undercomplete autoencoder requires to have a decreasing

number of neurons in the subsequent layers in the encoder part of the network and

mirroring the same, the decoder part of the network requires to have an increasing

number of neurons in the subsequent layers. Following this approach, we construct

the autoencoder network as depicted in Figure 5.3 for dimensionality reduction.

There is no standard rule to decide the number of neurons in the layers other than

the encoding layer. Therefore, we decided to at least half the number of neurons in

each subsequent layer of the encoder part and at least doubled in the successive layers

of the decoder part.
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Figure 5.3: Undercomplete autoencoder used for dimensionality and noise reduction
on inverse kinematics dataset

Data Remodeling: The input features in the Feature Set 3 have different ranges

of magnitudes as shown in Figure 5.4, due to which the importance of values of each

time-series feature will not be consistent. The overall variance of the feature series is

229.83. To use the features in the autoencoder, we remodel the dataset by shrinking

the overall range of the features between 0 and 1. Figure 5.5 depicts the resultant

feature set, which has a reduced variance of 0.033. It can be seen from the figure that

the overall pattern of the features is similar to the original dataset and persists their

original information.
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Figure 5.4: Mean centered feature set 3

Figure 5.5: Feature set 3, Remodeled, Range 0 to 1

Since the values of the transformed features are in the positive domain, we use

ReLu activation function for all the layers which provide the actual value of the
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input dataset to each neuron. For the output layer, we use the sigmoid activation

function, which is proven effective for the reconstruction of the dataset as compared to

ReLu after performing multiple iterations using different combinations of activation

functions. Since an autoencoder is expected to work similar to the PCA, we use

minimum squared error as the loss function. The training of the network is performed

for 10,000 epochs using Adam optimizing algorithm.

Figure 5.6: Reconstructed input dataset using the autoencoder

Figure 5.6 shows the output of the autoencoder, which is almost similar to the

remodeled input dataset. There is some deviation in the reconstructed output from

the remodeled input, which depicts the reduction of noise during the reproduction.

The output from the encoded layer consists of 50 data points for each patient. There-

fore, we achieve dimensionality reduction from 600 to 50 attributes, which is 91.67%

compression of the original information.

The compressed data for patient 1 extracted from the autoencoder is shown in

Figure 5.7. From the figure, it can be seen that the data points are scattered with no

visually comprehensible information, and it is the expected behavior because it is a

representation of encoded information. It is also evident from the figure that not all

the neurons are active in the encoding layer for the reconstruction of the feature set
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Figure 5.7: Output of the encoding layer for patient 1

for patient 1, depicted by zero value points. There are different sets of active neurons

in the encoding layer for each patient that provides an input to the decoder part of

the network, which includes necessary information for the feature reconstruction.

The encoded information is extracted from the encoding layer, which is further

used as an input to a feedforward neural network for the prediction of motion quality

of each patient using the cross-validation technique.

The network for motion quality prediction is developed using the concept of the

bias-variance dilemma, discussed in Appendix A.1, by starting with a minimum num-

ber of neurons and layers in the beginning. After training the feedforward models,

and according to the accuracy received, the network is grown by adding more neurons

and layers. We have used Adam optimizing algorithm with a categorical cross-entropy

function as the loss function for the network’s training and 600 epochs for each cross-

validation iteration.

The prediction starts with the smallest network that is shown in Figure 5.8, which

has one hidden layer with two neurons and an output layer with two neurons. The

two neurons in the output layer will have a probability score for the prediction of the

two classes: “Fair” or “Poor”, respectively. By performing cross-validation training
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Figure 5.8: Feedforward followed by autoencoder, iteration 1, 64.58% accuracy

on this network, we get an accuracy of 64.58%. For this accuracy, the network has

misclassified a total of 17 patients. According to the bias-variance tradeoff of the

network, the network has high bias, and a low variance as the network’s complexity

is low because of only two neurons in the hidden part. From this, we understand that

increasing the network’s complexity can give better results.

Figure 5.9: Feedforward followed by autoencoder, iteration 2, 70.83% accuracy

Figure 5.9 represents the network used in the second iteration of the process of

network improvement, which has one hidden layer with three neurons. Performing

cross-validation training on this network, we get an accuracy of 70.83%. For this

accuracy, the network has misclassified a total of 14 patients.
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This network performed better as compared to the previous network by adding one

neuron in the hidden layer. This demonstrates the increasing variance and decreasing

bias in the network. The result from this network is still not as good as the clustering

we observed by PCA on the 6 inverse kinematics features as represented in Figure

4.16, which has a total of 9 misclassifications. As the encoded information has high

variability, for further analysis, we aim to add more layers and neurons to increase

the variance of the network.

Figure 5.10: Feedforward followed by autoencoder, iteration 3, 75% accuracy

Figure 5.10 represents the network used in the third iteration, which has two hidden

layers with three neurons each. Performing cross-validation training on this network,

we get an accuracy of 75.0%. For this accuracy, the network has misclassified 12

patients.

This network performed better as compared to the previous network by adding one

layer with three neurons in the second hidden layer. This network too, demonstrates

the increasing variance and decreasing bias in the network. From this attempt, we

understand that increasing the complexity of the network produces a better accuracy,

and we aim to perform more iterations to achieve the desired prediction of motion

quality similar to that of PCA.

Figure 5.11 represents the network used in the third iteration, which has three

hidden layers with three neurons each. Performing cross-validation training on this
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Figure 5.11: Feedforward followed by autoencoder, iteration 4, 70.83% accuracy

network, we get an accuracy of 70.83%. For this accuracy, the network has misclas-

sified 14 patients.

This network does not perform better than the previous network by adding one

layer with three neurons as the third hidden layer. This is a case of bigger increase

in the bias than an increase in the variance of the network. Therefore, this network

demonstrates increasing bias and decreasing variance in the network that introduces

errors which leads to more misclassifications. From this attempt, it is understood that

increasing the number of layers in the network will need to introduce more neurons

to add more variance to achieve the desired accuracy.

After performing numerous iterations, Figure 5.12 represents the network used,

which is the most effective so far. In this iteration of the process of network im-

provement, we add one additional neuron in the three hidden layers, respectively, as

compared to the network in Figure 5.11. The loss over 48 cross-validation iterations

is depicted in Figure 5.13 which shows that on an average, the loss is continuously

decreasing after each epoch for all 48 iterations. By performing training on this net-

work, we get an accuracy of 83.33% for motion quality prediction. For this accuracy,

the network has misclassified a total of eight patients. This network has performed

better classification as compared to the PCA analysis shown in Figure 4.16, which

has nine misclassifications.
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Figure 5.12: Feedforward followed by Autoencoder, final iteration, 83.33% accuracy

Figure 5.13: Loss curve of the 48 cross-validation training steps using network in the
final iteration

From some of the other iterations, we find that increasing the network’s complexity

also increases in the variances, which leads to overfitting of the model. Hence, it
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produces a lower accuracy prediction. Therefore from this attempt, we understand

that having the right balance between variance and bias of a network, we can expect

better results from a neural network than that of the component analysis techniques.

If it was possible to visualize the results of the network in multi-dimensional space,

we could see that the actual clustering of the data points generated by the compu-

tation of the network on encoded information has eight misclassifications. Hence,

83.33% accuracy is our desired accuracy, and we can conclude that a combination of

an autoencoder and a feedforward network can effectively predict the motion quality.

The ANN prediction attempt using a combination of an autoencoder and a feed-

forward network is successfully able to classify the patients in the classes: “Fair”

and “Poor”. This analysis has demonstrated that the autoencoder can compress the

most relevant information from the original dataset in 50 data points for each patient,

which then used as an input to the feedforward network produces the desired results.

5.3.3 Feedforward Neural Network:

The feedforward networks consist of elementary neurons and are the most basic

type of neural networks. The network is tuned to predict the correct motion quality

using back-propagation. We develop the feedforward network by improving the bias-

variance tradeoff as explained in the section 5.3.2. For the prediction, we use mean

centered selected features of joint angles, therefore the input dataset has size 48x600

with 6 time series features having 100 time units each. For the network’s training

and testing, we use cross-validation technique.

To start with a basic network, Figure 5.14 represents the feedforward neural net-

work that we use to begin the prediction of the motion quality. As the input dataset

is bigger as compared to the encoded dataset in Section 5.3.2, for the most straight-

forward network to start with, we consider having one layer with five neurons. The

activation function used for the neurons in the hidden layer is tanh as it returns ap-

propriate values for the whole range of numbers and scales them down in the range

of -1 to 1. We use the softmax activation function for the output layer as it re-

turns the probabilities for each class and is suitable for multi-class classification. We

use categorical-cross-entropy as the loss function and Adam optimizing algorithm to

optimize the leaning of the network.
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Figure 5.14: Feedforward, iteration 1, 75.0% accuracy

The network in Figure 5.14 has produced an accuracy of 75.0% and has misclassified

12 patients. As the dataset used has high variance, we aim to improve the network

by adding more neurons to the first layer to have a higher variance in the network’s

unknown function.

The network in Figure 5.15 is developed by adding 5 more neurons in the first

hidden layer, and it has produced an accuracy of 75.0%. This result suggests that

the change in bias and variance is uniform as compared to the last network used. We

aim to improve the network by adding an additional layer to add more computation

and higher variance in the network’s unknown function.

The network in Figure 5.16 is developed by adding one more hidden layer with

ten neurons, and it has produced an accuracy of 77.0% by misclassifying 11 patients.

This result demonstrates an increase in variance and a decrease in the bias of the

network’s unknown function. From this result, we understand that we should increase

the variance of the network by introducing more layers to achieve the desired accuracy.
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Figure 5.15: Feedforward, iteration 2, 75% accuracy

After numerous iterations with different networks, the network in Figure 5.17 pro-

duced the highest accuracy of 81.25% by misclassifying 9 patients. The network has

a total of three hidden layers with 20, 5, and 3 neurons respectively, and is converging

towards to output layer as the subsequent layers have a reduced number of neurons.

This network represents that the information that is required to predict the motion

quality gets concentrated and filtered towards the output layer.

The feedforward neural network demonstrates a successful multi-class classifier ap-

plication for THA patients by predicting their motion quality with an accuracy of

81.25% by misclassifying nine patients. The network can classify the motion quality

using the mean centered time series data as an input and produces the same classifi-

cation as it is shown in the clusters generated by the component analysis technique

represented in Figure 4.16. The clusters in the figure also have nine misclassifications,

and the feedforward network can imitate the same results.
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Figure 5.16: Feedforward, iteration 3, 77% accuracy

5.3.4 Convolutional Neural Network:

Another variation of ANN we use is the convolutional neural network to classify

the patient’s quality of motion by analyzing the 6 joint angle features as a heatmap.

The heatmap is provided to the network as an input image. The input image is a

matrix of numerical time series values of size 6 rows and 100 columns. The size of the

kernel used for the input layer is 3x3, that is, the image will be broken into matrices

of size 3x3, and that becomes a granular feature of the image that will be taken as

an input for the next layers for classification of motion quality.

Figure 5.19 represents the CNN used in the first iteration of the network construc-

tion process. It convolves a 3x3 kernel over the input image that creates a new image

of size 4 rows and 98 columns consisting of granular features of the original input im-

age. There is only one filter used in the first convolutional layer, and the new image

becomes the output of the filter. In the next step, max pooling is performed using

one filter which uses the pool size of 2x2 on the output of the convolutional layer.
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Figure 5.17: Feedforward, final iteration, 81.25 % accuracy

The max pooling will fetch a segment of the second image of size 2x2, and the result

of pooling will be the maximum value in the 2x2 image segment. Hence, pooling

minimizes the granular image structures by 75%, and this information is relevant for

the motion quality prediction. The size of the resulting image has two rows and 49

columns. This is the process of minimizing the size of the input image based on the

highest magnitude values by considering the most significant features in the input

image.

The next layer is a dropout layer which drops out the random 50% values and

makes them to zero. The randomly selected 50% neurons do not contribute in the

back-propagation and due to this, the network can avoid the situation of overfitting

of the model.
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Figure 5.18: Loss curve of the 48 cross-validation training steps using the feedforward
network in the final iteration

Figure 5.19: Convolutional neural network, iteration 1, accuracy 58.33%

The resulting image is flattened back to a vector of shape 1 x 2 x 49 = 98. This

vector is then used as an input to an elementary neuron layer consisting of 1 neuron.

The output of the neuron is then forwarded to the 2 elementary neurons, which are

the classifiers of this network. The neuron, which has the highest value, becomes the

predicted category of the quality of motion for a patient.

The loss function used for the network is categorical-cross-entropy and the opti-

mizing algorithm used is AdaDelta. The activation functions used are sigmoid in

the hidden layers, and, softmax, for the output layer. The training was performed
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using a cross-validation technique wherein each iteration the network is trained for

100 epochs.

The accuracy produced from this network is 58.33% that misclassifies 20 patients.

We tried with a dropout of 25%, and it produced the same result. This is a low

accuracy as compared to the previous networks’ predictions. The reason for such a

low accuracy is using only one CNN unit as it is not able to extract all the critical

small parts of the input image. To improve the network we will add more CNN units

and experiment with the dropout percentage.

Figure 5.20: Convolutional neural network, iteration 2, accuracy 72.91%

Figure 5.20 represents the CNN network used in the second iteration, which has

one added CNN unit, two neurons in the feedforward part following a 50% dropout

layer and 25% or 50% dropout for the max pooling layer. This network produces an

accuracy of 72.91% by misclassifying 13 patients.

This network’s training demonstrated that adding a convolutional layer increases

the number of small segments projected to the CNN units that contribute to the

information required for the classification. Also, the the size of the input for the

feedforward part increases from 98 to 196 values; therefore, more information is passed

through the network. The last dropout layer removes the output from any randomly

selected neuron out of the two neurons, that helps the network to predict motion

quality by eliminating the possibility of overfitting. For further analysis, we add

more CNN units for more information flow towards the output layer.

Figure 5.21 presents the CNN network used in the third iteration, which has 3

CNN units, two neurons in the feedforward part following the output layer. There

are no dropout layers; hence, there is complete information flow from the input to
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Figure 5.21: Convolutional neural network, iteration 3, accuracy 72.91%

the output layer and every part of the network participates in the back-propagation

of errors.

This network produces an accuracy of 72.91% by misclassifying 13 patients. This

network’s training demonstrated that adding a convolutional layer benefits the net-

work’s training, but because of no dropout layers, the prediction did not improve.

The network is possibly overfitted to the training dataset. Also, the size of the input

for the feedforward part increases from 196 to 294 values, therefore adding dropouts

will reduce the noise flowing in the network that can improve the prediction.

Figure 5.22: Convolutional Neural Network, final iteration, accuracy 79.16%

After trying multiple networks with a different number of CNN units, different

dropout layers and feedforward networks, Figure 5.22 produced an accuracy of 79.16%

by misclassifying 10 patients. The loss curves for 48 cross-validation iterations are

shown in Figure 5.23, which are fluctuating but on an average, it decreases for all the

iterations. In this network, we add a 50% dropout after the max pooling layer and
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Figure 5.23: Loss curve of the 48 cross-validation training steps using the CNN net-
work in the final iteration

50% dropout after the feedforward two-neuron layer, which eliminates the insignificant

information flowing in the network, resulting to a better performing network.

CNN are successful in image classification and object recognition. In this research,

we demonstrate that CNN can be successful in identifying the information embedded

in the heatmaps of patients’ inverse kinematic dataset with time-series values, for the

classification of motion quality.

5.3.5 Long Short-Term Memory

LSTM networks are a type of recurrent neural networks that are modeled to work

with time-series data that predicts the futuristic values of the input time-series in-

formation. In this research, we use LSTM as a multi-class classifier to predict the

motion quality of the patients by analyzing the joint angle time-series dataset.

All the six time-series for each patient is provided to the network as an input,

separately, so that the network learns about each patient’s joint angles at different

intervals of training. Therefore, we remodel the input dataset to a 3d vector with

shape [48 (patients), 6 (features), 100 (time units)] so that at a time, one slice of the
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3d vector containing 6 features with 100 time units will be provided to the network

for learning.

Figure 5.24: LSTM, iteration 1, accuracy 60.41%

We start with a basic LSTM multi-class classifier network shown in Figure 5.24

which consists of only one LSTM unit that follows two elementary neurons for calcu-

lating the probabilities of each patient’s motion quality. The LSTM unit uses ‘tanh’

as the activation function and ‘hard sigmoid’ as the recurrent activation function.

The output of this unit contains only one value which is used for the classification by

the following layer that uses ‘softmax’ activation function.

This network produces an accuracy of 60.41% by misclassifying 19 patients. The

performance of the network can be improved by adding more LSTM units to the

hidden layer to increase the complexity of the network that can analyze the input

data more efficiently. More LSTM units will have more recurrent information in the

network that can improve the prediction.

In the second iteration, we try with a network shown in Figure 5.25 that has 6

LSTM units in the hidden layer. As the input contains 6 time series features, with

this network, we try to emphasize every time-series feature using the equal number

of LSTM units. This network produces an accuracy of 72.91% by misclassifying 13

patients. Each LSTM unit produces a single value output for the next layer, therefore

for the output layer, the input is a vector with 6 data points.
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Figure 5.25: LSTM, iteration 2, accuracy 72.91%

To improve the accuracy of the network, we aim at improving the recurrence of

the time-series information in the network by adding more hidden layers with LSTM

units so that the output of each unit can be a time-series instead of discrete values.

The network used in the third iteration is shown in Figure 5.26 that is developed

by adding one layer with 6 LSTM units. The output of the first hidden layer consists

of 6 time series with 100 time units. This layer helps in reducing noise and reproduces

a new time series for the next layer containing more relevant information required for

the motion quality prediction.
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Figure 5.26: LSTM, iteration 3, accuracy 68.75%

The accuracy produced by the network is 68.75% by misclassifying 15 patients.

We expected an increase in accuracy, but the accuracy decreases as compared to

the previous, more simpler, network. By analyzing the bias-variance tradeoff of the

network with the prediction results, it can be inferred that the bias of the network has

increased more as compared to the variance. Therefore, in the next iterations, we can

aim to add more layers to increase the variance and carefully change the number of

LSTM units to have the right balance between the bias and variance of the network.

After numerous trials with different networks, the network in Figure 5.27 produced

the highest accuracy of 77.08% by training for 100 epochs that misclassify 11 pa-

tients. The loss curve for 48 cross-validation iterations is shown in Figure 5.28, which

represents a high loss on an average.
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Figure 5.27: LSTM, iteration 4, accuracy 77.08%

This network contains three hidden layers with 5 LSTM units each, out of which

the first two hidden layers calculates a new time series for the next subsequent layers

and the third hidden layer calculates 5 discrete values for the final prediction of the

motion quality.

From this analysis, we understand that LSTM networks has produced a consider-

ably good accuracy but is low as compared to the other variants of the ANN. We

cannot undermine the power of LSTM networks, but probably, LSTM require more

number of data points than 48 for better prediction.

5.3.6 Merged CNN LSTM

By performing multi-class prediction using CNN, we achieve the highest accuracy

of 79.16%. This demonstrates that the time-series dataset can be remodeled into a

stack of heatmaps for the motion quality prediction. The undercomplete autoencoder

has produced the highest accuracy of 83.33% so far, and we consider this to be the
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Figure 5.28: Loss curve of the 48 cross-validation training steps using the LSTM
network in the final iteration

desired result as it is better than the clustering formed in the result of PCA. To

achieve the accuracy with the help of CNN and LSTM networks, we try to combine

the computation of CNN and LSTM as both the networks would be able to analyze

the dataset by extracting different kinds of information from the heatmaps and time-

series dataset respectively. Combining the information from the CNN and LSTM

networks could help collect all the relevant information required for predicting the

motion quality of the patients.

Figure 5.29 shows a merged CNN and LSTM network which is created after many

trials with other possible networks, and has produced an accuracy of 83.33% by

training for 100 epochs. For the training of this network, the dataset containing 6

inverse kinematic features is remodeled into heatmaps and 3d vectors representing

images and time-series for each feature, which is then provided to the CNN and

LSTM branches respectively. The CNN network is similar to the network in Figure

5.22 but has 20 CNN units that increases the CNN branch’s complexity. The LSTM

network is the same, as shown in Figure 5.27. Using backpropagation for learning,

both the branches are tuned simultaneously where the CNN analyses the important

image fragments that could be useful for the prediction and LSTM analyses the time-

series information useful of the prediction. As both the branches learns together,
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Figure 5.29: Merged CNN LSTM, accuracy 83.33%

each branch separately produces unique results that the other branch may not be

able to process and combining the information from both the branches creates a pool

of relevant information that helps predict the motion quality.

Figure 5.30 represents the loss curve for all 48 cross-validation iterations performed

for training the network. From the plot, we understand that on an average, the loss

is decreasing for all 48 iterations, but still has a higher magnitude. The network

produces an accuracy of 83.33% with such a training loss, which suggests about

the high capability of the network. The network, possibly, can perform with higher

accuracy and lower loss if trained with a bigger dataset than used for the research.

This analysis has demonstrated a successful application of merged CNN and LSTM

network that can classify the patients better than the clustering produced by the

component analysis techniques. From the merged network, different aspects of the
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Figure 5.30: Loss curve of the 48 cross-validation training steps using the merged
CNN LSTM network

original dataset can be recorded, which can be helpful for multi-class classification

problems.
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Chapter 6

Conclusions and Future Work

The process of effective motion quality quantification and classification is explored

in the research. The results of which were discovered in the inverse kinematics data.

Different variants of ANN like autoencoders, feedforward networks, CNN and LSTM

have shown efficient learning using the wide shaped data by predicting the motion

quality with the highest accuracy of 83.33%. ANN not only performs better than the

conventional regression analysis technique, logistic regression but also produces better

results than component analysis. This research also demonstrates how a time-series

can be molded into different forms and utilized by multiple ML algorithms. Overall,

this research has used new techniques to work on wide datasets having a variance for

effective analysis and neural network training that will be useful for the researchers

working in data science and machine learning field of study.

Machine learning and data science algorithms require a bigger dataset than the

one used for this research. A smaller dataset restricts us to use validation dataset for

neural network training, and for the dataset used, a single misclassification costs us

a loss of 2.08% accuracy. For improving the results, the simulation of synthetic data

should be done by calculating the deterministic time series musculoskeletal features.

This will also help in predicting continuous valued inferences or by increasing the

number of classes of the musculoskeletal inferences in an application.

This research has demonstrated the classification and prediction of motion quality

of THA patients for one “sit-to-stand” motion cycle but is not restricted for only

THA patients and motion quality. Musculoskeletal data of any group of people can
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be utilized to analyze more musculoskeletal inferences like motion quality by using

the data science and ANN approaches used in this research work.

Finding an effective neural network can be difficult and time-consuming. Therefore

automated scripting can be helpful for building and training on all the possible neural

networks.
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Appendix

A.1 Building ANN - Bias Variance Dilemma

Figure 1: Bias-variance dilemma

The application of ANN in this research is based on the prediction of multi-class

classified information. Therefore, the training errors are essential to understand while

building a network progressively by extending the computation of the network with

the help of including more neurons and layers. The learning errors can be understood

with the help of bias and variance of the learning curve generated from a network. A

proper understanding of bias and variance helps in eliminating issues like underfitting

and overfitting.

Bias and variance are two properties of a curve that explains the complexity of an

unknown function which is created by the clusters of neurons. Bias is the difference

between the network’s prediction and the actual value to be predicted. The high
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Figure 2: Bias-variance error

bias of the network pays little attention to the training dataset and leads to a high

error and a low accuracy of the overall prediction. Variance is the variability of

the network’s unknown function that explains the spread of the function for a given

training dataset. High variance pays more attention to the training dataset and

cannot generalize the unseen testing dataset. Due to this, the training errors will

be low, but the testing error will be high that can produce less accurate predictions.

Therefore, there should be a right balance between bias and variance to construct a

better ANN model.

The total error of a network is the sum of the squared bias and variance.

Error = Bias2 + V ariance

Therefore, there is a bias and variance tradeoff for a model to minimize the overall

training and testing errors. As bias increases, variance decreases and vice versa.

Therefore, a better model is the one that has a balanced bias and variance.

While building a neural network, bias and variance dilemma is taken into consid-

eration for extending the complexity of a network. To verify the total error during
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training a network, we check the loss during each epoch and stop the training until

minimum error is reached.

A.2 Medical Terms

A.2.1 Osteoarthritis

Osteoarthritis is a type of arthritis which occurs due to wearing down of the flexible

tissues at the end of the bones.

A.2.2 Inflammatory arthritis

Inflammatory arthritis occurs due to inflammation of multiple joints resulting into

pain and stiffness.

A.2.3 Osteonecrosis

Osteonecrosis, also known as avascular necrosis, is a bone disease that results in

the bone tissue dying because of a lack of blood supply.

A.2.4 Patellofemoral joint

The patellofemoral joint is the meeting point of the patella(knee cap) and fe-

mur(thigh) at the knee front in the human body.

A.3 Variable Description

A.3.1 Inverse kinematics

1. Pelvis tilt

• Unit: degrees

• The angle of how much pelvis is tilted in sagittal plane w.r.t anteroposterior

axis

• Pelvis tilt is the angle by which the pelvis is bent in front or back of human

body orientation

2. Pelvis list

• Unit: degrees
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• The angle of how much pelvis is tilted in frontal plane w.r.t mediolateral

axis

• Quantified using the angle between the horizontal and a line connecting

the anterior superior iliac spine and the posterior superior iliac spine.

3. Pelvis rotation

• Unit: degrees

• The angle of pelvis swing on horizontal plain w.r.t mediolateral axis

• A pelvic rotation is when a one anterior superior iliac spine is more forward

than the other.

4. Pelvis Tx

• Unit: meters

• Pelvis translation coordinate along x axis

5. Pelvis Ty

• Unit: meters

• Pelvis translation coordinate along y axis

6. Pelvis Tz

• Unit: meter

• Pelvis translation coordinate along z axis

7. Hip flexion r

• Unit: degrees

• Angle of bending in the right hip joint

8. Hip flexion l

• Unit: degrees

• Angle of bending in the left hip joint

9. Hip adduction r

• Unit: degrees

• Angle during bending right hip joint towards its normal position

10. Hip adduction l

• Unit: degrees

• Angle during bending left hip joint towards its normal position
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11. Hip rotation r

• Unit: degrees

• Angle of rotation of right hip joint in horizontal plain

12. Hip rotation l

• Unit: degrees

• Angle of rotation of left hip joint in horizontal plain

13. Knee flexion r

• Unit: degrees

• Angle of bending in the right knee joint

14. Knee flexion l

• Unit: degrees

• Angle of bending in the left knee joint

15. Ankle angle r

• Unit: degrees

• Angle of bending in the right ankle joint

16. Ankle angle l

• Unit: degrees

• Angle of bending in the left ankle joint

17. Lumbar extension

• Unit: meters

• Length of spine extension during spine bending

18. Lumbar bending

• Unit: degrees

• Angle of bending of spine in the frontal plain

19. Lumbar rotation

• Unit: degrees

• Angle of the swing of the spine along the vertical axis

20. Ground reaction force x r

• Unit: newtons
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• Force exerted between right feet and ground along the x axis

21. Ground reaction force y r

• Unit: newtons

• Force exerted between right feet and ground along the y axis

22. Ground reaction force z r

• Unit: newtons

• Force exerted between right feet and ground along the z axis

23. Ground reaction force x l

• Unit: newtons

• Force exerted between left feet and ground along the x axis

24. Ground reaction force y l

• Unit: newtons

• Force exerted between left feet and ground along the y axis

25. Ground reaction force z l

• Unit: newtons

• Force exerted between left feet and ground along the z axis

26. Center of pressure x r

• Unit: meters

• Coordinate on x axis for center of pressure on pressure plates underneath

right feet

27. Center of pressure y r

• Unit: meters

• Coordinate on y axis for center of pressure on pressure plates underneath

right feet

28. Center of pressure x l

• Unit: meters

• Coordinate on x axis for center of pressure on pressure plates underneath

left feet

29. Center of pressure y l

• Unit: meters
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• Coordinate on y axis for center of pressure on pressure plates underneath

left feet

30. Mom r

• Unit: newton meters

• Moment or torque resulting from force along the length of right leg

31. Mom l

• Unit: newton meters

• Moment or torque resulting from force along the length of left leg

A.3.2 Inverse dynamics

1. Hip load x r

• Unit: newtons

• Load on the right hip joint on x axis

2. Hip load y r

• Unit: newtons

• Load on the right hip joint on y axis

3. Hip load z r

• Unit: newtons

• Load on the right hip joint on z axis

4. Hip load x l

• Unit: newtons

• Load on the left hip joint on x axis

5. Hip load y l

• Unit: newtons

• Load on the left hip joint on y axis

6. Hip load z l

• Unit: newtons

• Load on the left hip joint on z axis

7. Hip magnitude r

• Unit: newtons
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• Overall load on the right hip joint

8. Hip magnitude l

• Unit: newtons

• Overall load on the left hip joint

9. Knee load x r

• Unit: newtons

• Load on the right knee joint on x axis

10. Knee load y r

• Unit: newtons

• Load on the right knee joint on y axis

11. Knee load z r

• Unit: newtons

• Load on the right knee joint on z axis

12. Knee load x l

• Unit: newtons

• Load on the left knee joint on x axis

13. Knee load y l

• Unit: newtons

• Load on the left knee joint on y axis

14. Knee load z l

• Unit: newtons

• Load on the left knee joint on z axis

15. Knee magnitude r

• Unit: newtons

• Overall load on the right knee joint

16. Knee magnitude l

• Unit: newtons

• Overall load on the left knee joint
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A.3.3 Muscle force

1. Semimembranosus force r

• Unit: newtons

• The force exerted on semimembranosus muscle of right leg during a motion

2. Semimembranosus force l

• Unit: newtons

• The force exerted on semimembranosus muscle of left leg during a motion

3. Semitendinosus force r

• Unit: newtons

• The force exerted on Semitendinosus muscle of right leg during a motion

4. Semitendinosus force l

• Unit: newtons

• The force exerted on semitendinosus muscle of left leg during a motion

5. Biceps femoris-long head force r

• Unit: newtons

• The force exerted on biceps femoris-long head muscle of right leg during a

motion

6. Biceps femoris-long head force l

• Unit: newtons

• The force exerted on biceps femoris-Long Head muscle of left leg during a

motion

7. Biceps femoris-short head force r

• Unit: newtons

• The force exerted on biceps femoris-short head muscle of right leg during

a motion

8. Biceps femoris-short head force l

• Unit: newtons

• The force exerted on biceps femoris-short head muscle of left leg during a

motion

9. Gluteus force r
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• Unit: newtons

• The force exerted on gluteus muscles of right leg during a motion

• Gluteus is a group of gluteus maximus, gluteus medius, and gluteus min-

imus muscles is a group of the main exterior muscles of the hip

• The force of each muscle is counted as a separate variable

10. Gluteus force l

• Unit: newtons

• The force exerted on gluteus muscles of left leg during a motion

• Gluteus is a group of gluteus maximus, gluteus medius, and gluteus min-

imus muscles is a group of the main exterior muscles of the hip

• The force of each muscle is counted as a separate variable

11. Rectus femoris force r

• Unit: newtons

• The force exerted on rectus femoris muscle of right leg during a motion

• Rectus femoris muscle is located in the superior, anterior, and middle

compartment of the thigh

12. Rectus femoris force l

• Unit: newtons

• The force exerted on rectus femoris muscle of left leg during a motion

• Rectus femoris muscle is located in the superior, anterior, and middle

compartment of the thigh

13. Vastus medialis force r

• Unit: newtons

• The force exerted on vastus medialis muscle of right leg during a motion

• Vastus medialis muscle is located in the front of the thigh above the knee

cap

14. Vastus medialis force l

• Unit: newtons

• The force exerted on vastus medialis muscle of left leg during a motion
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• Vastus medialis muscle is located in the front of the thigh above the knee

cap

15. Vastus intermedius force r

• Unit: newtons

• The force exerted on Vastus intermedius muscle of right leg during a motion

• Vastus intermedius muscle is located in the anterior region of the thigh

16. Vastus intermedius force l

• Unit: newtons

• The force exerted on vastus intermedius muscle of left leg during a motion

• Vastus intermedius muscle is located in the anterior region of the thigh

17. Vastus lateralis force r

• Unit: newtons

• The force exerted on vastus lateralis muscle of right leg during a motion

• Vastus lateralis muscle is located on the side of the thigh

18. Vastus lateralis force l

• Unit: newtons

• The force exerted on vastus lateralis muscle of left leg during a motion

• Vastus lateralis muscle is located on the side of the thigh

19. Medial gastrocnemius force r

• Unit: newtons

• The force exerted on medial gastrocnemius muscle of right leg during a

motion

• Medial gastrocnemius muscle is located in the outer back part of the lower

leg, runs from just above the knee to the heel

20. Medial gastrocnemius force l

• Unit: newtons

• The force exerted on medial gastrocnemius muscle of left leg during a

motion

• Medial gastrocnemius muscle is located in the outer back part of the lower

leg, runs from just above the knee to the heel
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21. Lateral gastrocnemius force r

• Unit: newtons

• The force exerted on lateral gastrocnemius muscle of right leg during a

motion

• Lateral gastrocnemius muscle is located in the inner back part of the lower

leg, runs from just above the knee to the heel

22. Lateral gastrocnemius force l

• Unit: newtons

• The force exerted on lateral gastrocnemius muscle of left leg during a

motion

• Lateral gastrocnemius muscle is located in the inner back part of the lower

leg, runs from just above the knee to the heel

23. Soleus force r

• Unit: newtons

• The force exerted on soleus muscle of right leg during a motion

• Soleus muscle is located in inner center back part of the lower leg, runs

from just above the knee to the heel

24. Soleus force l

• Unit: newtons

• The force exerted on soleus muscle of left leg during a motion

• Soleus muscle is located on the center back part of the lower leg, runs from

just above the knee to the heel

128



A.4 PCA on mean centered inverse kinematics for

all feature sets
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Figure 3: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 2
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Figure 4: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 3
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Figure 5: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 4
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Figure 6: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 5
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Figure 7: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 6
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Figure 8: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 7
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Figure 9: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 8
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Figure 10: Clustering by PCA using inverse kinematic mean centered features and
motion quality quantified using feature set 9
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A.5 PCA on relative variation scaled inverse kine-

matics for all feature sets
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Figure 11: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 2
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Figure 12: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 3
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Figure 13: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 4
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Figure 14: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 5
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Figure 15: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 6

−25

0

25

50

−25 0 25

PC1

P
C

2

Class

Fair

Poor

Figure 16: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 7
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Figure 17: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 8
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Figure 18: Clustering by PCA using inverse kinematic relative variation scaled fea-
tures and motion quality quantified using feature set 9
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A.6 PARAFAC on mean centered inverse kine-

matics for all feature sets
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Figure 19: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 2
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Figure 20: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 3
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Figure 21: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 4

−900

−600

−300

0

−800 −600 −400 −200 0

C1

C
2

Class

Fair

Poor

Figure 22: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 5
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Figure 23: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 6
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Figure 24: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 7
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Figure 25: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 8
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Figure 26: Clustering by PARAFAC using inverse kinematic mean centered features
and motion quality quantified using feature set 9
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A.7 PARAFAC on relative variation scaled inverse

kinematics for all feature sets
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Figure 27: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 2
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Figure 28: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 3
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Figure 29: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 4
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Figure 30: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 5
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Figure 31: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 6
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Figure 32: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 7
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Figure 33: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 8
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Figure 34: Clustering by PARAFAC using inverse kinematic relative variation scaled
features and motion quality quantified using feature set 9
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