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Abstract

Software testing techniques are crucial for detecting faults in software and reduc-

ing the risk of using it. As such, it is important that we have a good understanding of

how to evaluate these techniques for their e�ciency, scalability, applicability, and e↵ec-

tiveness at finding faults. This thesis enhances our understanding of testing technique

evaluations by providing an overview of the state of the art in research. To accomplish

this we utilize a systematic mapping study; structuring the field and identifying research

gaps and publication trends. We then present a small case study demonstrating how our

mapping study can be used to assist researchers in evaluating their own software testing

techniques. We find that a majority of evaluations are empirical evaluations in the form

of case studies and experiments, most of these evaluations are of low quality based on

proper methodology guidelines, and that relatively few papers in the field discuss how

testing techniques should be evaluated.
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1 Introduction

Software testing is a vital process for detecting faults in software and reducing

the risk of using it. With a rapidly expanding software industry and a heavy reliance

on increasingly prevalent software, there is a serious demand for employing software

testing techniques that are e�cient, scalable, applicable, and e↵ective at finding faults.

Utilizing such testing techniques to reduce the risk of using software can help avoid

catastrophes that jeopardize safety or cost companies millions of dollars, such as when

Intel spent $475 million replacing processors due to inaccurate floating point number

divisions [1]. Given the importance of applying high-quality software testing techniques,

understanding how they should be evaluated is also crucial. What is the current state

of the art in research evaluating software testing techniques and where are there gaps

in research? As a researcher looking to evaluate a particular technique, how should I

do so?

A systematic mapping study is a methodology that is useful for providing an

overview of a research area by classifying papers in it and counting the number of them

belonging to each category in the classification. For example, one can classify papers

in a field by their publication year with each year being a category in the classification.

Counting the number of papers belonging to each category (in this case the number

of papers published each year) can give us an idea of activity level in the field over

time. Similarly, classifying papers based on their content gives us a sense of what

content is commonly researched and where there are research gaps. Such classifications

can also provide higher level insight regarding the current state of the art. As an
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example from this thesis, classifying papers by the method they utilized for evaluating

software testing techniques gives a very general sense of which methods are commonly

used for evaluations. Considering this classification with others such as the testing

technique type or dimension of evaluation allows us to answer more interesting questions

about the state of the art: What evaluation method is most commonly used when

evaluating the e�ciency of mutation testing techniques? What is the distribution of

evaluation methods when evaluating the e↵ectiveness of white box testing techniques?

Additionally, classifications can be used to construct a mapping from categories to sets

of papers belonging to them; allowing researchers to very easily locate papers in the field

belonging to categories they are interested in. Here, we utilize a systematic mapping

study in the field of research evaluating software testing techniques to achieve our main

goals of (1) summarizing recent publication trends and (2) identifying research gaps and

the state of the art when it comes to evaluating software testing techniques. We hope by

structuring the field that we can provide guidance to other researchers who are unsure

of how to evaluate their particular testing technique and point them to specific papers

that have evaluated similar techniques. We also hope that we can provide direction for

future work and initiate improvements in areas where evaluations are of lower relative

quality. Our systematic mapping process follows guidelines proposed by Petersen et al.

[255] and is discussed in more detail in section 2.

1.1 Background

Other relevant papers have addressed the state of software testing technique

evaluations. Juristo et al.[168] examined 25 years of empirical studies evaluating tech-

niques in order to compile empirical results and assess the maturity level of knowledge

for di↵erent testing technique families. More specifically, they collected major con-

tributions by testing technique family and summarized significant implications of their
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empirical results. They additionally assessed the maturity of knowledge on relative test-

ing technique e↵ectiveness based on the extent that laboratory study, formal analysis,

laboratory replication, and field study had been performed. Our study is similar in that

it also compiles and examines empirical studies evaluating testing techniques. However,

our study systematically gathers a larger set of papers in the field and categorizes them

according to di↵erent classification schemes better suited for our research goals. This

approach provides assistance for answering a broader range of finer-grain questions re-

garding testing technique evaluations by pointing researchers to sets of actual papers

belonging to more specific categories they are interested in.

[137] extended the work of Juristo et al. [168] by performing a more recent ex-

amination of testing technique experiments with similar goals. The extension is similar

to our research in that it utilizes a systematic mapping study to develop an under-

standing of the state of testing technique evaluations. Our research goals are somewhat

di↵erent in that we place a particular emphasis on assisting researchers in determining

how to evaluate software testing techniques in specific contexts and do not only consider

experiments. For this reason this thesis provides a great deal of distinct information

due to major di↵erences in scope and classification schemes. In terms of scope, it in-

cludes other common evaluation methods such as case studies and does not exclude a

large number of papers that report smaller experiments. It also includes papers pro-

viding guidelines or proposals regarding how testing techniques should be evaluated. In

terms of classification schemes, we utilize 6 distinct schemes and some additional sec-

ondary categorizations of these schemes. Due to these deviations this thesis is able to

answer di↵erent research questions that align more with our desire to help researchers

in evaluating their testing technique.

[137] mentions 3 other papers, [96], [97], and [287], that are systematic literature

reviews of regression testing technique evaluations. Our study does not include regres-
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sion testing selection or prioritization techniques since we are mainly interested in the

evaluation of fault-detecting software testing techniques. [164] also references a muta-

tion testing survey. While we are interested in the state of mutation testing evaluations,

the mutation testing survey is not su�cient for answering our research questions about

the overall state of testing technique evaluations.

Finally, a paper by Briand [56] reports on the common threats to the validity of

empirical studies evaluating the cost e↵ectiveness of software testing techniques. This

critical analysis of the field raises awareness of common threats and how they can be

reduced. Our mapping study does not investigate deeply enough to confirm threats to

validity that are common to certain evaluation types, but it may similarly provide some

insight on the quality of current evaluations based on guidelines for proper evaluation

methodology. Our study additionally brings awareness to other papers in the field that

provide guidelines or propose enhancements when it comes to evaluating software testing

techniques.

1.2 Thesis Layout

The next section of this thesis gives an overview of the systematic mapping pro-

cess and a detailed explanation of each step in the process as it relates to our particular

mapping study. Section 3 presents the study classification schemes used to classify pa-

pers into categories for this study. Section 4 presents the results of the data mapping.

Section 5 provides a discussion of the results. Section 6 demonstrates the use of the

resulting map with a case study. Finally, section 7 considers threats to the validity of

our findings followed by a conclusion and future work in section 8.
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2 Research Method

An overview of the systematic mapping process is illustrated in Fig. 2.1. Each

step of the process is described in more detail in the following subsections. At a high

level, we define research questions from our research goals, systematically gather a set

of papers that are ideally representative of the field of interest, and then map the papers

into defined categories in order to structure the field and answer our research questions.

2.1 Definition of Research Questions

We begin by deriving research questions from the main goals of this study. As

stated in section 1, we would like to structure the field of research evaluating software

testing techniques and develop an understanding of what is state of the art by identifying

and analyzing papers in the field. The following questions are derived from the goals.

1. RQ1: What are the publication trends in research evaluating software testing

techniques?

a) RQ1.1: What is the annual number of publications in the field?

b) RQ1.2: What are the main publication venues that publish papers in the

field?

c) RQ1.3: What is the distribution of papers in terms of academic or industrial

a�liation?
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Definition of Research Questions

Systematic Search

Study Selection

Data Mapping

Figure 2.1: Overview of the systematic mapping process

2. RQ2: What is the current state of the art when it comes to evaluating software

testing techniques for their e↵ectiveness, e�ciency, applicability, and scalability

and where are there research gaps?

a) RQ2.1: What methods have been used or proposed for evaluating software

testing techniques?

b) RQ2.2: What is the distribution of methods used for evaluating software

testing techniques?

c) RQ2.3: What is the distribution of dimensions being evaluated?

d) RQ2.4 What is the distribution of evaluations of white-box vs black-box

testing techniques?
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e) RQ2.5: What can we say about the relative quality of evaluations made for

each evaluation method?

f) RQ2.6: What is the distribution of papers in terms of contribution type?

g) RQ2.7: What is the distribution of e↵ectiveness evaluations utilizing muta-

tion analysis?

2.2 Systematic Search

The next step of the mapping study process is to gather a set of papers that

are potentially relevant to the field of interest. We do so by systematically defining a

search string, identifying important scientific databases, and then applying the search

string to the identified databases to retrieve papers.

Similar to the systematic literature review performed by Nair et al. [236], our

search string was derived by first splitting up the phenomena under investigation into

major terms. For each major term, keywords synonymous with the term were added to

it using the OR operator. The added keywords were heavily influenced by our research

questions and research goal scope. Next we joined the populated major terms together

with the AND operator. The resulting search string was iteratively refined by assessing

its ability to generate relevant papers from small subsets of papers in the databases and

modifying keywords accordingly. Doing so we arrived at the following search string:

(evaluate OR validate OR assess)

AND

(e↵ectiveness OR e�ciency OR applicability OR scalability)

AND

(”software testing” OR ”software verification” OR ”black-box testing” OR ”white-box testing”)

AND

(techniques)

7



For scientific databases we selected some of the most common online sources:

1. ACM

2. IEEE Xplore

3. Springer

4. Wiley

Due to our fairly broad scope and interest in the current state of the art and

research gaps, we limited our search to only include papers published within the last

11 years [2007 - 2017]. We also excluded books from our search results since we are

interested in scholarly peer-reviewed work that is more likely to be of higher quality.

Only one paper was excluded due to being written in a language other than English (the

language the researchers carrying out the mapping study could read). We applied our

search string to each of the online databases with these filters to obtain 7,426 potentially

relevant papers.

2.3 Study Selection

The study selection process entails removing all of the irrelevant studies from

the large number of search results. Figure 2.2 illustrates our study selection process

along with the number of papers remaining after applying each step in the process.

We began by applying title and abstract exclusion. Title and abstract exclusion

refers to excluding papers that are deemed irrelevant based on the content of their title

and abstract. We will refer to the criteria used to assess a paper’s relevance in this step

as the content criteria. Our content criteria is heavily influenced by the research goals

and their scope. A paper was deemed relevant if it (1) proposed a method or guidelines

for evaluating a failure-detecting software testing technique’s e↵ectiveness, e�ciency,
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applicability, or scalability or (2) utilized a method for evaluating a failure-detecting

software testing technique’s e↵ectiveness, e�ciency, applicability, or scalability. Note

that for now we are only interested in failure-detecting techniques, so software testing

techniques that do not detect failures such as test case prioritization and fault localiza-

tion are not considered. This criteria included papers evaluating a developed tool, given

that the tool implemented some failure-detecting software testing technique. If it could

be determined that a paper did neither (1) or (2) based on its title and abstract, it was

considered irrelevant and excluded from the rest of the systematic mapping process.

For some papers it was unclear whether or not they satisfied the content criteria solely

from their abstract and title. A text skimming was applied to such papers until the

researchers could confidently assert that the paper was relevant or irrelevant.

There were many duplicates within some databases that were removed from the

set of potentially relevant search results while applying title and abstract exclusion.

Afterwards, 11 more duplicates cross-indexed between databases were removed.

To reduce the threat of missing relevant papers, we applied backwards snow-

balling [161] to a small subset of the relevant papers by looking through their references

to identify potentially relevant papers not found by our initial search. The subset of

papers that snowballing was applied to were selected as researchers evaluated papers

in the title and abstract exclusion step. We found that many of the papers generated

via backwards snowballing had already been identified as relevant papers in our initial

search. Nonetheless, applying the study selection process described above to papers

generated by backwards snowballing resulted in 7 more relevant studies. In all, 335

primary studies were identified in the study selection process.
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2.4 Data Mapping

The final step of the systematic mapping study process involves mapping each

of the relevant papers into categories based on well-defined classification schemes. The

classification schemes are defined in detail along with how they were constructed in

section 3. Each relevant paper was skimmed to the extent necessary for the researcher

to categorize the paper according to each classification scheme.
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Search 
Results

Title and Abstract 
Exclusion

7426 papers

315 relevant papers

40 NC papers

13 relevant papers

335
Primary 
Studies

Backwards 
Snowballing

Text Skimming

Duplicate removal

328 relevant papers

7 relevant 
papers

Figure 2.2: Overview of the study selection process including the number of papers
resulting from each step.
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3 Classification Schemes

In this section we provide the classification schemes used for the data mapping

and discuss how they were constructed. The data facets that schemes were developed

for were mostly derived from our research questions. For example, to answer research

question 1.1, ”What is the annual number of publications in the field?”, papers were

categorized based on the year in which they were published. Data facets were also

derived with our goal of assisting researchers looking to evaluate a testing technique in

mind.

The publication year, publication venue, and a�liation of the authors were ex-

tracted to answer research questions related to general publication trends. The evalua-

tion method, evaluation dimension, testing technique type, contribution type, and usage

of mutation analysis were extracted to answer more context-specific research questions.

The classification schemes for these facets are discussed in more detail in the following

subsections.

3.1 Evaluation Method

The evaluation method scheme categorizes papers based on the method they use

for evaluating a software testing technique. Due to a lack of existing knowledge about

the types of methods used, we systematically determined evaluation method categories

using Keywording as suggested by [255]. This consisted of reading the abstracts of

a subset of the collected relevant papers and generating keywords for the evaluation

12



methods. After reading a fairly large number of abstracts, the generated keywords were

clustered to form categories for methods of evaluating software testing techniques. In

our case there were few unique keywords, most of which referred to fairly well-defined

methods in research. Thus we relied on existing definitions to classify the four major

categories we developed for this data facet:

1. Experiment : A paper was classified in the experiment category if it utilized an

experiment to evaluate a software testing technique. This determination relied

heavily on Wohlin’s definition of experiments as an empirical investigation in

which ”di↵erent treatments are applied to or by di↵erent subjects, while keep-

ing other variables constant, and measuring the e↵ects on outcome variables”

[322]. We considered quasi-experiments to be a type of experiment when making

our determination.

2. Case Study : A paper was classified in the case study category if it utilized a case

study to evaluate a software testing technique. A case study was considered to be

”an empirical enquiry that draws on multiple sources of evidence to investigate one

instance (or a small number of instances) of a contemporary software engineering

phenomenon within its real-life context, especially when the boundary between

phenomenon and context cannot be clearly specified” [270]. As opposed to an ex-

periment, case studies exhibit much less control; usually due to their examination

of the phenomenon in a much larger, real-world context.

3. Example: A paper was classified in the example category if it utilized an example

to evaluate a software testing technique. We define an example as a demonstration

of a single technique in a small and constructed context.

4. Analytic: A paper was classified in the analytic category if it utilized a direct

evaluation of a technique based on its clear or provable properties.
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Some papers utilized multiple methods for evaluating software testing tech-

niques, so it was possible for a single paper to be placed in multiple categories. On

the other hand, a small number of papers discussed guidelines or enhancements when

evaluating techniques without actually utilizing an evaluation method. For example,

a paper discussing experiment subject selection is a relevant paper since it provides

insight on evaluating the e↵ectiveness of a fault-detecting software testing technique,

but it does not utilize a method for evaluating software testing techniques.

3.2 Evaluation Dimension

The evaluation dimension scheme categorizes papers based on the dimension

for which they evaluate software testing techniques. Categories for this schema were

derived directly from our research scope:

1. E↵ectiveness: A paper was classified in the e↵ectiveness category if it evaluated

the ability of a software testing technique to detect failures, kill mutants, or achieve

some degree of coverage.

2. E�ciency : A paper was classified in the e�ciency category if it evaluated the

performance of a software testing technique in terms of speed, memory usage, or

work done.

3. Scalability : A paper was classified in the scalability category if it evaluated how

a technique performed in larger domains.

4. Applicability : A paper was classified in the applicability category if it evaluated

the ability of the technique to be applied or generalized to other contexts.

As with the last classification scheme, it was possible for papers to be placed

into multiple categories or to not fit any of the categories.
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3.3 Testing Technique Type

This data facet refers to the type of testing technique a paper used in its evalu-

ation. The categories for this scheme were directly derived from research question 2.4,

which seeks to determine the distribution of white-box and black-box testing technique

evaluations. Thus we categorized papers based on whether their evaluation was of a

white-box or black-box testing technique:

1. White-box: At least one of the software testing techniques evaluated is a white-

box testing technique. We classify a technique as a white-box technique using a

definition from Amman and O↵ut [18], which states that a white-box technique

derives ”tests from the source code internals of the software, specifically including

branches, individual conditions, and statements”.

2. Black-box: At least one of the software testing techniques evaluated is a black-box

testing technique. We again relied on a definition from Amman and O↵ut for

determining whether or not a technique was black-box; considering a black-box

technique as one that derived ”tests from external descriptions of the software,

including specifications, requirements, and design” [18]. Evaluations of gray-box

testing techniques that did not require access to the source code of the software

under test, but utilized partial knowledge of its internal structure were included

in this category.

For this schema, papers could be classified as belonging to both categories if

both a white-box and a black-box testing technique were evaluated. Papers were also

classified as belonging to both categories if the technique type of the technique being

evaluated was ambiguous and the technique was potentially applicable in both black-box

and white-box contexts. Thus all papers utilizing a technique evaluation were classified

as at least white-box or black-box.
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3.4 Contribution Type

This scheme classifies papers based on the type of contribution they make in

the field. We were particularly interested in the separation of papers utilizing meth-

ods as opposed to proposing new methods or guidelines for evaluating software testing

techniques. Thus we defined the following categories:

1. Guideline: A paper was classified as a guideline paper if it provided guidelines for

evaluating a software testing technique, proposed a method for evaluating software

testing techniques, or proposed an enhancement for a method of evaluating a

software testing technique. Thus papers primarily discussing mutation analysis

methods or enhancements to them were considered proposal papers due to the

ability of these methods to evaluate other testing techniques.

2. Usage: A paper was classified as a usage paper if it utilized some method for

evaluating a software testing technique for its e↵ectiveness, e�ciency, scalability,

or applicability.

Papers that met both criteria were classified in both categories. Due to our

study selection criteria, every paper was classified in at least one of the contribution

type categories.

3.5 Use of Mutation Analysis

Mutation analysis is a popular technique for evaluating the fault-detection ca-

pabilities of test suites. Unfortunately the technique is also computationally expensive;

consisting of the generation of a usually large set of mutants and the execution of a

large number of tests (potentially the entire suite) for each mutant in the set. This has

led to the development of a wide range of cost reduction strategies for making mutation
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testing and analysis more feasible. Additionally, a wide range of mutation operators

exist for di↵erent contexts and for seeding di↵erent types of faults. Which cost reduc-

tion technique should be used when evaluating a particular test suite? Which mutation

operators should be used? For a mapping study of testing technique evaluations, iden-

tifying mutation analysis papers to assist researchers in answering such questions is an

important goal. Thus the mutation analysis schema below categorizes papers based on

whether or not they utilize mutation analysis to evaluate the e↵ectiveness of software

testing techniques:

1. Mutation: A paper was classified as a mutation paper if it utilized mutation

analysis and evaluated the e↵ectiveness, e�ciency, scalability, or applicability of

one or more software testing techniques.

2. Not Mutation: A paper was classified in this category if it evaluated the e↵ec-

tiveness, e�ciency, scalability, or applicability of one or more software testing

techniques and did not use mutation analysis.

As a result of this classification schema, all usage papers were categorized as

either mutation or not mutation papers. Additionally no papers with only the guideline

contribution type were included in this categorization since guideline-only papers did not

evaluate the e↵ectiveness, e�ciency, scalability, or applicability of a testing technique.

3.6 Evaluation Quality

To answer RQ2.5, additional data was extracted from the two most common

evaluation methods: case studies and experiments. For each of these methods, we relied

on proper methodology guidelines to derive data facets that would help us assess the

current state of evaluations in the field in terms of quality.
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Guidelines for case study methodology in the field of software engineering are

discussed by Runeson in [270]. Summarized from this work, some characteristics of an

exemplary case study are the definition of research questions from a significant topic

or theoretical basis, examination of multiple perspectives while investigating the topic,

provision of a logical link between evidence and conclusions made, and a discussion of

threats to the validity of the study. From these guidelines, the following categories were

created for papers utilizing case studies to evaluate software testing techniques:

1. Research Questions: A paper was classified in this category if it clearly defined

research questions to be addressed by the study.

2. Triangulation: This category assessed the case study’s consideration of multiple

perspectives. A paper utilizing a case study was classified as a triangulation paper

if it collected data from multiple sources or used multiple types of data collection.

3. Threats to Validity: A paper was classified in this category if it seriously discussed

threats to the validity of the study. A discussion was considered ”serious” if it

presented multiple threats and was at least a paragraph in length.

It should be noted that an evaluation framework for empirical methods in soft-

ware testing was recently developed by [312]. This framework is much more detailed

and focused, but due to its newness in the field it was not feasible to derive categories

from it for this mapping study.

Guidelines for controlled experiment methodology in the field of software engi-

neering are used to similarly develop categories for experiment papers. We rely on [322]

for these guidelines. Some important characteristics of exemplary experiments include

a clearly stated hypothesis with hypothesis testing, some justification for object/subject
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selection, descriptive statistics, and a discussion of threats to the validity of the exper-

iment. From these guidelines, the following categories were created for papers utilizing

controlled experiments to evaluate software testing techniques:

1. Hypothesis Testing: A paper was classified in the Hypothesis Testing category if

it clearly stated a hypothesis and performed hypothesis testing to accept or reject

this hypothesis.

2. Descriptive Statistics: A paper was classified in the Descriptive Statistics category

if it utilized descriptive statistics when quantitatively analyzing results.

3. Context Justification: This category assessed the appropriateness of objects and

subjects selected in controlled experiments. To meet the Context Justification

criteria, a paper’s objects or subjects needed to be fairly representative of the

research question context, a common benchmark, or at least justified to a degree

by some discussion in the paper. Thus papers presenting objects/subjects without

justification for their selection or a clear connection to research goals were not

included in this category.

4. Threats to Validity: A paper was classified in this category if it seriously discussed

threats to the validity of the experiment. A discussion was considered ”serious”

if it presented multiple threats and was at least a paragraph in length.
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4 Evaluating Software Testing Techniques: A

Map of the Field

We present a map of the field of research evaluating software testing techniques.

335 relevant papers were systematically collected and mapped according to the classi-

fication schemes defined above; providing a large-scale overview of publication trends,

research gaps, and the state of the art when it comes to evaluating software testing

techniques.

4.1 Publication Trends

We begin by presenting the distribution of publications based on the extracted

general publication information (publication year, publication venue, and author a�li-

ation).

4.1.1 Annual Activity Level

Figure 4.1 illustrates the level of activity in the field over the last 11 years.

The annual number of relevant papers increased significantly from 2009-2011 before

fluctuating over the 7 remaining years of the mapping. As shown by the black line of best

fit, the annual number of published papers in the field has grown a good amount overall.

This suggests an increased interest in research evaluating software testing techniques.
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Figure 4.1: Annual number of publications.

4.1.2 Main Publication Venues

Not surprisingly given our fairly broad research scope, the relevant papers col-

lected spanned 120 unique publication venues. While many of these venues only pub-

lished one relevant paper, there were some venues responsible for publishing a significant

number of contributions in the field. Table 4.1 lists the venues that published the most

relevant papers along with how many they published. By a significant margin, the

journal of Software Testing, Verification and Reliability was the most active publica-

tion venue with 33 relevant papers published over the last 11 years. The International

Symposium on Software Testing and Analysis was the next largest contributor with 24

relevant papers. Six other venues listed in Table 4.1 had 10-20 relevant publications.

The remaining venues had less than 10 relevant publications, with 79 venues having

only 1 relevant publication.
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Publication Venue # %
Software Testing, Verification and Reliability 33 9.85
International Symposium on Software Testing and Analysis 24 7.16
International Conference on Automated Software Engineering 17 5.07
International Conference on Software Engineering 15 4.48
International Conference on Software Testing 15 4.48
International Symposium on Foundations of Software Engineer-
ing

14 4.18

Empirical Software Engineering 13 3.88
International Conference on Software Testing, Verification and
Validation

13 3.88

Table 4.1: Main publication venues

4.1.3 Industry vs Academia

Figure 4.2 shows the relative contributions of industry and academia based on

author a�liation. Similar to most fields of research, a large majority of contributions

are made by academia. 291 papers (about 87%) had exclusively authors a�liated with

academic institutions. 30 papers (about 9%) had both authors a�liated with academic

institutions and authors a�liated with industry. Only 14 papers (about 4%) had exclu-

sively authors a�liated with industry.

4.2 Context-Specific Mappings

Next we present the results of the mapping based on the remaining classification

schemes: evaluation method, evaluation dimension, testing technique type, contribution

type, use of mutation analysis, and evaluation quality.

4.2.1 Evaluation Method

We developed 4 major categories for methods of evaluation: experiments, case

studies, examples, and analytic evaluations. Figure 4.3 shows the number of papers
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Figure 4.2: Percentage of contributions from industry and academia.

that utilized each evaluation method. Percentages shown are of the total number of

evaluation instances as opposed to the total number of primary studies. As mentioned

earlier, case studies and controlled experiments were by far the most common methods.

Experiments in particular were utilized very frequently for evaluating software testing

techniques. Of the 320 instances of testing technique evaluations, 214 of them (%66.88)

were controlled experiments. 73 of them (%23.13) were case studies. Only 18 were

analytic evaluations and only 15 fell into the example category. From this one data facet

it seems that performing controlled experiments is the state of the art when it comes

to evaluating software testing techniques. Exploring the relation between evaluation

methods and other data facets provides more insight on how the state of the art changes

with the dimension and type of testing technique evaluated.
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Figure 4.3: Distribution of primary study evaluations by method.

4.2.2 Evaluation Dimension

We also categorized papers based on the dimension they evaluated (e↵ectiveness,

e�ciency, applicability, and scalability). Figure 4.4 shows the number of evaluations

performed for each dimension. Percentages shown are of the total number of dimension

evaluations. Note that there are more dimension counts than the number of relevant

papers collected since some papers evaluated more than one dimension of a software

testing technique.

Of the 425 total dimension evaluations, more than half of them (%55.06) eval-

uated e↵ectiveness; suggesting that researchers are the most interested in evaluating

techniques based on their ability to detect failures, kill mutants, or achieve some degree

of coverage. This makes sense given the main purpose of testing techniques to reduce

the risk of using software by detecting failures.
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Figure 4.4: Number of evaluations by dimension.

Another large portion of the total dimension evaluations (%36.47) assessed the

e�ciency of a technique. The remaining %8.47 is split between applicability and scala-

bility evaluations at %6.35 and %2.12 respectively.

4.2.3 Testing Technique Type

Figure 4.5 illustrates the distribution of testing technique types that were eval-

uated. We see that research evaluating software testing techniques is quite evenly split

between white-box and black-box testing techniques. About (%46.71) of papers with

evaluations are focused on white-box testing techniques, %49.01 are focused on black-

box testing techniques, and the remaining %4.28 evaluated both of these testing tech-

nique types. While there are a good portion of papers dealing with the evaluation of

black-box testing techniques, we found that a large chunk of these evaluations are of
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the same few techniques. Upon further investigation, about 30% of the black-box eval-

uations were of random testing or combinatorial testing techniques.

47% 

49% 

4% 

White-Box 
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Both 

Figure 4.5: Percentage of white box and black box evaluations

4.2.4 Contribution Type

This scheme classified papers based on whether they evaluated a software testing

technique or proposed some method or insights regarding how software testing tech-

niques should be evaluated. As figure 4.6 illustrates, the majority of papers were usage

papers that utilized some method for evaluating software testing techniques. On the

other hand relatively very few papers discussed how techniques should be evaluated or

proposed a new methodology for doing so.

Despite the lower number of proposal papers, we believe this type of contribution

to the field is important for evolving and enhancing our ability to assess software testing

techniques. As such, a secondary classification was performed on these papers to develop

an understanding of the types of insights and proposals that exist for evaluating software
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testing techniques and to be able to point researchers towards higher level guidelines

in areas they are interested in. Our hope is that bringing awareness to these papers

will allow researchers to make higher quality evaluations of testing techniques as well as

motivate more research of this contribution type. The following section describes the

secondary classification and presents the results.

Guideline Paper Classification

Due to a lack of existing knowledge regarding the types of guideline papers

we would find, keywording [255] was again used to develop categories for the types of

guideline papers after examining each one in more detail. Doing so resulted in the

following classification schema:

1. Program Artifact: Program artifact papers provide guidelines or insight for pro-

gram artifacts under test when empirically evaluating software testing techniques.

These include papers discussing the importance of considering fault types in e↵ec-

tiveness evaluations, advocating for common benchmark artifacts, and the state

of the art in software fault injection.

2. Evaluation Metric: Evaluation metric papers provide guidelines or insight for

choosing a metric when empirically evaluating software testing techniques. These

include empirical correlations between evaluation metrics and fault-detecting abil-

ity, analytic e↵ectiveness bounds, and proposals of novel criteria for evaluating test

suite quality.

3. Human Subject Selection: A guideline paper was placed in this category if it

provided insight with regards to the selection of human subjects for an empirical

evaluation. Only one paper was placed in this category for exploring the impact

of subject experience on study results.
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4. Methodology: Methodology papers presented empirical study methodology guide-

lines not already addressed by the artifact or human subject selection categories.

Examples of papers mapped to this category include the proposal of a unified

framework and an outline of proper methodology when conducting empirical eval-

uations in software testing.

5. Mutation Analysis (code): Code mutation analysis papers presented an innovation

or guideline to mutation analysis of test suites at the source code level. In some

form they provided suggestions for how mutation analysis should be performed.

Most of these papers discuss e�ciency improvements as this is a well-known limi-

tation of mutation analysis techniques. We separate mutation testing at the code

level from mutation testing at the model level due to the large number of mutation

analysis guideline papers and significant di↵erences in guidelines between the two.

6. Mutation Analysis (model): Model mutation analysis papers presented an inno-

vation or guideline to mutation analysis of test suites at the model level.

A full text skimming was applied to each of the proposal papers as they were

categorized using the above schema. Table 4.2 presents the results of the secondary

categorization; mapping each category to a set of proposal papers belonging to it. Fur-

thermore, a short summary is provided with each of the proposal papers to make it

easier for researchers to locate papers relevant to their interests.

Table 4.2: Guideline papers by category

Guideline Category Papers

Program Artifact [239] Assessing Dependability with Software Fault Injection:

A Survey Presents an overview of the state of the art in software

fault injection and insight on which approaches to apply in di↵erent

contexts.
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Table 4.2: (continued)

Guideline Category Papers

[76] BegBunch Benchmarking for C Bug Detection Tools

Presents two benchmark programs in the C language with the hopes

of providing a ”common ground” for empirical comparisons of di↵er-

ent fault-detecting techniques.

[240] On the improvement of a fault classification scheme

with implications for white-box testing Presents improvements

for a fault classification scheme with the notion that testing tech-

niques are better at finding certain types of faults than others. This

paper is included in the artifact selection category since considering

the nature of faults in artifacts used in empirical studies may enhance

our understanding of the e↵ectiveness of software testing techniques.

[77] On the number and nature of faults found by random

testing An evaluation of the nature of faults that are discovered

by random testing. Also provides a fault classification scheme and

evidence that the nature of faults should also be considered when

comparing testing techniques.

Evaluation Metric [71] An Upper Bound on Software Testing E↵ectiveness Pro-

vides an analytic upper bound on the e↵ectiveness of software testing

techniques that rely on failure patterns.

[338] Assertions Are Strongly Correlated with Test Suite Ef-

fectiveness Empirically evaluates the relationship between the fault-

detection ability of a test suite and its assertions.

[126] Comparing Non-adequate Test Suites using Coverage

Criteria An empirical evaluation in an attempt to answer which

criteria should be used to evaluate test suites, particularly when test

suites are non-adequate.

[88] Evaluating Test Suite E↵ectiveness and Assessing Stu-

dent Code via Constraint Logic Programming Suggests the

evaluation of test suites by comparing their e↵ectiveness with a suite

automatically generated by Constraint Logic Programming
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Table 4.2: (continued)

Guideline Category Papers

[328] Information gain of black-box testing Introduces a novel

coverage criteria for assessing black-box tests based on information

gain from test cases.

[81] On Use of Coverage Metrics in Assessing E↵ectiveness

of Combinatorial Test Designs Investigates the use of certain

coverage metrics when evaluating combinatorial testing strategies.

Due to somewhat variable coverage across contexts for a given strat-

egy, suggests some measure of variability should be included when

assessing the e↵ectiveness of strategies using these metrics.

[104] PBCOV: a property-based coverage criterion Proposes a

new property-based criterion for assessing the adequacy of test suites.

[184] State Coverage: A Structural Test Adequacy Criterion

for Behavior Checking Proposes state coverage, a new structural

criterion for assessing the adequacy of test suites.

[293] Structural testing criteria for message-passing parallel

programs Introduces a novel structural testing criteria specifically

for message-passing parallel programs. Additionally presents a tool

that implements the new criteria along with results from applying it.

[122] The Risks of Coverage-Directed Test Case Generation

An empirical evaluation of structural coverage criteria. Among other

things, concludes that traditional structural coverage criteria by itself

may be a poor indicator of a test suite’s fault-detection capabilities

and that Observable MC/DC may be a promising alternative.

[297] Selecting V&V Technology Combinations: How to Pick

a Winner? Proposes a systematic method for evaluating verification

and validation technique combinations.

[174] Towards a deeper understanding of test coverage Sug-

gests coverage criteria should be calculated at di↵erent testing levels

instead of for the test suite as a whole.
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Table 4.2: (continued)

Guideline Category Papers

[143] Web Application Fault ClassificationAn Exploratory

Study Introduces a web application fault classification schema based

on the exploration of two large, real-world web systems.

Human Subject [82] The Impact of Students Skills and Experiences on Em-

pirical Results: A Controlled Experiment with Undergradu-

ate and Graduate Students A controlled experiment investigating

how the experience of human subjects in empirical studies evaluating

e↵ectiveness and e�ciency can impact results.

Methodology [48] Towards a Semantic Knowledge Base on Threats to Va-

lidity and Control Actions in Controlled Experiments Pro-

poses a knowledge base of threats to validity to assist researchers in

mitigating threats when planning experiments.

[283] The role of replications in Empirical Software Engi-

neering Identifies types of empirical study replications, discusses

the purpose of each type, and gives guidelines for providing su�cient

information about reported empirical studies to better enable study

replication.

[56] A Critical Analysis of Empirical Research in Software

Testing Provides a critical analysis of empirical research in software

testing and discusses common threats that arise when determining

cost-e↵ectiveness of a technique via empirical research.

[64] Towards Reporting Guidelines for Experimental Repli-

cations: A Proposal Suggests publishing guidelines for experiment

replications in order to ”increase the value of experimental replica-

tions”.

[102] Empirical Evaluation of Software Testing Techniques

in an Open Source Fashion Presents and advocates for a unified

framework for testing technique evaluations to ease study replication

and improve reproducibility of results.
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Table 4.2: (continued)

Guideline Category Papers

[312] A Methodological Framework for Evaluating Software

Testing Techniques and Tools Defines a general methodological

evaluation framework for case studies in software testing.

Mutation Analysis (c) [150] A Generic Approach to Run Mutation Analysis Intro-

duces a generic approach for mutation analysis that is not restricted

to particular execution environments.

[144] An approach for experimentally evaluating e↵ective-

ness and e�ciency of coverage criteria for software testing:

Provides guidelines and a demonstration of how to evaluate the e↵ec-

tiveness and e�ciency of coverage criteria utilizing mutation analysis.

[169] Do Redundant Mutants A↵ect the E↵ectiveness and

E�ciency of Mutation Analysis? Empirically demonstrates e�-

ciency and e↵ectiveness improvement gains from removing redundant

mutants in mutation analysis.

[127] E�cient mutation testing of multithreaded code ”Intro-

duces a general framework for e�cient exploration that can reduce

the time for mutation testing of multithreaded code”

[286] Extended Firm Mutation Testing: A Cost Reduction

Technique for Mutation Testing Discussion of various mutation

cost reduction techniques and a proposal for a new execution based

cost reduction technique.

[334] Faster Mutation Testing Inspired by Test Prioritiza-

tion and Reduction Proposes a mutation testing cost reduction

technique that prioritizes tests to more quickly determine which mu-

tants were killed.

[138] Measuring E↵ectiveness of Mutant Sets Empirical investi-

gation and guidelines regarding how mutant sets should be evaluated.

[310] Mutants Generation For Testing Lustre Programs

Presents a mutation generator for Lustre programs that employs mu-

tation cost reduction techniques.

32



Table 4.2: (continued)

Guideline Category Papers

[199] Mutation Testing in Practice using Ruby Presents mu-

tation operators for Ruby and guidelines for mutation testing based

on experience from an industrial Ruby project.

[247] Mutation Testing Strategies using Mutant Classifica-

tion Proposes mutant classification strategies to assist in isolating

equivalent mutants along with an experimental evaluation of the tech-

nique.

[146] Mutation Testing Techniques: A Comparative Study

An empirical comparison of four mutation testing techniques (op-

erators at class level, operators at method level, all operators, and

random sampling)

[170] The Major Mutation Framework: E�cient and Scal-

able Mutation Analysis for Java Introduces a JUnit mutation

analysis and fault seeding framework with claims of scalability and

e�ciency.

[237] The Use of Mutation in Testing Experiments and its

Sensitivity to External Threats Brings to light important ex-

ternal threats to consider when utilizing mutation testing in exper-

iments. These threats may be caused by test suite size, selected

mutation operators, and programming languages.

[83] Using Evolutionary Computation to Improve Mutation

Testing Introduces a mutation testing cost reduction technique that

utilizes a genetic algorithm to produce a reduced set of mutants.

[246] An Empirical Evaluation of the First and Second Order

Mutation Testing Strategies Provides an evaluation of the cost

and e↵ectiveness of di↵erent mutation testing strategies.

[257] Decreasing the cost of mutation testing with second-

order mutants Proposes a cost reduction technique for mutation

testing/analysis that combines mutants from an original set to obtain

a new set of mutants. Additionally performs an empirical evaluation

of a test suite created from these combined mutants.
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Table 4.2: (continued)

Guideline Category Papers

[230] E�cient JavaScript Mutation Testing Proposes mutation

operators specific to web applications and a mutation cost reduction

technique.

[171] E�cient Mutation Analysis by Propagating and Par-

titioning Infected Execution States Significant e�ciency gains

in mutation analysis using state infection conditions. The approach

is also implemented and empirically evaluated on open source pro-

grams.

[182] Evaluating Mutation Testing Alternatives: A Collat-

eral Experiment Proposes second order mutation strategies and

provides experimental results suggesting the strategies lead to signif-

icant cost reductions without considerably reducing test e↵ectiveness.

[66] Exploring hybrid approach for mutant reduction in soft-

ware testing Introduces a hybrid mutation testing cost reduction

technique.

[342] JDAMA: Java database application mutation analyser

Introduces a mutation analyzer useful for evaluating testing tech-

niques applied to java database applications.

[147] Mutation Operators for Simulink Models Proposes a set

of mutation operators for Simulink models and provides a procedure

for mutation testing of Simulink Models.

[178] Mutation Operators for the Atlas Transformation Lan-

guage Presents mutation operators for the Atlas Transformation

Language and evaluates their e↵ectiveness in an empirical study.

[225] Parallel mutation testing Suggests enhancing the e�ciency

of mutation testing by utilizing parallel execution.

[226] Reducing mutation costs through uncovered mutants

Presents a mutation cost reduction technique that leverages the anal-

ysis of covered mutants to reduce the number of executions required.
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Table 4.2: (continued)

Guideline Category Papers

[128] Selective Mutation Testing for Concurrent Code ”Ex-

plores selective mutation techniques for concurrent mutation opera-

tors” and provides an empirical study evaluating these techniques.

[344] Speeding-Up Mutation Testing via Data Compression

and State Infection Speeds up mutation testing by filtering out

executions using state infection information and grouping mutants

with Formal Concept Analysis.

[212] Statistical Investigation on Class Mutation Operators

Provides statistical information regarding the number of mutants

generated, the distribution of mutants generated, and the e↵ective-

ness of applying class mutation operators to 866 open source classes.

[139] Topsy-Turvy: A Smarter and Faster Parallelization of

Mutation Analysis Presents a new parallelization technique for

mutation analysis.

[172] Using Conditional Mutation to Increase the E�ciency

of Mutation Analysis Introduces a new e�ciency optimization

when performing mutation analysis called conditional mutation.

[211] X-MuT: A Tool for the Generation of XSLT Mutants

Introduces mutation operators for the XLST language along with

their implementation in a tool and an evaluation of its e↵ectiveness.

Mutation Analysis (m) [86]A Variability Perspective of Mutation Analysis Introduces

method for modeling mutation operators as a feature diagram for

better and faster mutation analysis.

[87] Featured Model-based Mutation Analysis Proposes an

optimization for model-based mutation analysis using a modeling

framework. Performance evaluations of the proposed technique are

carried out and compared to other optimizations.
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Figure 4.6: Contribution type distribution

4.2.5 Use of Mutation Analysis

Figure 4.7 illustrates the portion of evaluation papers classified as mutation

papers. Of all 217 papers evaluating the e↵ectiveness of a testing technique using a

case study or experiment, a large portion of them (28%) utilized mutation analysis.

Furthermore, mutation analysis seems to be becoming more popular over time. Figure

4.8 shows the proportion of e↵ectiveness evaluations that utilize mutation analysis each

year. One of the main limitations of mutation testing and analysis has been its high

computational cost. It makes sense that mutation analysis has become more popular

as more cost reduction strategies are developed and refined.

4.2.6 Evaluation Quality

Tables 4.3 and 4.4 present the results of extracting evaluation quality data facets

from experiments and case studies respectively.
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Figure 4.7: Mutation Analysis Distribution

Experiment Evaluation Quality
Category # of Experiments %
Hypothesis Testing 39 18.22
Context Justification 98 45.79
Descriptive Statistics 160 74.77
Threats to Validity 100 46.73

Table 4.3: The number and percent of experiments that satisfy each of the experiment
evaluation quality criteria

Very few experiments (%18) formally stated a hypothesis and performed hypoth-

esis testing. On the other hand, a majority of experiments utilized descriptive statistics.

We see that close to half of experiments meet the justified context criteria and provide

a serious discussion of threats to validity. A smaller percentage of case studies provided

threats to validity. 57% of case studies implemented some form of data triangulation

while few (27%) clearly stated research objectives.
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Case Study Evaluation Quality
Category # of Case Studies %
Research Questions 20 27.40
Triangulation 42 57.53
Threats to Validity 27 36.99

Table 4.4: Number and percent of case studies that satisfy each of the case study eval-
uation quality criteria

4.2.7 Distribution of Evaluation Methods Over Time

Figure 4.9 shows the distribution of evaluation methods over time. Experiments

were the most common method of evaluating testing techniques every year. The number

of case study and experiment evaluations grew considerably from 2007 to 2014; growing

by %366.67 and %236.36 respectively. The number of experiments and case studies

remained fairly high in the last 3 years of the study. Both the number of examples and

analytic evaluations remained low throughout the study with minor variation.
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Figure 4.9: Distribution of evaluation methods over time

4.2.8 Relation of Evaluation Method and Dimension

Table 4.5 gives the number of relevant papers by evaluation method and evalu-

ation dimension. Figure 4.10 illustrates their distribution. Note that the total number

of papers is greater than 335 since a paper could utilize multiple evaluation methods

or evaluate multiple dimensions. Given that experiments were the most common eval-

uation method and e↵ectiveness was the most common evaluation dimension, it is not

surprising that experiments evaluating the e↵ectiveness of a technique are the most com-

mon here. Experiments evaluating the e↵ectiveness and e�ciency of testing techniques

make up over half of the total testing technique evaluations. We see that relatively very

few experiments evaluated the scalability or applicability of testing techniques. A large

number of case studies also evaluate the e↵ectiveness and e�ciency of software testing

techniques. Despite the much lower number of applicability evaluations in general (%6.5

of all evaluations), %13.46 of case studies evaluated applicability. Furthermore, %50 of
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Experiment Case Study Example Analytic
E↵ectiveness 161 57 8 8
E�ciency 123 30 0 7
Scalability 5 3 0 1
Applicability 2 14 8 4

Table 4.5: Distribution of papers by evaluation method and evaluation dimension.

applicability evaluations were case studies compared to %7.14 that were experiments.

Very few scalability evaluations are performed in general, but case studies and experi-

ments make up %88.89 of them. Examples were evenly used to assess the e↵ectiveness

and applicability of techniques. No examples were used to investigate e�ciency or scal-

ability. Examples also make up a large amount of applicability evaluations (28.57%).

We see that analytic evaluations assessed e↵ectiveness and e�ciency the most, but only

assess scalability once.

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	
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Efficiency	

Scalability	
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Figure 4.10: Distribution of evaluations by method and dimension
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4.2.9 Relation of Mutation Analysis, Evaluation Method, and

Technique Type

Figures 4.11 and 4.12 show the distribution of e↵ectiveness papers utilizing mu-

tation analysis in experiments and case studies. The distribution is surprisingly similar

for experiments and case studies, di↵ering only by about one percent of papers.

A somewhat greater di↵erence can be observed when comparing the distributions

of mutation analysis papers by testing technique type. Figures 4.13 and 4.14 illustrate

this di↵erence. (33%) of black-box e↵ectiveness evaluations utilized mutation analysis.

On the other hand, mutation analysis was surprisingly a bit less popular in white-box

e↵ectiveness evaluations; being used in about (25%) of these papers.

29% 

71% 

Mutation 

No Mutation 

Figure 4.11: Distribution of mutation analysis experiment papers
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Figure 4.12: Distribution of mutation analysis case study papers

4.2.10 Relation of Author A�liation, Evaluation Method, and

Evaluation Dimension

Figure 4.15 shows the relation between author a�liation, evaluation method,

and dimension of evaluation. We see that industry has the most involvement with

experiments assessing e↵ectiveness and e�ciency and with case studies assessing e↵ec-

tiveness, e�ciency, and applicability. Industry has little a�liation with other evaluation

methods or dimensions of evaluation.

4.2.11 Relation of Technique Type, Evaluation Method, and

Evaluation Dimension

Figure 4.16 shows the relation between technique type, evaluation method, and

evaluation dimension. We see that for most combinations of technique type and evalu-

ation dimension, experiments are the most common method of evaluation followed by

case studies. Of notable exception are applicability evaluations of both white box and
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Figure 4.13: Distribution of mutation analysis black-box papers

black box testing techniques. In these applicability evaluations, case studies become

the most common evaluation method, making up %52.63 of black-box evaluations and

%44.44 of all white-box evaluations. %69 of all case studies evaluating applicability

were evaluations of black box testing techniques.

More interesting are the di↵erences between some of the evaluation method

distributions with the same evaluation dimension. For instance, white-box scalability

evaluations found in this study exclusively use experiments while about %50 of black-

box scalability evaluations consist of case studies and analytic evaluations. Analytic

evaluations also made up a greater amount of white-box applicability evaluations than

they did black-box applicability evaluations. We find that across the board case study

evaluations are a good amount more common when evaluating black-box testing tech-

niques.
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Figure 4.14: Distribution of mutation analysis white-box papers

4.3 Papers By Category

Probably the largest contribution of this thesis is a map from our classifications

to sets of specific papers belonging to them. We hope such a map will allow researchers to

easily locate papers evaluating software testing techniques with certain characteristics.

In particular, researchers looking to evaluate a particular technique can develop an

understanding of how they should do so by utilizing the map to find the state of the art

for similar technique evaluations.

Each combination of technique type, evaluation dimension, evaluation method,

and mutation a�liation is mapped to a set of papers along with the set’s cardinality

in Table 4.6. Due to the large number of papers, each paper is presented using its

citation number. Due to the large number of category combinations (64), the table

utilizes a unique context identifier as a key assigned to each subset of evaluation method

combinations. A complementary decision tree (Figure 4.17) is provided for quickly

obtaining a context identifier based on paper characteristics, and thus for quickly finding
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a table entry of interest since context identifiers are sorted alphabetically. The internal

nodes of the tree represent classification schemes, with branches to children representing

each classification in the scheme. The leaves of the tree are the context identifiers for

entries in Table 4.6. Thus context identifiers are obtained from the tree by following

a path from its root to a leaf based on classification categories of interest. A more in

depth demonstration utilizing the tree and table is presented in a case study in Section

6.
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Table 4.6: Papers belonging to each category combination

Context

ID

Evaluation

Method

Count Papers

A Experiment 30 [80], [269], [292], [193], [182], [146], [72], [254],

[116], [311], [258], [290], [128], [249], [334],

[200], [273], [340], [317], [36], [144], [248],

[162], [100], [190], [63], [109], [115], [234], [309]

Case Study 6 [230], [199], [213], [330], [256], [247]

Analytic 0

Example 0

B Experiment 24 [80], [92], [225], [292], [212], [344], [182], [66],

[146], [254], [171], [170], [311], [258], [290],

[172], [334], [273], [36], [144], [248], [181], [63],

[234]

Case Study 4 [230], [139], [330], [100]

Analytic 0

Example 0

C Experiment 0

Case Study 2 [199], [330]

Analytic 1 [342]

Example 0

D Experiment 0

Case Study 0

Analytic 0

Example 0
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Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

E Experiment 71 [101], [25], [214], [316], [7], [132], [152], [257],

[90], [252], [131], [24], [142], [42], [19], [108],

[319], [167], [259], [130], [166], [84], [121],

[336], [217], [285], [4], [76], [135], [231], [346],

[16], [145], [321], [9], [245], [300], [340], [298],

[68], [31], [232], [113], [20], [103], [198], [141],

[159], [218], [148], [160], [3], [53], [21], [67],

[215], [136], [133], [111], [95], [155], [165],

[154], [120], [47], [46], [343], [110], [246], [194],

[12]

Case Study 15 [180], [202], [11], [30], [88], [335], [223], [124],

[278], [112], [52], [265], [253], [308], [41]

Analytic 2 [304], [125]

Example 5 [25], [289], [60], [23], [134]

F Experiment 54 [127], [226], [214], [316], [106], [257], [90],

[252], [345], [319], [259], [105], [130], [166],

[186], [34], [84], [304], [171], [170], [280], [76],

[135], [231], [266], [78], [296], [16], [321], [203],

[298], [68], [31], [232], [250], [189], [20], [284],

[160], [14], [67], [136], [307], [13], [185], [111],

[188], [155], [165], [47], [271], [110], [246], [12]

Case Study 6 [202], [139], [124], [253], [35], [41]

Analytic 0
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Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

Example 1 [149]

G Experiment 0

Case Study 2 [52], [268]

Analytic 1 [73]

Example 3 [173], [125], [117]

H Experiment 1 [141]

Case Study 0

Analytic 0

Example 0

I Experiment 22 [207], [208], [129], [114], [55], [210], [324],

[206], [314], [98], [176], [140], [311], [26], [126],

[281], [93], [282], [190], [234], [318], [123]

Case Study 13 [233], [175], [178], [147], [59], [256], [10], [294],

[227], [201], [6], [39], [260]

Analytic 1 [291]

Example 1 [26]

J Experiment 10 [208], [92], [55], [70], [98], [311], [26], [87],

[156], [234]

Case Study 7 [233], [175], [10], [294], [227], [6], [187]

Analytic 0

Example 1 [26]

K Experiment 0

Case Study 0
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Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

Analytic 1 [211]

Example 0

L Experiment 0

Case Study 0

Analytic 0

Example 0

M Experiment 46 [101], [221], [333], [197], [196], [275], [77],

[204], [331], [38], [81], [74], [15], [167], [209],

[43], [327], [251], [191], [192], [303], [329],

[341], [61], [274], [17], [222], [57], [305], [22],

[218], [160], [216], [53], [21], [37], [263], [337],

[315], [119], [179], [235], [49], [244], [69], [302]

Case Study 25 [32], [295], [205], [157], [44], [325], [323], [220],

[228], [40], [89], [17], [33], [85], [75], [163],

[242], [243], [267], [299], [320], [29], [107], [41],

[183]

Analytic 5 [224], [306], [151], [301], [195]

Example 3 [197], [28], [60]

N Experiment 39 [333], [197], [65], [62], [275], [332], [58], [94],

[2], [204], [79], [74], [241], [8], [209], [153],

[327], [91], [251], [191], [326], [341], [277],

[222], [57], [22], [160], [216], [219], [37], [263],

[262], [5], [264], [179], [235], [49], [69], [302]
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Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

Case Study 15 [279], [50], [44], [325], [323], [40], [89], [17],

[163], [118], [158], [267], [347], [107], [41]

Analytic 0

Example 5 [197], [58], [74], [45], [347]

O Experiment 2 [99], [27]

Case Study 10 [288], [50], [157], [51], [276], [261], [313], [158],

[27], [320]

Analytic 5 [229], [238], [177], [339], [306]

Example 1 [272]

P Experiment 4 [333], [79], [329], [5]

Case Study 3 [279], [313], [242]

Analytic 0

Example 1 [8]
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5 Discussion

Our map of the field reveals that interest in research evaluating software testing

techniques has grown significantly since 2007. Despite the broad scope of the field, we

see that this interest does manifest itself in a few publication venues with a much higher

relative concentration of relevant papers. Contributions in the field come almost entirely

from academia with only a small percentage of papers written by authors a�liated with

industry. Even though industrial contributions are relatively few, the distribution of

evaluation methods and dimensions are somewhat di↵erent in this set of papers. A large

portion of case studies examining the applicability of testing techniques from authors

in industry suggests that industry can provide a valuable niche in that area.

Our study also reveals there is a good amount of research evaluating both white-

box and black-box testing techniques, with about half of evaluations being of each tech-

nique type. We found that black-box technique evaluations focused largely on combina-

torial and random testing techniques; leaving a relative shortage of research evaluating

other black-box testing techniques. For the most part, the distribution of evaluation

methods and evaluation dimensions in black-box evaluations is similar to that of white-

box evaluations. That said, black-box evaluations more often utilize case studies and

analytic evaluations when assessing techniques.

In general, evaluations of software testing techniques are overwhelmingly empir-

ical studies in the form of experiments and case studies with a large focus on evaluating

e↵ectiveness and e�ciency. On the other hand, there are gaps in research evaluating

scalability and applicability. Based on the distribution of the dimensions of these evalu-
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ations, we can provide insight on what is the state of the art when it comes to evaluating

software testing techniques:

1. For researchers looking to evaluate the e↵ectiveness of their testing technique

experiments were by far the most common methodology for doing so. Despite

being the most common method of evaluation, a majority of experiments looking

at the e↵ectiveness of techniques neglected to provide a hypothesis with hypothesis

testing. Less than 20% did so. Only about half of experiments met the justified

context criteria or provided a serious discussion of threats to validity. About 75%

of experiments utilized descriptive statistics. The second most common method

for evaluating e↵ectiveness was case studies. These were often used when research

goals had to do with evaluating the technique in an industrial context unsuitable

for the level of control required for an experiment. The case studies did a poor

job of meeting the case study quality criteria described in section 3.5. About

%57 utilize data triangulation, %20 define research questions, and %42 provide

a serious discussion of threats to validity. Only a few papers used examples or

analytic methods to demonstrate the e↵ectiveness of their technique. In short,

experiments should be used for evaluating the e↵ectiveness of testing techniques

when possible and experiments are so far relatively weak according to proper

experiment methodology laid out by [322].

2. The state of the art is fairly similar when it comes to evaluating the e�ciency of

testing techniques. Experiments were again by far the most common methodology

for doing so. Many of these experiments also neglected to provide hypothesis

testing or discuss threats to their validity; something that can be improved upon

in this field. Case studies were the second most common method used and were

of similar quality to those evaluating e↵ectiveness. A few analytic evaluations and

no examples were used to assess e�ciency.
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3. For researchers looking to evaluate the applicability of their testing technique,

case studies were the most used by a significant margin. These case studies did a

better job of utilizing data triangulation and clearly defining research questions.

Still, only %35 provided a serious discussion of threats to validity. Examples were

the next most common method used for assessing applicability. These assessments

tended to be simple demonstrations of how a technique could be applied in dif-

ferent contexts as opposed to a more rigorous empirical evaluation. Despite being

the most common evaluation method, experiments evaluated the applicability of

testing techniques the least. In short, case studies should be used in most cases to

assess the applicability of testing techniques, with examples being used for simpler

demonstrations of applicability.

4. Finally, for researchers looking to evaluate the scalability of their testing tech-

niques, case studies and experiments were the most common methods for doing

so. Even though only 9 scalability evaluations were collected in this mapping

study, almost all of them utilized case studies or experiments. As mentioned ear-

lier, Scalability was a dimension in which the distribution of evaluation methods

changed drastically with testing technique type. We see that the scalability of

white-box techniques is only evaluated using experiments while the scalability of

black-box techniques largely utilizes case studies. Thus, researchers looking to fol-

low the state of the art when evaluating the scalability of their testing technique

should consider the testing technique type when deciding between experiments

and case studies.

In terms of contribution type, most of the collected papers performed an evalu-

ation of some software testing technique. There were relatively very few papers actually

discussing how techniques should be evaluated or proposing a new methodology for

doing so. That said, a few important papers with the latter contribution type were
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presented in section 4.2.4. These papers suggest that convergence in empirical study

methodology and more careful analysis and characterization of objects to which treat-

ments are applied will significantly improve reproducibility and the e�cacy of claims

made in evaluating software testing techniques.
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6 Case Study

To demonstrate how the results of this mapping study can be used by researchers

looking to evaluate a particular testing technique, we present a small case study based

on the case of our peers who are interested in evaluating the e↵ectiveness of a novel

black-box testing technique. We first introduce the case in more detail. Then we step

through various sections of the results; discussing how each section helps us develop

an understanding of how the novel black-box testing technique developed by our peers

should be evaluated.

6.1 The Case

One of the motivating examples for this mapping study came from our peers

who developed a novel black-box testing technique. As with many researchers who

have developed a novel testing technique, a greater understanding of how to evaluate

their particular technique was desired. How have other papers evaluated similar testing

techniques? Are there any best practices or guidelines to be aware of? Furthermore, the

case of our peers presented a particular challenge when evaluating a testing technique

empirically. With the source code embedded in the system under test, modifying it

between test executions for a large number of test cases was simply infeasible. This

made a popular approach like mutation analysis very di�cult to apply at the code level.

How have other researchers evaluated techniques where this is the case?
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6.2 Intuition from Aggregate Information

To begin, we might want to develop some higher level intuition regarding how

similar techniques are evaluated in the field. Aggregate statistics and their visualiza-

tions presented in the earlier parts of section 4 can help us quickly identify common

characteristics of evaluations performed for similar testing technique types and dimen-

sions.

Looking at the evaluation method distribution for the e↵ectiveness dimension

in Figure 4.10, we see that over 90% of all e↵ectiveness evaluations were made up of

experiments and case studies. Given such a large majority (and in our case the di�culty

of performing some analytic evaluation), Figure 4.10 gives us a clear indication that our

evaluation should most probably be some empirical evaluation in the form of an exper-

iment or case study. Figure 4.16 gives us similar information, but considers the testing

technique type as well. This figure shows that case studies were somewhat more popular

in black-box e↵ectiveness evaluations than they were in white-box evaluations. While

experiments were certainly the most common method for evaluating the e↵ectiveness

of black-box techniques, many papers also utilized case studies. Thus we would likely

choose our evaluation method by reading actual papers evaluating the e↵ectiveness of

black-box techniques (see section 6.3 below) and by considering whether or not a high

level of experimental control is possible.

Another area we might be interested in is how often mutation analysis is utilized

in e↵ectiveness evaluations of similar techniques. Figures 4.11-4.14 show us that the

proportion of evaluations utilizing mutation analysis remains fairly consistent regardless

of evaluation method or testing technique type. For black-box evaluations in particular,

Figure 4.13 shows that about one-third utilize mutation analysis. Being such a popular

technique, we keep it in mind when considering how to evaluate our technique.
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6.3 Locating Related Papers

While aggregate information can give us a quick intuition when it comes to

evaluation methods and the use of mutation analysis, it fails to provide a more in-depth

understanding of the state of the art in similar testing technique evaluations. We may

have many finer-grain questions about how to evaluate our technique or just want to

examine papers evaluating similar testing techniques for guidance or inspiration. In

our case, we are especially interested in how black-box e↵ectiveness evaluations using

mutation analysis are performed when access to the source code is limited. This is

where a further understanding of the state of the art is necessary and can be obtained

from reading papers performing similar technique evaluations.

Figure 4.17 and Table 4.6 help us to easily locate these papers. As mentioned

earlier, Table 4.6 maps each combination of technique type, evaluation dimension, eval-

uation method, and mutation analysis a�liation to a set of papers along with the set’s

cardinality. Due to the large number of combinations and table size, Figure 4.17 has

been provided as a complementary tool for quickly finding the table row we are inter-

ested in. To use the tool, we start at the root node labeled ”Technique Type” and work

our way down the tree by choosing the category we are interested in at each internal

node of the tree. For this case study we are interested in learning about black-box

technique evaluations, so we take the right path, labeled ”Black-Box”, to the Mutation

Analysis Used internal node. Because we are interested in finding papers that utilize

mutation analysis, we then take the left branch to the Evaluation Dimension internal

node. Finally, our interest in e↵ectiveness evaluations leads us to take the leftmost

branch labeled ”E↵ect” and arrive at the leaf node, I. This leaf node represents an iden-

tifier for the row in Table 4.6 containing papers evaluating the e↵ectiveness of black-box

testing techniques using mutation analysis.
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Given our identifier I, we quickly locate the row labeled I in Table 4.6 (note

identifiers are in alphabetical order and color coded) to find papers we are interested in.

Table 4.6 shows there are 22 experiment and 13 case study papers. We are particularly

interested in the evaluations where access to the code may be limited between test

executions, so we skim through the set of 35 papers to find such evaluations. This reveals

3 empirical evaluations, [6], [59], and [10], that we can use to learn how other researchers

evaluated the e↵ectiveness of their technique under similar conditions. We see that each

of the 3 evaluations are able to apply some form of mutation analysis without altering

the source code between test executions by utilizing model-level mutants for various

models. In particular, [6] reveals a model-based mutation testing tool for UML models

and additionally presents a case study demonstrating how model-based mutation testing

can be applied to an industrial measurement device using the tool. By referring to [6],

we see how we might model our own SUT in UML and utilize model-based mutation

analysis to evaluate the e↵ectiveness of our technique.

6.4 Guidelines

After reading through related evaluations, we also may want to consult papers

providing higher-level guidelines pertaining to our evaluation. To do so, we refer to

Table 4.2 which lists all of the higher level guideline and proposal papers collected

in this mapping study by various categories. Looking through these papers and their

summaries, we very quickly gather some valuable insights which will help us plan the

evaluation of our testing technique. [77] tells us that di↵erent techniques may be better

suited for finding di↵erent types of faults and that the nature of faults found should be

considered in testing technique evaluations. [82] suggests that we should consider the

experience level of human subjects and should probably apply random selection. [48]

and [54] both do an excellent job of warning us about common threats to the validity
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of empirical research results. [283] and [64] provide reporting guidelines that will help

others replicate our study. Finally, a range of papers in the table present applicable

mutation cost-reduction techniques we may want to consider.
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7 Threats to Validity

The main threats to the validity of this study are common to most mapping

studies. While systematic, our methods of gathering a set of papers representative of

the field under investigation and our methods of mapping them are not immune to these

issues.

A major validity concern in systematic mapping studies is that the set of gath-

ered papers fails to include relevant papers in the field. There are a few reasons why

this is a threat to the validity of our particular study:

1. Limited Search Space: Relevant papers were only searched for in online databases.

Furthermore, our search was only applied to four of the most common online

databases. It is possible relevant papers not published online or published in a

di↵erent online database were missed.

2. Language Barrier: Only papers written in English were considered in this study.

One paper from the initial search was excluded on this basis. It is possible this

paper was relevant.

3. Search String: The search string chosen obviously has a large impact on the

ability of a search to return relevant papers. It is possible the search string used

in this study resulted in relevant papers not being returned from online sources.

We attempted to mitigate this threat by systematically deriving our search string

from our research goal as suggested by [236] and by applying iterative refinements

to our search string based on search results (discussed in section 2.2).
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4. Misleading Titles and Abstracts: Some relevant papers may have been ex-

cluded in title and abstract exclusion due to titles and abstracts not accurately

reflecting the content of papers.

Another major validity concern in systematic mapping studies is that gathered

relevant papers are misclassified. This is a concern in our study due to the possibility of

author error and poorly written abstracts. The threat is reduced by the fact that full text

skimmings were applied to relevant papers to adequately perform some classifications.
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8 Conclusion and Future Work

With the growing demand for high quality testing techniques it is important

that we evaluate them e↵ectively. An understanding of how we currently evaluate

techniques and where our evaluations are lacking can give researchers a better idea

of how they should evaluate their techniques as well as initiate research to improve

technique evaluations. This paper provides such an understanding by mapping out

the field in a systematic mapping study; illustrating the current state of the art and

identifying research gaps. Based on the state of the art we have presented guidelines for

how a researcher should evaluate their particular testing technique and have generated

a mapping from categories to sets of papers belonging to them; allowing researchers to

easily locate papers in the field that they are interested in.

The study also answers nine specific research questions declared in the introduc-

tion:

1. RQ1.1: The number of papers published annually increased greatly from 2009-

2011 and has remained about at that level. Since 2011, on average about 35

relevant papers were published per year.

2. RQ1.2: Software Testing, Verification and Reliability and the International Sym-

posium on Software Testing and Analysis are the two main publication venues,

with 33 and 24 relevant contributions respectively. Other major publication venues

include the International Conference on Automated Software Engineering, the In-

ternational Conference on Software Engineering, the International Conference on
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Software Testing, the International Symposium on Foundations of Software En-

gineering, Empirical Software Engineering, and the International Conference on

Software Testing, Verification and Validation.

3. RQ1.3: A large majority of contributions (%87) are from academia based on

author a�liation. Only %13 have authors a�liated with industry.

4. RQ2.1: Experiments, case studies, analytic evaluations, and examples are the

main methods used for evaluating software testing techniques.

5. RQ2.2: Empirical evaluations in the form of experiments make up a very large

majority of evaluation methods. Of these, experiments are used quite a bit more.

Analytic evaluations and examples are seldom used.

6. RQ2.3: Over half of evaluations are of the e↵ectiveness of software testing tech-

niques. %36 evaluate e�ciency. A very small remaining proportion of papers

evaluate the applicability and scalability of techniques.

7. RQ2.4 %47 of evaluations were of white-box techniques, %49 of evaluations were

of black-box techniques, and %4 of evaluations were of both white-box and black-

box techniques.

8. RQ2.5: Based on proper experiment and case study methodologies proposed by

[312] and [322] respectively, evaluations are of relatively low quality.

9. RQ2.6: Most of the papers utilized a method to evaluate a software testing tech-

nique. Relatively few papers discussed how testing techniques should be evaluated

or proposed a method for doing so.

10. RQ2.7: Almost %30 of e↵ectiveness evaluations utilized mutation analysis. This

percentage is fairly consistent across white-box and black-box testing technique

evaluations.
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More generally our work concludes that there is a need for research focused on

how testing techniques should be evaluated. Very few papers were classified as proposal

papers even though a large number of papers utilized evaluations for techniques. Fur-

thermore, most of the empirical evaluations made were of fairly low quality according to

proper methodology guidelines. While it is good that many researchers evaluate their

techniques, it seems clear the field is lacking more serious testing technique evaluations

that are influenced by findings from guideline research. Maturing in this area may

greatly enhance our assessment capabilities and as a result further our understanding of

the e↵ectiveness, e�ciency, scalability, and applicability of software testing techniques.
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