
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2019

Evaluating Software Testing Techniques: A Systematic Mapping Evaluating Software Testing Techniques: A Systematic Mapping

Study Study

Mitchell Mayeda
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Mayeda, Mitchell, "Evaluating Software Testing Techniques: A Systematic Mapping Study" (2019).
Electronic Theses and Dissertations. 1599.
https://digitalcommons.du.edu/etd/1599

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.du.edu%2Fetd%2F1599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1599?utm_source=digitalcommons.du.edu%2Fetd%2F1599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Evaluating Software Testing Techniques: A Systematic Mapping Study

A Thesis

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Mitchell Mayeda

June 2019

Advisor: Anneliese Andrews

c� Copyright by Mitchell Mayeda 2019

All Rights Reserved

Author: Mitchell Mayeda
Title: Evaluating Software Testing Techniques: A Systematic Mapping Study
Advisor: Anneliese Andrews
Degree Date: June 2019

Abstract

Software testing techniques are crucial for detecting faults in software and reduc-

ing the risk of using it. As such, it is important that we have a good understanding of

how to evaluate these techniques for their e�ciency, scalability, applicability, and e↵ec-

tiveness at finding faults. This thesis enhances our understanding of testing technique

evaluations by providing an overview of the state of the art in research. To accomplish

this we utilize a systematic mapping study; structuring the field and identifying research

gaps and publication trends. We then present a small case study demonstrating how our

mapping study can be used to assist researchers in evaluating their own software testing

techniques. We find that a majority of evaluations are empirical evaluations in the form

of case studies and experiments, most of these evaluations are of low quality based on

proper methodology guidelines, and that relatively few papers in the field discuss how

testing techniques should be evaluated.

ii

Acknowledgements

I am extremely grateful to my thesis advisor, Dr. Anneliese Andrews, whose

remarkable guidance, encouragement, and expertise made this research possible. I can-

not thank her enough for her time and e↵ort in supporting this endeavor. I would also

like to thank the Computer Science faculty at the University of Denver for their exem-

plary work as educators. I am blessed to have been a student of such passionate and

knowledgeable teachers. I would like to thank my examining committee members, Dr.

Scott Leutenegger and Dr. Michael Keables, for agreeing to serve on my oral defense

committee. I would also like to thank my friends and family for their support, and give

a special thanks to Dr. Leutenegger and Meredith Corley for going well out of their way

in encouraging me to succeed. Last but not least, I would like to thank my parents for

their unbounded love and support. This accomplishment would not have been possible

without them.

iii

Contents

1 Introduction . 1
1.1 Background . 2
1.2 Thesis Layout . 4

2 Research Method . 5
2.1 Definition of Research Questions . 5
2.2 Systematic Search . 7
2.3 Study Selection . 8
2.4 Data Mapping . 10

3 Classification Schemes . 12
3.1 Evaluation Method . 12
3.2 Evaluation Dimension . 14
3.3 Testing Technique Type . 15
3.4 Contribution Type . 16
3.5 Use of Mutation Analysis . 16
3.6 Evaluation Quality . 17

4 Evaluating Software Testing Techniques: A Map of the Field 20
4.1 Publication Trends . 20

4.1.1 Annual Activity Level . 20
4.1.2 Main Publication Venues . 21
4.1.3 Industry vs Academia . 22

4.2 Context-Specific Mappings . 22
4.2.1 Evaluation Method . 22
4.2.2 Evaluation Dimension . 24
4.2.3 Testing Technique Type . 25
4.2.4 Contribution Type . 26
4.2.5 Use of Mutation Analysis . 28
4.2.6 Evaluation Quality . 29
4.2.7 Distribution of Evaluation Methods Over Time 31
4.2.8 Relation of Evaluation Method and Dimension 32
4.2.9 Relation of Mutation Analysis, Evaluation Method, and Tech-

nique Type . 34
4.2.10 Relation of Author A�liation, Evaluation Method, and Evalua-

tion Dimension . 35

iv

4.2.11 Relation of Technique Type, Evaluation Method, and Evaluation
Dimension . 35

4.3 Papers By Category . 37

5 Discussion . 43

6 Case Study . 47
6.1 The Case . 47
6.2 Intuition from Aggregate Information 48
6.3 Locating Related Papers . 49
6.4 Guidelines . 50

7 Threats to Validity . 52

8 Conclusion and Future Work . 54

Bibliography . 57

v

List of Figures

2.1 Overview of the systematic mapping process 6
2.2 Overview of the study selection process including the number of papers

resulting from each step. 11

4.1 Annual number of publications. 21
4.2 Percentage of contributions from industry and academia. 23
4.3 Distribution of primary study evaluations by method. 24
4.4 Number of evaluations by dimension. 25
4.5 Percentage of white box and black box evaluations 26
4.6 Contribution type distribution . 29
4.7 Mutation Analysis Distribution . 30
4.8 Distribution of mutation analysis over time 31
4.9 Distribution of evaluation methods over time 32
4.10 Distribution of evaluations by method and dimension 33
4.11 Distribution of mutation analysis experiment papers 34
4.12 Distribution of mutation analysis case study papers 35
4.13 Distribution of mutation analysis black-box papers 36
4.14 Distribution of mutation analysis white-box papers 37
4.15 Distribution of evaluations by author a�liation, method, and dimension. 39
4.16 Relation of technique type, evaluation method, and evaluation dimension. 40
4.17 Decision tree for quickly locating entries in Table 4.6 41

vi

List of Tables

4.1 Main publication venues . 22
4.2 Guideline papers by category . 28
4.3 The number and percent of experiments that satisfy each of the experi-

ment evaluation quality criteria . 30
4.4 Number and percent of case studies that satisfy each of the case study

evaluation quality criteria . 31
4.5 Distribution of papers by evaluation method and evaluation dimension. 33
4.6 Papers belonging to each category combination 42

vii

1 Introduction

Software testing is a vital process for detecting faults in software and reducing

the risk of using it. With a rapidly expanding software industry and a heavy reliance

on increasingly prevalent software, there is a serious demand for employing software

testing techniques that are e�cient, scalable, applicable, and e↵ective at finding faults.

Utilizing such testing techniques to reduce the risk of using software can help avoid

catastrophes that jeopardize safety or cost companies millions of dollars, such as when

Intel spent $475 million replacing processors due to inaccurate floating point number

divisions [1]. Given the importance of applying high-quality software testing techniques,

understanding how they should be evaluated is also crucial. What is the current state

of the art in research evaluating software testing techniques and where are there gaps

in research? As a researcher looking to evaluate a particular technique, how should I

do so?

A systematic mapping study is a methodology that is useful for providing an

overview of a research area by classifying papers in it and counting the number of them

belonging to each category in the classification. For example, one can classify papers

in a field by their publication year with each year being a category in the classification.

Counting the number of papers belonging to each category (in this case the number

of papers published each year) can give us an idea of activity level in the field over

time. Similarly, classifying papers based on their content gives us a sense of what

content is commonly researched and where there are research gaps. Such classifications

can also provide higher level insight regarding the current state of the art. As an

1

example from this thesis, classifying papers by the method they utilized for evaluating

software testing techniques gives a very general sense of which methods are commonly

used for evaluations. Considering this classification with others such as the testing

technique type or dimension of evaluation allows us to answer more interesting questions

about the state of the art: What evaluation method is most commonly used when

evaluating the e�ciency of mutation testing techniques? What is the distribution of

evaluation methods when evaluating the e↵ectiveness of white box testing techniques?

Additionally, classifications can be used to construct a mapping from categories to sets

of papers belonging to them; allowing researchers to very easily locate papers in the field

belonging to categories they are interested in. Here, we utilize a systematic mapping

study in the field of research evaluating software testing techniques to achieve our main

goals of (1) summarizing recent publication trends and (2) identifying research gaps and

the state of the art when it comes to evaluating software testing techniques. We hope by

structuring the field that we can provide guidance to other researchers who are unsure

of how to evaluate their particular testing technique and point them to specific papers

that have evaluated similar techniques. We also hope that we can provide direction for

future work and initiate improvements in areas where evaluations are of lower relative

quality. Our systematic mapping process follows guidelines proposed by Petersen et al.

[255] and is discussed in more detail in section 2.

1.1 Background

Other relevant papers have addressed the state of software testing technique

evaluations. Juristo et al.[168] examined 25 years of empirical studies evaluating tech-

niques in order to compile empirical results and assess the maturity level of knowledge

for di↵erent testing technique families. More specifically, they collected major con-

tributions by testing technique family and summarized significant implications of their

2

empirical results. They additionally assessed the maturity of knowledge on relative test-

ing technique e↵ectiveness based on the extent that laboratory study, formal analysis,

laboratory replication, and field study had been performed. Our study is similar in that

it also compiles and examines empirical studies evaluating testing techniques. However,

our study systematically gathers a larger set of papers in the field and categorizes them

according to di↵erent classification schemes better suited for our research goals. This

approach provides assistance for answering a broader range of finer-grain questions re-

garding testing technique evaluations by pointing researchers to sets of actual papers

belonging to more specific categories they are interested in.

[137] extended the work of Juristo et al. [168] by performing a more recent ex-

amination of testing technique experiments with similar goals. The extension is similar

to our research in that it utilizes a systematic mapping study to develop an under-

standing of the state of testing technique evaluations. Our research goals are somewhat

di↵erent in that we place a particular emphasis on assisting researchers in determining

how to evaluate software testing techniques in specific contexts and do not only consider

experiments. For this reason this thesis provides a great deal of distinct information

due to major di↵erences in scope and classification schemes. In terms of scope, it in-

cludes other common evaluation methods such as case studies and does not exclude a

large number of papers that report smaller experiments. It also includes papers pro-

viding guidelines or proposals regarding how testing techniques should be evaluated. In

terms of classification schemes, we utilize 6 distinct schemes and some additional sec-

ondary categorizations of these schemes. Due to these deviations this thesis is able to

answer di↵erent research questions that align more with our desire to help researchers

in evaluating their testing technique.

[137] mentions 3 other papers, [96], [97], and [287], that are systematic literature

reviews of regression testing technique evaluations. Our study does not include regres-

3

sion testing selection or prioritization techniques since we are mainly interested in the

evaluation of fault-detecting software testing techniques. [164] also references a muta-

tion testing survey. While we are interested in the state of mutation testing evaluations,

the mutation testing survey is not su�cient for answering our research questions about

the overall state of testing technique evaluations.

Finally, a paper by Briand [56] reports on the common threats to the validity of

empirical studies evaluating the cost e↵ectiveness of software testing techniques. This

critical analysis of the field raises awareness of common threats and how they can be

reduced. Our mapping study does not investigate deeply enough to confirm threats to

validity that are common to certain evaluation types, but it may similarly provide some

insight on the quality of current evaluations based on guidelines for proper evaluation

methodology. Our study additionally brings awareness to other papers in the field that

provide guidelines or propose enhancements when it comes to evaluating software testing

techniques.

1.2 Thesis Layout

The next section of this thesis gives an overview of the systematic mapping pro-

cess and a detailed explanation of each step in the process as it relates to our particular

mapping study. Section 3 presents the study classification schemes used to classify pa-

pers into categories for this study. Section 4 presents the results of the data mapping.

Section 5 provides a discussion of the results. Section 6 demonstrates the use of the

resulting map with a case study. Finally, section 7 considers threats to the validity of

our findings followed by a conclusion and future work in section 8.

4

2 Research Method

An overview of the systematic mapping process is illustrated in Fig. 2.1. Each

step of the process is described in more detail in the following subsections. At a high

level, we define research questions from our research goals, systematically gather a set

of papers that are ideally representative of the field of interest, and then map the papers

into defined categories in order to structure the field and answer our research questions.

2.1 Definition of Research Questions

We begin by deriving research questions from the main goals of this study. As

stated in section 1, we would like to structure the field of research evaluating software

testing techniques and develop an understanding of what is state of the art by identifying

and analyzing papers in the field. The following questions are derived from the goals.

1. RQ1: What are the publication trends in research evaluating software testing

techniques?

a) RQ1.1: What is the annual number of publications in the field?

b) RQ1.2: What are the main publication venues that publish papers in the

field?

c) RQ1.3: What is the distribution of papers in terms of academic or industrial

a�liation?

5

Definition of Research Questions

Systematic Search

Study Selection

Data Mapping

Figure 2.1: Overview of the systematic mapping process

2. RQ2: What is the current state of the art when it comes to evaluating software

testing techniques for their e↵ectiveness, e�ciency, applicability, and scalability

and where are there research gaps?

a) RQ2.1: What methods have been used or proposed for evaluating software

testing techniques?

b) RQ2.2: What is the distribution of methods used for evaluating software

testing techniques?

c) RQ2.3: What is the distribution of dimensions being evaluated?

d) RQ2.4 What is the distribution of evaluations of white-box vs black-box

testing techniques?

6

e) RQ2.5: What can we say about the relative quality of evaluations made for

each evaluation method?

f) RQ2.6: What is the distribution of papers in terms of contribution type?

g) RQ2.7: What is the distribution of e↵ectiveness evaluations utilizing muta-

tion analysis?

2.2 Systematic Search

The next step of the mapping study process is to gather a set of papers that

are potentially relevant to the field of interest. We do so by systematically defining a

search string, identifying important scientific databases, and then applying the search

string to the identified databases to retrieve papers.

Similar to the systematic literature review performed by Nair et al. [236], our

search string was derived by first splitting up the phenomena under investigation into

major terms. For each major term, keywords synonymous with the term were added to

it using the OR operator. The added keywords were heavily influenced by our research

questions and research goal scope. Next we joined the populated major terms together

with the AND operator. The resulting search string was iteratively refined by assessing

its ability to generate relevant papers from small subsets of papers in the databases and

modifying keywords accordingly. Doing so we arrived at the following search string:

(evaluate OR validate OR assess)

AND

(e↵ectiveness OR e�ciency OR applicability OR scalability)

AND

(”software testing” OR ”software verification” OR ”black-box testing” OR ”white-box testing”)

AND

(techniques)

7

For scientific databases we selected some of the most common online sources:

1. ACM

2. IEEE Xplore

3. Springer

4. Wiley

Due to our fairly broad scope and interest in the current state of the art and

research gaps, we limited our search to only include papers published within the last

11 years [2007 - 2017]. We also excluded books from our search results since we are

interested in scholarly peer-reviewed work that is more likely to be of higher quality.

Only one paper was excluded due to being written in a language other than English (the

language the researchers carrying out the mapping study could read). We applied our

search string to each of the online databases with these filters to obtain 7,426 potentially

relevant papers.

2.3 Study Selection

The study selection process entails removing all of the irrelevant studies from

the large number of search results. Figure 2.2 illustrates our study selection process

along with the number of papers remaining after applying each step in the process.

We began by applying title and abstract exclusion. Title and abstract exclusion

refers to excluding papers that are deemed irrelevant based on the content of their title

and abstract. We will refer to the criteria used to assess a paper’s relevance in this step

as the content criteria. Our content criteria is heavily influenced by the research goals

and their scope. A paper was deemed relevant if it (1) proposed a method or guidelines

for evaluating a failure-detecting software testing technique’s e↵ectiveness, e�ciency,

8

applicability, or scalability or (2) utilized a method for evaluating a failure-detecting

software testing technique’s e↵ectiveness, e�ciency, applicability, or scalability. Note

that for now we are only interested in failure-detecting techniques, so software testing

techniques that do not detect failures such as test case prioritization and fault localiza-

tion are not considered. This criteria included papers evaluating a developed tool, given

that the tool implemented some failure-detecting software testing technique. If it could

be determined that a paper did neither (1) or (2) based on its title and abstract, it was

considered irrelevant and excluded from the rest of the systematic mapping process.

For some papers it was unclear whether or not they satisfied the content criteria solely

from their abstract and title. A text skimming was applied to such papers until the

researchers could confidently assert that the paper was relevant or irrelevant.

There were many duplicates within some databases that were removed from the

set of potentially relevant search results while applying title and abstract exclusion.

Afterwards, 11 more duplicates cross-indexed between databases were removed.

To reduce the threat of missing relevant papers, we applied backwards snow-

balling [161] to a small subset of the relevant papers by looking through their references

to identify potentially relevant papers not found by our initial search. The subset of

papers that snowballing was applied to were selected as researchers evaluated papers

in the title and abstract exclusion step. We found that many of the papers generated

via backwards snowballing had already been identified as relevant papers in our initial

search. Nonetheless, applying the study selection process described above to papers

generated by backwards snowballing resulted in 7 more relevant studies. In all, 335

primary studies were identified in the study selection process.

9

2.4 Data Mapping

The final step of the systematic mapping study process involves mapping each

of the relevant papers into categories based on well-defined classification schemes. The

classification schemes are defined in detail along with how they were constructed in

section 3. Each relevant paper was skimmed to the extent necessary for the researcher

to categorize the paper according to each classification scheme.

10

Search
Results

Title and Abstract
Exclusion

7426 papers

315 relevant papers

40 NC papers

13 relevant papers

335
Primary
Studies

Backwards
Snowballing

Text Skimming

Duplicate removal

328 relevant papers

7 relevant
papers

Figure 2.2: Overview of the study selection process including the number of papers
resulting from each step.

11

3 Classification Schemes

In this section we provide the classification schemes used for the data mapping

and discuss how they were constructed. The data facets that schemes were developed

for were mostly derived from our research questions. For example, to answer research

question 1.1, ”What is the annual number of publications in the field?”, papers were

categorized based on the year in which they were published. Data facets were also

derived with our goal of assisting researchers looking to evaluate a testing technique in

mind.

The publication year, publication venue, and a�liation of the authors were ex-

tracted to answer research questions related to general publication trends. The evalua-

tion method, evaluation dimension, testing technique type, contribution type, and usage

of mutation analysis were extracted to answer more context-specific research questions.

The classification schemes for these facets are discussed in more detail in the following

subsections.

3.1 Evaluation Method

The evaluation method scheme categorizes papers based on the method they use

for evaluating a software testing technique. Due to a lack of existing knowledge about

the types of methods used, we systematically determined evaluation method categories

using Keywording as suggested by [255]. This consisted of reading the abstracts of

a subset of the collected relevant papers and generating keywords for the evaluation

12

methods. After reading a fairly large number of abstracts, the generated keywords were

clustered to form categories for methods of evaluating software testing techniques. In

our case there were few unique keywords, most of which referred to fairly well-defined

methods in research. Thus we relied on existing definitions to classify the four major

categories we developed for this data facet:

1. Experiment : A paper was classified in the experiment category if it utilized an

experiment to evaluate a software testing technique. This determination relied

heavily on Wohlin’s definition of experiments as an empirical investigation in

which ”di↵erent treatments are applied to or by di↵erent subjects, while keep-

ing other variables constant, and measuring the e↵ects on outcome variables”

[322]. We considered quasi-experiments to be a type of experiment when making

our determination.

2. Case Study : A paper was classified in the case study category if it utilized a case

study to evaluate a software testing technique. A case study was considered to be

”an empirical enquiry that draws on multiple sources of evidence to investigate one

instance (or a small number of instances) of a contemporary software engineering

phenomenon within its real-life context, especially when the boundary between

phenomenon and context cannot be clearly specified” [270]. As opposed to an ex-

periment, case studies exhibit much less control; usually due to their examination

of the phenomenon in a much larger, real-world context.

3. Example: A paper was classified in the example category if it utilized an example

to evaluate a software testing technique. We define an example as a demonstration

of a single technique in a small and constructed context.

4. Analytic: A paper was classified in the analytic category if it utilized a direct

evaluation of a technique based on its clear or provable properties.

13

Some papers utilized multiple methods for evaluating software testing tech-

niques, so it was possible for a single paper to be placed in multiple categories. On

the other hand, a small number of papers discussed guidelines or enhancements when

evaluating techniques without actually utilizing an evaluation method. For example,

a paper discussing experiment subject selection is a relevant paper since it provides

insight on evaluating the e↵ectiveness of a fault-detecting software testing technique,

but it does not utilize a method for evaluating software testing techniques.

3.2 Evaluation Dimension

The evaluation dimension scheme categorizes papers based on the dimension

for which they evaluate software testing techniques. Categories for this schema were

derived directly from our research scope:

1. E↵ectiveness: A paper was classified in the e↵ectiveness category if it evaluated

the ability of a software testing technique to detect failures, kill mutants, or achieve

some degree of coverage.

2. E�ciency : A paper was classified in the e�ciency category if it evaluated the

performance of a software testing technique in terms of speed, memory usage, or

work done.

3. Scalability : A paper was classified in the scalability category if it evaluated how

a technique performed in larger domains.

4. Applicability : A paper was classified in the applicability category if it evaluated

the ability of the technique to be applied or generalized to other contexts.

As with the last classification scheme, it was possible for papers to be placed

into multiple categories or to not fit any of the categories.

14

3.3 Testing Technique Type

This data facet refers to the type of testing technique a paper used in its evalu-

ation. The categories for this scheme were directly derived from research question 2.4,

which seeks to determine the distribution of white-box and black-box testing technique

evaluations. Thus we categorized papers based on whether their evaluation was of a

white-box or black-box testing technique:

1. White-box: At least one of the software testing techniques evaluated is a white-

box testing technique. We classify a technique as a white-box technique using a

definition from Amman and O↵ut [18], which states that a white-box technique

derives ”tests from the source code internals of the software, specifically including

branches, individual conditions, and statements”.

2. Black-box: At least one of the software testing techniques evaluated is a black-box

testing technique. We again relied on a definition from Amman and O↵ut for

determining whether or not a technique was black-box; considering a black-box

technique as one that derived ”tests from external descriptions of the software,

including specifications, requirements, and design” [18]. Evaluations of gray-box

testing techniques that did not require access to the source code of the software

under test, but utilized partial knowledge of its internal structure were included

in this category.

For this schema, papers could be classified as belonging to both categories if

both a white-box and a black-box testing technique were evaluated. Papers were also

classified as belonging to both categories if the technique type of the technique being

evaluated was ambiguous and the technique was potentially applicable in both black-box

and white-box contexts. Thus all papers utilizing a technique evaluation were classified

as at least white-box or black-box.

15

3.4 Contribution Type

This scheme classifies papers based on the type of contribution they make in

the field. We were particularly interested in the separation of papers utilizing meth-

ods as opposed to proposing new methods or guidelines for evaluating software testing

techniques. Thus we defined the following categories:

1. Guideline: A paper was classified as a guideline paper if it provided guidelines for

evaluating a software testing technique, proposed a method for evaluating software

testing techniques, or proposed an enhancement for a method of evaluating a

software testing technique. Thus papers primarily discussing mutation analysis

methods or enhancements to them were considered proposal papers due to the

ability of these methods to evaluate other testing techniques.

2. Usage: A paper was classified as a usage paper if it utilized some method for

evaluating a software testing technique for its e↵ectiveness, e�ciency, scalability,

or applicability.

Papers that met both criteria were classified in both categories. Due to our

study selection criteria, every paper was classified in at least one of the contribution

type categories.

3.5 Use of Mutation Analysis

Mutation analysis is a popular technique for evaluating the fault-detection ca-

pabilities of test suites. Unfortunately the technique is also computationally expensive;

consisting of the generation of a usually large set of mutants and the execution of a

large number of tests (potentially the entire suite) for each mutant in the set. This has

led to the development of a wide range of cost reduction strategies for making mutation

16

testing and analysis more feasible. Additionally, a wide range of mutation operators

exist for di↵erent contexts and for seeding di↵erent types of faults. Which cost reduc-

tion technique should be used when evaluating a particular test suite? Which mutation

operators should be used? For a mapping study of testing technique evaluations, iden-

tifying mutation analysis papers to assist researchers in answering such questions is an

important goal. Thus the mutation analysis schema below categorizes papers based on

whether or not they utilize mutation analysis to evaluate the e↵ectiveness of software

testing techniques:

1. Mutation: A paper was classified as a mutation paper if it utilized mutation

analysis and evaluated the e↵ectiveness, e�ciency, scalability, or applicability of

one or more software testing techniques.

2. Not Mutation: A paper was classified in this category if it evaluated the e↵ec-

tiveness, e�ciency, scalability, or applicability of one or more software testing

techniques and did not use mutation analysis.

As a result of this classification schema, all usage papers were categorized as

either mutation or not mutation papers. Additionally no papers with only the guideline

contribution type were included in this categorization since guideline-only papers did not

evaluate the e↵ectiveness, e�ciency, scalability, or applicability of a testing technique.

3.6 Evaluation Quality

To answer RQ2.5, additional data was extracted from the two most common

evaluation methods: case studies and experiments. For each of these methods, we relied

on proper methodology guidelines to derive data facets that would help us assess the

current state of evaluations in the field in terms of quality.

17

Guidelines for case study methodology in the field of software engineering are

discussed by Runeson in [270]. Summarized from this work, some characteristics of an

exemplary case study are the definition of research questions from a significant topic

or theoretical basis, examination of multiple perspectives while investigating the topic,

provision of a logical link between evidence and conclusions made, and a discussion of

threats to the validity of the study. From these guidelines, the following categories were

created for papers utilizing case studies to evaluate software testing techniques:

1. Research Questions: A paper was classified in this category if it clearly defined

research questions to be addressed by the study.

2. Triangulation: This category assessed the case study’s consideration of multiple

perspectives. A paper utilizing a case study was classified as a triangulation paper

if it collected data from multiple sources or used multiple types of data collection.

3. Threats to Validity: A paper was classified in this category if it seriously discussed

threats to the validity of the study. A discussion was considered ”serious” if it

presented multiple threats and was at least a paragraph in length.

It should be noted that an evaluation framework for empirical methods in soft-

ware testing was recently developed by [312]. This framework is much more detailed

and focused, but due to its newness in the field it was not feasible to derive categories

from it for this mapping study.

Guidelines for controlled experiment methodology in the field of software engi-

neering are used to similarly develop categories for experiment papers. We rely on [322]

for these guidelines. Some important characteristics of exemplary experiments include

a clearly stated hypothesis with hypothesis testing, some justification for object/subject

18

selection, descriptive statistics, and a discussion of threats to the validity of the exper-

iment. From these guidelines, the following categories were created for papers utilizing

controlled experiments to evaluate software testing techniques:

1. Hypothesis Testing: A paper was classified in the Hypothesis Testing category if

it clearly stated a hypothesis and performed hypothesis testing to accept or reject

this hypothesis.

2. Descriptive Statistics: A paper was classified in the Descriptive Statistics category

if it utilized descriptive statistics when quantitatively analyzing results.

3. Context Justification: This category assessed the appropriateness of objects and

subjects selected in controlled experiments. To meet the Context Justification

criteria, a paper’s objects or subjects needed to be fairly representative of the

research question context, a common benchmark, or at least justified to a degree

by some discussion in the paper. Thus papers presenting objects/subjects without

justification for their selection or a clear connection to research goals were not

included in this category.

4. Threats to Validity: A paper was classified in this category if it seriously discussed

threats to the validity of the experiment. A discussion was considered ”serious”

if it presented multiple threats and was at least a paragraph in length.

19

4 Evaluating Software Testing Techniques: A

Map of the Field

We present a map of the field of research evaluating software testing techniques.

335 relevant papers were systematically collected and mapped according to the classi-

fication schemes defined above; providing a large-scale overview of publication trends,

research gaps, and the state of the art when it comes to evaluating software testing

techniques.

4.1 Publication Trends

We begin by presenting the distribution of publications based on the extracted

general publication information (publication year, publication venue, and author a�li-

ation).

4.1.1 Annual Activity Level

Figure 4.1 illustrates the level of activity in the field over the last 11 years.

The annual number of relevant papers increased significantly from 2009-2011 before

fluctuating over the 7 remaining years of the mapping. As shown by the black line of best

fit, the annual number of published papers in the field has grown a good amount overall.

This suggests an increased interest in research evaluating software testing techniques.

20

22	
19	 19	

30	

39	

28	

34	

43	

35	

35	

31	

0

5

10

15

20

25

30

35

40

45

50

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
um

be
r

of
 P

ub
lic

at
io

ns

Year

Figure 4.1: Annual number of publications.

4.1.2 Main Publication Venues

Not surprisingly given our fairly broad research scope, the relevant papers col-

lected spanned 120 unique publication venues. While many of these venues only pub-

lished one relevant paper, there were some venues responsible for publishing a significant

number of contributions in the field. Table 4.1 lists the venues that published the most

relevant papers along with how many they published. By a significant margin, the

journal of Software Testing, Verification and Reliability was the most active publica-

tion venue with 33 relevant papers published over the last 11 years. The International

Symposium on Software Testing and Analysis was the next largest contributor with 24

relevant papers. Six other venues listed in Table 4.1 had 10-20 relevant publications.

The remaining venues had less than 10 relevant publications, with 79 venues having

only 1 relevant publication.

21

Publication Venue # %
Software Testing, Verification and Reliability 33 9.85
International Symposium on Software Testing and Analysis 24 7.16
International Conference on Automated Software Engineering 17 5.07
International Conference on Software Engineering 15 4.48
International Conference on Software Testing 15 4.48
International Symposium on Foundations of Software Engineer-
ing

14 4.18

Empirical Software Engineering 13 3.88
International Conference on Software Testing, Verification and
Validation

13 3.88

Table 4.1: Main publication venues

4.1.3 Industry vs Academia

Figure 4.2 shows the relative contributions of industry and academia based on

author a�liation. Similar to most fields of research, a large majority of contributions

are made by academia. 291 papers (about 87%) had exclusively authors a�liated with

academic institutions. 30 papers (about 9%) had both authors a�liated with academic

institutions and authors a�liated with industry. Only 14 papers (about 4%) had exclu-

sively authors a�liated with industry.

4.2 Context-Specific Mappings

Next we present the results of the mapping based on the remaining classification

schemes: evaluation method, evaluation dimension, testing technique type, contribution

type, use of mutation analysis, and evaluation quality.

4.2.1 Evaluation Method

We developed 4 major categories for methods of evaluation: experiments, case

studies, examples, and analytic evaluations. Figure 4.3 shows the number of papers

22

87%

4%

9%

Academia

Industry

Both

Figure 4.2: Percentage of contributions from industry and academia.

that utilized each evaluation method. Percentages shown are of the total number of

evaluation instances as opposed to the total number of primary studies. As mentioned

earlier, case studies and controlled experiments were by far the most common methods.

Experiments in particular were utilized very frequently for evaluating software testing

techniques. Of the 320 instances of testing technique evaluations, 214 of them (%66.88)

were controlled experiments. 73 of them (%23.13) were case studies. Only 18 were

analytic evaluations and only 15 fell into the example category. From this one data facet

it seems that performing controlled experiments is the state of the art when it comes

to evaluating software testing techniques. Exploring the relation between evaluation

methods and other data facets provides more insight on how the state of the art changes

with the dimension and type of testing technique evaluated.

23

214

73

18

15

0 50 100 150 200 250

Experiment
(%66.88)

Case Study
(%23.13)

Analytic
(%5.63)

Example
(%4.38)

Number of Evaluations

Figure 4.3: Distribution of primary study evaluations by method.

4.2.2 Evaluation Dimension

We also categorized papers based on the dimension they evaluated (e↵ectiveness,

e�ciency, applicability, and scalability). Figure 4.4 shows the number of evaluations

performed for each dimension. Percentages shown are of the total number of dimension

evaluations. Note that there are more dimension counts than the number of relevant

papers collected since some papers evaluated more than one dimension of a software

testing technique.

Of the 425 total dimension evaluations, more than half of them (%55.06) eval-

uated e↵ectiveness; suggesting that researchers are the most interested in evaluating

techniques based on their ability to detect failures, kill mutants, or achieve some degree

of coverage. This makes sense given the main purpose of testing techniques to reduce

the risk of using software by detecting failures.

24

234

155

27

9

0 50 100 150 200 250

Effectiveness
(%55.06)

Efficiency
(%36.47)

Applicability
(%6.35)

Scalability
(%2.12)

Number of Evaluations

Figure 4.4: Number of evaluations by dimension.

Another large portion of the total dimension evaluations (%36.47) assessed the

e�ciency of a technique. The remaining %8.47 is split between applicability and scala-

bility evaluations at %6.35 and %2.12 respectively.

4.2.3 Testing Technique Type

Figure 4.5 illustrates the distribution of testing technique types that were eval-

uated. We see that research evaluating software testing techniques is quite evenly split

between white-box and black-box testing techniques. About (%46.71) of papers with

evaluations are focused on white-box testing techniques, %49.01 are focused on black-

box testing techniques, and the remaining %4.28 evaluated both of these testing tech-

nique types. While there are a good portion of papers dealing with the evaluation of

black-box testing techniques, we found that a large chunk of these evaluations are of

25

the same few techniques. Upon further investigation, about 30% of the black-box eval-

uations were of random testing or combinatorial testing techniques.

47%

49%

4%

White-Box

Black-Box

Both

Figure 4.5: Percentage of white box and black box evaluations

4.2.4 Contribution Type

This scheme classified papers based on whether they evaluated a software testing

technique or proposed some method or insights regarding how software testing tech-

niques should be evaluated. As figure 4.6 illustrates, the majority of papers were usage

papers that utilized some method for evaluating software testing techniques. On the

other hand relatively very few papers discussed how techniques should be evaluated or

proposed a new methodology for doing so.

Despite the lower number of proposal papers, we believe this type of contribution

to the field is important for evolving and enhancing our ability to assess software testing

techniques. As such, a secondary classification was performed on these papers to develop

an understanding of the types of insights and proposals that exist for evaluating software

26

testing techniques and to be able to point researchers towards higher level guidelines

in areas they are interested in. Our hope is that bringing awareness to these papers

will allow researchers to make higher quality evaluations of testing techniques as well as

motivate more research of this contribution type. The following section describes the

secondary classification and presents the results.

Guideline Paper Classification

Due to a lack of existing knowledge regarding the types of guideline papers

we would find, keywording [255] was again used to develop categories for the types of

guideline papers after examining each one in more detail. Doing so resulted in the

following classification schema:

1. Program Artifact: Program artifact papers provide guidelines or insight for pro-

gram artifacts under test when empirically evaluating software testing techniques.

These include papers discussing the importance of considering fault types in e↵ec-

tiveness evaluations, advocating for common benchmark artifacts, and the state

of the art in software fault injection.

2. Evaluation Metric: Evaluation metric papers provide guidelines or insight for

choosing a metric when empirically evaluating software testing techniques. These

include empirical correlations between evaluation metrics and fault-detecting abil-

ity, analytic e↵ectiveness bounds, and proposals of novel criteria for evaluating test

suite quality.

3. Human Subject Selection: A guideline paper was placed in this category if it

provided insight with regards to the selection of human subjects for an empirical

evaluation. Only one paper was placed in this category for exploring the impact

of subject experience on study results.

27

4. Methodology: Methodology papers presented empirical study methodology guide-

lines not already addressed by the artifact or human subject selection categories.

Examples of papers mapped to this category include the proposal of a unified

framework and an outline of proper methodology when conducting empirical eval-

uations in software testing.

5. Mutation Analysis (code): Code mutation analysis papers presented an innovation

or guideline to mutation analysis of test suites at the source code level. In some

form they provided suggestions for how mutation analysis should be performed.

Most of these papers discuss e�ciency improvements as this is a well-known limi-

tation of mutation analysis techniques. We separate mutation testing at the code

level from mutation testing at the model level due to the large number of mutation

analysis guideline papers and significant di↵erences in guidelines between the two.

6. Mutation Analysis (model): Model mutation analysis papers presented an inno-

vation or guideline to mutation analysis of test suites at the model level.

A full text skimming was applied to each of the proposal papers as they were

categorized using the above schema. Table 4.2 presents the results of the secondary

categorization; mapping each category to a set of proposal papers belonging to it. Fur-

thermore, a short summary is provided with each of the proposal papers to make it

easier for researchers to locate papers relevant to their interests.

Table 4.2: Guideline papers by category

Guideline Category Papers

Program Artifact [239] Assessing Dependability with Software Fault Injection:

A Survey Presents an overview of the state of the art in software

fault injection and insight on which approaches to apply in di↵erent

contexts.

28

Table 4.2: (continued)

Guideline Category Papers

[76] BegBunch Benchmarking for C Bug Detection Tools

Presents two benchmark programs in the C language with the hopes

of providing a ”common ground” for empirical comparisons of di↵er-

ent fault-detecting techniques.

[240] On the improvement of a fault classification scheme

with implications for white-box testing Presents improvements

for a fault classification scheme with the notion that testing tech-

niques are better at finding certain types of faults than others. This

paper is included in the artifact selection category since considering

the nature of faults in artifacts used in empirical studies may enhance

our understanding of the e↵ectiveness of software testing techniques.

[77] On the number and nature of faults found by random

testing An evaluation of the nature of faults that are discovered

by random testing. Also provides a fault classification scheme and

evidence that the nature of faults should also be considered when

comparing testing techniques.

Evaluation Metric [71] An Upper Bound on Software Testing E↵ectiveness Pro-

vides an analytic upper bound on the e↵ectiveness of software testing

techniques that rely on failure patterns.

[338] Assertions Are Strongly Correlated with Test Suite Ef-

fectiveness Empirically evaluates the relationship between the fault-

detection ability of a test suite and its assertions.

[126] Comparing Non-adequate Test Suites using Coverage

Criteria An empirical evaluation in an attempt to answer which

criteria should be used to evaluate test suites, particularly when test

suites are non-adequate.

[88] Evaluating Test Suite E↵ectiveness and Assessing Stu-

dent Code via Constraint Logic Programming Suggests the

evaluation of test suites by comparing their e↵ectiveness with a suite

automatically generated by Constraint Logic Programming

29

Table 4.2: (continued)

Guideline Category Papers

[328] Information gain of black-box testing Introduces a novel

coverage criteria for assessing black-box tests based on information

gain from test cases.

[81] On Use of Coverage Metrics in Assessing E↵ectiveness

of Combinatorial Test Designs Investigates the use of certain

coverage metrics when evaluating combinatorial testing strategies.

Due to somewhat variable coverage across contexts for a given strat-

egy, suggests some measure of variability should be included when

assessing the e↵ectiveness of strategies using these metrics.

[104] PBCOV: a property-based coverage criterion Proposes a

new property-based criterion for assessing the adequacy of test suites.

[184] State Coverage: A Structural Test Adequacy Criterion

for Behavior Checking Proposes state coverage, a new structural

criterion for assessing the adequacy of test suites.

[293] Structural testing criteria for message-passing parallel

programs Introduces a novel structural testing criteria specifically

for message-passing parallel programs. Additionally presents a tool

that implements the new criteria along with results from applying it.

[122] The Risks of Coverage-Directed Test Case Generation

An empirical evaluation of structural coverage criteria. Among other

things, concludes that traditional structural coverage criteria by itself

may be a poor indicator of a test suite’s fault-detection capabilities

and that Observable MC/DC may be a promising alternative.

[297] Selecting V&V Technology Combinations: How to Pick

a Winner? Proposes a systematic method for evaluating verification

and validation technique combinations.

[174] Towards a deeper understanding of test coverage Sug-

gests coverage criteria should be calculated at di↵erent testing levels

instead of for the test suite as a whole.

30

Table 4.2: (continued)

Guideline Category Papers

[143] Web Application Fault ClassificationAn Exploratory

Study Introduces a web application fault classification schema based

on the exploration of two large, real-world web systems.

Human Subject [82] The Impact of Students Skills and Experiences on Em-

pirical Results: A Controlled Experiment with Undergradu-

ate and Graduate Students A controlled experiment investigating

how the experience of human subjects in empirical studies evaluating

e↵ectiveness and e�ciency can impact results.

Methodology [48] Towards a Semantic Knowledge Base on Threats to Va-

lidity and Control Actions in Controlled Experiments Pro-

poses a knowledge base of threats to validity to assist researchers in

mitigating threats when planning experiments.

[283] The role of replications in Empirical Software Engi-

neering Identifies types of empirical study replications, discusses

the purpose of each type, and gives guidelines for providing su�cient

information about reported empirical studies to better enable study

replication.

[56] A Critical Analysis of Empirical Research in Software

Testing Provides a critical analysis of empirical research in software

testing and discusses common threats that arise when determining

cost-e↵ectiveness of a technique via empirical research.

[64] Towards Reporting Guidelines for Experimental Repli-

cations: A Proposal Suggests publishing guidelines for experiment

replications in order to ”increase the value of experimental replica-

tions”.

[102] Empirical Evaluation of Software Testing Techniques

in an Open Source Fashion Presents and advocates for a unified

framework for testing technique evaluations to ease study replication

and improve reproducibility of results.

31

Table 4.2: (continued)

Guideline Category Papers

[312] A Methodological Framework for Evaluating Software

Testing Techniques and Tools Defines a general methodological

evaluation framework for case studies in software testing.

Mutation Analysis (c) [150] A Generic Approach to Run Mutation Analysis Intro-

duces a generic approach for mutation analysis that is not restricted

to particular execution environments.

[144] An approach for experimentally evaluating e↵ective-

ness and e�ciency of coverage criteria for software testing:

Provides guidelines and a demonstration of how to evaluate the e↵ec-

tiveness and e�ciency of coverage criteria utilizing mutation analysis.

[169] Do Redundant Mutants A↵ect the E↵ectiveness and

E�ciency of Mutation Analysis? Empirically demonstrates e�-

ciency and e↵ectiveness improvement gains from removing redundant

mutants in mutation analysis.

[127] E�cient mutation testing of multithreaded code ”Intro-

duces a general framework for e�cient exploration that can reduce

the time for mutation testing of multithreaded code”

[286] Extended Firm Mutation Testing: A Cost Reduction

Technique for Mutation Testing Discussion of various mutation

cost reduction techniques and a proposal for a new execution based

cost reduction technique.

[334] Faster Mutation Testing Inspired by Test Prioritiza-

tion and Reduction Proposes a mutation testing cost reduction

technique that prioritizes tests to more quickly determine which mu-

tants were killed.

[138] Measuring E↵ectiveness of Mutant Sets Empirical investi-

gation and guidelines regarding how mutant sets should be evaluated.

[310] Mutants Generation For Testing Lustre Programs

Presents a mutation generator for Lustre programs that employs mu-

tation cost reduction techniques.

32

Table 4.2: (continued)

Guideline Category Papers

[199] Mutation Testing in Practice using Ruby Presents mu-

tation operators for Ruby and guidelines for mutation testing based

on experience from an industrial Ruby project.

[247] Mutation Testing Strategies using Mutant Classifica-

tion Proposes mutant classification strategies to assist in isolating

equivalent mutants along with an experimental evaluation of the tech-

nique.

[146] Mutation Testing Techniques: A Comparative Study

An empirical comparison of four mutation testing techniques (op-

erators at class level, operators at method level, all operators, and

random sampling)

[170] The Major Mutation Framework: E�cient and Scal-

able Mutation Analysis for Java Introduces a JUnit mutation

analysis and fault seeding framework with claims of scalability and

e�ciency.

[237] The Use of Mutation in Testing Experiments and its

Sensitivity to External Threats Brings to light important ex-

ternal threats to consider when utilizing mutation testing in exper-

iments. These threats may be caused by test suite size, selected

mutation operators, and programming languages.

[83] Using Evolutionary Computation to Improve Mutation

Testing Introduces a mutation testing cost reduction technique that

utilizes a genetic algorithm to produce a reduced set of mutants.

[246] An Empirical Evaluation of the First and Second Order

Mutation Testing Strategies Provides an evaluation of the cost

and e↵ectiveness of di↵erent mutation testing strategies.

[257] Decreasing the cost of mutation testing with second-

order mutants Proposes a cost reduction technique for mutation

testing/analysis that combines mutants from an original set to obtain

a new set of mutants. Additionally performs an empirical evaluation

of a test suite created from these combined mutants.

33

Table 4.2: (continued)

Guideline Category Papers

[230] E�cient JavaScript Mutation Testing Proposes mutation

operators specific to web applications and a mutation cost reduction

technique.

[171] E�cient Mutation Analysis by Propagating and Par-

titioning Infected Execution States Significant e�ciency gains

in mutation analysis using state infection conditions. The approach

is also implemented and empirically evaluated on open source pro-

grams.

[182] Evaluating Mutation Testing Alternatives: A Collat-

eral Experiment Proposes second order mutation strategies and

provides experimental results suggesting the strategies lead to signif-

icant cost reductions without considerably reducing test e↵ectiveness.

[66] Exploring hybrid approach for mutant reduction in soft-

ware testing Introduces a hybrid mutation testing cost reduction

technique.

[342] JDAMA: Java database application mutation analyser

Introduces a mutation analyzer useful for evaluating testing tech-

niques applied to java database applications.

[147] Mutation Operators for Simulink Models Proposes a set

of mutation operators for Simulink models and provides a procedure

for mutation testing of Simulink Models.

[178] Mutation Operators for the Atlas Transformation Lan-

guage Presents mutation operators for the Atlas Transformation

Language and evaluates their e↵ectiveness in an empirical study.

[225] Parallel mutation testing Suggests enhancing the e�ciency

of mutation testing by utilizing parallel execution.

[226] Reducing mutation costs through uncovered mutants

Presents a mutation cost reduction technique that leverages the anal-

ysis of covered mutants to reduce the number of executions required.

34

Table 4.2: (continued)

Guideline Category Papers

[128] Selective Mutation Testing for Concurrent Code ”Ex-

plores selective mutation techniques for concurrent mutation opera-

tors” and provides an empirical study evaluating these techniques.

[344] Speeding-Up Mutation Testing via Data Compression

and State Infection Speeds up mutation testing by filtering out

executions using state infection information and grouping mutants

with Formal Concept Analysis.

[212] Statistical Investigation on Class Mutation Operators

Provides statistical information regarding the number of mutants

generated, the distribution of mutants generated, and the e↵ective-

ness of applying class mutation operators to 866 open source classes.

[139] Topsy-Turvy: A Smarter and Faster Parallelization of

Mutation Analysis Presents a new parallelization technique for

mutation analysis.

[172] Using Conditional Mutation to Increase the E�ciency

of Mutation Analysis Introduces a new e�ciency optimization

when performing mutation analysis called conditional mutation.

[211] X-MuT: A Tool for the Generation of XSLT Mutants

Introduces mutation operators for the XLST language along with

their implementation in a tool and an evaluation of its e↵ectiveness.

Mutation Analysis (m) [86]A Variability Perspective of Mutation Analysis Introduces

method for modeling mutation operators as a feature diagram for

better and faster mutation analysis.

[87] Featured Model-based Mutation Analysis Proposes an

optimization for model-based mutation analysis using a modeling

framework. Performance evaluations of the proposed technique are

carried out and compared to other optimizations.

35

83%

8%

9%

Usage

Proposal

Both

Figure 4.6: Contribution type distribution

4.2.5 Use of Mutation Analysis

Figure 4.7 illustrates the portion of evaluation papers classified as mutation

papers. Of all 217 papers evaluating the e↵ectiveness of a testing technique using a

case study or experiment, a large portion of them (28%) utilized mutation analysis.

Furthermore, mutation analysis seems to be becoming more popular over time. Figure

4.8 shows the proportion of e↵ectiveness evaluations that utilize mutation analysis each

year. One of the main limitations of mutation testing and analysis has been its high

computational cost. It makes sense that mutation analysis has become more popular

as more cost reduction strategies are developed and refined.

4.2.6 Evaluation Quality

Tables 4.3 and 4.4 present the results of extracting evaluation quality data facets

from experiments and case studies respectively.

36

28%

72%

Mutation Analysis

No Mutation Analysis

Figure 4.7: Mutation Analysis Distribution

Experiment Evaluation Quality
Category # of Experiments %
Hypothesis Testing 39 18.22
Context Justification 98 45.79
Descriptive Statistics 160 74.77
Threats to Validity 100 46.73

Table 4.3: The number and percent of experiments that satisfy each of the experiment
evaluation quality criteria

Very few experiments (%18) formally stated a hypothesis and performed hypoth-

esis testing. On the other hand, a majority of experiments utilized descriptive statistics.

We see that close to half of experiments meet the justified context criteria and provide

a serious discussion of threats to validity. A smaller percentage of case studies provided

threats to validity. 57% of case studies implemented some form of data triangulation

while few (27%) clearly stated research objectives.

37

0	 5	 10	 15	 20	 25	 30	 35	

2007	

2008	

2009	

2010	

2011	

2012	

2013	

2014	

2015	

2016	

2017	

Muta0on	

No	Muta0on	

Figure 4.8: Distribution of mutation analysis over time

Case Study Evaluation Quality
Category # of Case Studies %
Research Questions 20 27.40
Triangulation 42 57.53
Threats to Validity 27 36.99

Table 4.4: Number and percent of case studies that satisfy each of the case study eval-
uation quality criteria

4.2.7 Distribution of Evaluation Methods Over Time

Figure 4.9 shows the distribution of evaluation methods over time. Experiments

were the most common method of evaluating testing techniques every year. The number

of case study and experiment evaluations grew considerably from 2007 to 2014; growing

by %366.67 and %236.36 respectively. The number of experiments and case studies

remained fairly high in the last 3 years of the study. Both the number of examples and

analytic evaluations remained low throughout the study with minor variation.

38

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	

2007	

2008	

2009	

2010	

2011	

2012	

2013	

2014	

2015	

2016	

2017	

Experiment	

Case	Study	

Example	

Analy>c	

Figure 4.9: Distribution of evaluation methods over time

4.2.8 Relation of Evaluation Method and Dimension

Table 4.5 gives the number of relevant papers by evaluation method and evalu-

ation dimension. Figure 4.10 illustrates their distribution. Note that the total number

of papers is greater than 335 since a paper could utilize multiple evaluation methods

or evaluate multiple dimensions. Given that experiments were the most common eval-

uation method and e↵ectiveness was the most common evaluation dimension, it is not

surprising that experiments evaluating the e↵ectiveness of a technique are the most com-

mon here. Experiments evaluating the e↵ectiveness and e�ciency of testing techniques

make up over half of the total testing technique evaluations. We see that relatively very

few experiments evaluated the scalability or applicability of testing techniques. A large

number of case studies also evaluate the e↵ectiveness and e�ciency of software testing

techniques. Despite the much lower number of applicability evaluations in general (%6.5

of all evaluations), %13.46 of case studies evaluated applicability. Furthermore, %50 of

39

Experiment Case Study Example Analytic
E↵ectiveness 161 57 8 8
E�ciency 123 30 0 7
Scalability 5 3 0 1
Applicability 2 14 8 4

Table 4.5: Distribution of papers by evaluation method and evaluation dimension.

applicability evaluations were case studies compared to %7.14 that were experiments.

Very few scalability evaluations are performed in general, but case studies and experi-

ments make up %88.89 of them. Examples were evenly used to assess the e↵ectiveness

and applicability of techniques. No examples were used to investigate e�ciency or scal-

ability. Examples also make up a large amount of applicability evaluations (28.57%).

We see that analytic evaluations assessed e↵ectiveness and e�ciency the most, but only

assess scalability once.

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Effec1veness	

Efficiency	

Scalability	

Applicability	

Experiment	

Case	Study	

Example	

Analy1c	

Figure 4.10: Distribution of evaluations by method and dimension

40

4.2.9 Relation of Mutation Analysis, Evaluation Method, and

Technique Type

Figures 4.11 and 4.12 show the distribution of e↵ectiveness papers utilizing mu-

tation analysis in experiments and case studies. The distribution is surprisingly similar

for experiments and case studies, di↵ering only by about one percent of papers.

A somewhat greater di↵erence can be observed when comparing the distributions

of mutation analysis papers by testing technique type. Figures 4.13 and 4.14 illustrate

this di↵erence. (33%) of black-box e↵ectiveness evaluations utilized mutation analysis.

On the other hand, mutation analysis was surprisingly a bit less popular in white-box

e↵ectiveness evaluations; being used in about (25%) of these papers.

29%

71%

Mutation

No Mutation

Figure 4.11: Distribution of mutation analysis experiment papers

41

29%

71%

Mutation

No Mutation

Figure 4.12: Distribution of mutation analysis case study papers

4.2.10 Relation of Author A�liation, Evaluation Method, and

Evaluation Dimension

Figure 4.15 shows the relation between author a�liation, evaluation method,

and dimension of evaluation. We see that industry has the most involvement with

experiments assessing e↵ectiveness and e�ciency and with case studies assessing e↵ec-

tiveness, e�ciency, and applicability. Industry has little a�liation with other evaluation

methods or dimensions of evaluation.

4.2.11 Relation of Technique Type, Evaluation Method, and

Evaluation Dimension

Figure 4.16 shows the relation between technique type, evaluation method, and

evaluation dimension. We see that for most combinations of technique type and evalu-

ation dimension, experiments are the most common method of evaluation followed by

case studies. Of notable exception are applicability evaluations of both white box and

42

33%

67%

Mutation

No Mutation

Figure 4.13: Distribution of mutation analysis black-box papers

black box testing techniques. In these applicability evaluations, case studies become

the most common evaluation method, making up %52.63 of black-box evaluations and

%44.44 of all white-box evaluations. %69 of all case studies evaluating applicability

were evaluations of black box testing techniques.

More interesting are the di↵erences between some of the evaluation method

distributions with the same evaluation dimension. For instance, white-box scalability

evaluations found in this study exclusively use experiments while about %50 of black-

box scalability evaluations consist of case studies and analytic evaluations. Analytic

evaluations also made up a greater amount of white-box applicability evaluations than

they did black-box applicability evaluations. We find that across the board case study

evaluations are a good amount more common when evaluating black-box testing tech-

niques.

43

25%

75%

Mutation

No Mutation

Figure 4.14: Distribution of mutation analysis white-box papers

4.3 Papers By Category

Probably the largest contribution of this thesis is a map from our classifications

to sets of specific papers belonging to them. We hope such a map will allow researchers to

easily locate papers evaluating software testing techniques with certain characteristics.

In particular, researchers looking to evaluate a particular technique can develop an

understanding of how they should do so by utilizing the map to find the state of the art

for similar technique evaluations.

Each combination of technique type, evaluation dimension, evaluation method,

and mutation a�liation is mapped to a set of papers along with the set’s cardinality

in Table 4.6. Due to the large number of papers, each paper is presented using its

citation number. Due to the large number of category combinations (64), the table

utilizes a unique context identifier as a key assigned to each subset of evaluation method

combinations. A complementary decision tree (Figure 4.17) is provided for quickly

obtaining a context identifier based on paper characteristics, and thus for quickly finding

44

a table entry of interest since context identifiers are sorted alphabetically. The internal

nodes of the tree represent classification schemes, with branches to children representing

each classification in the scheme. The leaves of the tree are the context identifiers for

entries in Table 4.6. Thus context identifiers are obtained from the tree by following

a path from its root to a leaf based on classification categories of interest. A more in

depth demonstration utilizing the tree and table is presented in a case study in Section

6.

45

0	
20
	

40
	

60
	

80
	

10
0	

12
0	

14
0	

16
0	

18
0	

Ex
pe

rim
en

t	E
ffe

c3
ve
ne

ss
	

Ex
pe

rim
en

t	E
ffi
ci
en

cy
	

Ex
pe

rim
en

t	A
pp

lic
ab
ili
ty
	

Ex
pe

rim
en

t	S
ca
la
bi
lit
y	

Ca
se
	S
tu
dy
	E
ffe

c3
ve
ne

ss
	

Ca
se
	S
tu
dy
	E
ffi
ci
en

cy
	

Ca
se
	S
tu
dy
	A
pp

lic
ab
ili
ty
	

Ca
se
	S
tu
dy
	S
ca
la
bi
lit
y	

Ex
am

pl
e	
Eff

ec
3v
en

es
s	

Ex
am

pl
e	
Effi

ci
en

cy
	

Ex
am

pl
e	
Sc
al
ab
ili
ty
	

Ex
am

pl
e	
Ap

pl
ic
ab
ili
ty
	

An
al
y3
c	
Eff

ec
3v
en

es
s	

An
al
y3
c	
Effi

ci
en

cy
	

An
al
y3
c	
Sc
al
ab
ili
ty
	

An
al
y3
c	
Ap

pl
ic
ab
ili
ty
	

Ac
ad
em

ia
	

In
du

st
ry
	

Bo
th
	

F
ig
u
re

4.
15

:
D
is
tr
ib
u
ti
on

of
ev
al
u
at
io
n
s
by

au
th
or

a�
li
at
io
n
,
m
et
h
od

,
an

d
d
im

en
si
on

.

46

0%
	

10
%
	

20
%
	

30
%
	

40
%
	

50
%
	

60
%
	

70
%
	

80
%
	

90
%
	

10
0%

	

BB
	E
ffe

c2
ve
ne

ss
	

W
B	
Eff

ec
2v
en

es
s	

BB
	E
ffi
ci
en

cy
	

W
B	
Effi

ci
en

cy
	

BB
	S
ca
la
bi
lit
y	

W
B	
Sc
al
ab
ili
ty
	

BB
	A
pp

lic
ab
ili
ty
	

W
B	
Ap

pl
ic
ab
ili
ty
	

Ex
pe

rim
en

t	

Ca
se
	S
tu
dy
	

Ex
am

pl
e	

An
al
ys
is	

F
ig
u
re

4.
16

:
R
el
at
io
n
of

te
ch
n
iq
u
e
ty
p
e,

ev
al
u
at
io
n
m
et
h
od

,
an

d
ev
al
u
at
io
n
d
im

en
si
on

.

47

Te
ch

ni
qu

e
Ty

pe

Lo
re

m
 Ip

su
m

Lo
re

m
 Ip

su
m

Lo
re

m
 Ip

su
m

Lo
re

m
 Ip

su
m

Lo
re

m
 Ip

su
m

Lo
re

m
 Ip

su
m

M
ut

at
io

n
An

al
ys

is
 U

se
d

W
hi
te
-B
ox

B
la
ck
-B
ox

Y
es

N
o

Y
es

N
o

Ev
al

ua
tio

n
Di

m
en

si
on

Ef
fe

ct
Ef

fic
Sc

al
Ap

pl
ic

Ef
fe

ct
Ef

fic
Sc

al
Ap

pl
ic

Ef
fe

ct
Ef

fic
Sc

al
Ap

pl
ic

Ef
fe

ct
Ef

fic
Sc

al
Ap

pl
ic

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

F
ig
u
re

4.
17

:
D
ec
is
io
n
tr
ee

fo
r
qu

ic
kl
y
lo
ca
ti
n
g
en
tr
ie
s
in

T
ab

le
4.
6

48

Table 4.6: Papers belonging to each category combination

Context

ID

Evaluation

Method

Count Papers

A Experiment 30 [80], [269], [292], [193], [182], [146], [72], [254],

[116], [311], [258], [290], [128], [249], [334],

[200], [273], [340], [317], [36], [144], [248],

[162], [100], [190], [63], [109], [115], [234], [309]

Case Study 6 [230], [199], [213], [330], [256], [247]

Analytic 0

Example 0

B Experiment 24 [80], [92], [225], [292], [212], [344], [182], [66],

[146], [254], [171], [170], [311], [258], [290],

[172], [334], [273], [36], [144], [248], [181], [63],

[234]

Case Study 4 [230], [139], [330], [100]

Analytic 0

Example 0

C Experiment 0

Case Study 2 [199], [330]

Analytic 1 [342]

Example 0

D Experiment 0

Case Study 0

Analytic 0

Example 0

49

Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

E Experiment 71 [101], [25], [214], [316], [7], [132], [152], [257],

[90], [252], [131], [24], [142], [42], [19], [108],

[319], [167], [259], [130], [166], [84], [121],

[336], [217], [285], [4], [76], [135], [231], [346],

[16], [145], [321], [9], [245], [300], [340], [298],

[68], [31], [232], [113], [20], [103], [198], [141],

[159], [218], [148], [160], [3], [53], [21], [67],

[215], [136], [133], [111], [95], [155], [165],

[154], [120], [47], [46], [343], [110], [246], [194],

[12]

Case Study 15 [180], [202], [11], [30], [88], [335], [223], [124],

[278], [112], [52], [265], [253], [308], [41]

Analytic 2 [304], [125]

Example 5 [25], [289], [60], [23], [134]

F Experiment 54 [127], [226], [214], [316], [106], [257], [90],

[252], [345], [319], [259], [105], [130], [166],

[186], [34], [84], [304], [171], [170], [280], [76],

[135], [231], [266], [78], [296], [16], [321], [203],

[298], [68], [31], [232], [250], [189], [20], [284],

[160], [14], [67], [136], [307], [13], [185], [111],

[188], [155], [165], [47], [271], [110], [246], [12]

Case Study 6 [202], [139], [124], [253], [35], [41]

Analytic 0

50

Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

Example 1 [149]

G Experiment 0

Case Study 2 [52], [268]

Analytic 1 [73]

Example 3 [173], [125], [117]

H Experiment 1 [141]

Case Study 0

Analytic 0

Example 0

I Experiment 22 [207], [208], [129], [114], [55], [210], [324],

[206], [314], [98], [176], [140], [311], [26], [126],

[281], [93], [282], [190], [234], [318], [123]

Case Study 13 [233], [175], [178], [147], [59], [256], [10], [294],

[227], [201], [6], [39], [260]

Analytic 1 [291]

Example 1 [26]

J Experiment 10 [208], [92], [55], [70], [98], [311], [26], [87],

[156], [234]

Case Study 7 [233], [175], [10], [294], [227], [6], [187]

Analytic 0

Example 1 [26]

K Experiment 0

Case Study 0

51

Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

Analytic 1 [211]

Example 0

L Experiment 0

Case Study 0

Analytic 0

Example 0

M Experiment 46 [101], [221], [333], [197], [196], [275], [77],

[204], [331], [38], [81], [74], [15], [167], [209],

[43], [327], [251], [191], [192], [303], [329],

[341], [61], [274], [17], [222], [57], [305], [22],

[218], [160], [216], [53], [21], [37], [263], [337],

[315], [119], [179], [235], [49], [244], [69], [302]

Case Study 25 [32], [295], [205], [157], [44], [325], [323], [220],

[228], [40], [89], [17], [33], [85], [75], [163],

[242], [243], [267], [299], [320], [29], [107], [41],

[183]

Analytic 5 [224], [306], [151], [301], [195]

Example 3 [197], [28], [60]

N Experiment 39 [333], [197], [65], [62], [275], [332], [58], [94],

[2], [204], [79], [74], [241], [8], [209], [153],

[327], [91], [251], [191], [326], [341], [277],

[222], [57], [22], [160], [216], [219], [37], [263],

[262], [5], [264], [179], [235], [49], [69], [302]

52

Table 4.6: (continued)

Context

ID

Evaluation

Method

Count Papers

Case Study 15 [279], [50], [44], [325], [323], [40], [89], [17],

[163], [118], [158], [267], [347], [107], [41]

Analytic 0

Example 5 [197], [58], [74], [45], [347]

O Experiment 2 [99], [27]

Case Study 10 [288], [50], [157], [51], [276], [261], [313], [158],

[27], [320]

Analytic 5 [229], [238], [177], [339], [306]

Example 1 [272]

P Experiment 4 [333], [79], [329], [5]

Case Study 3 [279], [313], [242]

Analytic 0

Example 1 [8]

53

5 Discussion

Our map of the field reveals that interest in research evaluating software testing

techniques has grown significantly since 2007. Despite the broad scope of the field, we

see that this interest does manifest itself in a few publication venues with a much higher

relative concentration of relevant papers. Contributions in the field come almost entirely

from academia with only a small percentage of papers written by authors a�liated with

industry. Even though industrial contributions are relatively few, the distribution of

evaluation methods and dimensions are somewhat di↵erent in this set of papers. A large

portion of case studies examining the applicability of testing techniques from authors

in industry suggests that industry can provide a valuable niche in that area.

Our study also reveals there is a good amount of research evaluating both white-

box and black-box testing techniques, with about half of evaluations being of each tech-

nique type. We found that black-box technique evaluations focused largely on combina-

torial and random testing techniques; leaving a relative shortage of research evaluating

other black-box testing techniques. For the most part, the distribution of evaluation

methods and evaluation dimensions in black-box evaluations is similar to that of white-

box evaluations. That said, black-box evaluations more often utilize case studies and

analytic evaluations when assessing techniques.

In general, evaluations of software testing techniques are overwhelmingly empir-

ical studies in the form of experiments and case studies with a large focus on evaluating

e↵ectiveness and e�ciency. On the other hand, there are gaps in research evaluating

scalability and applicability. Based on the distribution of the dimensions of these evalu-

54

ations, we can provide insight on what is the state of the art when it comes to evaluating

software testing techniques:

1. For researchers looking to evaluate the e↵ectiveness of their testing technique

experiments were by far the most common methodology for doing so. Despite

being the most common method of evaluation, a majority of experiments looking

at the e↵ectiveness of techniques neglected to provide a hypothesis with hypothesis

testing. Less than 20% did so. Only about half of experiments met the justified

context criteria or provided a serious discussion of threats to validity. About 75%

of experiments utilized descriptive statistics. The second most common method

for evaluating e↵ectiveness was case studies. These were often used when research

goals had to do with evaluating the technique in an industrial context unsuitable

for the level of control required for an experiment. The case studies did a poor

job of meeting the case study quality criteria described in section 3.5. About

%57 utilize data triangulation, %20 define research questions, and %42 provide

a serious discussion of threats to validity. Only a few papers used examples or

analytic methods to demonstrate the e↵ectiveness of their technique. In short,

experiments should be used for evaluating the e↵ectiveness of testing techniques

when possible and experiments are so far relatively weak according to proper

experiment methodology laid out by [322].

2. The state of the art is fairly similar when it comes to evaluating the e�ciency of

testing techniques. Experiments were again by far the most common methodology

for doing so. Many of these experiments also neglected to provide hypothesis

testing or discuss threats to their validity; something that can be improved upon

in this field. Case studies were the second most common method used and were

of similar quality to those evaluating e↵ectiveness. A few analytic evaluations and

no examples were used to assess e�ciency.

55

3. For researchers looking to evaluate the applicability of their testing technique,

case studies were the most used by a significant margin. These case studies did a

better job of utilizing data triangulation and clearly defining research questions.

Still, only %35 provided a serious discussion of threats to validity. Examples were

the next most common method used for assessing applicability. These assessments

tended to be simple demonstrations of how a technique could be applied in dif-

ferent contexts as opposed to a more rigorous empirical evaluation. Despite being

the most common evaluation method, experiments evaluated the applicability of

testing techniques the least. In short, case studies should be used in most cases to

assess the applicability of testing techniques, with examples being used for simpler

demonstrations of applicability.

4. Finally, for researchers looking to evaluate the scalability of their testing tech-

niques, case studies and experiments were the most common methods for doing

so. Even though only 9 scalability evaluations were collected in this mapping

study, almost all of them utilized case studies or experiments. As mentioned ear-

lier, Scalability was a dimension in which the distribution of evaluation methods

changed drastically with testing technique type. We see that the scalability of

white-box techniques is only evaluated using experiments while the scalability of

black-box techniques largely utilizes case studies. Thus, researchers looking to fol-

low the state of the art when evaluating the scalability of their testing technique

should consider the testing technique type when deciding between experiments

and case studies.

In terms of contribution type, most of the collected papers performed an evalu-

ation of some software testing technique. There were relatively very few papers actually

discussing how techniques should be evaluated or proposing a new methodology for

doing so. That said, a few important papers with the latter contribution type were

56

presented in section 4.2.4. These papers suggest that convergence in empirical study

methodology and more careful analysis and characterization of objects to which treat-

ments are applied will significantly improve reproducibility and the e�cacy of claims

made in evaluating software testing techniques.

57

6 Case Study

To demonstrate how the results of this mapping study can be used by researchers

looking to evaluate a particular testing technique, we present a small case study based

on the case of our peers who are interested in evaluating the e↵ectiveness of a novel

black-box testing technique. We first introduce the case in more detail. Then we step

through various sections of the results; discussing how each section helps us develop

an understanding of how the novel black-box testing technique developed by our peers

should be evaluated.

6.1 The Case

One of the motivating examples for this mapping study came from our peers

who developed a novel black-box testing technique. As with many researchers who

have developed a novel testing technique, a greater understanding of how to evaluate

their particular technique was desired. How have other papers evaluated similar testing

techniques? Are there any best practices or guidelines to be aware of? Furthermore, the

case of our peers presented a particular challenge when evaluating a testing technique

empirically. With the source code embedded in the system under test, modifying it

between test executions for a large number of test cases was simply infeasible. This

made a popular approach like mutation analysis very di�cult to apply at the code level.

How have other researchers evaluated techniques where this is the case?

58

6.2 Intuition from Aggregate Information

To begin, we might want to develop some higher level intuition regarding how

similar techniques are evaluated in the field. Aggregate statistics and their visualiza-

tions presented in the earlier parts of section 4 can help us quickly identify common

characteristics of evaluations performed for similar testing technique types and dimen-

sions.

Looking at the evaluation method distribution for the e↵ectiveness dimension

in Figure 4.10, we see that over 90% of all e↵ectiveness evaluations were made up of

experiments and case studies. Given such a large majority (and in our case the di�culty

of performing some analytic evaluation), Figure 4.10 gives us a clear indication that our

evaluation should most probably be some empirical evaluation in the form of an exper-

iment or case study. Figure 4.16 gives us similar information, but considers the testing

technique type as well. This figure shows that case studies were somewhat more popular

in black-box e↵ectiveness evaluations than they were in white-box evaluations. While

experiments were certainly the most common method for evaluating the e↵ectiveness

of black-box techniques, many papers also utilized case studies. Thus we would likely

choose our evaluation method by reading actual papers evaluating the e↵ectiveness of

black-box techniques (see section 6.3 below) and by considering whether or not a high

level of experimental control is possible.

Another area we might be interested in is how often mutation analysis is utilized

in e↵ectiveness evaluations of similar techniques. Figures 4.11-4.14 show us that the

proportion of evaluations utilizing mutation analysis remains fairly consistent regardless

of evaluation method or testing technique type. For black-box evaluations in particular,

Figure 4.13 shows that about one-third utilize mutation analysis. Being such a popular

technique, we keep it in mind when considering how to evaluate our technique.

59

6.3 Locating Related Papers

While aggregate information can give us a quick intuition when it comes to

evaluation methods and the use of mutation analysis, it fails to provide a more in-depth

understanding of the state of the art in similar testing technique evaluations. We may

have many finer-grain questions about how to evaluate our technique or just want to

examine papers evaluating similar testing techniques for guidance or inspiration. In

our case, we are especially interested in how black-box e↵ectiveness evaluations using

mutation analysis are performed when access to the source code is limited. This is

where a further understanding of the state of the art is necessary and can be obtained

from reading papers performing similar technique evaluations.

Figure 4.17 and Table 4.6 help us to easily locate these papers. As mentioned

earlier, Table 4.6 maps each combination of technique type, evaluation dimension, eval-

uation method, and mutation analysis a�liation to a set of papers along with the set’s

cardinality. Due to the large number of combinations and table size, Figure 4.17 has

been provided as a complementary tool for quickly finding the table row we are inter-

ested in. To use the tool, we start at the root node labeled ”Technique Type” and work

our way down the tree by choosing the category we are interested in at each internal

node of the tree. For this case study we are interested in learning about black-box

technique evaluations, so we take the right path, labeled ”Black-Box”, to the Mutation

Analysis Used internal node. Because we are interested in finding papers that utilize

mutation analysis, we then take the left branch to the Evaluation Dimension internal

node. Finally, our interest in e↵ectiveness evaluations leads us to take the leftmost

branch labeled ”E↵ect” and arrive at the leaf node, I. This leaf node represents an iden-

tifier for the row in Table 4.6 containing papers evaluating the e↵ectiveness of black-box

testing techniques using mutation analysis.

60

Given our identifier I, we quickly locate the row labeled I in Table 4.6 (note

identifiers are in alphabetical order and color coded) to find papers we are interested in.

Table 4.6 shows there are 22 experiment and 13 case study papers. We are particularly

interested in the evaluations where access to the code may be limited between test

executions, so we skim through the set of 35 papers to find such evaluations. This reveals

3 empirical evaluations, [6], [59], and [10], that we can use to learn how other researchers

evaluated the e↵ectiveness of their technique under similar conditions. We see that each

of the 3 evaluations are able to apply some form of mutation analysis without altering

the source code between test executions by utilizing model-level mutants for various

models. In particular, [6] reveals a model-based mutation testing tool for UML models

and additionally presents a case study demonstrating how model-based mutation testing

can be applied to an industrial measurement device using the tool. By referring to [6],

we see how we might model our own SUT in UML and utilize model-based mutation

analysis to evaluate the e↵ectiveness of our technique.

6.4 Guidelines

After reading through related evaluations, we also may want to consult papers

providing higher-level guidelines pertaining to our evaluation. To do so, we refer to

Table 4.2 which lists all of the higher level guideline and proposal papers collected

in this mapping study by various categories. Looking through these papers and their

summaries, we very quickly gather some valuable insights which will help us plan the

evaluation of our testing technique. [77] tells us that di↵erent techniques may be better

suited for finding di↵erent types of faults and that the nature of faults found should be

considered in testing technique evaluations. [82] suggests that we should consider the

experience level of human subjects and should probably apply random selection. [48]

and [54] both do an excellent job of warning us about common threats to the validity

61

of empirical research results. [283] and [64] provide reporting guidelines that will help

others replicate our study. Finally, a range of papers in the table present applicable

mutation cost-reduction techniques we may want to consider.

62

7 Threats to Validity

The main threats to the validity of this study are common to most mapping

studies. While systematic, our methods of gathering a set of papers representative of

the field under investigation and our methods of mapping them are not immune to these

issues.

A major validity concern in systematic mapping studies is that the set of gath-

ered papers fails to include relevant papers in the field. There are a few reasons why

this is a threat to the validity of our particular study:

1. Limited Search Space: Relevant papers were only searched for in online databases.

Furthermore, our search was only applied to four of the most common online

databases. It is possible relevant papers not published online or published in a

di↵erent online database were missed.

2. Language Barrier: Only papers written in English were considered in this study.

One paper from the initial search was excluded on this basis. It is possible this

paper was relevant.

3. Search String: The search string chosen obviously has a large impact on the

ability of a search to return relevant papers. It is possible the search string used

in this study resulted in relevant papers not being returned from online sources.

We attempted to mitigate this threat by systematically deriving our search string

from our research goal as suggested by [236] and by applying iterative refinements

to our search string based on search results (discussed in section 2.2).

63

4. Misleading Titles and Abstracts: Some relevant papers may have been ex-

cluded in title and abstract exclusion due to titles and abstracts not accurately

reflecting the content of papers.

Another major validity concern in systematic mapping studies is that gathered

relevant papers are misclassified. This is a concern in our study due to the possibility of

author error and poorly written abstracts. The threat is reduced by the fact that full text

skimmings were applied to relevant papers to adequately perform some classifications.

64

8 Conclusion and Future Work

With the growing demand for high quality testing techniques it is important

that we evaluate them e↵ectively. An understanding of how we currently evaluate

techniques and where our evaluations are lacking can give researchers a better idea

of how they should evaluate their techniques as well as initiate research to improve

technique evaluations. This paper provides such an understanding by mapping out

the field in a systematic mapping study; illustrating the current state of the art and

identifying research gaps. Based on the state of the art we have presented guidelines for

how a researcher should evaluate their particular testing technique and have generated

a mapping from categories to sets of papers belonging to them; allowing researchers to

easily locate papers in the field that they are interested in.

The study also answers nine specific research questions declared in the introduc-

tion:

1. RQ1.1: The number of papers published annually increased greatly from 2009-

2011 and has remained about at that level. Since 2011, on average about 35

relevant papers were published per year.

2. RQ1.2: Software Testing, Verification and Reliability and the International Sym-

posium on Software Testing and Analysis are the two main publication venues,

with 33 and 24 relevant contributions respectively. Other major publication venues

include the International Conference on Automated Software Engineering, the In-

ternational Conference on Software Engineering, the International Conference on

65

Software Testing, the International Symposium on Foundations of Software En-

gineering, Empirical Software Engineering, and the International Conference on

Software Testing, Verification and Validation.

3. RQ1.3: A large majority of contributions (%87) are from academia based on

author a�liation. Only %13 have authors a�liated with industry.

4. RQ2.1: Experiments, case studies, analytic evaluations, and examples are the

main methods used for evaluating software testing techniques.

5. RQ2.2: Empirical evaluations in the form of experiments make up a very large

majority of evaluation methods. Of these, experiments are used quite a bit more.

Analytic evaluations and examples are seldom used.

6. RQ2.3: Over half of evaluations are of the e↵ectiveness of software testing tech-

niques. %36 evaluate e�ciency. A very small remaining proportion of papers

evaluate the applicability and scalability of techniques.

7. RQ2.4 %47 of evaluations were of white-box techniques, %49 of evaluations were

of black-box techniques, and %4 of evaluations were of both white-box and black-

box techniques.

8. RQ2.5: Based on proper experiment and case study methodologies proposed by

[312] and [322] respectively, evaluations are of relatively low quality.

9. RQ2.6: Most of the papers utilized a method to evaluate a software testing tech-

nique. Relatively few papers discussed how testing techniques should be evaluated

or proposed a method for doing so.

10. RQ2.7: Almost %30 of e↵ectiveness evaluations utilized mutation analysis. This

percentage is fairly consistent across white-box and black-box testing technique

evaluations.

66

More generally our work concludes that there is a need for research focused on

how testing techniques should be evaluated. Very few papers were classified as proposal

papers even though a large number of papers utilized evaluations for techniques. Fur-

thermore, most of the empirical evaluations made were of fairly low quality according to

proper methodology guidelines. While it is good that many researchers evaluate their

techniques, it seems clear the field is lacking more serious testing technique evaluations

that are influenced by findings from guideline research. Maturing in this area may

greatly enhance our assessment capabilities and as a result further our understanding of

the e↵ectiveness, e�ciency, scalability, and applicability of software testing techniques.

67

Bibliography

[1] 2018. url: https://www.ibeta.com/historys-most-expensive-software-

bugs/.

[2] P. Accioly, P. Borba, and R. Bonifcio. “Comparing Two Black-Box Testing

Strategies for Software Product Lines”. In: 2012 Sixth Brazilian Symposium

on Software Components, Architectures and Reuse. Sept. 2012, pp. 1–10. doi:

10.1109/SBCARS.2012.17.

[3] Wasif Afzal et al. “An experiment on the e↵ectiveness and e�ciency of ex-

ploratory testing”. en. In: Empirical Software Engineering 20.3 (June 2015),

pp. 844–878. issn: 1382-3256, 1573-7616. doi: 10.1007/s10664-014-9301-4.

url: http://link.springer.com/article/10.1007/s10664-014-9301-4

(visited on 07/08/2018).

[4] Khushboo Agarwal and Gursaran Srivastava. “Towards Software Test Data Gen-

eration Using Discrete Quantum Particle Swarm Optimization”. In: Proceedings

of the 3rd India Software Engineering Conference. ISEC ’10. New York, NY,

USA: ACM, 2010, pp. 65–68. isbn: 978-1-60558-922-0. doi: 10.1145/1730874.

1730888. url: http://doi.acm.org/10.1145/1730874.1730888 (visited on

07/07/2018).

[5] Bernhard K. Aichernig, Dejan Nikovi, and Stefan Tiran. “Scalable Incremental

Test-case Generation from Large Behavior Models”. en. In: Tests and Proofs.

Lecture Notes in Computer Science. Springer, Cham, July 2015, pp. 1–18. isbn:

68

978-3-319-21214-2 978-3-319-21215-9. doi: 10.1007/978-3-319-21215-9_1.

url: http://link.springer.com/chapter/10.1007/978-3-319-21215-9_1

(visited on 07/09/2018).

[6] Bernhard K. Aichernig et al. “Model-Based Mutation Testing of an Industrial

Measurement Device”. en. In: Tests and Proofs. Lecture Notes in Computer Sci-

ence. Springer, Cham, July 2014, pp. 1–19. isbn: 978-3-319-09098-6 978-3-319-

09099-3. doi: 10.1007/978-3-319-09099-3_1. url: http://link.springer.

com/chapter/10.1007/978-3-319-09099-3_1 (visited on 07/09/2018).

[7] Roger T. Alexander, Je↵ O↵utt, and Andreas Stefik. “Testing coupling relation-

ships in object-oriented programs”. en. In: Software Testing, Verification and

Reliability 20.4 (2010), pp. 291–327. issn: 1099-1689. doi: 10.1002/stvr.417.

url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.417 (visited

on 07/07/2018).

[8] S. Ali et al. “Generating Test Data from OCL Constraints with Search Tech-

niques”. In: IEEE Transactions on Software Engineering 39.10 (Oct. 2013),

pp. 1376–1402. issn: 0098-5589. doi: 10.1109/TSE.2013.17.

[9] Mohammad Amin Alipour et al. “Generating Focused Random Tests Using Di-

rected Swarm Testing”. In: Proceedings of the 25th International Symposium on

Software Testing and Analysis. ISSTA 2016. New York, NY, USA: ACM, 2016,

pp. 70–81. isbn: 978-1-4503-4390-9. doi: 10.1145/2931037.2931056. url: http:

//doi.acm.org/10.1145/2931037.2931056 (visited on 07/08/2018).

[10] Harith Aljumaily, Dolores Cuadra, and Paloma Martnez. “Applying black-box

testing to UML/OCL database models”. en. In: Software Quality Journal 22.2

(June 2014), pp. 153–184. issn: 0963-9314, 1573-1367. doi: 10.1007/s11219-

012-9192-9. url: http://link.springer.com/article/10.1007/s11219-

012-9192-9 (visited on 07/08/2018).

69

[11] Tristan Allwood, Cristian Cadar, and Susan Eisenbach. “High Coverage Testing

of Haskell Programs”. In: Proceedings of the 2011 International Symposium on

Software Testing and Analysis. ISSTA ’11. New York, NY, USA: ACM, 2011,

pp. 375–385. isbn: 978-1-4503-0562-4. doi: 10.1145/2001420.2001465. url:

http://doi.acm.org/10.1145/2001420.2001465 (visited on 07/07/2018).

[12] N. Alshahwan and M. Harman. “Automated web application testing using search

based software engineering”. In: 2011 26th IEEE/ACM International Conference

on Automated Software Engineering (ASE 2011). Nov. 2011, pp. 3–12. doi: 10.

1109/ASE.2011.6100082.

[13] Mohammad Alshraideh, Leonardo Bottaci, and Basel A. Mahafzah. “Using pro-

gram data-state scarcity to guide automatic test data generation”. en. In: Soft-

ware Quality Journal 18.1 (Mar. 2010), pp. 109–144. issn: 0963-9314, 1573-1367.

doi: 10.1007/s11219- 009- 9083- x. url: http://link.springer.com/

article/10.1007/s11219-009-9083-x (visited on 07/09/2018).

[14] Mohammad Alshraideh, Basel A. Mahafzah, and Saleh Al-Sharaeh. “A multiple-

population genetic algorithm for branch coverage test data generation”. en. In:

Software Quality Journal 19.3 (Sept. 2011), pp. 489–513. issn: 0963-9314, 1573-

1367. doi: 10.1007/s11219-010-9117-4. url: http://link.springer.com/

article/10.1007/s11219-010-9117-4 (visited on 07/08/2018).

[15] D. Amalfitano, A. R. Fasolino, and P. Tramontana. “Rich Internet Application

Testing Using Execution Trace Data”. In: 2010 Third International Conference

on Software Testing, Verification, and Validation Workshops. Apr. 2010, pp. 274–

283. doi: 10.1109/ICSTW.2010.34.

[16] Domenico Amalfitano et al. “AGRippin: A Novel Search Based Testing Technique

for Android Applications”. In: Proceedings of the 3rd International Workshop

on Software Development Lifecycle for Mobile. DeMobile 2015. New York, NY,

70

USA: ACM, 2015, pp. 5–12. isbn: 978-1-4503-3815-8. doi: 10.1145/2804345.

2804348. url: http://doi.acm.org/10.1145/2804345.2804348 (visited on

07/07/2018).

[17] Domenico Amalfitano et al. “Using GUI Ripping for Automated Testing of An-

droid Applications”. In: Proceedings of the 27th IEEE/ACM International Con-

ference on Automated Software Engineering. ASE 2012. New York, NY, USA:

ACM, 2012, pp. 258–261. isbn: 978-1-4503-1204-2. doi: 10 .1145 /2351676 .

2351717. url: http://doi.acm.org/10.1145/2351676.2351717 (visited on

07/08/2018).

[18] Paul Ammann and Je↵ O↵utt. Introduction to Software Testing. 1st ed. New

York, NY, USA: Cambridge University Press, 2008.

[19] A. Andalib and S. M. Babamir. “A new approach for test case generation by

discrete particle swarm optimization algorithm”. In: 2014 22nd Iranian Confer-

ence on Electrical Engineering (ICEE). May 2014, pp. 1180–1185. doi: 10.1109/

IranianCEE.2014.6999714.

[20] James H. Andrews, Felix C. H. Li, and Tim Menzies. “Nighthawk: A Two-

level Genetic-random Unit Test Data Generator”. In: Proceedings of the Twenty-

second IEEE/ACM International Conference on Automated Software Engineer-

ing. ASE ’07. New York, NY, USA: ACM, 2007, pp. 144–153. isbn: 978-1-59593-

882-4. doi: 10.1145/1321631.1321654. url: http://doi.acm.org/10.1145/

1321631.1321654 (visited on 07/08/2018).

[21] Cecilia Apa et al. “E↵ectiveness for detecting faults within and outside the scope

of testing techniques: an independent replication”. en. In: Empirical Software

Engineering 19.2 (Apr. 2014), pp. 378–417. issn: 1382-3256, 1573-7616. doi:

10.1007/s10664-013-9267-7. url: http://link.springer.com/article/

10.1007/s10664-013-9267-7 (visited on 07/08/2018).

71

[22] Sven Apel et al. “Strategies for Product-line Verification: Case Studies and Ex-

periments”. In: Proceedings of the 2013 International Conference on Software En-

gineering. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 482–491. isbn:

978-1-4673-3076-3. url: http://dl.acm.org/citation.cfm?id=2486788.

2486852 (visited on 07/08/2018).

[23] Bellanov S. Apilli. “Fault-based Combinatorial Testing of Web Services”. In: Pro-

ceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented

Programming Systems Languages and Applications. OOPSLA ’09. New York,

NY, USA: ACM, 2009, pp. 731–732. isbn: 978-1-60558-768-4. doi: 10.1145/

1639950.1639987. url: http://doi.acm.org/10.1145/1639950.1639987

(visited on 07/08/2018).

[24] A. Arcuri. “RESTful API Automated Test Case Generation”. In: 2017 IEEE

International Conference on Software Quality, Reliability and Security (QRS).

July 2017, pp. 9–20. doi: 10.1109/QRS.2017.11.

[25] Andrea Arcuri. “It really does matter how you normalize the branch distance in

search-based software testing”. en. In: Software Testing, Verification and Relia-

bility 23.2 (2011), pp. 119–147. issn: 1099-1689. doi: 10.1002/stvr.457. url:

http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.457 (visited on

07/05/2018).

[26] Andrea Arcuri and Lionel Briand. “Adaptive Random Testing: An Illusion of

E↵ectiveness?” In: Proceedings of the 2011 International Symposium on Software

Testing and Analysis. ISSTA ’11. New York, NY, USA: ACM, 2011, pp. 265–

275. isbn: 978-1-4503-0562-4. doi: 10.1145/2001420.2001452. url: http:

//doi.acm.org/10.1145/2001420.2001452 (visited on 07/07/2018).

[27] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. “Black-Box Sys-

tem Testing of Real-Time Embedded Systems Using Random and Search-Based

72

Testing”. en. In: Testing Software and Systems. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Nov. 2010, pp. 95–110. isbn: 978-3-642-

16572-6 978-3-642-16573-3. doi: 10.1007/978-3-642-16573-3_8. url: http:

//link.springer.com/chapter/10.1007/978-3-642-16573-3_8 (visited on

07/09/2018).

[28] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. “Formal Analysis

of the E↵ectiveness and Predictability of Random Testing”. In: Proceedings of

the 19th International Symposium on Software Testing and Analysis. ISSTA ’10.

New York, NY, USA: ACM, 2010, pp. 219–230. isbn: 978-1-60558-823-0. doi:

10.1145/1831708.1831736. url: http://doi.acm.org/10.1145/1831708.

1831736 (visited on 07/07/2018).

[29] Stephan Arlt et al. “Parameterized GUI Tests”. en. In: Testing Software and

Systems. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Nov.

2012, pp. 247–262. isbn: 978-3-642-34690-3 978-3-642-34691-0. doi: 10.1007/

978-3-642-34691-0_18. url: http://link.springer.com/chapter/10.

1007/978-3-642-34691-0_18 (visited on 07/09/2018).

[30] Shay Artzi et al. “Finding Bugs in Dynamic Web Applications”. In: Proceedings

of the 2008 International Symposium on Software Testing and Analysis. ISSTA

’08. New York, NY, USA: ACM, 2008, pp. 261–272. isbn: 978-1-60558-050-0. doi:

10.1145/1390630.1390662. url: http://doi.acm.org/10.1145/1390630.

1390662 (visited on 07/07/2018).

[31] Thanassis Avgerinos et al. “Enhancing Symbolic Execution with Veritesting”.

In: Proceedings of the 36th International Conference on Software Engineering.

ICSE 2014. New York, NY, USA: ACM, 2014, pp. 1083–1094. isbn: 978-1-4503-

2756-5. doi: 10.1145/2568225.2568293. url: http://doi.acm.org/10.1145/

2568225.2568293 (visited on 07/08/2018).

73

[32] Roy Awedikian and Bernard Yannou. “A practical model-based statistical ap-

proach for generating functional test cases: application in the automotive indus-

try”. en. In: Software Testing, Verification and Reliability 24.2 (2012), pp. 85–

123. issn: 1099-1689. doi: 10.1002/stvr.1479. url: http://onlinelibrary.

wiley.com/doi/abs/10.1002/stvr.1479 (visited on 07/05/2018).

[33] Tanzirul Azim and Iulian Neamtiu. “Targeted and Depth-first Exploration for

Systematic Testing of Android Apps”. In: Proceedings of the 2013 ACM SIG-

PLAN International Conference on Object Oriented Programming Systems Lan-

guages & Applications. OOPSLA ’13. New York, NY, USA: ACM, 2013, pp. 641–

660. isbn: 978-1-4503-2374-1. doi: 10.1145/2509136.2509549. url: http:

//doi.acm.org/10.1145/2509136.2509549 (visited on 07/08/2018).

[34] A. Baars et al. “Symbolic search-based testing”. In: 2011 26th IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE 2011). Nov.

2011, pp. 53–62. doi: 10.1109/ASE.2011.6100119.

[35] Faezeh Sadat Babamir et al. “Application of Genetic Algorithm in Automatic

Software Testing”. en. In: Networked Digital Technologies. Communications in

Computer and Information Science. Springer, Berlin, Heidelberg, July 2010,

pp. 545–552. isbn: 978-3-642-14305-2 978-3-642-14306-9. doi: 10.1007/978-3-

642-14306-9_54. url: http://link.springer.com/chapter/10.1007/978-

3-642-14306-9_54 (visited on 07/09/2018).

[36] Luke Bajada, Mark Micallef, and Christian Colombo. “Using Control Flow Anal-

ysis to Improve the E↵ectiveness of Incremental Mutation Testing”. In: Proceed-

ings of the 14th International Workshop on Principles of Software Evolution.

IWPSE 2015. New York, NY, USA: ACM, 2015, pp. 73–78. isbn: 978-1-4503-

3816-5. doi: 10.1145/2804360.2804369. url: http://doi.acm.org/10.1145/

2804360.2804369 (visited on 07/08/2018).

74

[37] Juliana M. Balera and Valdivino A. de Santiago Jnior. “An algorithm for combi-

natorial interaction testing: definitions and rigorous evaluations”. en. In: Journal

of Software Engineering Research and Development 5.1 (Dec. 2017), p. 10. issn:

2195-1721. doi: 10.1186/s40411-017-0043-z. url: http://link.springer.

com/article/10.1186/s40411-017-0043-z (visited on 07/09/2018).

[38] W. A. Ballance, S. Vilkomir, and W. Jenkins. “E↵ectiveness of Pair-Wise Testing

for Software with Boolean Inputs”. In: Verification and Validation 2012 IEEE

Fifth International Conference on Software Testing. Apr. 2012, pp. 580–586. doi:

10.1109/ICST.2012.144.

[39] Gagandeep Batra and Jyotsna Sengupta. “An E�cient Metamorphic Testing

Technique Using Genetic Algorithm”. en. In: Information Intelligence, Systems,

Technology and Management. Communications in Computer and Information

Science. Springer, Berlin, Heidelberg, Mar. 2011, pp. 180–188. isbn: 978-3-642-

19422-1 978-3-642-19423-8. doi: 10.1007/978-3-642-19423-8_19. url: http:

//link.springer.com/chapter/10.1007/978-3-642-19423-8_19 (visited on

07/09/2018).

[40] Sebastian Bauersfeld et al. “Evaluating the TESTAR Tool in an Industrial Case

Study”. In: Proceedings of the 8th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement. ESEM ’14. New York, NY,

USA: ACM, 2014, 4:1–4:9. isbn: 978-1-4503-2774-9. doi: 10.1145/2652524.

2652588. url: http://doi.acm.org/10.1145/2652524.2652588 (visited on

07/08/2018).

[41] S. Benli et al. “A Comparative Evaluation of Unit Testing Techniques on a Mobile

Platform”. In: 2012 Ninth International Conference on Information Technology

- New Generations. Apr. 2012, pp. 263–268. doi: 10.1109/ITNG.2012.45.

75

[42] L. Bentes et al. “JFORTES: Java Formal Unit TESt Generation”. In: 2016 VI

Brazilian Symposium on Computing Systems Engineering (SBESC). Nov. 2016,

pp. 16–23. doi: 10.1109/SBESC.2016.012.

[43] C. Bertolini et al. “An Empirical Evaluation of Automated Black Box Testing

Techniques for Crashing GUIs”. In: 2009 International Conference on Software

Testing Verification and Validation. Apr. 2009, pp. 21–30. doi: 10.1109/ICST.

2009.27.

[44] S. M. B. Bhargavi et al. “Conventional testing and combinatorial testing: A com-

parative analysis”. In: 2016 International Conference on Inventive Computation

Technologies (ICICT). Vol. 1. Aug. 2016, pp. 1–5. doi: 10.1109/INVENTIVE.

2016.7823200.

[45] A. Bhat and S. M. K. Quadri. “Equivalence class partitioning and boundary

value analysis - A review”. In: 2015 2nd International Conference on Computing

for Sustainable Global Development (INDIACom). Mar. 2015, pp. 1557–1562.

[46] Neelesh Bhattacharya et al. “Divide-by-Zero Exception Raising via Branch Cov-

erage”. en. In: Search Based Software Engineering. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Sept. 2011, pp. 204–218. isbn: 978-3-642-

23715-7 978-3-642-23716-4. doi: 10.1007/978-3-642-23716-4_19. url: http:

//link.springer.com/chapter/10.1007/978-3-642-23716-4_19 (visited on

07/09/2018).

[47] Atieh Monemi Bidgoli et al. “Using Swarm Intelligence to Generate Test Data for

Covering Prime Paths”. en. In: Fundamentals of Software Engineering. Lecture

Notes in Computer Science. Springer, Cham, Apr. 2017, pp. 132–147. isbn: 978-

3-319-68971-5 978-3-319-68972-2. doi: 10.1007/978-3-319-68972-2_9. url:

http://link.springer.com/chapter/10.1007/978- 3- 319- 68972- 2_9

(visited on 07/09/2018).

76

[48] Stefan Bi✏ et al. “Towards a Semantic Knowledge Base on Threats to Valid-

ity and Control Actions in Controlled Experiments”. In: Proceedings of the 8th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement. ESEM ’14. New York, NY, USA: ACM, 2014, 49:1–49:4. isbn:

978-1-4503-2774-9. doi: 10.1145/2652524.2652568. url: http://doi.acm.

org/10.1145/2652524.2652568 (visited on 07/08/2018).

[49] Roderick Bloem et al. “Case Study: Automatic Test Case Generation for a Se-

cure Cache Implementation”. en. In: Tests and Proofs. Lecture Notes in Com-

puter Science. Springer, Cham, July 2015, pp. 58–75. isbn: 978-3-319-21214-

2 978-3-319-21215-9. doi: 10 . 1007 / 978 - 3 - 319 - 21215 - 9 _ 4. url: http :

//link.springer.com/chapter/10.1007/978-3-319-21215-9_4 (visited

on 07/10/2018).

[50] E. Borjesson. “Industrial Applicability of Visual GUI Testing for System and

Acceptance Test Automation”. In: Verification and Validation 2012 IEEE Fifth

International Conference on Software Testing. Apr. 2012, pp. 475–478. doi: 10.

1109/ICST.2012.129.

[51] E. Borjesson and R. Feldt. “Automated System Testing Using Visual GUI Testing

Tools: A Comparative Study in Industry”. In: Verification and Validation 2012

IEEE Fifth International Conference on Software Testing. Apr. 2012, pp. 350–

359. doi: 10.1109/ICST.2012.115.

[52] Ella Bounimova, Patrice Godefroid, and David Molnar. “Billions and Billions

of Constraints: Whitebox Fuzz Testing in Production”. In: Proceedings of the

2013 International Conference on Software Engineering. ICSE ’13. Piscataway,

NJ, USA: IEEE Press, 2013, pp. 122–131. isbn: 978-1-4673-3076-3. url: http:

//dl.acm.org/citation.cfm?id=2486788.2486805 (visited on 07/08/2018).

77

[53] Pietro Braione et al. “Software testing with code-based test generators: data and

lessons learned from a case study with an industrial software component”. en.

In: Software Quality Journal 22.2 (June 2014), pp. 311–333. issn: 0963-9314,

1573-1367. doi: 10.1007/s11219-013-9207-1. url: http://link.springer.

com/article/10.1007/s11219-013-9207-1 (visited on 07/08/2018).

[54] L. C. Briand. “A Critical Analysis of Empirical Research in Software Testing”.

In: First International Symposium on Empirical Software Engineering and Mea-

surement (ESEM 2007). Sept. 2007, pp. 1–8. doi: 10.1109/ESEM.2007.40.

[55] Lionel Briand, Y. Labiche, and Q. Lin. “Improving the coverage criteria of UML

state machines using data flow analysis”. en. In: Software Testing, Verification

and Reliability 20.3 (2009), pp. 177–207. issn: 1099-1689. doi: 10.1002/stvr.

410. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.410

(visited on 07/07/2018).

[56] Lionel C. Briand. “A Critical Analysis of Empirical Research in Software Test-

ing”. In: International Symposium on Empirical Software Engineering and Mea-

surement (2007).

[57] Penelope A. Brooks and Atif M. Memon. “Automated Gui Testing Guided by

Usage Profiles”. In: Proceedings of the Twenty-second IEEE/ACM International

Conference on Automated Software Engineering. ASE ’07. New York, NY, USA:

ACM, 2007, pp. 333–342. isbn: 978-1-59593-882-4. doi: 10 .1145 /1321631 .

1321681. url: http://doi.acm.org/10.1145/1321631.1321681 (visited on

07/08/2018).

[58] Rene C. Bryce and Charles J. Colbourn. “A density-based greedy algorithm

for higher strength covering arrays”. en. In: Software Testing, Verification and

Reliability 19.1 (2008), pp. 37–53. issn: 1099-1689. doi: 10.1002/stvr.393.

78

url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.393 (visited

on 07/07/2018).

[59] M. Bures and B. S. Ahmed. “On the E↵ectiveness of Combinatorial Interaction

Testing: A Case Study”. In: 2017 IEEE International Conference on Software

Quality, Reliability and Security Companion (QRS-C). July 2017, pp. 69–76.

doi: 10.1109/QRS-C.2017.20.

[60] Marcel Bhme and Soumya Paul. “On the E�ciency of Automated Testing”. In:

Proceedings of the 22Nd ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering. FSE 2014. New York, NY, USA: ACM, 2014,

pp. 632–642. isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.2635923. url:

http://doi.acm.org/10.1145/2635868.2635923 (visited on 07/08/2018).

[61] Andrea Calvagna, Andrea Fornaia, and Emiliano Tramontana. “Random Versus

Combinatorial E↵ectiveness in Software Conformance Testing: A Case Study”.

In: Proceedings of the 30th Annual ACM Symposium on Applied Computing.

SAC ’15. New York, NY, USA: ACM, 2015, pp. 1797–1802. isbn: 978-1-4503-

3196-8. doi: 10.1145/2695664.2695905. url: http://doi.acm.org/10.1145/

2695664.2695905 (visited on 07/08/2018).

[62] Andrea Calvagna and Angelo Gargantini. “T-wise combinatorial interaction test

suites construction based on coverage inheritance”. en. In: Software Testing, Ver-

ification and Reliability 22.7 (2011), pp. 507–526. issn: 1099-1689. doi: 10.1002/

stvr.466. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.

466 (visited on 07/06/2018).

[63] Jos Campos et al. “An Empirical Evaluation of Evolutionary Algorithms for Test

Suite Generation”. en. In: Search Based Software Engineering. Lecture Notes

in Computer Science. Springer, Cham, Sept. 2017, pp. 33–48. isbn: 978-3-319-

66298-5 978-3-319-66299-2. doi: 10.1007/978-3-319-66299-2_3. url: http:

79

//link.springer.com/chapter/10.1007/978-3-319-66299-2_3 (visited on

07/10/2018).

[64] Je↵rey C Carver. “Towards Reporting Guidelines for Experimental Replications:

A Proposal”. en. In: RESER (2010), p. 4.

[65] Richard H. Carver and Yu Lei. “Distributed reachability testing of concurrent

programs”. en. In: Concurrency and Computation: Practice and Experience 22.18

(2010), pp. 2445–2466. issn: 1532-0634. doi: 10.1002/cpe.1573. url: http:

/ / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / cpe . 1573 (visited on

07/06/2018).

[66] T. Carwalo and S. Jaswal. “Exploring hybrid approach for mutant reduction in

software testing”. In: 2015 International Conference on Communication, Infor-

mation Computing Technology (ICCICT). Jan. 2015, pp. 1–4. doi: 10.1109/

ICCICT.2015.7045699.

[67] Priyanka Chawla, Inderveer Chana, and Ajay Rana. “A novel strategy for auto-

matic test data generation using soft computing technique”. en. In: Frontiers of

Computer Science 9.3 (June 2015), pp. 346–363. issn: 2095-2228, 2095-2236. doi:

10.1007/s11704-014-3496-9. url: http://link.springer.com/article/

10.1007/s11704-014-3496-9 (visited on 07/08/2018).

[68] Ning Chen and Sunghun Kim. “Puzzle-based Automatic Testing: Bringing Hu-

mans into the Loop by Solving Puzzles”. In: Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering. ASE 2012. New

York, NY, USA: ACM, 2012, pp. 140–149. isbn: 978-1-4503-1204-2. doi: 10.

1145/2351676.2351697. url: http://doi.acm.org/10.1145/2351676.

2351697 (visited on 07/08/2018).

80

[69] T. Y. Chen, F. C. Kuo, and H. Liu. “Distribution Metric Driven Adaptive Ran-

dom Testing”. In: Seventh International Conference on Quality Software (QSIC

2007). Oct. 2007, pp. 274–279. doi: 10.1109/QSIC.2007.4385507.

[70] T. Y. Chen et al. “Code Coverage of Adaptive Random Testing”. In: IEEE

Transactions on Reliability 62.1 (Mar. 2013), pp. 226–237. issn: 0018-9529. doi:

10.1109/TR.2013.2240898.

[71] Tsong Yueh Chen and Robert Merkel. “An Upper Bound on Software Testing

E↵ectiveness”. In: ACM Trans. Softw. Eng. Methodol. 17.3 (June 2008), 16:1–

16:27. issn: 1049-331X. doi: 10.1145/1363102.1363107. url: http://doi.

acm.org/10.1145/1363102.1363107 (visited on 07/07/2018).

[72] E. H. Choi, T. Fujiwara, and O. Mizuno. “Weighting for Combinatorial Testing

by Bayesian Inference”. In: 2017 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW). Mar. 2017, pp. 389–

391. doi: 10.1109/ICSTW.2017.73.

[73] R. Chopra and S. Madan. “Reusing black box test paths for white box testing

of websites”. In: 2013 3rd IEEE International Advance Computing Conference

(IACC). Feb. 2013, pp. 1345–1350. doi: 10.1109/IAdCC.2013.6514424.

[74] C. Chow, T. Y. Chen, and T. H. Tse. “The ART of Divide and Conquer: An

Innovative Approach to Improving the E�ciency of Adaptive Random Testing”.

In: 2013 13th International Conference on Quality Software. July 2013, pp. 268–

275. doi: 10.1109/QSIC.2013.19.

[75] Kuan-Chun Chuang, Chi-Sheng Shih, and Shih-Hao Hung. “User Behavior Aug-

mented Software Testing for User-centered GUI”. In: Proceedings of the 2011

ACM Symposium on Research in Applied Computation. RACS ’11. New York,

NY, USA: ACM, 2011, pp. 200–208. isbn: 978-1-4503-1087-1. doi: 10.1145/

81

2103380.2103421. url: http://doi.acm.org/10.1145/2103380.2103421

(visited on 07/08/2018).

[76] Cristina Cifuentes et al. “BegBunch: Benchmarking for C Bug Detection Tools”.

In: Proceedings of the 2Nd International Workshop on Defects in Large Software

Systems: Held in Conjunction with the ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA 2009). DEFECTS ’09. New York, NY,

USA: ACM, 2009, pp. 16–20. isbn: 978-1-60558-654-0. doi: 10.1145/1555860.

1555866. url: http://doi.acm.org/10.1145/1555860.1555866 (visited on

07/07/2018).

[77] I. Ciupa et al. “On the number and nature of faults found by random testing”.

en. In: Software Testing, Verification and Reliability 21.1 (2009), pp. 3–28. issn:

1099-1689. doi: 10.1002/stvr.415. url: http://onlinelibrary.wiley.com/

doi/abs/10.1002/stvr.415 (visited on 07/06/2018).

[78] Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi. “GAM-

BIT: E↵ective Unit Testing for Concurrency Libraries”. In: Proceedings of the

15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming. PPoPP ’10. New York, NY, USA: ACM, 2010, pp. 15–24. isbn: 978-

1-60558-877-3. doi: 10.1145/1693453.1693458. url: http://doi.acm.org/

10.1145/1693453.1693458 (visited on 07/07/2018).

[79] L. Cordeiro and B. Fischer. “Verifying multi-threaded software using smt-based

context-bounded model checking”. In: 2011 33rd International Conference on

Software Engineering (ICSE). May 2011, pp. 331–340. doi: 10.1145/1985793.

1985839.

[80] Lajos Cseppent and Zoltn Micskei. “Evaluating code-based test input generator

tools”. en. In: Software Testing, Verification and Reliability 27.6 (2017), e1627.

82

issn: 1099-1689. doi: 10.1002/stvr.1627. url: http://onlinelibrary.

wiley.com/doi/abs/10.1002/stvr.1627 (visited on 07/05/2018).

[81] J. Czerwonka. “On Use of Coverage Metrics in Assessing E↵ectiveness of Com-

binatorial Test Designs”. In: 2013 IEEE Sixth International Conference on Soft-

ware Testing, Verification and Validation Workshops. Mar. 2013, pp. 257–266.

doi: 10.1109/ICSTW.2013.76.

[82] Marian Daun et al. “The Impact of Students’ Skills and Experiences on Empir-

ical Results: A Controlled Experiment with Undergraduate and Graduate Stu-

dents”. In: Proceedings of the 19th International Conference on Evaluation and

Assessment in Software Engineering. EASE ’15. New York, NY, USA: ACM,

2015, 29:1–29:6. isbn: 978-1-4503-3350-4. doi: 10.1145/2745802.2745829. url:

http://doi.acm.org/10.1145/2745802.2745829 (visited on 07/07/2018).

[83] Pedro Delgado-Prez, Inmaculada Medina-Bulo, and Mercedes G. Merayo. “Using

Evolutionary Computation to Improve Mutation Testing”. en. In: Advances in

Computational Intelligence. Lecture Notes in Computer Science. Springer, Cham,

June 2017, pp. 381–391. isbn: 978-3-319-59146-9 978-3-319-59147-6. doi: 10.

1007/978-3-319-59147-6_33. url: http://link.springer.com/chapter/

10.1007/978-3-319-59147-6_33 (visited on 07/10/2018).

[84] Mingjie Deng, Rong Chen, and Zhenjun Du. “Automatic test data generation

model by combining dataflow analysis with genetic algorithm”. In: 2009 Joint

Conferences on Pervasive Computing (JCPC). Dec. 2009, pp. 429–434. doi: 10.

1109/JCPC.2009.5420148.

[85] Xavier Devroey, Gilles Perrouin, and Pierre-Yves Schobbens. “Abstract Test

Case Generation for Behavioural Testing of Software Product Lines”. In: Pro-

ceedings of the 18th International Software Product Line Conference: Companion

Volume for Workshops, Demonstrations and Tools - Volume 2. SPLC ’14. New

83

York, NY, USA: ACM, 2014, pp. 86–93. isbn: 978-1-4503-2739-8. doi: 10.1145/

2647908.2655971. url: http://doi.acm.org/10.1145/2647908.2655971

(visited on 07/08/2018).

[86] Xavier Devroey et al. “A Variability Perspective of Mutation Analysis”. In: Pro-

ceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering. FSE 2014. New York, NY, USA: ACM, 2014, pp. 841–

844. isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.2666610. url: http:

//doi.acm.org/10.1145/2635868.2666610 (visited on 07/08/2018).

[87] Xavier Devroey et al. “Featured Model-based Mutation Analysis”. In: Proceed-

ings of the 38th International Conference on Software Engineering. ICSE ’16.

New York, NY, USA: ACM, 2016, pp. 655–666. isbn: 978-1-4503-3900-1. doi:

10.1145/2884781.2884821. url: http://doi.acm.org/10.1145/2884781.

2884821 (visited on 07/08/2018).

[88] Kyle Dewey et al. “Evaluating Test Suite E↵ectiveness and Assessing Student

Code via Constraint Logic Programming”. In: Proceedings of the 2017 ACM Con-

ference on Innovation and Technology in Computer Science Education. ITiCSE

’17. New York, NY, USA: ACM, 2017, pp. 317–322. isbn: 978-1-4503-4704-4. doi:

10.1145/3059009.3059051. url: http://doi.acm.org/10.1145/3059009.

3059051 (visited on 07/07/2018).

[89] Rahul Dixit, Christof Lutteroth, and Gerald Weber. “FormTester: E↵ective In-

tegration of Model-based and Manually Specified Test Cases”. In: Proceedings

of the 37th International Conference on Software Engineering - Volume 2. ICSE

’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 745–748. url: http://dl.

acm.org/citation.cfm?id=2819009.2819154 (visited on 07/08/2018).

[90] TheAnh Do, A. C. M. Fong, and R. Pears. “Scalable automated test genera-

tion using coverage guidance and random search”. In: 2012 7th International

84

Workshop on Automation of Software Test (AST). June 2012, pp. 71–75. doi:

10.1109/IWAST.2012.6228993.

[91] Thi Bich Ngoc Do et al. “Constructing Test Cases for N-wise Testing from Tree-

based Test Models”. In: Proceedings of the Fourth Symposium on Information

and Communication Technology. SoICT ’13. New York, NY, USA: ACM, 2013,

pp. 275–284. isbn: 978-1-4503-2454-0. doi: 10.1145/2542050.2542074. url:

http://doi.acm.org/10.1145/2542050.2542074 (visited on 07/07/2018).

[92] Alos Dreyfus et al. “A random testing approach using pushdown automata”. en.

In: Software Testing, Verification and Reliability 24.8 (2014), pp. 656–683. issn:

1099-1689. doi: 10.1002/stvr.1526. url: http://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.1526 (visited on 07/06/2018).

[93] Michael Ellims, Darrel Ince, and Marian Petre. “The E↵ectiveness of T-Way Test

Data Generation”. en. In: Computer Safety, Reliability, and Security. Lecture

Notes in Computer Science. Springer, Berlin, Heidelberg, Sept. 2008, pp. 16–29.

isbn: 978-3-540-87697-7 978-3-540-87698-4. doi: 10.1007/978-3-540-87698-

4_5. url: http://link.springer.com/chapter/10.1007/978-3-540-87698-

4_5 (visited on 07/09/2018).

[94] Andre Takeshi Endo and Adenilso Simao. “Event tree algorithms to generate test

sequences for composite Web services”. en. In: Software Testing, Verification and

Reliability 0.0 (2017), e1637. issn: 1099-1689. doi: 10.1002/stvr.1637. url:

http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1637 (visited on

07/07/2018).

[95] Christian Engel and Reiner Hhnle. “Generating Unit Tests from Formal Proofs”.

en. In: Tests and Proofs. Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, Feb. 2007, pp. 169–188. isbn: 978-3-540-73769-8 978-3-540-73770-4.

85

doi: 10.1007/978-3-540-73770-4_10. url: http://link.springer.com/

chapter/10.1007/978-3-540-73770-4_10 (visited on 07/09/2018).

[96] Emelie Engström, Per Runeson, and Mats Skoglund. “A Systematic Review on

Regression Test Selection Techniques”. In: Inf. Softw. Technol. 52.1 (Jan. 2010),

pp. 14–30. issn: 0950-5849. doi: 10.1016/j.infsof.2009.07.001. url: http:

//dx.doi.org.du.idm.oclc.org/10.1016/j.infsof.2009.07.001.

[97] Emelie Engström, Mats Skoglund, and Per Runeson. “Empirical Evaluations of

Regression Test Selection Techniques: A Systematic Review”. In: Proceedings

of the Second ACM-IEEE International Symposium on Empirical Software En-

gineering and Measurement. ESEM ’08. Kaiserslautern, Germany: ACM, 2008,

pp. 22–31. isbn: 978-1-59593-971-5. doi: 10.1145/1414004.1414011. url: http:

//doi.acm.org.du.idm.oclc.org/10.1145/1414004.1414011.

[98] E. P. Enoiu et al. “A Controlled Experiment in Testing of Safety-Critical Em-

bedded Software”. In: 2016 IEEE International Conference on Software Testing,

Verification and Validation (ICST). Apr. 2016, pp. 1–11. doi: 10.1109/ICST.

2016.15.

[99] Eduard P. Enoiu et al. “Automated test generation using model checking: an

industrial evaluation”. en. In: International Journal on Software Tools for Tech-

nology Transfer 18.3 (June 2016), pp. 335–353. issn: 1433-2779, 1433-2787. doi:

10.1007/s10009-014-0355-9. url: http://link.springer.com/article/

10.1007/s10009-014-0355-9 (visited on 07/09/2018).

[100] Eduard P. Enoiu et al. “Mutation-Based Test Generation for PLC Embedded

Software Using Model Checking”. en. In: Testing Software and Systems. Lecture

Notes in Computer Science. Springer, Cham, Oct. 2016, pp. 155–171. isbn: 978-

3-319-47442-7 978-3-319-47443-4. doi: 10.1007/978-3-319-47443-4_10. url:

86

http://link.springer.com/chapter/10.1007/978-3-319-47443-4_10

(visited on 07/10/2018).

[101] Sheikh Umar Farooq, S. M. K. Quadri, and Nesar Ahmad. “A replicated empiri-

cal study to evaluate software testing methods”. en. In: Journal of Software: Evo-

lution and Process 29.9 (2017), e1883. issn: 2047-7481. doi: 10.1002/smr.1883.

url: http://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1883 (visited

on 07/05/2018).

[102] Sheikh Umar Farooq and SMK Quadri. “Empirical Evaluation of Software Test-

ing Techniques in an Open Source Fashion”. In: Proceedings of the 2Nd Interna-

tional Workshop on Conducting Empirical Studies in Industry. CESI 2014. New

York, NY, USA: ACM, 2014, pp. 21–24. isbn: 978-1-4503-2843-2. doi: 10.1145/

2593690.2593693. url: http://doi.acm.org/10.1145/2593690.2593693

(visited on 07/07/2018).

[103] Azadeh Farzan et al. “Con2Colic Testing”. In: Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering. ESEC/FSE 2013. New York,

NY, USA: ACM, 2013, pp. 37–47. isbn: 978-1-4503-2237-9. doi: 10 . 1145 /

2491411.2491453. url: http://doi.acm.org/10.1145/2491411.2491453

(visited on 07/08/2018).

[104] Kassem Fawaz et al. “PBCOV: a property-based coverage criterion”. en. In:

Software Quality Journal 23.1 (Mar. 2015), pp. 171–202. issn: 0963-9314, 1573-

1367. doi: 10.1007/s11219-014-9237-3. url: http://link.springer.com/

article/10.1007/s11219-014-9237-3 (visited on 07/09/2018).

[105] R. Feldt and S. Poulding. “Broadening the Search in Search-Based Software

Testing: It Need Not Be Evolutionary”. In: 2015 IEEE/ACM 8th International

Workshop on Search-Based Software Testing. May 2015, pp. 1–7. doi: 10.1109/

SBST.2015.8.

87

[106] Javier Ferrer, Francisco Chicano, and Enrique Alba. “Evolutionary algorithms for

the multi-objective test data generation problem”. en. In: Software: Practice and

Experience 42.11 (2011), pp. 1331–1362. issn: 1097-024X. doi: 10.1002/spe.

1135. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1135

(visited on 07/07/2018).

[107] Lars Frantzen et al. “On-The-Fly Model-Based Testing of Web Services with

Jambition”. en. In: Web Services and Formal Methods. Lecture Notes in Com-

puter Science. Springer, Berlin, Heidelberg, Sept. 2008, pp. 143–157. isbn: 978-

3-642-01363-8 978-3-642-01364-5. doi: 10.1007/978-3-642-01364-5_9. url:

http://link.springer.com/chapter/10.1007/978- 3- 642- 01364- 5_9

(visited on 07/10/2018).

[108] G. Fraser and A. Arcuri. “The Seed is Strong: Seeding Strategies in Search-Based

Software Testing”. In: Verification and Validation 2012 IEEE Fifth International

Conference on Software Testing. Apr. 2012, pp. 121–130. doi: 10.1109/ICST.

2012.92.

[109] G. Fraser and A. Zeller. “Mutation-Driven Generation of Unit Tests and Ora-

cles”. In: IEEE Transactions on Software Engineering 38.2 (Mar. 2012), pp. 278–

292. issn: 0098-5589. doi: 10.1109/TSE.2011.93.

[110] Gordon Fraser and Andrea Arcuri. “A Large-Scale Evaluation of Automated

Unit Test Generation Using EvoSuite”. In: ACM Trans. Softw. Eng. Methodol.

24.2 (Dec. 2014), 8:1–8:42. issn: 1049-331X. doi: 10.1145/2685612. url: http:

//doi.acm.org/10.1145/2685612 (visited on 10/10/2018).

[111] Gordon Fraser and Andrea Arcuri. “Achieving scalable mutation-based gener-

ation of whole test suites”. en. In: Empirical Software Engineering 20.3 (June

2015), pp. 783–812. issn: 1382-3256, 1573-7616. doi: 10.1007/s10664-013-

88

9299-z. url: http://link.springer.com/article/10.1007/s10664-013-

9299-z (visited on 07/09/2018).

[112] Gordon Fraser and Andrea Arcuri. “Sound Empirical Evidence in Software Test-

ing”. In: Proceedings of the 34th International Conference on Software Engineer-

ing. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 178–188. isbn: 978-

1-4673-1067-3. url: http://dl.acm.org/citation.cfm?id=2337223.2337245

(visited on 07/08/2018).

[113] Gordon Fraser, Andrea Arcuri, and Phil McMinn. “Test Suite Generation with

Memetic Algorithms”. In: Proceedings of the 15th Annual Conference on Genetic

and Evolutionary Computation. GECCO ’13. New York, NY, USA: ACM, 2013,

pp. 1437–1444. isbn: 978-1-4503-1963-8. doi: 10.1145/2463372.2463548. url:

http://doi.acm.org/10.1145/2463372.2463548 (visited on 07/08/2018).

[114] Gordon Fraser and Neil Walkinshaw. “Assessing and generating test sets in terms

of behavioural adequacy”. en. In: Software Testing, Verification and Reliability

25.8 (2015), pp. 749–780. issn: 1099-1689. doi: 10.1002/stvr.1575. url: http:

//onlinelibrary.wiley. com /doi/abs/10.1002/stvr. 1575 (visited on

07/05/2018).

[115] Gordon Fraser and Andreas Zeller. “Generating Parameterized Unit Tests”. In:

Proceedings of the 2011 International Symposium on Software Testing and Anal-

ysis. ISSTA ’11. New York, NY, USA: ACM, 2011, pp. 364–374. isbn: 978-1-

4503-0562-4. doi: 10.1145/2001420.2001464. url: http://doi.acm.org/10.

1145/2001420.2001464 (visited on 07/12/2018).

[116] Gordon Fraser et al. “Does Automated White-box Test Generation Really Help

Software Testers?” In: Proceedings of the 2013 International Symposium on Soft-

ware Testing and Analysis. ISSTA 2013. New York, NY, USA: ACM, 2013,

89

pp. 291–301. isbn: 978-1-4503-2159-4. doi: 10.1145/2483760.2483774. url:

http://doi.acm.org/10.1145/2483760.2483774 (visited on 07/07/2018).

[117] Stefan J. Galler and Bernhard K. Aichernig. “Survey on test data generation

tools”. en. In: International Journal on Software Tools for Technology Trans-

fer 16.6 (Nov. 2014), pp. 727–751. issn: 1433-2779, 1433-2787. doi: 10.1007/

s10009-013-0272-3. url: http://link.springer.com/article/10.1007/

s10009-013-0272-3 (visited on 07/08/2018).

[118] Ruizhi Gao et al. “An Empirical Study of Requirements-based Test Generation

on an Automobile Control System”. In: Proceedings of the 29th Annual ACM

Symposium on Applied Computing. SAC ’14. New York, NY, USA: ACM, 2014,

pp. 1094–1099. isbn: 978-1-4503-2469-4. doi: 10.1145/2554850.2554934. url:

http://doi.acm.org/10.1145/2554850.2554934 (visited on 07/08/2018).

[119] Angelo Gargantini. “Using Model Checking to Generate Fault Detecting Tests”.

en. In: Tests and Proofs. Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, Feb. 2007, pp. 189–206. isbn: 978-3-540-73769-8 978-3-540-73770-4.

doi: 10.1007/978-3-540-73770-4_11. url: http://link.springer.com/

chapter/10.1007/978-3-540-73770-4_11 (visited on 07/09/2018).

[120] Angelo Gargantini and Paolo Vavassori. “E�cient Combinatorial Test Gener-

ation Based on Multivalued Decision Diagrams”. en. In: Hardware and Soft-

ware: Verification and Testing. Lecture Notes in Computer Science. Springer,

Cham, Nov. 2014, pp. 220–235. isbn: 978-3-319-13337-9 978-3-319-13338-6. doi:

10. 1007/978 - 3- 319 - 13338- 6_ 17. url: http: //link .springer. com/

chapter/10.1007/978-3-319-13338-6_17 (visited on 07/09/2018).

[121] G. Gay. “The Fitness Function for the Job: Search-Based Generation of Test

Suites That Detect Real Faults”. In: 2017 IEEE International Conference on

90

Software Testing, Verification and Validation (ICST). Mar. 2017, pp. 345–355.

doi: 10.1109/ICST.2017.38.

[122] G. Gay et al. “The Risks of Coverage-Directed Test Case Generation”. In: IEEE

Transactions on Software Engineering 41.8 (Aug. 2015), pp. 803–819. issn: 0098-

5589. doi: 10.1109/TSE.2015.2421011.

[123] L. S. Ghandehari et al. “An Empirical Comparison of Combinatorial and Random

Testing”. In: 2014 IEEE Seventh International Conference on Software Testing,

Verification and Validation Workshops. Mar. 2014, pp. 68–77. doi: 10.1109/

ICSTW.2014.8.

[124] Indradeep Ghosh et al. “JST: An Automatic Test Generation Tool for Indus-

trial Java Applications with Strings”. In: Proceedings of the 2013 International

Conference on Software Engineering. ICSE ’13. Piscataway, NJ, USA: IEEE

Press, 2013, pp. 992–1001. isbn: 978-1-4673-3076-3. url: http://dl.acm.org/

citation.cfm?id=2486788.2486925 (visited on 07/08/2018).

[125] Aggelos Giantsios, Nikolaos Papaspyrou, and Konstantinos Sagonas. “Concolic

Testing for Functional Languages”. In: Proceedings of the 17th International

Symposium on Principles and Practice of Declarative Programming. PPDP ’15.

New York, NY, USA: ACM, 2015, pp. 137–148. isbn: 978-1-4503-3516-4. doi:

10.1145/2790449.2790519. url: http://doi.acm.org/10.1145/2790449.

2790519 (visited on 07/08/2018).

[126] Milos Gligoric et al. “Comparing Non-adequate Test Suites Using Coverage Cri-

teria”. In: Proceedings of the 2013 International Symposium on Software Testing

and Analysis. ISSTA 2013. New York, NY, USA: ACM, 2013, pp. 302–313. isbn:

978-1-4503-2159-4. doi: 10.1145/2483760.2483769. url: http://doi.acm.

org/10.1145/2483760.2483769 (visited on 07/08/2018).

91

[127] Milos Gligoric et al. “E�cient mutation testing of multithreaded code”. en. In:

Software Testing, Verification and Reliability 23.5 (2012), pp. 375–403. issn:

1099-1689. doi: 10.1002/stvr.1469. url: http://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.1469 (visited on 07/06/2018).

[128] Milos Gligoric et al. “Selective Mutation Testing for Concurrent Code”. In: Pro-

ceedings of the 2013 International Symposium on Software Testing and Analysis.

ISSTA 2013. New York, NY, USA: ACM, 2013, pp. 224–234. isbn: 978-1-4503-

2159-4. doi: 10.1145/2483760.2483773. url: http://doi.acm.org/10.1145/

2483760.2483773 (visited on 07/07/2018).

[129] Kyungmin Go et al. “Pairwise testing for systems with data derived from real-

valued variable inputs”. en. In: Software: Practice and Experience 46.3 (2014),

pp. 381–403. issn: 1097-024X. doi: 10.1002/spe.2295. (Visited on 07/05/2018).

[130] S. Godboley, A. Dutta, and D. P. Mohapatra. “Java-HCT: An approach to in-

crease MC/DC using hybrid concolic testing for Java programs”. In: 2016 Fed-

erated Conference on Computer Science and Information Systems (FedCSIS).

Sept. 2016, pp. 1709–1713.

[131] S. Godboley et al. “Green-JEXJ: A new tool to measure energy consumption of

improved concolic testing”. In: 2015 International Conference on Green Com-

puting and Internet of Things (ICGCIoT). Oct. 2015, pp. 36–41. doi: 10.1109/

ICGCIoT.2015.7380424.

[132] Sangharatna Godboley et al. “An improved distributed concolic testing approach”.

en. In: Software: Practice and Experience 47.2 (2016), pp. 311–342. issn: 1097-

024X. doi: 10.1002/spe.2405. url: http://onlinelibrary.wiley.com/doi/

abs/10.1002/spe.2405 (visited on 07/07/2018).

[133] Sangharatna Godboley et al. “Making a concolic tester achieve increased MC/DC”.

en. In: Innovations in Systems and Software Engineering 12.4 (Dec. 2016), pp. 319–

92

332. issn: 1614-5046, 1614-5054. doi: 10.1007/s11334- 016- 0284- 8. url:

http://link.springer.com/article/10.1007/s11334-016-0284-8 (visited

on 07/09/2018).

[134] Patrice Godefroid. “Higher-order Test Generation”. In: Proceedings of the 32Nd

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 258–269. isbn: 978-1-

4503-0663-8. doi: 10.1145/1993498.1993529. url: http://doi.acm.org/10.

1145/1993498.1993529 (visited on 07/08/2018).

[135] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. “Grammar-basedWhite-

box Fuzzing”. In: Proceedings of the 29th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation. PLDI ’08. New York, NY, USA:

ACM, 2008, pp. 206–215. isbn: 978-1-59593-860-2. doi: 10 .1145 /1375581 .

1375607. url: http://doi.acm.org/10.1145/1375581.1375607 (visited on

07/07/2018).

[136] Dunwei Gong and Yan Zhang. “Generating test data for both path coverage and

fault detection using genetic algorithms”. en. In: Frontiers of Computer Science

7.6 (Dec. 2013), pp. 822–837. issn: 2095-2228, 2095-2236. doi: 10.1007/s11704-

013-3024-3. url: http://link.springer.com/article/10.1007/s11704-

013-3024-3 (visited on 07/09/2018).

[137] Jorge E. González, Natalia Juristo, and Sira Vegas. “A Systematic Mapping

Study on Testing Technique Experiments: Has the Situation Changed Since

2000?” In: Proceedings of the 8th ACM/IEEE International Symposium on Em-

pirical Software Engineering and Measurement. ESEM ’14. Torino, Italy: ACM,

2014, 3:1–3:4. isbn: 978-1-4503-2774-9. doi: 10.1145/2652524.2652569. url:

http://doi.acm.org.du.idm.oclc.org/10.1145/2652524.2652569.

93

[138] R. Gopinath et al. “Measuring E↵ectiveness of Mutant Sets”. In: 2016 IEEE

Ninth International Conference on Software Testing, Verification and Validation

Workshops (ICSTW). Apr. 2016, pp. 132–141. doi: 10.1109/ICSTW.2016.45.

[139] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Topsy-Turvy: A Smarter and

Faster Parallelization of Mutation Analysis”. In: Proceedings of the 38th Inter-

national Conference on Software Engineering Companion. ICSE ’16. New York,

NY, USA: ACM, 2016, pp. 740–743. isbn: 978-1-4503-4205-6. doi: 10.1145/

2884781.2892655. url: http://doi.acm.org/10.1145/2884781.2892655

(visited on 07/07/2018).

[140] M. F. Granda et al. “E↵ectiveness Assessment of an Early Testing Technique Us-

ing Model-Level Mutants”. In: Proceedings of the 21st International Conference

on Evaluation and Assessment in Software Engineering. EASE’17. New York,

NY, USA: ACM, 2017, pp. 98–107. isbn: 978-1-4503-4804-1. doi: 10.1145/

3084226.3084257. url: http://doi.acm.org/10.1145/3084226.3084257

(visited on 07/07/2018).

[141] Shengjian Guo et al. “Assertion Guided Symbolic Execution of Multithreaded

Programs”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 854–

865. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.2786841. url: http:

//doi.acm.org/10.1145/2786805.2786841 (visited on 07/08/2018).

[142] T. Guo et al. “GramFuzz: Fuzzing testing of web browsers based on grammar

analysis and structural mutation”. In: 2013 Second International Conference on

Informatics Applications (ICIA). Sept. 2013, pp. 212–215. doi: 10.1109/ICoIA.

2013.6650258.

[143] Yuepu Guo and Sreedevi Sampath. “Web Application Fault Classification - an

Exploratory Study”. In: Proceedings of the Second ACM-IEEE International

94

Symposium on Empirical Software Engineering and Measurement. ESEM ’08.

New York, NY, USA: ACM, 2008, pp. 303–305. isbn: 978-1-59593-971-5. doi:

10.1145/1414004.1414060. url: http://doi.acm.org/10.1145/1414004.

1414060 (visited on 07/07/2018).

[144] Atul Gupta and Pankaj Jalote. “An approach for experimentally evaluating ef-

fectiveness and e�ciency of coverage criteria for software testing”. en. In: Inter-

national Journal on Software Tools for Technology Transfer 10.2 (Mar. 2008),

pp. 145–160. issn: 1433-2779, 1433-2787. doi: 10.1007/s10009-007-0059-5.

url: http://link.springer.com/article/10.1007/s10009-007-0059-5

(visited on 07/08/2018).

[145] William G. J. Halfond and Alessandro Orso. “Improving Test Case Generation

for Web Applications Using Automated Interface Discovery”. In: Proceedings of

the the 6th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on The Foundations of Software Engineering.

ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 145–154. isbn: 978-1-

59593-811-4. doi: 10.1145/1287624.1287646. url: http://doi.acm.org/10.

1145/1287624.1287646 (visited on 07/07/2018).

[146] S. Hamimoune and B. Falah. “Mutation testing techniques: A comparative study”.

In: 2016 International Conference on Engineering MIS (ICEMIS). Sept. 2016,

pp. 1–9. doi: 10.1109/ICEMIS.2016.7745368.

[147] L. T. M. Hanh and N. T. Binh. “Mutation Operators for Simulink Models”. In:

2012 Fourth International Conference on Knowledge and Systems Engineering.

Aug. 2012, pp. 54–59. doi: 10.1109/KSE.2012.22.

[148] Dan Hao et al. “Test-Data Generation Guided by Static Defect Detection”. en.

In: Journal of Computer Science and Technology 24.2 (Mar. 2009), pp. 284–293.

issn: 1000-9000, 1860-4749. doi: 10.1007/s11390-009-9224-5. url: http:

95

//link.springer.com/article/10.1007/s11390-009-9224-5 (visited on

07/08/2018).

[149] Mark Harman and Phil McMinn. “A Theoretical & Empirical Analysis of Evo-

lutionary Testing and Hill Climbing for Structural Test Data Generation”. In:

Proceedings of the 2007 International Symposium on Software Testing and Anal-

ysis. ISSTA ’07. New York, NY, USA: ACM, 2007, pp. 73–83. isbn: 978-1-59593-

734-6. doi: 10.1145/1273463.1273475. url: http://doi.acm.org/10.1145/

1273463.1273475 (visited on 07/08/2018).

[150] Siamak Haschemi and Stephan Weileder. “A Generic Approach to Run Mutation

Analysis”. en. In: Testing Practice and Research Techniques. Lecture Notes in

Computer Science. Springer, Berlin, Heidelberg, Sept. 2010, pp. 155–164. isbn:

978-3-642-15584-0 978-3-642-15585-7. doi: 10.1007/978-3-642-15585-7_15.

url: http://link.springer.com/chapter/10.1007/978-3-642-15585-7_15

(visited on 07/10/2018).

[151] M. U. Hayat and N. Qadeer. “Intra Component GUI Test Case Generation Tech-

nique”. In: 2007 International Conference on Information and Emerging Tech-

nologies. July 2007, pp. 1–5. doi: 10.1109/ICIET.2007.4381328.

[152] Jane Hu↵man Hayes, Inies R. Chemannoor, and E. Ashlee Holbrook. “Improved

code defect detection with fault links”. en. In: Software Testing, Verification and

Reliability 21.4 (2010), pp. 299–325. issn: 1099-1689. doi: 10.1002/stvr.426.

url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.426 (visited

on 07/07/2018).

[153] H. Hu et al. “A Parallel Implementation Strategy of Adaptive Testing”. In: 2010

IEEE 34th Annual Computer Software and Applications Conference Workshops.

July 2010, pp. 214–219. doi: 10.1109/COMPSACW.2010.44.

96

[154] Yan Hu and He Jiang. “E↵ective Test Case Generation via Concolic Execution”.

en. In: Proceedings of the 2012 International Conference on Information Technol-

ogy and Software Engineering. Lecture Notes in Electrical Engineering. Springer,

Berlin, Heidelberg, 2013, pp. 157–164. isbn: 978-3-642-34530-2 978-3-642-34531-

9. doi: 10.1007/978-3-642-34531-9_17. url: http://link.springer.com/

chapter/10.1007/978-3-642-34531-9_17 (visited on 07/09/2018).

[155] Jiatong Huo et al. “Genetic Programming for Multi-objective Test Data Gener-

ation in Search Based Software Testing”. en. In: AI 2017: Advances in Artificial

Intelligence. Lecture Notes in Computer Science. Springer, Cham, Aug. 2017,

pp. 169–181. isbn: 978-3-319-63003-8 978-3-319-63004-5. doi: 10.1007/978-3-

319-63004-5_14. url: http://link.springer.com/chapter/10.1007/978-

3-319-63004-5_14 (visited on 07/09/2018).

[156] Felix Hbner, Wen-ling Huang, and Jan Peleska. “Experimental evaluation of a

novel equivalence class partition testing strategy”. en. In: Software & Systems

Modeling (Mar. 2017), pp. 1–21. issn: 1619-1366, 1619-1374. doi: 10.1007/

s10270-017-0595-8. url: http://link.springer.com/article/10.1007/

s10270-017-0595-8 (visited on 07/09/2018).

[157] S. Iftikhar et al. “An automated model based testing approach for platform

games”. In: 2015 ACM/IEEE 18th International Conference on Model Driven

Engineering Languages and Systems (MODELS). Sept. 2015, pp. 426–435. doi:

10.1109/MODELS.2015.7338274.

[158] Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Briand. “Environment

modeling and simulation for automated testing of soft real-time embedded soft-

ware”. en. In: Software & Systems Modeling 14.1 (Feb. 2015), pp. 483–524.

issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-013-0328-6. url: http:

97

//link.springer.com/article/10.1007/s10270-013-0328-6 (visited on

07/08/2018).

[159] Mainul Islam and Christoph Csallner. “Generating Test Cases for Programs That

Are Coded Against Interfaces and Annotations”. In: ACM Trans. Softw. Eng.

Methodol. 23.3 (June 2014), 21:1–21:38. issn: 1049-331X. doi: 10.1145/2544135.

url: http://doi.acm.org/10.1145/2544135 (visited on 07/08/2018).

[160] Juha Itkonen and Mika V. Mntyl. “Are test cases needed? Replicated compari-

son between exploratory and test-case-based software testing”. en. In: Empirical

Software Engineering 19.2 (Apr. 2014), pp. 303–342. issn: 1382-3256, 1573-7616.

doi: 10.1007/s10664- 013- 9266- 8. url: http://link.springer.com/

article/10.1007/s10664-013-9266-8 (visited on 07/08/2018).

[161] Samireh Jalali and Claes Wohlin. “Systematic Literature Studies: Database Searches

vs. Backward Snowballing”. In: Proceedings of the ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement. ESEM ’12.

Lund, Sweden: ACM, 2012, pp. 29–38. isbn: 978-1-4503-1056-7. doi: 10.1145/

2372251.2372257. url: http://doi.acm.org.du.idm.oclc.org/10.1145/

2372251.2372257.

[162] Konrad Jamrozik et al. “Generating Test Suites with Augmented Dynamic Sym-

bolic Execution”. en. In: Tests and Proofs. Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, June 2013, pp. 152–167. isbn: 978-3-642-38915-

3 978-3-642-38916-0. doi: 10 . 1007 / 978 - 3 - 642 - 38916 - 0 _ 9. url: http :

//link.springer.com/chapter/10.1007/978-3-642-38916-0_9 (visited

on 07/09/2018).

[163] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. “Modeling and Test Case

Generation of Inter-component Communication in Android”. In: Proceedings of

the Second ACM International Conference on Mobile Software Engineering and

98

Systems. MOBILESoft ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 113–

116. isbn: 978-1-4799-1934-5. url: http://dl.acm.org/citation.cfm?id=

2825041.2825061 (visited on 07/08/2018).

[164] Y. Jia and M. Harman. “An Analysis and Survey of the Development of Muta-

tion Testing”. In: IEEE Transactions on Software Engineering 37.5 (Sept. 2011),

pp. 649–678. issn: 0098-5589. doi: 10.1109/TSE.2010.62.

[165] Ya-Hui Jia et al. “Generating Software Test Data by Particle Swarm Optimiza-

tion”. en. In: Simulated Evolution and Learning. Lecture Notes in Computer Sci-

ence. Springer, Cham, Dec. 2014, pp. 37–47. isbn: 978-3-319-13562-5 978-3-319-

13563-2. doi: 10.1007/978-3-319-13563-2_4. url: http://link.springer.

com/chapter/10.1007/978-3-319-13563-2_4 (visited on 07/09/2018).

[166] R. Jin, S. Jiang, and H. Zhang. “Generation of test data based on genetic al-

gorithms and program dependence analysis”. In: 2011 IEEE International Con-

ference on Cyber Technology in Automation, Control, and Intelligent Systems.

Mar. 2011, pp. 116–121. doi: 10.1109/CYBER.2011.6011775.

[167] N. Juristo et al. “Comparing the E↵ectiveness of Equivalence Partitioning, Branch

Testing and Code Reading by Stepwise Abstraction Applied by Subjects”. In:

Verification and Validation 2012 IEEE Fifth International Conference on Soft-

ware Testing. Apr. 2012, pp. 330–339. doi: 10.1109/ICST.2012.113.

[168] Natalia Juristo, Ana M. Morena, and Sira Vegas. “Reviewing 25 Years of Testing

Technique Experiments”. In: Empirical Software Engineering (2004).

[169] R. Just, G. M. Kapfhammer, and F. Schweiggert. “Do Redundant Mutants Af-

fect the E↵ectiveness and E�ciency of Mutation Analysis?” In: Verification and

Validation 2012 IEEE Fifth International Conference on Software Testing. Apr.

2012, pp. 720–725. doi: 10.1109/ICST.2012.162.

99

[170] Ren Just. “The Major Mutation Framework: E�cient and Scalable Mutation

Analysis for Java”. In: Proceedings of the 2014 International Symposium on

Software Testing and Analysis. ISSTA 2014. New York, NY, USA: ACM, 2014,

pp. 433–436. isbn: 978-1-4503-2645-2. doi: 10.1145/2610384.2628053. url:

http://doi.acm.org/10.1145/2610384.2628053 (visited on 07/07/2018).

[171] Ren Just, Michael D. Ernst, and Gordon Fraser. “E�cient Mutation Analysis by

Propagating and Partitioning Infected Execution States”. In: Proceedings of the

2014 International Symposium on Software Testing and Analysis. ISSTA 2014.

New York, NY, USA: ACM, 2014, pp. 315–326. isbn: 978-1-4503-2645-2. doi:

10.1145/2610384.2610388. url: http://doi.acm.org/10.1145/2610384.

2610388 (visited on 07/07/2018).

[172] Ren Just, Gregory M. Kapfhammer, and Franz Schweiggert. “Using Conditional

Mutation to Increase the E�ciency of Mutation Analysis”. In: Proceedings of

the 6th International Workshop on Automation of Software Test. AST ’11. New

York, NY, USA: ACM, 2011, pp. 50–56. isbn: 978-1-4503-0592-1. doi: 10.1145/

1982595.1982606. url: http://doi.acm.org/10.1145/1982595.1982606

(visited on 07/07/2018).

[173] R. Kannavara et al. “Challenges and opportunities with concolic testing”. In:

2015 National Aerospace and Electronics Conference (NAECON). June 2015,

pp. 374–378. doi: 10.1109/NAECON.2015.7443099.

[174] Teemu Kanstrn. “Towards a deeper understanding of test coverage”. en. In:

Journal of Software Maintenance and Evolution: Research and Practice 20.1

(2007), pp. 59–76. issn: 1532-0618. doi: 10.1002/smr.362. url: http://

onlinelibrary.wiley.com/doi/abs/10.1002/smr.362 (visited on 07/07/2018).

[175] S. K. Khalsa and Y. Labiche. “An Extension of Category Partition Testing for

Highly Constrained Systems”. In: 2016 IEEE 17th International Symposium on

100

High Assurance Systems Engineering (HASE). Jan. 2016, pp. 47–54. doi: 10.

1109/HASE.2016.45.

[176] Sunint Kaur Khalsa, Yvan Labiche, and Johanna Nicoletta. “The Power of Single

and Error Annotations in Category Partition Testing: An Experimental Evalua-

tion”. In: Proceedings of the 20th International Conference on Evaluation and As-

sessment in Software Engineering. EASE ’16. New York, NY, USA: ACM, 2016,

28:1–28:10. isbn: 978-1-4503-3691-8. doi: 10 . 1145 / 2915970 . 2915999. url:

http://doi.acm.org/10.1145/2915970.2915999 (visited on 07/07/2018).

[177] M. A. Khan and M. Sadiq. “Analysis of black box software testing techniques: A

case study”. In: The 2011 International Conference and Workshop on Current

Trends in Information Technology (CTIT 11). Oct. 2011, pp. 1–5. doi: 10.1109/

CTIT.2011.6107931.

[178] Y. Khan and J. Hassine. “Mutation Operators for the Atlas Transformation

Language”. In: 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation Workshops. Mar. 2013, pp. 43–52. doi: 10.1109/

ICSTW.2013.13.

[179] Sabira Khatun et al. “PS2Way: An E�cient Pairwise Search Approach for Test

Data Generation”. en. In: Software Engineering and Computer Systems. Com-

munications in Computer and Information Science. Springer, Berlin, Heidel-

berg, June 2011, pp. 99–108. isbn: 978-3-642-22202-3 978-3-642-22203-0. doi:

10.1007/978-3-642-22203-0_9. url: http://link.springer.com/chapter/

10.1007/978-3-642-22203-0_9 (visited on 07/09/2018).

[180] M. Kim, Y. Kim, and H. Kim. “A Comparative Study of Software Model Checkers

as Unit Testing Tools: An Industrial Case Study”. In: IEEE Transactions on

Software Engineering 37.2 (Mar. 2011), pp. 146–160. issn: 0098-5589. doi: 10.

1109/TSE.2010.68.

101

[181] Moonzoo Kim, Yunho Kim, and Yunja Choi. “Concolic testing of the multi-

sector read operation for flash storage platform software”. en. In: Formal Aspects

of Computing 24.3 (May 2012), pp. 355–374. issn: 0934-5043, 1433-299X. doi:

10.1007/s00165-011-0200-9. url: http://link.springer.com/article/

10.1007/s00165-011-0200-9 (visited on 07/08/2018).

[182] M. Kintis, M. Papadakis, and N. Malevris. “Evaluating Mutation Testing Alter-

natives: A Collateral Experiment”. In: 2010 Asia Pacific Software Engineering

Conference. Nov. 2010, pp. 300–309. doi: 10.1109/APSEC.2010.42.

[183] M. Kls et al. “A Large-Scale Technology Evaluation Study: E↵ects of Model-

based Analysis and Testing”. In: 2015 IEEE/ACM 37th IEEE International Con-

ference on Software Engineering. Vol. 2. May 2015, pp. 119–128. doi: 10.1109/

ICSE.2015.141.

[184] Ken Koster and David Kao. “State Coverage: A Structural Test Adequacy Cri-

terion for Behavior Checking”. In: The 6th Joint Meeting on European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering: Companion Papers. ESEC-FSE companion ’07.

New York, NY, USA: ACM, 2007, pp. 541–544. isbn: 978-1-59593-812-1. doi:

10.1145/1295014.1295036. url: http://doi.acm.org/10.1145/1295014.

1295036 (visited on 07/08/2018).

[185] Saparya Krishnamoorthy, Michael S. Hsiao, and Loganathan Lingappan. “Strate-

gies for scalable symbolic execution-driven test generation for programs”. en. In:

Science China Information Sciences 54.9 (Sept. 2011), p. 1797. issn: 1674-733X,

1869-1919. doi: 10.1007/s11432-011-4368-7. url: http://link.springer.

com/article/10.1007/s11432-011-4368-7 (visited on 07/09/2018).

102

[186] D. Kroening et al. “E↵ective verification of low-level software with nested in-

terrupts”. In: 2015 Design, Automation Test in Europe Conference Exhibition

(DATE). Mar. 2015, pp. 229–234. doi: 10.7873/DATE.2015.0360.

[187] Felix Kurth, Sibylle Schupp, and Stephan Weileder. “Generating Test Data from

a UML Activity Using the AMPL Interface for Constraint Solvers”. en. In: Tests

and Proofs. Lecture Notes in Computer Science. Springer, Cham, July 2014,

pp. 169–186. isbn: 978-3-319-09098-6 978-3-319-09099-3. doi: 10.1007/978-3-

319-09099-3_14. url: http://link.springer.com/chapter/10.1007/978-

3-319-09099-3_14 (visited on 07/09/2018).

[188] Kari Khknen, Olli Saarikivi, and Keijo Heljanko. “Unfolding based automated

testing of multithreaded programs”. en. In: Automated Software Engineering 22.4

(Dec. 2015), pp. 475–515. issn: 0928-8910, 1573-7535. doi: 10.1007/s10515-

014-0150-6. url: http://link.springer.com/article/10.1007/s10515-

014-0150-6 (visited on 07/09/2018).

[189] Kari Khknen, Olli Saarikivi, and Keijo Heljanko. “Using Unfoldings in Auto-

mated Testing of Multithreaded Programs”. In: Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering. ASE 2012. New

York, NY, USA: ACM, 2012, pp. 150–159. isbn: 978-1-4503-1204-2. doi: 10.

1145/2351676.2351698. url: http://doi.acm.org/10.1145/2351676.

2351698 (visited on 07/08/2018).

[190] Kari Khknen et al. “Experimental Comparison of Concolic and Random Test-

ing for Java Card Applets”. en. In: Model Checking Software. Lecture Notes in

Computer Science. Springer, Berlin, Heidelberg, Sept. 2010, pp. 22–39. isbn:

978-3-642-16163-6 978-3-642-16164-3. doi: 10.1007/978-3-642-16164-3_3.

url: http://link.springer.com/chapter/10.1007/978-3-642-16164-3_3

(visited on 07/10/2018).

103

[191] Zhifeng Lai, S. C. Cheung, andW. K. Chan. “Detecting Atomic-set Serializability

Violations in Multithreaded Programs Through Active Randomized Testing”.

In: Proceedings of the 32Nd ACM/IEEE International Conference on Software

Engineering - Volume 1. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 235–

244. isbn: 978-1-60558-719-6. doi: 10.1145/1806799.1806836. url: http:

//doi.acm.org/10.1145/1806799.1806836 (visited on 07/07/2018).

[192] Zhifeng Lai, S. C. Cheung, and W. K. Chan. “Inter-context Control-flow and

Data-flow Test Adequacy Criteria for nesC Applications”. In: Proceedings of the

16th ACM SIGSOFT International Symposium on Foundations of Software En-

gineering. SIGSOFT ’08/FSE-16. New York, NY, USA: ACM, 2008, pp. 94–

104. isbn: 978-1-59593-995-1. doi: 10.1145/1453101.1453115. url: http:

//doi.acm.org/10.1145/1453101.1453115 (visited on 07/07/2018).

[193] Abdesselam Lakehal and Ioannis Parissis. “Structural coverage criteria for LUS-

TRE/SCADE programs”. en. In: Software Testing, Verification and Reliabil-

ity 19.2 (2008), pp. 133–154. issn: 1099-1689. doi: 10.1002/stvr.394. url:

http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.394 (visited on

07/07/2018).

[194] S. Y. Lee et al. “An Improved Technique of Fitness Evaluation for Evolutionary

Testing”. In: 2011 IEEE 35th Annual Computer Software and Applications Con-

ference Workshops. July 2011, pp. 190–193. doi: 10.1109/COMPSACW.2011.41.

[195] Raluca Lefticaru and Florentin Ipate. “An Improved Test Generation Approach

from Extended Finite State Machines Using Genetic Algorithms”. en. In: Soft-

ware Engineering and Formal Methods. Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, Oct. 2012, pp. 293–307. isbn: 978-3-642-33825-

0 978-3-642-33826-7. doi: 10.1007/978- 3- 642- 33826- 7_20. url: http:

104

//link.springer.com/chapter/10.1007/978-3-642-33826-7_20 (visited on

07/09/2018).

[196] Yu Lei et al. “A combinatorial testing strategy for concurrent programs”. en.

In: Software Testing, Verification and Reliability 17.4 (2007), pp. 207–225. issn:

1099-1689. doi: 10.1002/stvr.369. url: http://onlinelibrary.wiley.com/

doi/abs/10.1002/stvr.369 (visited on 07/05/2018).

[197] Yu Lei et al. “IPOG/IPOG-D: e�cient test generation for multi-way combina-

torial testing”. en. In: Software Testing, Verification and Reliability 18.3 (2007),

pp. 125–148. issn: 1099-1689. doi: 10.1002/stvr.381. (Visited on 07/05/2018).

[198] Guodong Li et al. “GKLEE: Concolic Verification and Test Generation for GPUs”.

In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming. PPoPP ’12. New York, NY, USA: ACM, 2012,

pp. 215–224. isbn: 978-1-4503-1160-1. doi: 10.1145/2145816.2145844. url:

http://doi.acm.org/10.1145/2145816.2145844 (visited on 07/08/2018).

[199] N. Li et al. “Mutation testing in practice using Ruby”. In: 2015 IEEE Eighth

International Conference on Software Testing, Verification and Validation Work-

shops (ICSTW). Apr. 2015, pp. 1–6. doi: 10.1109/ICSTW.2015.7107453.

[200] Nuo Li et al. “Reggae: Automated Test Generation for Programs Using Com-

plex Regular Expressions”. In: Proceedings of the 2009 IEEE/ACM Interna-

tional Conference on Automated Software Engineering. ASE ’09. Washington,

DC, USA: IEEE Computer Society, 2009, pp. 515–519. isbn: 978-0-7695-3891-4.

doi: 10.1109/ASE.2009.67. url: https://doi.org/10.1109/ASE.2009.67

(visited on 07/08/2018).

[201] Ping Li et al. “A practical approach to testing GUI systems”. en. In: Empirical

Software Engineering 12.4 (Aug. 2007), pp. 331–357. issn: 1382-3256, 1573-7616.

105

doi: 10.1007/s10664- 006- 9031- 3. url: http://link.springer.com/

article/10.1007/s10664-006-9031-3 (visited on 07/09/2018).

[202] K. Liaskos and M. Roper. “Automatic Test-Data Generation: An Immunological

Approach”. In: Testing: Academic and Industrial Conference Practice and Re-

search Techniques - MUTATION (TAICPART-MUTATION 2007). Sept. 2007,

pp. 77–81. doi: 10.1109/TAIC.PART.2007.24.

[203] Mengxiang Lin et al. “Enhancing Constraint Based Test Generation by Local

Search”. In: Proceedings of the 6th International Conference on Software and

Computer Applications. ICSCA ’17. New York, NY, USA: ACM, 2017, pp. 154–

158. isbn: 978-1-4503-4857-7. doi: 10.1145/3056662.3056672. url: http:

//doi.acm.org/10.1145/3056662.3056672 (visited on 07/08/2018).

[204] Y. Lin et al. “A Divergence-Oriented Approach to Adaptive Random Testing of

Java Programs”. In: 2009 IEEE/ACM International Conference on Automated

Software Engineering. Nov. 2009, pp. 221–232. doi: 10.1109/ASE.2009.13.

[205] H. Liu and T. Y. Chen. “An Innovative Approach to Randomising Quasi-random

Sequences and Its Application into Software Testing”. In: 2009 Ninth Interna-

tional Conference on Quality Software. Aug. 2009, pp. 59–64. doi: 10.1109/

QSIC.2009.16.

[206] H. Liu and T. Y. Chen. “Randomized Quasi-Random Testing”. In: IEEE Trans-

actions on Computers 65.6 (June 2016), pp. 1896–1909. issn: 0018-9340. doi:

10.1109/TC.2015.2455981.

[207] Huai Liu, Fei-Ching Kuo, and Tsong Yueh Chen. “Comparison of adaptive ran-

dom testing and random testing under various testing and debugging scenarios”.

en. In: Software: Practice and Experience 42.8 (2011), pp. 1055–1074. issn: 1097-

024X. doi: 10.1002/spe.1113. url: http://onlinelibrary.wiley.com/doi/

abs/10.1002/spe.1113 (visited on 07/05/2018).

106

[208] Huai Liu et al. “Adaptive random testing through test profiles”. en. In: Software:

Practice and Experience 41.10 (2011), pp. 1131–1154. issn: 1097-024X. doi: 10.

1002/spe.1067. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/

spe.1067 (visited on 07/05/2018).

[209] K. Liu, T. Wo, and L. Cui. “A Fine-Grained Fault Detection Technique Based

on the Virtual Machine Monitor”. In: 2013 International Conference on Cloud

Computing and Big Data. Dec. 2013, pp. 275–282. doi: 10.1109/CLOUDCOM-

ASIA.2013.18.

[210] Y. Liu and H. Zhu. “An Experimental Evaluation of the Reliability of Adaptive

Random Testing Methods”. In: 2008 Second International Conference on Secure

System Integration and Reliability Improvement. July 2008, pp. 24–31. doi: 10.

1109/SSIRI.2008.18.

[211] F. Lonetti and E. Marchetti. “X-MuT: A Tool for the Generation of XSLT Mu-

tants”. In: 2010 Seventh International Conference on the Quality of Informa-

tion and Communications Technology. Sept. 2010, pp. 280–285. doi: 10.1109/

QUATIC.2010.52.

[212] Yu-Seung Ma, Yong-Rae Kwon, and Sang-Woon Kim. “Statistical Investigation

on Class Mutation Operators”. en. In: ETRI Journal 31.2 (2009), pp. 140–

150. issn: 2233-7326. doi: 10.4218/etrij.09.0108.0356. url: http://

onlinelibrary.wiley.com/doi/abs/10.4218/etrij.09.0108.0356 (visited

on 07/07/2018).

[213] Yuta Maezawa et al. “Validating Ajax Applications Using a Delay-based Mu-

tation Technique”. In: Proceedings of the 29th ACM/IEEE International Con-

ference on Automated Software Engineering. ASE ’14. New York, NY, USA:

ACM, 2014, pp. 491–502. isbn: 978-1-4503-3013-8. doi: 10 .1145 /2642937 .

107

2642996. url: http://doi.acm.org/10.1145/2642937.2642996 (visited on

07/07/2018).

[214] Jan Malburg and Gordon Fraser. “Search-based testing using constraint-based

mutation”. en. In: Software Testing, Verification and Reliability 24.6 (2013),

pp. 472–495. issn: 1099-1689. doi: 10.1002/stvr.1508. (Visited on 07/06/2018).

[215] Chengying Mao. “Harmony search-based test data generation for branch coverage

in software structural testing”. en. In: Neural Computing and Applications 25.1

(July 2014), pp. 199–216. issn: 0941-0643, 1433-3058. doi: 10.1007/s00521-

013-1474-z. url: http://link.springer.com/article/10.1007/s00521-

013-1474-z (visited on 07/09/2018).

[216] Chengying Mao, Tsong Yueh Chen, and Fei-Ching Kuo. “Out of sight, out of

mind: a distance-aware forgetting strategy for adaptive random testing”. en. In:

Science China Information Sciences 60.9 (Sept. 2017), p. 092106. issn: 1674-

733X, 1869-1919. doi: 10.1007/s11432- 016- 0087- 0. url: http://link.

springer.com/article/10.1007/s11432-016-0087-0 (visited on 07/08/2018).

[217] Ke Mao, Mark Harman, and Yue Jia. “Sapienz: Multi-objective Automated Test-

ing for Android Applications”. In: Proceedings of the 25th International Sym-

posium on Software Testing and Analysis. ISSTA 2016. New York, NY, USA:

ACM, 2016, pp. 94–105. isbn: 978-1-4503-4390-9. doi: 10 . 1145 / 2931037 .

2931054. url: http://doi.acm.org/10.1145/2931037.2931054 (visited

on 07/07/2018).

[218] Alessandro Marchetto, Filippo Ricca, and Paolo Tonella. “A case study-based

comparison of web testing techniques applied to AJAX web applications”. en.

In: International Journal on Software Tools for Technology Transfer 10.6 (Dec.

2008), pp. 477–492. issn: 1433-2779, 1433-2787. doi: 10.1007/s10009-008-

108

0086-x. url: http://link.springer.com/article/10.1007/s10009-008-

0086-x (visited on 07/08/2018).

[219] Alessandro Marchetto and Paolo Tonella. “Using search-based algorithms for

Ajax event sequence generation during testing”. en. In: Empirical Software En-

gineering 16.1 (Feb. 2011), pp. 103–140. issn: 1382-3256, 1573-7616. doi: 10.

1007/s10664-010-9149-1. url: http://link.springer.com/article/10.

1007/s10664-010-9149-1 (visited on 07/08/2018).

[220] L. Mariani et al. “AutoBlackTest: a tool for automatic black-box testing”. In:

2011 33rd International Conference on Software Engineering (ICSE). May 2011,

pp. 1013–1015. doi: 10.1145/1985793.1985979.

[221] Leonardo Mariani et al. “Automatic testing of GUI-based applications”. en. In:

Software Testing, Verification and Reliability 24.5 (2014), pp. 341–366. issn:

1099-1689. doi: 10.1002/stvr.1538. url: http://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.1538 (visited on 07/05/2018).

[222] Dusica Marijan et al. “Practical Pairwise Testing for Software Product Lines”. In:

Proceedings of the 17th International Software Product Line Conference. SPLC

’13. New York, NY, USA: ACM, 2013, pp. 227–235. isbn: 978-1-4503-1968-3. doi:

10.1145/2491627.2491646. url: http://doi.acm.org/10.1145/2491627.

2491646 (visited on 07/08/2018).

[223] Paul D. Marinescu and George Candea. “E�cient Testing of Recovery Code

Using Fault Injection”. In: ACM Trans. Comput. Syst. 29.4 (Dec. 2011), 11:1–

11:38. issn: 0734-2071. doi: 10.1145/2063509.2063511. url: http://doi.

acm.org/10.1145/2063509.2063511 (visited on 07/08/2018).

[224] A. Mateen and K. Abbas. “Optimization of model based functional test case

generation for android applications”. In: 2017 IEEE International Conference

109

on Power, Control, Signals and Instrumentation Engineering (ICPCSI). Sept.

2017, pp. 90–95. doi: 10.1109/ICPCSI.2017.8391869.

[225] Pedro Reales Mateo and Macario Polo Usaola. “Parallel mutation testing”. en.

In: Software Testing, Verification and Reliability 23.4 (2012), pp. 315–350. issn:

1099-1689. doi: 10.1002/stvr.1471. url: http://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.1471 (visited on 07/06/2018).

[226] Pedro Reales Mateo and Macario Polo Usaola. “Reducing mutation costs through

uncovered mutants”. en. In: Software Testing, Verification and Reliability 25.5-7

(2014), pp. 464–489. issn: 1099-1689. doi: 10.1002/stvr.1534. url: http:

//onlinelibrary.wiley. com/doi/abs/10.1002/stvr. 1534 (visited on

07/06/2018).

[227] Ernesto C. B. de Matos, Anamaria M. Moreira, and Joo B. de Souza Neto. “An

empirical study of test generation with BETA”. en. In: Journal of the Brazilian

Computer Society 22.1 (Dec. 2016), p. 8. issn: 0104-6500, 1678-4804. doi: 10.

1186/s13173-016-0048-1. url: http://link.springer.com/article/10.

1186/s13173-016-0048-1 (visited on 07/08/2018).

[228] Lijun Mei, W. K. Chan, and T. H. Tse. “Data Flow Testing of Service Chore-

ography”. In: Proceedings of the the 7th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Founda-

tions of Software Engineering. ESEC/FSE ’09. New York, NY, USA: ACM, 2009,

pp. 151–160. isbn: 978-1-60558-001-2. doi: 10.1145/1595696.1595720. url:

http://doi.acm.org/10.1145/1595696.1595720 (visited on 07/07/2018).

[229] Atif M. Memon. “An event-flow model of GUI-based applications for testing”.

en. In: Software Testing, Verification and Reliability 17.3 (2007), pp. 137–157.

issn: 1099-1689. doi: 10.1002/stvr.364. url: http://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.364 (visited on 07/06/2018).

110

[230] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. “E�cient JavaScript Mutation

Testing”. In: Verification and Validation 2013 IEEE Sixth International Confer-

ence on Software Testing. Mar. 2013, pp. 74–83. doi: 10.1109/ICST.2013.23.

[231] Mehdi Mirzaaghaei and Ali Mesbah. “DOM-based Test Adequacy Criteria for

Web Applications”. In: Proceedings of the 2014 International Symposium on

Software Testing and Analysis. ISSTA 2014. New York, NY, USA: ACM, 2014,

pp. 71–81. isbn: 978-1-4503-2645-2. doi: 10.1145/2610384.2610406. url: http:

//doi.acm.org/10.1145/2610384.2610406 (visited on 07/07/2018).

[232] Supasit Monpratarnchai et al. “Automated Testing for Java Programs Using

JPF-based Test Case Generation”. In: SIGSOFT Softw. Eng. Notes 39.1 (Feb.

2014), pp. 1–5. issn: 0163-5948. doi: 10.1145/2557833.2560575. url: http:

//doi.acm.org/10.1145/2557833.2560575 (visited on 07/08/2018).

[233] Rodrigo M. L. M. Moreira et al. “Pattern-based GUI testing: Bridging the gap

between design and quality assurance”. en. In: Software Testing, Verification and

Reliability 27.3 (2017), e1629. issn: 1099-1689. doi: 10.1002/stvr.1629. url:

http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1629 (visited on

07/07/2018).

[234] S. Mouchawrab et al. “Assessing, Comparing, and Combining State Machine-

Based Testing and Structural Testing: A Series of Experiments”. In: IEEE Trans-

actions on Software Engineering 37.2 (2011), pp. 161–187. issn: 0098-5589. doi:

10.1109/TSE.2010.32.

[235] Miguel Nabuco and Ana C. R. Paiva. “Model-Based Test Case Generation for

Web Applications”. en. In: Computational Science and Its Applications ICCSA

2014. Lecture Notes in Computer Science. Springer, Cham, June 2014, pp. 248–

262. isbn: 978-3-319-09152-5 978-3-319-09153-2. doi: 10.1007/978- 3- 319-

111

09153-2_19. url: http://link.springer.com/chapter/10.1007/978-3-

319-09153-2_19 (visited on 07/10/2018).

[236] Sunil Nair et al. “An Extended Systematic Literature Review on Provision of Ev-

idence for Safety Certification”. In: Information and Software Technology (2014).

[237] Akbar Siami Namin and Sahitya Kakarla. “The Use of Mutation in Testing

Experiments and Its Sensitivity to External Threats”. In: Proceedings of the

2011 International Symposium on Software Testing and Analysis. ISSTA ’11.

New York, NY, USA: ACM, 2011, pp. 342–352. isbn: 978-1-4503-0562-4. doi:

10.1145/2001420.2001461. url: http://doi.acm.org/10.1145/2001420.

2001461 (visited on 07/08/2018).

[238] F. Naseer, S. ur Rehman, and K. Hussain. “Using meta-data technique for compo-

nent based black box testing”. In: 2010 6th International Conference on Emerg-

ing Technologies (ICET). Oct. 2010, pp. 276–281. doi: 10.1109/ICET.2010.

5638474.

[239] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. “Assessing De-

pendability with Software Fault Injection: A Survey”. In: ACM Comput. Surv.

48.3 (Feb. 2016), 44:1–44:55. issn: 0360-0300. doi: 10 . 1145 / 2841425. url:

http://doi.acm.org/10.1145/2841425 (visited on 07/07/2018).

[240] Shimul Kumar Nath, Robert Merkel, and Man Fai Lau. “On the Improvement

of a Fault Classification Scheme with Implications for White-box Testing”. In:

Proceedings of the 27th Annual ACM Symposium on Applied Computing. SAC

’12. New York, NY, USA: ACM, 2012, pp. 1123–1130. isbn: 978-1-4503-0857-

1. doi: 10.1145/2245276.2231953. url: http://doi.acm.org/10.1145/

2245276.2231953 (visited on 07/07/2018).

112

[241] C. Nie et al. “Search Based Combinatorial Testing”. In: 2012 19th Asia-Pacific

Software Engineering Conference. Vol. 1. Dec. 2012, pp. 778–783. doi: 10.1109/

APSEC.2012.16.

[242] Je↵ O↵utt and Chandra Alluri. “An industrial study of applying input space

partitioning to test financial calculation engines”. en. In: Empirical Software

Engineering 19.3 (June 2014), pp. 558–581. issn: 1382-3256, 1573-7616. doi:

10.1007/s10664-012-9229-5. url: http://link.springer.com/article/

10.1007/s10664-012-9229-5 (visited on 07/08/2018).

[243] Je↵ O↵utt, Vasileios Papadimitriou, and Upsorn Praphamontripong. “A case

study on bypass testing of web applications”. en. In: Empirical Software Engi-

neering 19.1 (Feb. 2014), pp. 69–104. issn: 1382-3256, 1573-7616. doi: 10.1007/

s10664-012-9216-x. url: http://link.springer.com/article/10.1007/

s10664-012-9216-x (visited on 07/08/2018).

[244] C. Pacheco et al. “Feedback-Directed Random Test Generation”. In: 29th Inter-

national Conference on Software Engineering (ICSE’07). May 2007, pp. 75–84.

doi: 10.1109/ICSE.2007.37.

[245] Bindu Madhavi Padmanabhuni and Hee Beng Kuan Tan. “Light-weight Rule-

based Test Case Generation for Detecting Bu↵er Overflow Vulnerabilities”. In:

Proceedings of the 10th International Workshop on Automation of Software Test.

AST ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 48–52. url: http://dl.

acm.org/citation.cfm?id=2819261.2819276 (visited on 07/08/2018).

[246] M. Papadakis and N. Malevris. “An Empirical Evaluation of the First and Second

Order Mutation Testing Strategies”. In: 2010 Third International Conference on

Software Testing, Verification, and Validation Workshops. Apr. 2010, pp. 90–99.

doi: 10.1109/ICSTW.2010.50.

113

[247] Mike Papadakis and Yves Le Traon. “Mutation Testing Strategies Using Mutant

Classification”. In: Proceedings of the 28th Annual ACM Symposium on Applied

Computing. SAC ’13. New York, NY, USA: ACM, 2013, pp. 1223–1229. isbn:

978-1-4503-1656-9. doi: 10.1145/2480362.2480592. url: http://doi.acm.

org/10.1145/2480362.2480592 (visited on 07/08/2018).

[248] Mike Papadakis and Nicos Malevris. “Automatically performing weak mutation

with the aid of symbolic execution, concolic testing and search-based testing”.

en. In: Software Quality Journal 19.4 (Dec. 2011), p. 691. issn: 0963-9314, 1573-

1367. doi: 10.1007/s11219-011-9142-y. url: http://link.springer.com/

article/10.1007/s11219-011-9142-y (visited on 07/08/2018).

[249] Mike Papadakis, Nicos Malevris, and Maria Kallia. “Towards Automating the

Generation of Mutation Tests”. In: Proceedings of the 5th Workshop on Automa-

tion of Software Test. AST ’10. New York, NY, USA: ACM, 2010, pp. 111–

118. isbn: 978-1-60558-970-1. doi: 10.1145/1808266.1808283. url: http:

//doi.acm.org/10.1145/1808266.1808283 (visited on 07/08/2018).

[250] Sangmin Park et al. “CarFast: Achieving Higher Statement Coverage Faster”. In:

Proceedings of the ACM SIGSOFT 20th International Symposium on the Founda-

tions of Software Engineering. FSE ’12. New York, NY, USA: ACM, 2012, 35:1–

35:11. isbn: 978-1-4503-1614-9. doi: 10.1145/2393596.2393636. url: http:

//doi.acm.org/10.1145/2393596.2393636 (visited on 07/08/2018).

[251] Soyeon Park, Shan Lu, and Yuanyuan Zhou. “CTrigger: Exposing Atomicity Vi-

olation Bugs from Their Hiding Places”. In: Proceedings of the 14th International

Conference on Architectural Support for Programming Languages and Operating

Systems. ASPLOS XIV. New York, NY, USA: ACM, 2009, pp. 25–36. isbn: 978-

1-60558-406-5. doi: 10.1145/1508244.1508249. url: http://doi.acm.org/

10.1145/1508244.1508249 (visited on 07/07/2018).

114

[252] M. Parthiban and M. R. Sumalatha. “GASE -an input domain reduction and

branch coverage system based on Genetic Algorithm and Symbolic Execution”.

In: 2013 International Conference on Information Communication and Embed-

ded Systems (ICICES). Feb. 2013, pp. 429–433. doi: 10.1109/ICICES.2013.

6508273.

[253] Benny Pasternak, Shmuel Tyszberowicz, and Amiram Yehudai. “GenUTest: a

unit test and mock aspect generation tool”. en. In: International Journal on

Software Tools for Technology Transfer 11.4 (Oct. 2009), p. 273. issn: 1433-2779,

1433-2787. doi: 10.1007/s10009-009-0115-4. url: http://link.springer.

com/article/10.1007/s10009-009-0115-4 (visited on 07/09/2018).

[254] M. Patrick and Y. Jia. “Kernel Density Adaptive Random Testing”. In: 2015

IEEE Eighth International Conference on Software Testing, Verification and Val-

idation Workshops (ICSTW). Apr. 2015, pp. 1–10. doi: 10.1109/ICSTW.2015.

7107451.

[255] Kai Petersen et al. “Systematic Mapping Studies in Software Engineering”. In:

Proceedings of the 12th International Conference on Evaluation and Assessment

in Software Engineering. EASE’08. Italy: BCS Learning & Development Ltd.,

2008, pp. 68–77. url: http://dl.acm.org.du.idm.oclc.org/citation.cfm?

id=2227115.2227123.

[256] Florin Pinte, Norbert Oster, and Francesca Saglietti. “Techniques and Tools for

the Automatic Generation of Optimal Test Data at Code, Model and Interface

Level”. In: Companion of the 30th International Conference on Software En-

gineering. ICSE Companion ’08. New York, NY, USA: ACM, 2008, pp. 927–

928. isbn: 978-1-60558-079-1. doi: 10.1145/1370175.1370191. url: http:

//doi.acm.org/10.1145/1370175.1370191 (visited on 07/08/2018).

115

[257] Macario Polo, Mario Piattini, and Ignacio GarcaRodrguez. “Decreasing the cost

of mutation testing with second-order mutants”. en. In: Software Testing, Verifi-

cation and Reliability 19.2 (2008), pp. 111–131. issn: 1099-1689. doi: 10.1002/

stvr.392. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.

392 (visited on 07/07/2018).

[258] Pablo Ponzio et al. “Field-exhaustive Testing”. In: Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing. FSE 2016. New York, NY, USA: ACM, 2016, pp. 908–919. isbn: 978-1-4503-

4218-6. doi: 10.1145/2950290.2950336. url: http://doi.acm.org/10.1145/

2950290.2950336 (visited on 07/07/2018).

[259] S. Poulding, J. A. Clark, and H. Waeselynck. “A Principled Evaluation of the

E↵ect of Directed Mutation on Search-Based Statistical Testing”. In: 2011 IEEE

Fourth International Conference on Software Testing, Verification and Validation

Workshops. Mar. 2011, pp. 184–193. doi: 10.1109/ICSTW.2011.36.

[260] M. Prasanna and K. R. Chandran. “Automated Test Case Generation for Object

Oriented Systems Using UML Object Diagrams”. en. In: High Performance Ar-

chitecture and Grid Computing. Communications in Computer and Information

Science. Springer, Berlin, Heidelberg, July 2011, pp. 417–423. isbn: 978-3-642-

22576-5 978-3-642-22577-2. doi: 10.1007/978-3-642-22577-2_56. url: http:

//link.springer.com/chapter/10.1007/978-3-642-22577-2_56 (visited on

07/09/2018).

[261] Elisa Puoskari et al. “Evaluating Applicability of Combinatorial Testing in an

Industrial Environment: A Case Study”. In: Proceedings of the 2013 Interna-

tional Workshop on Joining AcadeMiA and Industry Contributions to Testing

Automation. JAMAICA 2013. New York, NY, USA: ACM, 2013, pp. 7–12. isbn:

116

978-1-4503-2161-7. doi: 10.1145/2489280.2489287. url: http://doi.acm.

org/10.1145/2489280.2489287 (visited on 07/08/2018).

[262] Rong-Zhi Qi, Zhi-Jian Wang, and Shui-Yan Li. “A Parallel Genetic Algorithm

Based on Spark for Pairwise Test Suite Generation”. en. In: Journal of Computer

Science and Technology 31.2 (Mar. 2016), pp. 417–427. issn: 1000-9000, 1860-

4749. doi: 10.1007/s11390-016-1635-5. url: http://link.springer.com/

article/10.1007/s11390-016-1635-5 (visited on 07/09/2018).

[263] Xiao-Fang Qi et al. “Automated Testing of Web Applications Using Combinato-

rial Strategies”. en. In: Journal of Computer Science and Technology 32.1 (Jan.

2017), pp. 199–210. issn: 1000-9000, 1860-4749. doi: 10.1007/s11390-017-

1699-x. url: http://link.springer.com/article/10.1007/s11390-017-

1699-x (visited on 07/09/2018).

[264] Khandakar Rabbi and Quazi Mamun. “An E↵ective t-way Test Data Generation

Strategy”. en. In: Security and Privacy in Communication Networks. Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecom-

munications Engineering. Springer, Cham, Oct. 2015, pp. 633–648. isbn: 978-3-

319-28864-2 978-3-319-28865-9. doi: 10.1007/978-3-319-28865-9_42. url:

http://link.springer.com/chapter/10.1007/978-3-319-28865-9_42

(visited on 07/09/2018).

[265] Zvonimir Rakamari. “STORM: Static Unit Checking of Concurrent Programs”.

In: Proceedings of the 32Nd ACM/IEEE International Conference on Software

Engineering - Volume 2. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 519–

520. isbn: 978-1-60558-719-6. doi: 10.1145/1810295.1810460. url: http:

//doi.acm.org/10.1145/1810295.1810460 (visited on 07/08/2018).

[266] Abhishek Rathore et al. “Application of Genetic Algorithm and Tabu Search in

Software Testing”. In: Proceedings of the Fourth Annual ACM Bangalore Con-

117

ference. COMPUTE ’11. New York, NY, USA: ACM, 2011, 23:1–23:4. isbn:

978-1-4503-0750-5. doi: 10.1145/1980422.1980445. url: http://doi.acm.

org/10.1145/1980422.1980445 (visited on 07/07/2018).

[267] Niloofar Razavi, Azadeh Farzan, and Sheila A. McIlraith. “Generating e↵ective

tests for concurrent programs via AI automated planning techniques”. en. In: In-

ternational Journal on Software Tools for Technology Transfer 16.1 (Feb. 2014),

pp. 49–65. issn: 1433-2779, 1433-2787. doi: 10.1007/s10009-013-0277-y. url:

http://link.springer.com/article/10.1007/s10009-013-0277-y (visited

on 07/09/2018).

[268] Sion Ll Rhys, Simon Poulding, and John A. Clark. “Using Automated Search to

Generate Test Data for Matlab”. In: Proceedings of the 11th Annual Conference

on Genetic and Evolutionary Computation. GECCO ’09. New York, NY, USA:

ACM, 2009, pp. 1697–1704. isbn: 978-1-60558-325-9. doi: 10.1145/1569901.

1570128. url: http://doi.acm.org/10.1145/1569901.1570128 (visited on

07/08/2018).

[269] Jos Miguel Rojas, Gordon Fraser, and Andrea Arcuri. “Seeding strategies in

search-based unit test generation”. en. In: Software Testing, Verification and

Reliability 26.5 (2016), pp. 366–401. issn: 1099-1689. doi: 10.1002/stvr.1601.

url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1601

(visited on 07/06/2018).

[270] Per Runeson et al. Case Study Research in Software Engineering: Guidelines and

Examples. 1st. Wiley Publishing, 2012. isbn: 1118104358, 9781118104354.

[271] Neha Rungta, Eric G. Mercer, and Willem Visser. “E�cient Testing of Con-

current Programs with Abstraction-Guided Symbolic Execution”. en. In: Model

Checking Software. Lecture Notes in Computer Science. Springer, Berlin, Heidel-

berg, June 2009, pp. 174–191. isbn: 978-3-642-02651-5 978-3-642-02652-2. doi:

118

10. 1007/978 - 3- 642 - 02652- 2_ 16. url: http: //link .springer. com/

chapter/10.1007/978-3-642-02652-2_16 (visited on 07/10/2018).

[272] Hazlifah Mohd Rusli et al. “A Comparative Evaluation of State-of-the-art Web

Service Composition Testing Approaches”. In: Proceedings of the 6th Interna-

tional Workshop on Automation of Software Test. AST ’11. New York, NY,

USA: ACM, 2011, pp. 29–35. isbn: 978-1-4503-0592-1. doi: 10.1145/1982595.

1982602. url: http://doi.acm.org/10.1145/1982595.1982602 (visited on

10/10/2018).

[273] F. Saglietti and F. Pinte. “Automated Unit and Integration Testing for Component-

based Software Systems”. In: Proceedings of the International Workshop on Secu-

rity and Dependability for Resource Constrained Embedded Systems. S&D4RCES

’10. New York, NY, USA: ACM, 2010, 5:1–5:6. isbn: 978-1-4503-0368-2. doi:

10.1145/1868433.1868440. url: http://doi.acm.org/10.1145/1868433.

1868440 (visited on 07/08/2018).

[274] Jose Lorenzo San Miguel and Shingo Takada. “GUI and Usage Model-based Test

Case Generation for Android Applications with Change Analysis”. In: Proceed-

ings of the 1st International Workshop on Mobile Development. Mobile! 2016.

New York, NY, USA: ACM, 2016, pp. 43–44. isbn: 978-1-4503-4643-6. doi:

10.1145/3001854.3001865. url: http://doi.acm.org/10.1145/3001854.

3001865 (visited on 07/08/2018).

[275] Manoranjan Satpathy et al. “E�cient coverage of parallel and hierarchical state-

flow models for test case generation”. en. In: Software Testing, Verification and

Reliability 22.7 (2011), pp. 457–479. issn: 1099-1689. doi: 10.1002/stvr.444.

url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.444 (visited

on 07/06/2018).

119

[276] Christian Schwarzl and Bernhard Peischl. “Generation of Executable Test Cases

Based on Behavioral UML System Models”. In: Proceedings of the 5th Workshop

on Automation of Software Test. AST ’10. New York, NY, USA: ACM, 2010,

pp. 31–34. isbn: 978-1-60558-970-1. doi: 10.1145/1808266.1808271. url: http:

//doi.acm.org/10.1145/1808266.1808271 (visited on 07/07/2018).

[277] Koushik Sen. “E↵ective Random Testing of Concurrent Programs”. In: Proceed-

ings of the Twenty-second IEEE/ACM International Conference on Automated

Software Engineering. ASE ’07. New York, NY, USA: ACM, 2007, pp. 323–

332. isbn: 978-1-59593-882-4. doi: 10.1145/1321631.1321679. url: http:

//doi.acm.org/10.1145/1321631.1321679 (visited on 07/08/2018).

[278] Ohad Shacham et al. “Testing Atomicity of Composed Concurrent Operations”.

In: Proceedings of the 2011 ACM International Conference on Object Oriented

Programming Systems Languages and Applications. OOPSLA ’11. New York,

NY, USA: ACM, 2011, pp. 51–64. isbn: 978-1-4503-0940-0. doi: 10 . 1145 /

2048066.2048073. url: http://doi.acm.org/10.1145/2048066.2048073

(visited on 07/08/2018).

[279] Muzammil Shahbaz and Roland Groz. “Analysis and testing of black-box component-

based systems by inferring partial models”. en. In: Software Testing, Verification

and Reliability 24.4 (2013), pp. 253–288. issn: 1099-1689. doi: 10.1002/stvr.

1491. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1491

(visited on 07/07/2018).

[280] D. Shannon et al. “E�cient Symbolic Execution of Strings for Validating Web

Applications”. In: Proceedings of the 2Nd International Workshop on Defects in

Large Software Systems: Held in Conjunction with the ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis (ISSTA 2009). DEFECTS

’09. New York, NY, USA: ACM, 2009, pp. 22–26. isbn: 978-1-60558-654-0. doi:

120

10.1145/1555860.1555868. url: http://doi.acm.org/10.1145/1555860.

1555868 (visited on 07/07/2018).

[281] Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae. “Comprehensive analysis

of FBD test coverage criteria using mutants”. en. In: Software & Systems Mod-

eling 15.3 (July 2016), pp. 631–645. issn: 1619-1366, 1619-1374. doi: 10.1007/

s10270-014-0428-y. url: http://link.springer.com/article/10.1007/

s10270-014-0428-y (visited on 07/09/2018).

[282] Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae. “Empirical Evaluation

on FBD Model-Based Test Coverage Criteria Using Mutation Analysis”. en. In:

Model Driven Engineering Languages and Systems. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Sept. 2012, pp. 465–479. isbn: 978-3-642-

33665-2 978-3-642-33666-9. doi: 10.1007/978-3-642-33666-9_30. url: http:

//link.springer.com/chapter/10.1007/978-3-642-33666-9_30 (visited on

07/09/2018).

[283] Forrest J. Shull et al. “The Role of Replications in Empirical Software Engineer-

ing”. In: Empirical Softw. Engg. 13.2 (Apr. 2008), pp. 211–218. issn: 1382-3256.

doi: 10.1007/s10664-008-9060-1. url: http://dx.doi.org/10.1007/

s10664-008-9060-1 (visited on 07/12/2018).

[284] Junaid Haroon Siddiqui and Sarfraz Khurshid. “Scaling symbolic execution using

staged analysis”. en. In: Innovations in Systems and Software Engineering 9.2

(June 2013), pp. 119–131. issn: 1614-5046, 1614-5054. doi: 10.1007/s11334-

013-0196-9. url: http://link.springer.com/article/10.1007/s11334-

013-0196-9 (visited on 07/08/2018).

[285] Lucas Serpa Silva and Maarten van Someren. “Evolutionary Testing of Object-

oriented Software”. In: Proceedings of the 2010 ACM Symposium on Applied

Computing. SAC ’10. New York, NY, USA: ACM, 2010, pp. 1126–1130. isbn:

121

978-1-60558-639-7. doi: 10.1145/1774088.1774326. url: http://doi.acm.

org/10.1145/1774088.1774326 (visited on 07/07/2018).

[286] M. Singh and V. M. Srivastava. “Extended firm mutation testing: A cost reduc-

tion technique for mutation testing”. In: 2017 Fourth International Conference

on Image Information Processing (ICIIP). Dec. 2017, pp. 1–6. doi: 10.1109/

ICIIP.2017.8313788.

[287] Yogesh Singh et al. “Systematic Literature Review on Regression Test Prioriti-

zation Techniques”. In: Informatica (Slovenia) 36 (2012), pp. 379–408.

[288] Harry M. Sneed and Shihong Huang. “The design and use of WSDL-Test: a tool

for testing Web services”. en. In: Journal of Software Maintenance and Evolution:

Research and Practice 19.5 (2007), pp. 297–314. issn: 1532-0618. doi: 10.1002/

smr.354. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/smr.354

(visited on 07/07/2018).

[289] C. Song, A. Porter, and J. S. Foster. “iTree: E�ciently Discovering High-Coverage

Configurations Using Interaction Trees”. In: IEEE Transactions on Software En-

gineering 40.3 (Mar. 2014), pp. 251–265. issn: 0098-5589. doi: 10.1109/TSE.

2013.55.

[290] Francisco Carlos M. Souza et al. “Strong Mutation-based Test Data Genera-

tion Using Hill Climbing”. In: Proceedings of the 9th International Workshop

on Search-Based Software Testing. SBST ’16. New York, NY, USA: ACM, 2016,

pp. 45–54. isbn: 978-1-4503-4166-0. doi: 10.1145/2897010.2897012. url: http:

//doi.acm.org/10.1145/2897010.2897012 (visited on 07/07/2018).

[291] Maria Laura Pires Souza and Fbio Fagundes Silveira. “A Model-Based Testing

Method for Dynamic Aspect-Oriented Software”. en. In: Computational Science

and Its Applications ICCSA 2017. Lecture Notes in Computer Science. Springer,

Cham, July 2017, pp. 95–111. isbn: 978-3-319-62406-8 978-3-319-62407-5. doi:

122

10.1007/978-3-319-62407-5_7. url: http://link.springer.com/chapter/

10.1007/978-3-319-62407-5_7 (visited on 07/10/2018).

[292] S. R. S. Souza et al. “Empirical evaluation of a new composite approach to

the coverage criteria and reachability testing of concurrent programs”. en. In:

Software Testing, Verification and Reliability 25.3 (2015), pp. 310–332. issn:

1099-1689. doi: 10.1002/stvr.1568. url: http://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.1568 (visited on 07/06/2018).

[293] S. R. S. Souza et al. “Structural testing criteria for message-passing parallel pro-

grams”. en. In: Concurrency and Computation: Practice and Experience 20.16

(2008), pp. 1893–1916. issn: 1532-0634. doi: 10.1002/cpe.1297. url: http:

/ / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / cpe . 1297 (visited on

07/06/2018).

[294] rica Ferreira de Souza, Valdivino Alexandre de Santiago Jnior, and Nandamudi

Lankalapalli Vijaykumar. “H-Switch Cover: a new test criterion to generate test

case from finite state machines”. en. In: Software Quality Journal 25.2 (June

2017), pp. 373–405. issn: 0963-9314, 1573-1367. doi: 10.1007/s11219-015-

9300-8. url: http://link.springer.com/article/10.1007/s11219-015-

9300-8 (visited on 07/08/2018).

[295] Sara E. Sprenkle, Lori L. Pollock, and Lucy M. Simko. “Configuring e↵ective

navigation models and abstract test cases for web applications by analysing user

behaviour”. en. In: Software Testing, Verification and Reliability 23.6 (2013),

pp. 439–464. issn: 1099-1689. doi: 10.1002/stvr.1496. (Visited on 07/06/2018).

[296] Matt Staats and Corina Psreanu. “Parallel Symbolic Execution for Structural

Test Generation”. In: Proceedings of the 19th International Symposium on Soft-

ware Testing and Analysis. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 183–

123

194. isbn: 978-1-60558-823-0. doi: 10.1145/1831708.1831732. url: http:

//doi.acm.org/10.1145/1831708.1831732 (visited on 07/07/2018).

[297] P. Strooper and M. A. Wojcicki. “Selecting V V Technology Combinations: How

to Pick a Winner?” In: 12th IEEE International Conference on Engineering Com-

plex Computer Systems (ICECCS 2007). July 2007, pp. 87–96. doi: 10.1109/

ICECCS.2007.40.

[298] Chungha Sung et al. “Static DOM Event Dependency Analysis for Testing Web

Applications”. In: Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering. FSE 2016. New York, NY,

USA: ACM, 2016, pp. 447–459. isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.

2950292. url: http://doi.acm.org/10.1145/2950290.2950292 (visited on

07/08/2018).

[299] Ana B. Snchez et al. “Variability testing in the wild: the Drupal case study”. en.

In: Software & Systems Modeling 16.1 (Feb. 2017), pp. 173–194. issn: 1619-1366,

1619-1374. doi: 10.1007/s10270-015-0459-z. url: http://link.springer.

com/article/10.1007/s10270-015-0459-z (visited on 07/09/2018).

[300] Kunal Taneja, Yi Zhang, and Tao Xie. “MODA: Automated Test Generation for

Database Applications via Mock Objects”. In: Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering. ASE ’10. New

York, NY, USA: ACM, 2010, pp. 289–292. isbn: 978-1-4503-0116-9. doi: 10.

1145/1858996.1859053. url: http://doi.acm.org/10.1145/1858996.

1859053 (visited on 07/08/2018).

[301] Hongyin Tang et al. “Generating Test Cases to Expose Concurrency Bugs in

Android Applications”. In: Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering. ASE 2016. New York, NY, USA:

ACM, 2016, pp. 648–653. isbn: 978-1-4503-3845-5. doi: 10 .1145 /2970276 .

124

2970320. url: http://doi.acm.org/10.1145/2970276.2970320 (visited on

07/08/2018).

[302] A. F. Tappenden and J. Miller. “A Novel Evolutionary Approach for Adap-

tive Random Testing”. In: IEEE Transactions on Reliability 58.4 (Dec. 2009),

pp. 619–633. issn: 0018-9529. doi: 10.1109/TR.2009.2034288.

[303] Andrew F. Tappenden and James Miller. “Automated Cookie Collection Test-

ing”. In: ACM Trans. Softw. Eng. Methodol. 23.1 (Feb. 2014), 3:1–3:40. issn:

1049-331X. doi: 10.1145/2559936. url: http://doi.acm.org/10.1145/

2559936 (visited on 07/07/2018).

[304] D. N. Thi, V. D. Hieu, and N. V. Ha. “A Technique for Generating Test Data

Using Genetic Algorithm”. In: 2016 International Conference on Advanced Com-

puting and Applications (ACOMP). Nov. 2016, pp. 67–73. doi: 10.1109/ACOMP.

2016.019.

[305] Paul Thomson, Alastair F. Donaldson, and Adam Betts. “Concurrency Test-

ing Using Schedule Bounding: An Empirical Study”. In: Proceedings of the 19th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

PPoPP ’14. New York, NY, USA: ACM, 2014, pp. 15–28. isbn: 978-1-4503-2656-

8. doi: 10.1145/2555243.2555260. url: http://doi.acm.org/10.1145/

2555243.2555260 (visited on 07/08/2018).

[306] C. Tian, S. Liu, and S. Nakajima. “Utilizing Model Checking for Automatic Test

Case Generation from Conjunctions of Predicates”. In: 2011 IEEE Fourth Inter-

national Conference on Software Testing, Verification and Validation Workshops.

Mar. 2011, pp. 304–309. doi: 10.1109/ICSTW.2011.45.

[307] Tian Tian and Dunwei Gong. “Test data generation for path coverage of message-

passing parallel programs based on co-evolutionary genetic algorithms”. en. In:

Automated Software Engineering 23.3 (Sept. 2016), pp. 469–500. issn: 0928-8910,

125

1573-7535. doi: 10.1007/s10515-014-0173-z. url: http://link.springer.

com/article/10.1007/s10515-014-0173-z (visited on 07/09/2018).

[308] Nikolai Tillmann and Jonathan de Halleux. “PexWhite Box Test Generation for

.NET”. en. In: Tests and Proofs. Lecture Notes in Computer Science. Springer,

Berlin, Heidelberg, Apr. 2008, pp. 134–153. isbn: 978-3-540-79123-2 978-3-540-

79124-9. doi: 10.1007/978-3-540-79124-9_10. url: http://link.springer.

com/chapter/10.1007/978-3-540-79124-9_10 (visited on 07/09/2018).

[309] Javier Tuya et al. “A Controlled Experiment on White-box Database Testing”.

In: SIGSOFT Softw. Eng. Notes 33.1 (Jan. 2008), 8:1–8:6. issn: 0163-5948. doi:

10.1145/1344452.1344462. url: http://doi.acm.org/10.1145/1344452.

1344462 (visited on 10/10/2018).

[310] Le Van Phol, Nguyen Thanh Binh, and Ioannis Parissis. “Mutants Generation For

Testing Lustre Programs”. In: Proceedings of the Eighth International Symposium

on Information and Communication Technology. SoICT 2017. New York, NY,

USA: ACM, 2017, pp. 425–430. isbn: 978-1-4503-5328-1. doi: 10.1145/3155133.

3155155. url: http://doi.acm.org/10.1145/3155133.3155155 (visited on

07/08/2018).

[311] Auri M. R. Vincenzi et al. “The Complementary Aspect of Automatically and

Manually Generated Test Case Sets”. In: Proceedings of the 7th International

Workshop on Automating Test Case Design, Selection, and Evaluation. A-TEST

2016. New York, NY, USA: ACM, 2016, pp. 23–30. isbn: 978-1-4503-4401-2. doi:

10.1145/2994291.2994295. url: http://doi.acm.org/10.1145/2994291.

2994295 (visited on 07/07/2018).

[312] T. E. J. Vos et al. “A Methodological Framework for Evaluating Software Test-

ing Techniques and Tools”. In: 2012 12th International Conference on Quality

126

Software. 2012 12th International Conference on Quality Software. Aug. 2012,

pp. 230–239. doi: 10.1109/QSIC.2012.16.

[313] Tanja E. J. Vos et al. “Evolutionary functional black-box testing in an industrial

setting”. en. In: Software Quality Journal 21.2 (June 2013), pp. 259–288. issn:

0963-9314, 1573-1367. doi: 10 . 1007 / s11219 - 012 - 9174 - y. url: http : / /

link.springer.com/article/10.1007/s11219- 012- 9174- y (visited on

07/08/2018).

[314] N. Walkinshaw and G. Fraser. “Uncertainty-Driven Black-Box Test Data Gener-

ation”. In: 2017 IEEE International Conference on Software Testing, Verification

and Validation (ICST). Mar. 2017, pp. 253–263. doi: 10.1109/ICST.2017.30.

[315] Neil Walkinshaw et al. “Increasing Functional Coverage by Inductive Testing: A

Case Study”. en. In: Testing Software and Systems. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Nov. 2010, pp. 126–141. isbn: 978-3-642-

16572-6 978-3-642-16573-3. doi: 10.1007/978-3-642-16573-3_10. url: http:

//link.springer.com/chapter/10.1007/978-3-642-16573-3_10 (visited on

07/09/2018).

[316] Hongda Wang et al. “Generating e↵ective test cases based on satisfiability mod-

ulo theory solvers for service-oriented workflow applications”. en. In: Software

Testing, Verification and Reliability 26.2 (2015), pp. 149–169. issn: 1099-1689.

doi: 10.1002/stvr.1592. url: http://onlinelibrary.wiley.com/doi/abs/

10.1002/stvr.1592 (visited on 07/07/2018).

[317] Huai Wang, W. K. Chan, and T. H. Tse. “Improving the E↵ectiveness of Testing

Pervasive Software via Context Diversity”. In: ACM Trans. Auton. Adapt. Syst.

9.2 (July 2014), 9:1–9:28. issn: 1556-4665. doi: 10.1145/2620000. url: http:

//doi.acm.org/10.1145/2620000 (visited on 07/08/2018).

127

[318] S. Wang and J. O↵utt. “Comparison of Unit-Level Automated Test Generation

Tools”. In: 2009 International Conference on Software Testing, Verification, and

Validation Workshops. Apr. 2009, pp. 210–219. doi: 10.1109/ICSTW.2009.36.

[319] Y. Wang and Y. Wang. “Use Neural Network to Improve Fault Injection Testing”.

In: 2017 IEEE International Conference on Software Quality, Reliability and

Security Companion (QRS-C). July 2017, pp. 377–384. doi: 10.1109/QRS-

C.2017.69.

[320] Christian Wiederseiner et al. “An Open-Source Tool for Automated Generation

of Black-Box xUnit Test Code and Its Industrial Evaluation”. en. In: Testing

Practice and Research Techniques. Lecture Notes in Computer Science. Springer,

Berlin, Heidelberg, Sept. 2010, pp. 118–128. isbn: 978-3-642-15584-0 978-3-642-

15585-7. doi: 10.1007/978-3-642-15585-7_11. url: http://link.springer.

com/chapter/10.1007/978-3-642-15585-7_11 (visited on 07/09/2018).

[321] Andreas Windisch, Stefan Wappler, and Joachim Wegener. “Applying Particle

Swarm Optimization to Software Testing”. In: Proceedings of the 9th Annual

Conference on Genetic and Evolutionary Computation. GECCO ’07. New York,

NY, USA: ACM, 2007, pp. 1121–1128. isbn: 978-1-59593-697-4. doi: 10.1145/

1276958.1277178. url: http://doi.acm.org/10.1145/1276958.1277178

(visited on 07/07/2018).

[322] Claes Wohlin et al. Experimentation in Software Engineering. Springer Publish-

ing Company, Incorporated, 2012. isbn: 3642290434, 9783642290435.

[323] P. Wojciak and R. Tzoref-Brill. “System Level Combinatorial Testing in Practice

The Concurrent Maintenance Case Study”. In: Verification and Validation 2014

IEEE Seventh International Conference on Software Testing. Mar. 2014, pp. 103–

112. doi: 10.1109/ICST.2014.23.

128

[324] S. Wu, Y. Wu, and S. Xu. “Acceleration of Random Testing for Software”. In:

2013 IEEE 19th Pacific Rim International Symposium on Dependable Comput-

ing. Dec. 2013, pp. 51–59. doi: 10.1109/PRDC.2013.15.

[325] S. Xu et al. “A comparative study on black-box testing with open source appli-

cations”. In: 2016 17th IEEE/ACIS International Conference on Software Engi-

neering, Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD). May 2016, pp. 527–532. doi: 10.1109/SNPD.2016.7515953.

[326] Wen Xu et al. “Designing New Operating Primitives to Improve Fuzzing Perfor-

mance”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. CCS ’17. New York, NY, USA: ACM, 2017, pp. 2313–

2328. isbn: 978-1-4503-4946-8. doi: 10.1145/3133956.3134046. url: http:

//doi.acm.org/10.1145/3133956.3134046 (visited on 07/08/2018).

[327] A. Yamada et al. “Greedy combinatorial test case generation using unsatisfi-

able cores”. In: 2016 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE). Sept. 2016, pp. 614–624.

[328] Linmin Yang, Zhe Dang, and Thomas R. Fischer. “Information gain of black-

box testing”. en. In: Formal Aspects of Computing 23.4 (July 2011), pp. 513–

539. issn: 0934-5043, 1433-299X. doi: 10.1007/s00165- 011- 0175- 6. url:

http://link.springer.com/article/10.1007/s00165-011-0175-6 (visited

on 07/08/2018).

[329] Kohsuke Yatoh et al. “Feedback-controlled Random Test Generation”. In: Pro-

ceedings of the 2015 International Symposium on Software Testing and Analysis.

ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 316–326. isbn: 978-1-4503-

3620-8. doi: 10.1145/2771783.2771805. url: http://doi.acm.org/10.1145/

2771783.2771805 (visited on 07/07/2018).

129

[330] Hiroaki Yoshida et al. “FSX: Fine-grained Incremental Unit Test Generation

for C/C++ Programs”. In: Proceedings of the 25th International Symposium on

Software Testing and Analysis. ISSTA 2016. New York, NY, USA: ACM, 2016,

pp. 106–117. isbn: 978-1-4503-4390-9. doi: 10.1145/2931037.2931055. url:

http://doi.acm.org/10.1145/2931037.2931055 (visited on 07/08/2018).

[331] M. El Youmi and B. Falah. “Testing web applications by unifying Fuzzy and All-

Pairs techniques”. In: 2014 International Conference on Multimedia Computing

and Systems (ICMCS). Apr. 2014, pp. 547–551. doi: 10.1109/ICMCS.2014.

6911145.

[332] Mohammed I. Younis and Kamal Z. Zamli. “MC-MIPOG: A Parallel t-Way

Test Generation Strategy for Multicore Systems”. en. In: ETRI Journal 32.1

(2010), pp. 73–83. issn: 2233-7326. doi: 10.4218/etrij.10.0109.0266. url:

http://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.10.0109.0266

(visited on 07/07/2018).

[333] Tingting Yu, Witty Srisa-an, and Gregg Rothermel. “An automated framework

to support testing for process-level race conditions”. en. In: Software Testing,

Verification and Reliability 27.4-5 (2017), e1634. issn: 1099-1689. doi: 10.1002/

stvr.1634. url: http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.

1634 (visited on 07/05/2018).

[334] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. “Faster Mutation Test-

ing Inspired by Test Prioritization and Reduction”. In: Proceedings of the 2013

International Symposium on Software Testing and Analysis. ISSTA 2013. New

York, NY, USA: ACM, 2013, pp. 235–245. isbn: 978-1-4503-2159-4. doi: 10.

1145/2483760.2483782. url: http://doi.acm.org/10.1145/2483760.

2483782 (visited on 07/08/2018).

130

[335] Sai Zhang, Hao L, and Michael D. Ernst. “Finding Errors in Multithreaded GUI

Applications”. In: Proceedings of the 2012 International Symposium on Software

Testing and Analysis. ISSTA 2012. New York, NY, USA: ACM, 2012, pp. 243–

253. isbn: 978-1-4503-1454-1. doi: 10.1145/2338965.2336782. url: http:

//doi.acm.org/10.1145/2338965.2336782 (visited on 07/07/2018).

[336] Wei Zhang et al. “ConSeq: Detecting Concurrency Bugs Through Sequential

Errors”. In: Proceedings of the Sixteenth International Conference on Architec-

tural Support for Programming Languages and Operating Systems. ASPLOS XVI.

New York, NY, USA: ACM, 2011, pp. 251–264. isbn: 978-1-4503-0266-1. doi:

10.1145/1950365.1950395. url: http://doi.acm.org/10.1145/1950365.

1950395 (visited on 07/07/2018).

[337] Weixiang Zhang, Bo Wei, and Huisen Du. “An Output-Oriented Approach of

Test Data Generation Based on Genetic Algorithm”. en. In: Algorithms and Ar-

chitectures for Parallel Processing. Lecture Notes in Computer Science. Springer,

Cham, Nov. 2015, pp. 100–108. isbn: 978-3-319-27160-6 978-3-319-27161-3. doi:

10.1007/978-3-319-27161-3_9. url: http://link.springer.com/chapter/

10.1007/978-3-319-27161-3_9 (visited on 07/09/2018).

[338] Yucheng Zhang and Ali Mesbah. “Assertions Are Strongly Correlated with Test

Suite E↵ectiveness”. In: Proceedings of the 2015 10th Joint Meeting on Foun-

dations of Software Engineering. ESEC/FSE 2015. New York, NY, USA: ACM,

2015, pp. 214–224. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.2786858.

url: http://doi.acm.org/10.1145/2786805.2786858 (visited on 07/08/2018).

[339] W. Zheng and G. Bundell. “Model-Based Software Component Testing: A UML-

Based Approach”. In: 6th IEEE/ACIS International Conference on Computer

and Information Science (ICIS 2007). July 2007, pp. 891–899. doi: 10.1109/

ICIS.2007.136.

131

[340] Wujie Zheng et al. “Random Unit-test Generation with MUT-aware Sequence

Recommendation”. In: Proceedings of the IEEE/ACM International Conference

on Automated Software Engineering. ASE ’10. New York, NY, USA: ACM, 2010,

pp. 293–296. isbn: 978-1-4503-0116-9. doi: 10.1145/1858996.1859054. url:

http://doi.acm.org/10.1145/1858996.1859054 (visited on 07/08/2018).

[341] Hua Zhong, Lingming Zhang, and Sarfraz Khurshid. “Combinatorial Generation

of Structurally Complex Test Inputs for Commercial Software Applications”. In:

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering. FSE 2016. New York, NY, USA: ACM, 2016,

pp. 981–986. isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.2983959. url:

http://doi.acm.org/10.1145/2950290.2983959 (visited on 07/08/2018).

[342] Chixiang Zhou and Phyllis Frankl. “JDAMA: Java database application muta-

tion analyser”. en. In: Software Testing, Verification and Reliability 21.3 (2011),

pp. 241–263. issn: 1099-1689. doi: 10.1002/stvr.462. (Visited on 07/05/2018).

[343] Yuqin Zhou, Taku Sugihara, and Yuji Sato. “Applying GA with Tabu list for

Automatically Generating Test Cases Based on Formal Specification”. en. In:

Structured Object-Oriented Formal Language and Method. Lecture Notes in Com-

puter Science. Springer, Cham, Nov. 2014, pp. 17–31. isbn: 978-3-319-17403-7

978-3-319-17404-4. doi: 10.1007/978- 3- 319- 17404- 4_2. url: http://

link.springer.com/chapter/10.1007/978-3-319-17404-4_2 (visited on

07/10/2018).

[344] Q. Zhu, A. Panichella, and A. Zaidman. “Speeding-Up Mutation Testing via Data

Compression and State Infection”. In: 2017 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW). Mar. 2017,

pp. 103–109. doi: 10.1109/ICSTW.2017.25.

132

[345] Ziming Zhu, Xiong Xu, and Li Jiao. “Improved evolutionary generation of test

data for multiple paths in search-based software testing”. In: 2017 IEEE Congress

on Evolutionary Computation (CEC). June 2017, pp. 612–620. doi: 10.1109/

CEC.2017.7969367.

[346] Yunxiao Zou et al. “Virtual DOM Coverage for E↵ective Testing of Dynamic Web

Applications”. In: Proceedings of the 2014 International Symposium on Software

Testing and Analysis. ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 60–70.

isbn: 978-1-4503-2645-2. doi: 10.1145/2610384.2610399. url: http://doi.

acm.org/10.1145/2610384.2610399 (visited on 07/07/2018).

[347] R. S. Zybin et al. “Automation of broad sanity test generation”. en. In: Program-

ming and Computer Software 34.6 (Nov. 2008), pp. 351–363. issn: 0361-7688,

1608-3261. doi: 10.1134/S0361768808060066. url: http://link.springer.

com/article/10.1134/S0361768808060066 (visited on 07/09/2018).

133

	Evaluating Software Testing Techniques: A Systematic Mapping Study
	Recommended Citation

	tmp.1564785433.pdf.MFREx

