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Abstract 

Increased deployment of distributed generation (DG) can adversely impact the 

operational performance of distribution networks. This increment can potentially 

change network power flow and result in several operational issues such as reduced 

power quality, overvoltage, and ineffective protection. In order to quantify the 

degradation bounds of distribution operation due to increasing DG integration, the 

concept of hosting capacity is introduced. The aim of this thesis is to increase the DG 

hosting capacity in distribution network by proposing several wire and non-wire 

solutions. To this end, these solutions include network reconfiguration, reactive power 

control, and energy storage system deployment. The network reconfiguration can 

change the power flow in the system while the reactive power control can decrease the 

voltage rise and power loss in the system, which lead to increase in hosting capacity. 

The energy storage systems can be utilized to locally capture DG generation, which 

leads to an increase in the hosting capacity. This thesis introduces an optimization-

based hosting capacity method developed based on a linear power flow model to 

optimally determine DGs hosting capacity. Numerical simulations on a radial 

distribution test system illustrate the effectiveness of the proposed solutions.
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Chapter One: Introduction 

1.1. Power system delivery 

The traditional way of electricity production is one-way power flow. Power is 

generated at generation stations then transmitted to customers through long 

transmission lines. The process of power system delivery passes into four stages as 

shown in Figure 1.1.  

 
Figure 1.1: The Traditional Power System Delivery [1]. 

The increased deployment of distributed energy resources (DERs), which are 

mainly deployed by end-use customers and connected to distribution networks, is 

changing the traditional practice in managing the power system. This change leads to 

high investments in research and development to not only meet the system needs, but 

also to introduce innovative solutions. Power is generated at customers’ premises is 

known as distributed generation (DG) and the customers will be prosumers. The 

prosumers are costumers who can produce and consume energy. The amount of 

electricity at distribution level ranges from 100 kW to 1 MW. DG introduces several 

benefits for utilities as well as consumers. In terms of utilities, small amount of power 
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improves overall efficiency, enhance resiliency, reduce losses and most importantly 

defer transmission lines upgrade. From consumers’ point of view, less power 

interruption, sustainable solutions, and economic benefits are main advantages for 

deploying DG. 

However, the increased DGs deployment comes with challenges for changing 

the power flow and that would introduce issues to power system ranging from technical 

to regulations as shown in Figure 1.2. The most significant technical problem is voltage 

fluctuation. Another technical issue is protection. The bidirectional power flow makes 

protection scheme does not work in proper manner since it is not designed to work in 

such power flow as shown in Figure 1.3.  Moreover, market and policies cause critical 

issues for DG deployment, but these issues are not discussed in this thesis. DGs 

technologies appear in many forms such as photovoltaic system, wind turbine, 

synchronous and induction generators, full cell, etc. 

 

Figure 1.2: Parameters that can be considered in hosting capacity calculation [2]. 
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Figure 1.3: The Two Way Power System Delivery [3]. 

1.2. Hosting Capacity 

There has been a strong drive in the past decade to increase the integration of 

renewable DGs in distribution networks [4]. Particularly common are end-user 

deployments of solar photovoltaics (PV) and wind turbines as illustrated in Figure 1.4. 

Such technologies have the potential to solve long-term environmental and economic 

concerns by reducing greenhouse gas emissions, power generation costs, and 

detrimental reliance on fossil fuels [5]. However, excessive integration of DGs into 

distribution grids is operationally problematic. Power injections from DGs may, at 

some times, drastically change distribution operating conditions. Adverse side-effects 

such as voltage fluctuations, thermal overloads, and overburdening components not 

inherently designed to support two-way power flows are some of the potential 

drawbacks of increased DGs penetration in distribution networks [6]. These challenges 

must be overcome to unleash the full benefits of DGs integration. 
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Figure 1.4: Annual Installed DER Power Capacity Additions by DER Technology [7]. 

One approach to accommodate additional DGs capacities in distribution 

networks is through infrastructural upgrades. In addition to not being adaptive to short-

term demands, such upgrades often turn out to be excessively costly. An alternative 

approach is to quantify the network hosting capacity and then ensure that DG allocation 

does not exceed that capacity as shown in Figure 1.5. Such a scheme allows network 

operators to take full advantage of existing infrastructure and postpone costly 

upgrades[8], while still allowing for future upgrades, if it is needed. The latter approach 

requires an appropriate hosting capacity analysis to assess the network capability [9], 

[10].  

This thesis focuses on three strategies to increase hosting capacity, namely 

network reconfiguration, reactive power control, and energy storage system (ESS) 

deployment. These strategies ultimately address previously mentioned challenges 

including those of overload and voltage fluctuation [11], [12]. Distribution hosting 

capacity calculations determine the amount of additional generation and load which can 

be added to the grid without requiring any upgrades. 
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Figure 1.5: Increasing hosting capacity techniques [2]. 

1.3. Network reconfiguration  

The reconfiguration of a distribution grid is accomplished by changing the state 

of switches in the grid. Since we wish to maintain radial network operation, 

reconfiguring the network must not affect its radiality structure. The word “radial” here 

refers to a configuration that connects all nodes but does not contain connected loops. 

The radiality condition is forced by verifying that the total number of lines comprising 

the loop is greater than the number of closed lines in all potential loops. That means 

there is at least one line in every loop should be opened. 

1.4. Reactive power control 

An injection of DGs can result in significant increases in the voltage magnitudes 

of other buses accommodating DGs. Increasing the DGs power can also increase 

reverse power flow, which can cause an over-voltage at the DGs location. The objective 

of the proposed method is to address the problem of voltage regulation in active 
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distribution networks with a high level of DGs integration; specifically, the focus is on 

managing voltage variability across the network due to the uncontrolled changes in the 

generated power by DGs. Thus, Reactive power control (RPC) is applied to the system 

to mitigate the rise in voltage magnitude, and that may increase the distribution grid 

hosting capacity. The RPC function is depending on the R/X ratio of lines where the 

higher R/X ratio, the smaller is the effect of RPC. Therefore, Static Var Compensator 

(SVC) is used to maintain voltages deviations within limits. 

1.5. Energy storage system 

The nature of intermittency in renewable energy is a critical limiter to increase 

the amount of renewable energy penetration into the grid. The emerge of ESSs offer 

tremendous benefits for both utilities and individuals including economic, environment, 

technical, etc. [13]. In terms of utilities, meeting the peak demand is a critical 

impediment; thus, ESSs not only helps meeting peak demand but also provides 

ancillary services such as frequency regulation. Another great benefit of utilizing ESSs 

is greenhouse gas reduction as well as increased the distributed generation. Deferring 

grid upgrade and build new transmission is an economic advantage of deploying ESSs. 

Individuals, on the other hand, can get benefit from deploying ESSs. They can have a 

reliable and efficient energy source without power interruption. Further, ESSs 

introduce opportunities for individuals to participate in power energy systems. 
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Chapter Two: State of the Art in Distribution Grid Hosting Capacity 

2.1 High DG penetration impact 

The high distribution energy resources penetrations have negative impacts on 

the distribution system. In [14], voltage and protection issues are some of the DG 

penetration impacts that have been discussed. It is concluded that not all these problems 

will happen with low DG penetration, but all these issues should be considered when 

designing a network to ensure system reliability. In [15], not only voltage and 

protection issues but also the reverse power flow that occurs due to the high DG 

penetration during the low load is presented. Moreover, overvoltage and voltage 

unbalance are caused by the integration of small DG units into one phase in low voltage 

(LV) distribution network is discussed in [16]. The author concludes that overvoltage 

and unbalanced voltage are not only caused by the high DG penetration but also by 

their placement along with the three phases.  

2.2 Hosting capacity calculation 

In this section, a variety of studies that compute the grid hosting capacity with 

various considerations are listed first followed by additional research that focuses on 

increasing the hosting capacity. The work in [17], uses a scenario-based stochastic 

analysis to calculate grid hosting capacity. The method uses OpenDSS [18] to calculate 

power flows and discusses impact of PV locations on voltage quality. OpenDSS is also 

used in [19] for a similar calculation. A more streamlined and detailed hosting capacity 

analysis is provided in [20] which considers voltage, thermal, and protection issues 
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suitable for commercial software. The study in [21] poses that realistic network 

measurements result in a higher hosting capacity compared to considering worst-case 

scenarios. 

In order to increase the hosting capacity, reactive power capability of PV 

inverters and capacitor banks jointly with cable reinforcement techniques are leveraged 

in [22] using MATPOWER for power flow calculations. Authors [23] also examines 

PV inverters to improve PV hosting capacity by deploying a local Volt-Var droop 

control. Moreover, [24] demonstrates by field experiments that  reactive power control 

of PV inverters can be utilized for static voltage support and can increase PV hosting 

capacity. All the aforementioned works do not consider SVCs, network 

reconfiguration, or ESSs to increase hosting capacity.   

2.3 Increasing the hosting capacity  

Recently, researchers and DSOs are more interested in increasing DGs hosting 

capacity without upgrading or reinforcing the grid. Therefore, a variety of approaches 

in increasing the hosting capacity are introduced in the literature; however, their 

effectiveness depends on the grid parameters and the DSOs preference. The study in 

[25] uses network reconfiguration and DG placement to maximize grid hosting 

capacity. Power flows are convexified similar to [23] and [24] to determine  a tractable 

optimal DG placement problem. A scalable combinatorial enumeration technique is 

utilized to determine several optimal network configurations for distribution system 

operators (DSOs). In [28], an adjusting network reconfiguration and a power electronic 

device, called soft open point that can control active and reactive flows from adjacent 

feeders, are used to maximize grid hosting capacity. A combination of heuristic 

methods is used to solve the combined problem with worst-case load. In [29], a multi-
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period OPF method for determining the DG penetration enhancement in distribution 

networks by using static and dynamic network reconfiguration is proposed. The static 

network reconfiguration considers remotely and manually controlled switches while 

the dynamic network reconfiguration considers the remotely controlled switches only. 

The problem is posed as a mix-integer nonlinear programming. In addition in [30], 

optimal network reconfiguration and DG allocation are utilized to maximize grid 

hosting capacity. A linearized AC power flow equation is developed based on a set of 

assumptions. The problem is formulated as MILP with a proper radiality constraints. 

Finally, these works do not consider SVC or batteries. 

 The work in [12] uses on-load tap changer and SVCs to maximize grid hosting 

capacity robust to uncertainty in power generation. They linearize the DistFlow 

equations [31] to make the problem tractable and achieve an MILP formulation. The 

study in [32] determines size and location of ESSs jointly with capacitor banks and 

network reinforcement. A piece-wise linearization method for the power flows is 

utilized to arrive at a mixed-integer linear programming formulation. SVCs and 

network reconfiguration are not utilized in this study. Studies in [30] and [31] focus on 

a multi-stage formulation for optimal timing, sizing, and placement of DGs, ESSs and 

capacitor banks. A linearization technique is proposed for loss calculations and the 

formulation is a MILP.  Nevertheless, network reconfiguration is not considered in this 

work. In [35], A droop-like control for battery setpoints is proposed based on voltage 

sensitivity calculations so that overvoltage does not occur and PV hosting capacity is 

increased. The setpoints are calculated using linear programming. This work considers 

neither network reconfiguration nor SVCs. 
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Chapter Three: Model Outline 

The present thesis focuses on the development of linearized mathematical 

models to determine the optimal network reconfiguration, the optimal size of SVC, and 

the optimal size of ESS to maximize the DG hosting capacity. The hosting capacity 

optimization problem is formulated as a mixed-integer linear program (MILP). In order 

to mitigate the effect of voltage deviations on the hosting capacity, the use of voltage 

regulation is considered to ensure that the increase in grid hosting capacity does not 

violate acceptable voltage limits. Unlike existing studies on increasing available grid 

hosting capacity, this thesis leverages a novel power flow linearization developed in 

our previous work [36]. This can speed-up the hosting capacity optimization problem 

while taking into consideration the interdependency of network reconfiguration and the 

optimal size for SVCs and ESSs, and sizing and locations for DGs. 

Distribution networks are typically designed as passive networks operating with 

a radial structure. This specific design offers simple operation and maintenance at low 

costs [37]. In this architecture, switches can be added to connect/disconnect nodes in 

the system. Distribution network switches are categorized either as sectionalizing 

switches or tie switches. During normal operation, the former are typically closed, and 

the latter are open. Network topology may be modified by changing the status of these 

switches. This practice is known as network reconfiguration and is commonly utilized 

during emergency operations. Reconfiguration has also been applied to reduce power 

losses, balance system loads, improve voltage levels, and restore electricity services 
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[37]. In a previous study [30], our group proposed optimal network reconfiguration and 

DG allocation to maximize grid hosting capacity using a MILP formulation. Albeit, 

[30] ignores SVCs and ESSs. 

DG incorporation could cause undesirable fluctuations in the voltage profile of 

a distribution system due to uncontrolled variations in power generation and 

accordingly net consumption [38]. A major challenge that distribution system operators 

are facing when incorporating DGs is therefore maintaining the voltage within desired 

levels throughout the network. Reactive power control is defined as the process of 

managing voltage levels and reactive power to achieve operation objectives without 

violating operating constraints [39]. SVCs can be used to reduce active power loss, 

reduce reactive power flows, and reduce voltage deviations. An advanced technique to 

improve DG hosting capacity involves allowing DGs to regulate feeder voltages to 

actively cope with the fluctuations. Reactive power control can be implemented using 

such distributed control, obviating the need for advanced communications technology 

[40]. This improves system reliability and speeds up decision making; however, it 

increases the complexity of the distribution system as it introduces numerous local 

controllers to the system.  

ESSs may be utilized to overcome the intermittency of solar energy as well as 

increase system reliability. Additionally, storage technologies help in overcoming the 

overvoltage issues resulting from high DG integration.  Energy storage technologies, 

therefore, offer a solution to increase the available grid hosting capacity. Different kinds 

of energy storage technologies can be used, each with their own benefits useful for 

tackling different technical problems. If both ESSs and high levels of DG are optimally 

placed in distribution networks, they can reduce transmission and distribution loss, 
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regulate voltages, delay costly upgrades, reduce peak demand, and improve power 

quality. In this thesis, the effect of a general battery storage system is also considered. 

 

Figure 3.1: Flow chart of the hosting capacity calculation method. 

3.1 Problem Formulation 

An optimization-based method is proposed with the goal of evaluating 

strategies aimed at increasing the DG hosting capacity. This objective is achieved by 

using linearized AC power flow equations to find the maximum amount of DG which 

can be incorporated into a given radial distribution network without exceeding 

operational limits. The linearized power flow model is used to find the optimal hosting 

capacity by simultaneously optimizing DG profile, distribution network 

reconfiguration, and SVC and ESS sizes. 
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3.1.1 Power Flow Linearization 

The employed power flow model uses the point of interconnection (POI), i.e., 

the point where the distribution network is connected to the upstream system, as a 

reference. The POI voltage is assumed to be 1∠0 p.u. and is used to redefine the voltage 

magnitude and phase angle (Vm and θm) for all network buses. Bus m voltage deviation 

(ΔVm and Δθm) are defined as the difference of the bus voltage magnitude and phase 

angle from the corresponding quantities at POI.  The redefined voltage magnitudes and 

angles for all downstream buses are thus expressed as: 

𝑉# = 1 + 𝛥𝑉#                                              ∀𝑚 ∈ 𝐵  (1) 

𝜃# = 0 + 𝛥𝜃#	                                             ∀𝑚 ∈ 𝐵  (2) 

Two assumptions are made to simplify the power flow equations. First, the 

trigonometric terms of two connected buses are simplified using small angle 

approximations, i.e., sin(θm-θn) ≈ (Δθm -Δθm) and cos(θm-θn)≈1 are employed. 

Second, any term involving the product of voltage magnitude deviations and voltage 

angle deviations is ignored. Based on these assumptions, the simplified real and reactive 

power flow equations are obtained as follows: 

	𝑃𝐿#) = 𝑔#)(1 + 𝛥𝑉
∧
)(𝛥𝑉# − 𝛥𝑉)) − 𝑏#)(𝛥𝜃# − 𝛥𝜃))         ∀𝑚𝑛 ∈ 𝐿  (3) 

𝑄𝐿#) = −𝑏#)(1 + 𝛥𝑉
∧
)(𝛥𝑉# − 𝛥𝑉)) − 𝑔#)(𝛥𝜃# − 𝛥𝜃))	       ∀𝑚𝑛 ∈ 𝐿   (4) 

The values of  𝛥𝑉
∧

 in (3) and (4) are specific constants that are determined by 

pre-solving a set of linearized line flows as illustrated in Figure 3.1. See [36] for a 

detailed derivation. 
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3.1.2 SVC Limits 

SVCs are used to aid voltage regulation. Constraint (5) expresses the capability 

limits of SVC: 

−Q!
567,!89 ≤ Q!567 ≤ Q!

567,!89            ∀m ∈ B              (5) 

3.1.3 Maintaining Radiality During Reconfiguration 

The reconfiguration of a distribution grid is accomplished by changing the state 

of switches in the grid. Since we wish to maintain radial network operation, 

reconfiguring the network must not affect its radiality structure. The word “radial” here 

refers to a configuration that connects all nodes but does not contain connected loops. 

The radiality condition is forced by verifying that the total number of lines comprising 

the loop is greater than the number of closed lines in all potential loops. That means 

there is at least one line in every loop should be opened. The radiality constraint is 

mathematically described as follows: 

∑ 𝑧#)#)∈G ≤ 𝐿#) − 1  ∀mn ∈ L											 (6) 

Here, G is the set of all possible loops,𝐿#)is the total number of lines in each 

loop, and zmn is the binary variable that denotes the status of the line connecting buses 

m and n. If the line switches are opened, the value of zmn is 0 and if the switches are 

closed, zmn value is 1. 

3.1.4 Energy Storage  

The operation of ESS is modeled as follows: 

𝑃#/++ = 𝑃#
/++,;(2 + 𝑃#

/++,*<            ∀𝑚 ∈ 𝐵   (7) 

0 ≤ 𝑃#
/++,;(2 ≤ 𝑃#

/++,#$%𝑢#       ∀𝑚 ∈ 𝐵           (8) 

−𝑃#
/++,#$%(1 − 𝑢#) ≤ 𝑃#

/++,*< ≤ 0       ∀𝑚 ∈ 𝐵   (9) 

𝐸# = 𝐸#(>?@) −
B!"#$

C!
− 𝑃#*<      ∀𝑚 ∈ 𝐵            (10) 
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(1 − 𝐷)𝐸##$% ≤ 𝐸# ≤ 𝐸##$%       ∀𝑚 ∈ 𝐵            (11) 

Here, PmESS (7) is the summation of charging and discharging powers drawn by 

ESS in bus m. The output is positive when the ESS is charging, and it is negative when 

the ESS is discharging. In (8) and (9 )PmESS,ch and PmESS,dis are respectively the amount 

of power drawn due to charging and discharging. The binary variable um represents the 

charging/discharging status of the ESS. Using um ensures that the ESS is either charging 

or discharging and never both at the same time. When um is set to 1, the ESS is 

discharging, and when um is set to 0, the ESS is discharging. The ESS stored energy is 

determined in (10) as the earlier hour stored energy minus the discharged or the charged 

power; thus, the stored energy will rise if the ESS is charging and it will drop if the ESS 

is discharging. (11) limits the stored energy by considering the ESS depth of discharge. 

3.1.5 Hosting Capacity Optimization Model 

The grid hosting optimization problem is given next: 

maxc 𝑃#.#∈D                             (12) 

∑ 𝑃**∈-! +∑ 𝑃𝐿#))∈E! + 𝑃#. + 𝑃#/++ = 𝑃#&      ∀𝑚 ∈ 𝐵          (13) 

∑ 𝑄**∈-! +∑ 𝑄𝐿#))∈E! + 𝑄#. + 𝑄#+,- = 𝑄#& 																																						∀𝑚 ∈ 𝐵            (14) 

∑ 𝑧#)#)∈G ≤ 𝐿#) − 1                                       γ ∈ Γ            (15) 

𝑃#/++ = 𝑃#
/++,;(2 + 𝑃#

/++,*<                             ∀𝑚 ∈ 𝐵            (16) 

0 ≤ 𝑃#
/++,;(2 ≤ 𝑃#

/++,#$%𝑢#                          ∀𝑚 ∈ 𝐵          (17) 

−𝑃#
/++,#$%(1 − 𝑢#) ≤ 𝑃#

/++,*< ≤ 0            ∀𝑚 ∈ 𝐵          (18) 

𝐸# = 𝐸#(>?@) −
B!"#$

C!
− 𝑃#*<      ∀𝑚 ∈ 𝐵            (19) 

(1 − 𝐷)𝐸##$% ≤ 𝐸# ≤ 𝐸##$%       ∀𝑚 ∈ 𝐵            (20) 

−𝑀(1 − 𝑧%&) ≤ 𝑃𝐿%& − *𝑔%&(1 + 𝛥𝑉
∧
)(𝛥𝑉% − 𝛥𝑉&) − 𝑏%&(𝛥𝜃% − 𝛥𝜃&)1 ≤ 𝑀(1 − 𝑧%&)        (21) 

−𝑀(1 − 𝑧%&) ≤ 𝑄𝐿%& − *−𝑏%&(1 + 𝛥𝑉
∧
)(𝛥𝑉% − 𝛥𝑉&) − 𝑔%&(𝛥𝜃% − 𝛥𝜃&)1 ≤ 𝑀(1 − 𝑧%&)     (22) 
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−𝑃#. ∗∝≤ 𝑄#. ≤ 𝑃#. ∗∝	 			 																∀𝑚 ∈ 𝐵										(23)		

−𝑄#
+,-,#$% ≤ 𝑄#+,- ≤ 𝑄#

+,-,#$%                   ∀𝑚 ∈ 𝐵         (24) 

−𝑃#
*,#$% ≤ 𝑃#* ≤ 𝑃#

*,#$%                                ∀𝑐 ∈ 𝐶         (25) 

−𝑄#
*,#$% ≤ 𝑄#* ≤ 𝑄#

*,#$%		                               ∀𝑐 ∈ 𝐶         (26) 

−𝑧#)𝑃𝐿#)#$% ≤ 𝑃𝐿#) ≤ 𝑧#)𝑃𝐿#)#$%										       ∀𝑚𝑛 ∈ 𝐿       (27) 

−𝑧#)𝑄𝐿#)#$% ≤ 𝑄𝐿#) ≤ 𝑧#)𝑄𝐿#)#$%       ∀𝑚𝑛 ∈ 𝐿      (28) 

Δ𝑉##() ≤ 𝛥𝑉# ≤ Δ𝑉##$%                 ∀𝑚 ∈ 𝐵      (29) 

Equation (12) denotes the objective which is the summation of installed DG 

capacity in allowable buses. Equations (13) and (14) are the real and reactive power 

balance equations that ensure at each bus the total real and reactive power supplied 

from DGs, ESSs, SVCs, and the flows to neighboring buses equals the power demand 

at that bus. The ESSs are not considered to supply reactive power, hence, the reactive 

power injection from ESSs do not appear in (14). Radiality as formulated in (15) is used 

to confine network reconfiguration to radial structures only. Conditions relating to the 

ESSs operation outlined in the previous subsection are also incorporated into the 

optimization as formulated by (16)-(20). Constraints (21) and (22) are the linearized 

real and reactive power flow equations, with the reconfiguration binary variable zmn 

acting to switch open and close the lines. Constraints (23) and (24) present the DG 

reactive power limit and the limit of SVC. The real and reactive power consumptions 

are limited by (25) and (26). Equations (27) and (28) restrict the line real and reactive 

power limits. Finally, (29) enforces voltage limits. 
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Chapter Four: Numerical Simulation 

The proposed formulation is applied to the IEEE 33-bus distribution test system. 

The modeled network comprises 32 lines and 5 tie switches as shown in Figure 4.1. It 

should be mentioned that SVCs and ESSs optimal placement are not considered in this 

work. Thus, 2 SVCs and 2 ESSs are randomly placed.     

There are 5 loops in the system, and they occur when the 5 tie switches are 

closed as illustrated in Table 4.1. The maximum capacity for each ESS is set to 1000 

kW. The total base load is fixed at 3.715+j2.3 MVA and a 0.8 lagging power factor is 

considered while the maximum power exchange with the upstream grid is set at 4.6 

MW.  

Lower and upper voltage limits are respectively fixed at 0.9 and 1.1 pu. The 

proposed model is modeled by GAMS and solved using CPLEX 12.6 [41] in a 

MacBook Air with a 1.6 GHz Intel Core i5 processor.  

 

Figure 4.1: IEEE 33 bus distribution test system[30]. 
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Table 4.1: All possible loops generated by closing tie lines [30]. 

Loop # Lines making the loop 

1 9, 10, 11, 12, 13, 14, 34 

2 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29, 30, 31, 32, 
36 

3 3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 37 

4 2, 3, 4, 5, 6, 7, 18, 19, 20, 33 

5 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 35 

The following cases are considered:  

Case 0: Optimal hosting capacity as a base model. 

Case 1: Optimal hosting capacity with SVCs.  

Case 2: Optimal hosting capacity with network reconfiguration. 

Case 3: Optimal hosting capacity with ESSs. 

Case 4: Optimal hosting capacity with network reconfiguration, ESSs, and SVCs. 

Case 5: Sensitivity analysis of hosting capacity with respect to the line limits. 

Two scenarios are considered for each case, in which in scenario 1, DGs are 

allowed to be installed at all buses at the same time while in scenario 2, DGs are 

installed at end buses only. 

4.1 Case 0: Optimal hosting capacity as a base model 

The hosting capacity calculation of the IEEE 33-bus is determined with an 

optimal solution without utilizing the aid of reconfiguration, ESSs, or SVCs.  The 

results of Case 0 are laid out in Table 4.2. The table illustrates power exchanges with 

the grid, DGs power injection, line power losses, and voltage magnitude range for each 

scenario. In scenario 1, the total hosting capacity is 8450.6 kW. An amount of 4588 kW 

is transferred to the main grid while the rest is consumed by local loads. The power loss 

is 147.6 kW and bus voltages vary between 0.99 and 1.06. 
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In scenario 2, the hosting capacity calculation of the IEEE 33-bus is optimized 

where the DGs are installed only at end buses. As shown in Table 4.2, the total hosting 

capacity for this scenario is 1470 kW, with injections at buses 18, 22, 25 and 33. Bus25 

hosts the most generated power with a value of 920 kW. The power transferred from 

the main grid is 2363.7 kW. Incurred power losses are at 118.7 kW. 

Table 4.2: The result for Case 0. 

Scenario # Scenario 1 Scenario 2 
Total DG (kW) 8450.6 1470.0 

Power Exchange (kW) - 4588 2363.7 

Total loss (kW) 147.6 118.7 
Voltage (p.u.) 0.99-1.06 0.93-1.00 

4.2 Case 1: Optimal hosting capacity with SVC 

In this case, SVCs are used as a technique to control voltage rise in the system, 

which leads to an increase in the DG hosting capacity. Two SVCs are placed in bus 7 

and 24 to compensate the need for reactive power in these buses. The results are 

tabulated in Table 4.3. In scenario 1, the DG hosting capacity has increased slightly by 

using SVCs when it is compared to Case 0. Moreover, the voltage magnitude falls 

between the acceptable limits as shown in Figure 4.2. However, in the second scenario 

the DG hosting capacity has not changed, which is due to the capacity of the lines 

connected to the end buses. The results show that SVCs may not significantly enhance 

the hosting capacity as the line capacity is typically a more limiting factor.   
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Table 4.3: The result for Case 1. 

Scenario # Scenario 1 Scenario 2 
Total DG (kW) 8456 1470 

Power Exchange (kW) -4588 2377.8 
Total loss (kW) 152.2 132.8 
Voltage (p.u.) 0.99-1.05 0.92-1.00 
SVC location 7 and 24 7 and 24 

 

 

Figure 4.2: Comparison of voltage magnitude between Case 0 and Case 1, scenario 1. 

4.3 Case 2: Optimal hosting capacity with network reconfiguration 

In this case, the hosting capacity of the IEEE 33-bus is maximized by 

considering network reconfiguration. Table 4.4 details the results. In scenario 1, the 

optimal hosting capacity is determined to be 8542.0 kW. The power transfer to the main 

grid is also determined to be 4581.0 kW. In comparison with Case 0, the total hosting 

capacity has increased by about 90 kW, while power exchange from the main grid 

remains similar. This is perhaps due to the corresponding line limit. The optimal 

network reconfiguration solution yields all tie switches to be closed. Lines 14, 19, 21, 

24 and 32 are further determined to be open. By comparing this case to Case 0, network 
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reconfiguration has slightly increased the total hosting capacity without upgrading the 

grid. 

Table 4.4: The Result for Case 2. 

Scenario # Scenario 1 Scenario 2 
Total DG (kW) 8542.0 2960 

Power exchange (kW) -4581 802.4 
Total loss (kW) 245.6 47.4 
Voltage (p.u.) 0.91-1.004 0.95-1.00 

Open lines 14,19, 21, 24, 32 20,21,24,34,36 

In scenario 2, when DGs are only allowed to be installed at end buses, the 

hosting capacity of DGs has doubled the value of the corresponding scenario in Case 

0, as shown in Table 4.5. A total capacity of 2960 kW is injected in end buses while the 

exchange power with the main grid is decreased to 802.4 kW.  In comparison with Case 

0, power losses have reduced by about 60%. In this scenario, closed tie switches are 33, 

35 and 37 and lines 20, 21 and 24 are opened. Figure 4.3 presents comparatively the 

voltage profiles of scenario 1 in Case 0 and Case 2. 

 

Figure 4.3: Comparison of voltage magnitude between Case 0 and Case 2. 
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4.4 Case 3: Optimal hosting capacity with ESS 

ESS is considered to maximize the hosting capacity in this case. The ESSs are 

located at bus 12 and 20. In scenario 1, where DGs are allowed to be installed at all 

buses at the same time, the total hosting capacity is determined to be 10394.6 kW while 

the exchange power with the main grid remains close to Case 0. The newly determined 

hosting capacity is significantly larger than that of Case 0. In Scenario 2, the integration 

of ESSs have not made any improvement in DGs hosting capacity; however, the 

exchange power with the main grid has increased by about 700 kW. 

Table 4.5: The result for Case 3. 

Scenario # Scenario 1 Scenario 2 
Total DG (kW) 10394.6 1470 

Power Exchange (kW) -4580 3071.4 
Total loss (kW) 100 139.5 
Voltage (p.u.) 0.99-1.08 0.93-1.00 

Total power charged (kW) 2000 686.8 
ESS location 12 and 20 12 and 20 

 

 

Figure 4.4: Comparison of voltage magnitude between Case 0 and Case 3. 
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4.5 Case 4: Optimal hosting capacity with network reconfiguration, ESS and, 

SVC 

In this case, all previous methods are combined, Network reconfiguration, 

ESSs, and SVCs, to maximize hosting capacity. In the first scenario, as it is cleared 

from Table 4.6, the DG hosting capacity has increased by about 25.5% after combining 

all three approaches and apply them to the system. Moreover, in the second scenario, 

when DGs are placed at end buses, the hosting capacity of DG has increased by about 

123% after combining all approaches and apply them to the system meanwhile the 

exchange power has decreased dramatically, and the ESSs have charged by 1000 kW. 

Furthermore, the voltage magnitude is maintained within acceptable limits. In short, the 

proposed model not only has significantly increased the DG hosting capacity but also 

it has reduced the power transferred from the grid. 

 

Figure 4.5: Comparison of voltage magnitude between Case 4 and Case 0. 
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Table 4.6: The result for Case 4. 

Scenario # Scenario 1 Scenario 2 
Total DG (kW) 10607.7 3282 

Power exchange (kW) -4583 1540.7 
Total loss (kW) 309.8 107.5 
Voltage (p.u.) 0.90-1.0 0.93-1.00 

Open lines 14,17,20,21,24 14,17,20,21,23 
Total power charged (kW) 2000 1000 

ESS location 12 and 20 12 and 20 
SVC locations 7 and 24 7 and 24 

4.6 Case 5: Sensitivity analysis of hosting capacity with respect to line limits  

The sensitivity of the hosing capacity for Case 4 concerning line limits is 

discussed in this case. From the first scene in all cases, it is cleared that the line limit of 

the point of interconnection (POI) has limited the DGs hosting capacity in the 

distribution test system. Therefore, the limit of the line of the POI is changed to examine 

the effect of line limit to the hosting capacity. The line capacity is increased by 10% 

increments up to 50%. As shown in Table 4.7 and Figure 4.6, when the lines capacity 

limits are increased by 10%, 20%, 30%, 40%, and 50%, the hosting capacity has 

increased by 4.3%, 8.6%, 13%, 17.4%, and 21.7% respectively.  

Table 4.7: The results for Case 5. 

Line Capacity 
(%) 0% 10% 20% 30% 40% 50% 

Line Capacity 
(kW) 4600 5060 5520 5980 6440 6900 

Total DG Power 
(kW) 10607.6 11068.3 11528.8 11988.6 12450 12910.7 

Power Exchange 
(kW) 4583 5039.1 5495 5950.5 6405.2 6860.5 

Power losses 
(kW) 309 314 318.7 323 329.8 335.3 
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Figure 4.6: The change on the Hosting capacity with respect to capacity limits of lines 1. 

Since the second scenarios have not reached the line limit of POI, they are not 

included in the study. Besides, the power loss is increased slightly by 1.6%, 3.1%, 4.5%, 

6.7%, and 8.5% as the line capacity limit increased by 10%, 20%, 30%, 40%, and 50% 

respectively as shown in Figure 4.7. As shown in Table 4.7, the POI line capacity 

impacts the DGs hosting capacity where the hosting capacity increases as the line 

capacity increased. Therefore, upgrading a critical line limit in the system instead of 

the whole system has shown a significant improvement in the hosting capacity of the 

distribution system.   

 

Figure 4.7: The change on Power losses with respect to capacity limits of lines 1. 
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Several methods to increase the hosting capacity of the distribution grid with 

different restrictions in DGs location are considered in this thesis. Figure 4.8 exhibits 

the changes in the hosting capacity along with the approach that is used. It is clear that 

DGs location and POI line capacity limits have a significant effect on the hosting 

capacity calculation. Moreover, the hosting capacity is increased along with ESS 

capacity while DGs are considered in all buses. However, the SVCs have slightly 

increased the hosting capacity and that due to the R/X ratio of lines. Finally, the 

proposed model applied on IEEE 33-bus system shows that the hosting capacity is 

maximized with maintaining the system’s operational limits and avoiding any 

reinforcement in the grid.  

 

Figure 4.8: Comparison between all methods for both scenario. 
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Chapter Five: Conclusion  

In this thesis, different methods that can significantly increases DG hosting 

capacity for the radial distribution network were proposed.  The proposed model was 

analyzed through numerical simulations on the IEEE 33-bus system. A linearized AC 

power flow was employed. Three strategies were considered to increase hosting 

capacity, namely reactive power control using SVCs, network reconfiguration, and 

utilizing ESSs. The reconfiguration of the distribution grid has been programmatically 

encoded in the formulation while SVCs and energy storage systems have been added 

to the system at fixed locations. The ESSs significantly increased the DGs hosting 

capacity when DGs are allowed at all buses while network reconfiguration was more 

efficient for when DGs are considered only at end buses. The effect of SVC depends 

on the lines R/X ratio. By using the proposed wire and non-wire solution, the hosting 

capacity can be increased in the studied case as much as 25.5%.  
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