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A B S T R A C T

Forecasts of tropical cyclones have seen rapid improvements in recent years as expanding computational ca-
pacity permits more runs of finer resolution meteorological models with increasing representation of physical
processes. However, the utilization of a hydrodynamic component in these models is often neglected, meaning
flood forecasts typically output point water levels that give little indication of a projected inundation extent on
the ground. Here, we append this critical component to the forecast cascade by coupling Fathom-US, a con-
tinental-scale hydraulic model which employs the LISFLOOD-FP numerical scheme, to forecasts of streamflow,
rainfall and coastal surge height from the National Oceanic and Atmospheric Administration (NOAA). Medium-
term (2–15 days) flood inundation forecasts, as well as hindcasts driven by real-time observations, were executed
for Hurricane Harvey by rapidly simulating pluvial and coastal flood hazard and extracting fluvial flood maps
from an existing US-wide simulation library. The resultant ~30m resolution depth grids were then validated
against post-event observations collated by the US Geological Survey. Across the disaster zone, the hindcast
(forecast) model captured, on average, 78% (75%) of the benchmark flood extent, obtained a Critical Success
Index of 0.66 (0.57) and deviated from observed high water marks by ~1m (~1.2m). When compared to a
simpler GIS-based approach, the hydraulic model exhibited much higher skill in replicating observations. This
study shows that fully hydrodynamic approaches can be practicably employed in large-scale forecast frameworks
at high resolution to produce skillful projections of inundation extent without significantly affecting the forecast
lead time.

1. Introduction

Flood events are among the most costly and deadly natural disasters
on the planet: since 1980, they have caused economic damages of over
$1 trillion and 220,000 deaths worldwide (Munich Re, 2018a). Recent
devastating events, particularly flooding (both freshwater and salt-
water) arising from tropical cyclones, have sharply focused the issue in
the minds of the public and policy makers alike. In 2017, Hurricanes
Harvey, Irma and Maria collectively caused $220 billion of damage in
the Gulf of Mexico; Typhoon Haiyan claimed the lives of over 6000
people and caused $10 billion worth of damage in East Asia in 2013;
and in 2008, Cyclone Nargis caused 140,000 fatalities and $4 billion of
economic damage in Myanmar (Munich Re, 2018b). A growing body of
evidence suggests that such tropical cyclones will become more intense
(Kang and Elsner, 2016; Sobel et al., 2016; van Oldenborgh et al., 2017;
Emanuel, 2017) and move more slowly once they make landfall

(Kossin, 2018) as a result of climate change. With more precipitation
falling over a longer duration, tropical cyclone driven flood impacts are
likely to increase in the future. On top of the freshwater component of
such events, the low atmospheric pressure and strong onshore winds
arising from tropical cyclones result in coastal inundation. Regardless of
potential changes to these storm characteristics under climate change,
increased sea levels in a warming world are likely to exacerbate coastal
flood impacts.

In light of this, there is a clear need for substantial risk reduction
measures to mitigate against present and future flood consequences.
One facet of such measures is improved flood forecasting, which per-
mits a short-term response to be mounted (e.g. temporary defense
erection, evacuations, first-responder preparedness, reinsurance pur-
chasing). A typical generic flood forecasting approach can be con-
ceptualized as a source-pathway-receptor framework (e.g. Narayan
et al., 2012) as outlined in Fig. 1.
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Direct meteorological and hydrological observations (e.g. of rainfall
from gauges or radar, of wind speed from anemometers or radar, or of
river flows from an upstream gauge) can form the source data of the
forecast cascade if spatial coverage is sufficient, but such information is
often unavailable or generates forecasts with short lead times (a few
hours to a maximum of perhaps 1–2 days in very large basins), limiting
their usefulness. To increase lead times, medium-term forecasts
(2–15 days) use numerical weather prediction (NWP) models as the
primary input data source to the model cascade, and NWP systems have
benefitted from the rapid advances in computational capacity seen in
recent years. High performance computing (HPC) resources have had
the dual effect of permitting NWP models to run at increasingly fine
spatial and temporal resolutions so that atmospheric dynamics can be
more accurately represented (Buizza et al., 1999), and allowing mul-
tiple NWP simulations in an ensemble to account for underlying model
uncertainties (Cloke and Pappenberger, 2009).

Pathway models translate the source-generated meteorological
variables (e.g. precipitation, wind speed) to water flows (e.g. stream-
flow, coastal surge height), except where the rainfall output from the
source forms a direct input to a hydraulic model (i.e. for pluvial flood
events). For riverine flood events, a hydrological model takes meteor-
ological inputs and computes, with varying levels of physical com-
plexity, water fluxes at the land surface based on soils, land cover and

topography to generate streamflow. As examples, the European
Commission Joint Research Centre (JRC) LISFLOOD (van der Knijff
et al., 2010) and the European Centre for Medium-Range Weather
Forecasting (ECMWF) HTESSEL (Balsamo et al., 2011) models are used
in the JRC-ECMWF forecast product GloFAS (Alfieri et al., 2013), while
the National Oceanic and Atmospheric Administration (NOAA) Na-
tional Water Model is driven by WRF-Hydro (Gochis et al., 2018) to
forecast river discharge in the US. For coastal storm surges, forecast
wind fields are the driving forces in models describing fluid motion in
the ocean which simulate surge height at given coastal locations (e.g.
the NOAA SLOSH model (Jelesnianski et al., 1992)).

The source and pathway components of the forecast framework
have received much attention in the literature (Cloke and
Pappenberger, 2009; Thielen et al., 2009; Pappenberger et al., 2010;
Alfieri et al., 2012, 2013) and form the products of the world’s leading
forecast centers – NOAA and ECMWF – but a receptor model is an often-
neglected component of the forecast cascade. A receptor model in the
framework described here translates input water flows from pathway or
source models (e.g. streamflow, rainfall or coastal surge height) and
translates them to a 2D grid of flood depths using a hydraulic model. If
a receptor model is used at all (many forecasts are point water or flows
levels only), such products are not operational and only focus on a
single peril (Pappenberger et al., 2005; Schumann et al., 2013); simu-
late over small spatial scales (Addor et al., 2011; Nguyen et al., 2016);
require significant manual set-up and have demanding data require-
ments (Sanders et al., 2010; Bhola et al., 2018; Adams et al., 2018); or
employ simplified representations of hydraulic processes to reduce
computational costs (Paiva et al., 2013; Zheng et al., 2018a). This is
predominantly because most of the computational time available is
afforded to the NWP models, maximizing resolution and producing
probabilistic ensemble simulations (Cloke and Pappenberger, 2009),
alongside the prevailing view that full-physics hydraulic models are too
computationally expensive to be used in operational forecasts (Leskens
et al., 2014; Bhola et al., 2018). Yet, tropical cyclones demand forecasts
of multiple flood drivers and end-users would greatly benefit from de-
tailed, local predictions of flood extent and depth to enable a more
complete risk calculation.

Official riverine flood forecasts in the US are issued by the NOAA
National Weather Service (NWS) through Weather Forecast Offices.
These forecasts are generated by River Forecast Centers (RFCs), pro-
viding accurate information to inform public alerts and warnings (for
more information on operational practice, see Adams, 2016). These
RFC forecasts are produced at particular points, with forecast in-
formation currently available at 3697 points across the contiguous US
according to the NOAA NWS Advanced Hydrologic Prediction Service
(AHPS; https://water.weather.gov/ahps/forecasts.php). Of these, only
155 have accompanying inundation maps (i.e. adopt the receptor
component in Fig. 1). Adams et al. (2018) illustrate state-of-the-art
practice at the Ohio RFC, where unsteady-state 1D HEC-RAS models
rapidly translate forecast point discharge to inundation maps for
3200 km of continuous river reach. Reported errors in predicted stage
are< 0.5m. Furthermore, Mashriqui et al. (2014) apply a similar ap-
proach in the Middle Atlantic RFC, coupling 1D HEC-RAS to a tidal
boundary at the mouth of the Potomac River. Reported accuracies were
similar to Adams et al. (2018). While these 1D approaches provide
rapid and accurate riverine forecasts, they require channel cross-section
data which are only sparsely available and considerable manual set-up
by skilled practitioners. Furthermore, their focus only on large-river
flooding means the significant pluvial hazard posed by tropical cyclones
remained unmodelled.

Here we present a medium-term (2–15 days) tropical cyclone flood
inundation forecasting product which is capable of being used in an
operational system, and demonstrate that high-resolution hydraulic
models can now be practicably employed at large-scale in such fra-
meworks where accurate local forecasts are lacking. We forecasted
Hurricane Harvey by coupling streamflow, rainfall and storm surge

Fig. 1. Schematic of a source-pathway-receptor flood forecasting cascade.
Arrows indicate the flow of data (with examples in ovals), where the outputs of
one component (specified in rectangular boxes) become the inputs of another.
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predictions from NOAA to Fathom-US (Wing et al., 2017), a con-
tinental-scale hydraulic flood model of the US, and used this to produce
daily flood depth footprints at ~30m resolution. Updating the hydro-
logic inputs with post-event observations as they became available, we
also produced a model hindcast in real-time. After the event, we tested
the forecast and hindcast model against ground observations and de-
rived flood extents from the US Geological Survey (USGS) (Watson
et al., 2018). The results of this validation procedure are compared to
those obtained when a simpler Height Above Nearest Drainage (HAND)
model from the NOAA National Water Center (NWC) is used instead of
the hydrodynamic model (NOAA NWC et al., 2018).

2. Methods and data

2.1. Hydrodynamic model (Fathom)

Hurricane Harvey made landfall on the east coast of Texas in August
2017, where some areas experienced 8-day rainfall totals of over
1500mm and dozens of USGS river gauges recorded return period flows
exceeding 1 in 100 years. Three important features of this tropical cy-
clone were forecasted by NOAA: streamflow from the NOAA National
Water Model (NWM), rainfall from the NOAA Weather Prediction
Center (WPC) and predicted storm surge height from the NOAA
National Hurricane Center (NHC). The NOAA NWM (http://water.
noaa.gov/about/nwm) has four variants: the analysis and assimilation
configuration, which provides a real-time view of current streamflow
conditions; short-range streamflow forecasts up to 18 hours; medium-
range streamflow forecasts up to 10 days; and long-range streamflow
forecasts up to 30 days. The medium-range product used here (NWM
v1.1) takes meteorological variables from the NOAA Global Forecast
System (https://www.emc.ncep.noaa.gov/GFS/) as inputs to the WRF-
Hydro hydrological model (Gochis et al., 2018) to forecast streamflow
for every river reach in the US, as defined by the USGS National Hy-
drography Dataset (NHD), via the Noah-MP land surface model (Niu
et al., 2011) and a Muskingum-Cunge channel routing scheme. Here,
we extract the maximum simulated streamflow on each river in the
domain from the NWM medium-range configuration over 3 days of
forecast model time, i.e. the maximum of all forecast streamflows
within a 72-hour forecast horizon from the same model run (http://
thredds.hydroshare.org/thredds/catalog/nwm/medium_range/catalog.
html). The NOAA National Water Model is unrelated to official forecasts
issued by NOAA NWS based on RFC modelling, but is employed here
since streamflow is forecast for every US river. The NOAA WPC data
used is the 3-day interactive forecast of 72-hour rainfall for 20×20 km
grid cells, output by a NWP model but subject to manual adjustments by
forecasters at the WPC (https://www.wpc.ncep.noaa.gov/qpf/day1-3.
shtml). The NOAA NHC Probabilistic Tropical Storm Surge (P-Surge)
model routes simulated meteorological variables through a SLOSH
model to determine potential storm surge heights at the coast with a 3-
day lead time (https://slosh.nws.noaa.gov/psurge2.0/).

For the fluvial inundation forecast, flood depths within a given river
basin, as defined by HydroBASINS (Lehner and Grill, 2013), are ex-
tracted from an existing library of nationwide flood maps at ~30m
resolution (Wing et al., 2017). These fluvial flood maps are driven by
discharges from a regional flood frequency analysis (RFFA) to ensure
flood inundation is simulated on every US river, meaning multiple maps
corresponding to a certain annual exceedance probability (e.g. 20% to
0.1% AEP) have been generated for the whole country. For each river
basin in the study area, the NWM streamflow forecast is assigned an
AEP, based on basin-specific data from a US variant of the global RFFA
of Smith et al. (2015) using USGS river gauges, and the relevant AEP
flood map is extracted from the library. Fig. 2 visualizes this process. By
sampling from pre-existing flood maps of the entire continental US,
simulation quality (e.g. grid resolution, physical process representa-
tion) is not hampered by the need for a forecast with reasonable la-
tency: the extraction process takes only seconds (Leedal et al., 2010).

For fluvial flooding, the response to extreme streamflow in a river basin
is relatively well-confined to that particular locality, meaning any
plausible flood event will match a pre-computed, event-agnostic in-
undation simulation of that area provided enough runs with different
boundary conditions are executed. How rainfall and surge vary in time
and space, however, is less related to the hydrologic conditioning of the
ground surface. In other words: simulating these perils ahead of time is
inadvisable, given the a priori specification of suitable extraction zones
is less defensible than for fluvial flooding. As such, the NOAA rainfall
and surge information is input to Fathom-US to generate new event-
specific depth grids, requiring ~6-hour parallel simulations of coastal
and pluvial flooding for a ~400,000 km2 domain at ~30m resolution
on a single node of 20 cores (Intel Broadwell E5 Xeon). Alongside
model-building and post-processing, the final product (maximum flood
depth in a pixel from the fluvial, pluvial and surge models) was pro-
duced ~24 hours after the release of the NOAA data, meaning the total
lead time was ~2 days. The forecasts were updated with observed
boundary conditions to produce a hindcast so that a more accurate
delineation of impacted areas could be identified with immediacy.
These boundary condition observations consisted of 24-hour rainfall
totals from the NOAA NWS (https://water.weather.gov/precip/
download.php), peak flows observed at USGS river gauging stations
(https://waterdata.usgs.gov/nwis/rt) and coastal water level observa-
tions from the NOAA Tides and Currents service (https://
tidesandcurrents.noaa.gov/gmap3/). During the Harvey event the
forecast and hindcast flood extent data produced by the system were
made freely available to first-responders and were used operationally
by NASA and insurers to rapidly assess exposure.

Fathom-US is a large-scale hydraulic modelling framework, whose
freshwater flooding component is set out in Wing et al. (2017). The US
implementation is itself a variant of the global model first described by
Sampson et al. (2015). It has been rigorously tested against thousands
of bespoke flood inundation studies carried out by US government
agencies, concluding that the large-scale methodology is approaching
the accuracy of traditional local models (Wing et al., 2017). The fra-
mework permits rapid construction and execution of model domains as
defined by the forecast footprint of US hurricane landfalls. Its compu-
tational hydraulic engine is driven by a variant of the LISFLOOD-FP
hydraulic model, which solves a local inertial form of the shallow water
equations in two dimensions over a regular grid (~30m: 1 arc second
resolution in this case) using a highly efficient numerical solution
(Bates et al., 2010; de Almeida and Bates, 2013). This grid is populated
with elevation values from the 1 arc second version of the USGS Na-
tional Elevation Dataset (NED), with levee information from the US
Army Corps of Engineers National Levee Database explicitly re-
presented. This Digital Elevation Model (DEM) has complete coverage
of the conterminous US and is thus the crucial component of the fra-
mework’s applicability to simulate inundation for all potential hurri-
cane landfall locations in the US. River hydrography is represented by
HydroSHEDS (Lehner et al., 2008); with those rivers wider than the grid
resolution being burnt directly into the DEM, and narrower streams
being represented by the subgrid 1D model of Neal et al. (2012). Fluvial
modelling is executed by inserting river discharge information (which is
ultimately linked to an RFFA-derived AEP, an NWM streamflow fore-
cast or a USGS river gauge observation) at the relevant inflow points in
the stream network, while the pluvial model takes spatial rainfall data
and drops it directly onto the land surface (“rain-on-grid”; Sampson
et al., 2013). Assumptions relating to infiltration capacity are made
based on soil information from the Harmonized World Soil Database in
conjunction with a modified Hortonian infiltration equation (Morin and
Benyamini, 1977). In urban areas, identified using satellite luminosity
data (Elvidge et al., 2007), the infiltration capacity is defined using
assumed urban drainage design standards. The storm surge model
component was conceived by Bates et al. (2005), who adapted the 2D
LISFLOOD-FP code traditionally used in fluvial settings for coastal
flooding. Using LISFLOOD-FP for such an application has precedent: as

O.E.J. Wing, et al. Journal of Hydrology X 4 (2019) 100039

3

http://water.noaa.gov/about/nwm
http://water.noaa.gov/about/nwm
https://www.emc.ncep.noaa.gov/GFS/
http://thredds.hydroshare.org/thredds/catalog/nwm/medium_range/catalog.html
http://thredds.hydroshare.org/thredds/catalog/nwm/medium_range/catalog.html
http://thredds.hydroshare.org/thredds/catalog/nwm/medium_range/catalog.html
https://www.wpc.ncep.noaa.gov/qpf/day1-3.shtml
https://www.wpc.ncep.noaa.gov/qpf/day1-3.shtml
https://slosh.nws.noaa.gov/psurge2.0/
https://water.weather.gov/precip/download.php
https://water.weather.gov/precip/download.php
https://waterdata.usgs.gov/nwis/rt
https://tidesandcurrents.noaa.gov/gmap3/
https://tidesandcurrents.noaa.gov/gmap3/


examples, Smith et al. (2012) evaluated its suitability for coastal in-
undation modelling in the UK and Quinn et al. (2014) applied the code
in a coastal flood risk assessment. In this component, the coastal
boundary line of the model domain is set within oceanic cells just off-
shore of the coastal flood defenses. For each cell along the coastal
boundary, the predicted peak surge height was extracted from P-surge
output and used to scale the tidal time series at that location to create a
fractional surge height time series. Water enters the model domain
along the boundary in accordance with this time series, and the hy-
draulic model simulates the dynamics of the surge as it interacts with
the shoreline and moves inland. 2D (burnt in the DEM) and 1D (sub-
grid) channels are represented here also, meaning the ability of the
storm surge to propagate inland via river channels is properly re-
presented: a crucial component of coastal flood models (e.g. Maskell
et al., 2014).

2.2. NWM-HAND model (NOAA NWC)

The NOAA National Water Center has recently explored the cou-
pling of the National Water Model to the Height Above Nearest
Drainage method (Rodda, 2005; Rennó et al., 2008; Nobre et al., 2011,
2016). This effort forms part of the National Flood Interoperability
Experiment (Maidment, 2016): which, like this paper, seeks to append
the neglected receptor component to the flood forecasting cascade
(Fig. 1). The HAND approach normalizes the DEM so that a given pixel
takes the value of the vertical distance to the stream it drains to. A

rating curve is then used to translate NWM flow forecasts to stage for a
given river cell, and any land cells that drain to this stream location and
have a HAND value less than the stage become flooded. Planar ap-
proximations such as these, which do not consider flow physics, have
been shown to be less skillful than models which represent the dy-
namics of flood inundation since the inception of raster-based hydraulic
modelling (Bates and De Roo, 2000) and again more recently (Afshari
et al., 2018), owing to their omission of mass and momentum con-
servation laws. In isolated test cases however, particularly on confined
floodplains with steep valley sides and straight river reaches, a planar
approach may offer satisfactory performance (Bates and De Roo, 2000).
Furthermore, the reduction in model skill may be considered acceptable
where rapid solutions are required to large computation problems
(Afshari et al., 2018; Liu et al., 2018). Geographies where these
methods are appropriate are difficult to specify a priori though, since
they have not undergone the same level of wide-area testing as hy-
drodynamic approaches (e.g. Wing et al., 2017). In evaluating the
simpler HAND-based approach alongside the more complex hydraulic
model presented here, the trade-off between including the physics of
water flow in a forecast model and computational efficiency can be
quantified.

The NWM-HAND model was executed for Hurricane Harvey (NOAA
NWC et al., 2018) using the USGS NED at 1/3 arc second resolution as
the DEM. The model was run each day with NWM analysis and as-
similation outputs, providing a snapshot of the flood extent caused by
Harvey at that time. By taking the maximum extent from all of these

Fig. 2. An example demonstrating the process of extracting fluvial flood maps for each river basin. The unshaded river basin (ID=17944) in (a) contains Menard
Creek, a tributary of the Trinity River ~100 km NE of Houston, and has a drainage area of ~500 km2. Streamflow is forecast for each flowline from the USGS NHD by
the NOAA NWM. The graph in (b) shows the regional flood frequency analysis at the outlet of basin 17944. The NWM 3-day forecast peak discharge was 845m3 s−1

from a model run executed on 27 August 2017. This corresponds to the 1 in 150 year streamflow in this basin, whose inundation has already been simulated in the
Fathom-US library as shown in (c). The depth grid is then extracted for this catchment. The final flood inundation map is shown in (d), where this process has been
repeated for all river basins in the domain and integrated with the new pluvial simulations to represent headwater (rivers with drainage area<50 km2) and surface
water hazard.
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HAND-based simulations, an analogous comparison can be made with
the Fathom hindcast: both models intended to simulate the maximum
flood extent when driven with observations.

2.3. Validation data

We evaluated the Hurricane Harvey forecast and hindcast footprints
against ground observations of flood extent and depth made by the
USGS (Watson et al., 2018). After the event, USGS field teams visited
impacted basins and collected high water marks (HWMs) in accordance
with the guidelines of Koenig et al. (2016). These are surveyed from the
debris or stain lines left by the receding water on the sides of buildings,
trees, fences and other structures. Horizontal co-ordinates are obtained
with a GPS, while vertical heights are referenced to the NAVD88 datum.
The 2123 resultant HWMs were, in combination with USGS gauging
station maximum water levels, interpolated (technique described in
Musser et al., 2016) across 1.4–3m resolution DEMs built with LiDAR
data for fourteen sites. This provided the current best reconstruction of
flood extents from the observed water level data. Though these ob-
servation data are used as a benchmark in this study, they are not error-
free. Watson et al. (2018) listed uncertainties for specific data points in
their study, and these range from<0.01m–0.55m (mean 0.07m),
though no information was specified regarding the method of quanti-
fication. For further details, see Watson et al. (2018).

2.4. Validation metrics

Firstly, the gridded flood depth benchmark data, derived from ob-
served water levels, were used to test the extent to which the models
captured the overall spatial pattern of the flooding. For this, the same
binary pattern measures were used as in Wing et al. (2017):
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M B M B

1 1

1 1 0 1 (1)

=
+

False Alarm Ratio M B
M B M B

1 0
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=
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=Error Bias M B
M B

1 0
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where M and B represent model and benchmark cells respectively, and
the subscript 1 and 0 indicate if the cell considered is wet and dry re-
spectively.

The ‘hit rate’ metric (HR; Eq. (1)) penalizes type II errors and is thus
a measure of the model’s tendency to underpredict the benchmark flood
extent. It can be interpreted as the proportion of benchmark flooded
areas that were replicated by the model. The ‘false alarm ratio’ (FAR;
Eq. (2)) penalizes type I errors and so represents the tendency of the
model to overpredict the benchmark flood extent. This metric can be
interpreted as the proportion of modelled flooded areas that are dry in
the benchmark. The ‘critical success index’ (CSI; Eq. (3)) penalizes both
type I and type II errors, thus being a metric that accounts for both
under and overprediction. It ranges between 0 (no match between
model and benchmark) and 1 (perfect match between model and
benchmark) and can be thought of as representing the model perfor-
mance over floodplain areas only as it excludes areas that do not in-
undate in both the model and benchmark data. Finally, ‘error bias’ (EB;
Eq. (4)) is the ratio of type I to type II errors. Values greater than 1
indicate the model tends to overpredict, while values less than 1 in-
dicate a tendency to underpredict with respect to the benchmark.

Secondly, we calculated the difference in water surface elevation
(WSE) specified by the USGS HWMs and the models. These differences
are analyzed in three ways:

=
∑ −

=Root Mean Squared Error
O M

N
( )n

N
n n1

2

(5)

=
∑ −

=Mean Absolute Error
O M
N

| |n
N

n n1
(6)

=
∑ −

=Mean Error
O M
N

n
N

n n1
(7)

where On and Mn is the WSE at a given observation point and corre-
sponding model cell respectively, N is the number of HWMs analyzed
and everything else is as above. The original dataset was trimmed down
to 1134 points so that the analysis was confined to high quality HWMs
that were not taken at the same location and which were referenced
against the same geodetic datum.

Both Root Mean Squared Error (RMSE; Eq. (5)) and Mean Absolute
Error (MAE; Eq. (6)) measure the average magnitude of the errors
(where an error is On – Mn). RMSE is a quadratic scoring rule (meaning
greater weight is given to larger errors), while MAE is linear (all errors
have equal weight). Mean Error (ME; Eq. (7)) calculates the average
error whilst still accounting for their sign: a negative ME indicates the
model has a tendency to overpredict observed WSEs, while a positive
one suggests underprediction.

3. Results and discussion

3.1. Flood extent comparison

The results of the flood extent comparison between the Fathom
hindcast model (driven with observed streamflow, rainfall and surge
heights) and USGS benchmarks for each of their fourteen study sites are
shown in Table 1a and Fig. 3. Most of the USGS flood extent is captured
by the model, with 78% of observed wet pixels being correctly identi-
fied as such in the model on average across all sites. Many of the sites
with high HRs also have relatively high FARs (e.g. Tres Palacios River
(Fig. 3a), Lower San Bernard River (Fig. 3l) and Upper Brazos River
(Fig. 3b)), driving a lower overall correspondence and overpredictive
bias as indicated by their CSIs and EBs respectively. Conversely, many
lower-HR sites have very low FARs (e.g. Upper and Lower Neches River
(Fig. 3k and 3m) and Cow Bayou (Fig. 3f)), generating comparable CSIs
and EBs < 1 indicating underprediction. Some high-HR sites have
correspondingly high CSIs, owing to low FARs (e.g. Lower Brazos River
(Fig. 3e) and Middle San Bernard River (Fig. 3j)), suggesting there is a
strong match between model and benchmark flood extents. CSIs, which
are the most discriminatory metric, range from a poor 0.5 (the model is
correct as often as it is incorrect) on the Upper San Bernard River
(Fig. 3i) to an excellent 0.9 (a 90% match between model and bench-
mark) on the Lower Brazos River (Fig. 3b). Across the domain, an
average CSI of 0.66 indicates that roughly 2 in every 3 model pixels in
the functional floodplain match the benchmark. Further to the details in
Section 2.3, the USGS benchmark flood inundation extent is subject to
uncertainty. It is generated via interpolation between point HWMs
(themselves containing vertical error), rather than a genuine 2D ob-
servation, meaning the accuracy of these maps is heavily dependent on
the spatial resolution of the HWMs. Without representing the physics of
flow that generated the HWMs in a hydraulic model (e.g. timing and
interaction of adjacent streamflows), the interpolation procedure may
produce unrealistic inundation extent boundaries where unconstrained
by point observations. To put the pattern scores into context: the Wing
et al. (2017) model attained average CSIs of ~0.75 against detailed
local models, with a maximum of ~0.90; global flood models average
CSIs of ~0.50, obtaining up to ~0.70 in isolated test cases, against a
variety of local models and satellite-derived flood extents (Sampson
et al., 2015; Winsemius et al., 2016; Dottori et al., 2016; Ward et al.,
2017); local flood models that have been manually built and ex-
tensively calibrated generally achieve CSI scores of 0.70–0.80 when
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compared to satellite observations of flood inundation (Aronica et al.,
2002; Pappenberger et al., 2007; Di Baldassarre et al., 2009; Wood
et al., 2016) and up to 0.9 when benchmarked against very high quality
data (e.g. Bates et al., 2006; Altenau et al., 2017). Fleischmann et al.
(2019) propose that a hydrodynamic model provides locally relevant
estimates of flood extent when CSI > 0.65. It should be noted that the
CSI metric is sensitive to the selected study area, however: favoring
overpredictive models of larger floods on flat terrain compared to the
reverse case (Stephens et al., 2014). The results shown here are towards
the higher end of those in the literature (though many of these are for
smaller floods where high CSIs are difficult to obtain). The hindcast
model performance is, however, shy of the very high CSIs exhibited by
calibrated local model – observation comparisons. The results thus in-
dicate that, across the model domain, the hindcast hydraulic model
presented here has some skill in replicating benchmark patterns.

The results of the comparison between the NWM-HAND model and
the USGS benchmark are shown in Table 1b. It is evident here that the

NWM-HAND model has lower predictive skill when benchmarked
against the USGS flood extents. Mean HRs indicate 46% of flooded
areas are correctly captured, with mean CSIs suggesting just over 4 in
every 10 pixels in the functional floodplain are identified correctly. It
should be noted that the NWM-HAND model structure is only capable
of representing fluvial flood hazard, meaning both hydrologically-iso-
lated flooding from intense local rainfall and coastal surge will not be
captured. Hurricane Harvey was predominantly a pluvial event:
flooding arose in many areas due to intense local rainfall on the land
surface, rather than from rivers flowing out of bank. Fig. 4 shows how
different the Fathom and NWM-HAND models look when this runoff
component is represented in an area to the NE of Houston. HAND being
a fluvial-only model perhaps explains why coastal basins (e.g. two sites
in Matagorda Bay) have such low scores, since storm surge may have
played an important role here. The lack of a rainfall component may
explain poor performance on small streams: the Upper San Bernard
River has a drainage area of ~500 km2 and the San Jacinto River site

Table 1
A comparison of (a) the Fathom model hindcast and (b) maximum flood extent from the NWM-HAND model hindcast of the NOAA NWC to the benchmark USGS
flood extents. The metrics Hit Rate (HR), False Alarm Ratio (FAR), Critical Success Index (CSI) and Error Bias (EB) are explained by Eqs. (1)–(4) in Section 2.4. To aid
interpretation, (c) indicates the color scale used to classify each measure: the darker the color, the higher the performance.
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Fig. 3. Maps displaying the intersection of the Fathom hindcast modelled Hurricane Harvey flood extent with those generated by the USGS based on observed HWMs
at 14 sites: (a) Tres Palacios River, (b) Upper Brazos River, (c) Big Cow Creek, (d) Matagorda Bay, (e) Lower Brazos River, (f) Cow Bayou, (g) San Jacinto River, (h)
East Matagorda Bay, (i) Upper San Bernard River, (j) Middle San Bernard River, (k) Upper Neches River, (l) Lower San Bernard River, (m) Lower Neches River and (n)
Pine Island Bayou. Grid scales in all panels are 0.25° (~27 km).
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contains headwater streams with drainage areas as small as ~20 km2,
and both exhibit extremely poor performance with NWM-HAND. The
flood hazard arising on these small streams is not driven by traditional
fluvial flooding processes, where aggregation effects lead to a large,
low-amplitude flood wave which propagates downstream, but by the
rapid lateral surface flow of intense local rainfall generating a flash
flood. This further contextualizes the scores obtained by the Fathom
model at these sites too, where, despite possessing a pluvial model
component, the difficulties in simulating this phenomenon are evident.
With that being said, for even the relatively simple problem of mod-
elling the Brazos River, which has a flat floodplain confined by steep
valley sides, NWM-HAND correctly identifies less than half of the pixels.
The hydrodynamic Fathom model, in contrast, correctly identifies be-
tween 74% and 90% of flooding from the Brazos. For reference, CSIs
obtained by HAND models have been reported between 0.5 and 0.9 for
a selection of watersheds in the US when comparing HAND approaches
to observational data or hydrodynamic methods (Zheng et al., 2018a,
2018b; Zhang et al., 2018; Afshari et al., 2018). The results from the
NWM-HAND model presented here do not appear to be as skillful as
those presented in these smaller scale studies. Further, despite this
approach making use of higher resolution (~10m) terrain data, it is
outperformed by a coarser (~30m) hydrodynamic model. This suggests
that the importance of higher grid resolution is only realized when
physical processes are represented.

Further to testing the Fathom and NWM-HAND models that were
driven with real-time observations, the Fathom forecast variant was
also benchmarked against the USGS flood extents. It was driven with
NWM peak flows from a 3-day forecast commencing at 1800 GMT-6 on
27th August 2017, as well as forecast rainfall and surge data from this
time. Hurricane Harvey generated peak streamflows across the domain
for over 5 days: beyond the horizon of the 3-day forecast model pre-
sented here. The forecast model output chosen for validation here
captures (temporally) the main hurricane impact in Texas, which was
felt prior to 31st August 2017. The results of this comparison are shown
in Table 2, where the Fathom forecast model sees a performance drop
with respect to its hindcast variant: mean CSI drops by 0.09 and mean
HR drops by 0.03. While HRs actually increase for most sites when
compared to hindcast performance (as high as 99.9% on the Lower San
Bernard River), this is amidst a backdrop of increased EBs that indicate
a heavy bias towards overprediction (mean EB of 84.02, compared to a
more modest 1.42 in the hindcast). It’s worth noting here, though, that
EBs are measured on a logarithmic scale. Since underprediction is

indicated by values less than 1 and overprediction by values greater
than 1, a value of 0.5 has the same magnitude bias as a value of 2, yet
the mean of these two values is 1.25 (not 1). Underrepresented by this

Fig. 4. An area near Crosby, NE of Houston, exhibiting the output of (a) the NWM-HAND and (b) the Fathom hindcast models. The Arkema chemical plant is within
the red circle, which was inundated during Harvey and led to an industrial disaster. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2
A comparison of the forecast variant of the Fathom model to the benchmark
USGS flood extents. The color scale used is explained in Table 1c.
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mean EB, therefore, are the extremely high underpredictive biases
evident on the Lower and Upper Neches River, and Cow and Pine Island
Bayous. The use of forecasted, rather than observed, model inputs is
therefore widening the tails of the bias distribution (EBs moving further
from 1) and reducing overall performance (CSIs decreasing). With that
being said, capturing, on average, three-quarters of benchmark in-
undated pixels (HR) while keeping false alarms at 23% (FAR) is in-
dicative of fair performance in the forecast model.

Aside from structural errors in the hydraulic model and its compo-
nents (e.g. the DEM), the hindcast model contends only with errors in
the measured data it is driven with. Though this is not insignificant,
25–40% error in measured flows is common and can be even higher
when flows are extreme (Di Baldassarre and Montanari, 2009; Coxon
et al., 2015; Westerberg et al., 2016), it is likely to be much lower than
uncertainties in the boundary conditions used in the forecast hydraulic
model. These uncertainties, though, are typically explored by the use of
ensemble prediction systems (EPS) in meteorological (e.g. Buizza,
2005) and hydrological (e.g. Thielen et al., 2009) forecast models,
where many realizations of projected weather or water levels are si-
mulated for a single site (Cloke and Pappenberger, 2009). These
probabilistic frameworks thus permit some measure of forecast pre-
dictability to be quantified. In the models presented here, there is only a
single deterministic flood extent for each day’s forecast. The reason for
this is two-fold. Firstly, the NOAA NWM itself currently produces de-
terministic streamflow forecasts for its medium-range variant. NWM
v1.1 was the version in existence during Hurricane Harvey, but current
and future versions will improve on this functionality (e.g. NWM v2 will
have a 7-member ensemble in the medium-range forecast). Were a
probability distribution of projected river discharge available, the rapid
extraction algorithm that samples from a pre-existing library of fluvial
flood maps could feasibly produce 2D grids where each cell represents
the probability density function of water depth. This process takes only
seconds, so scaling to a probabilistic framework remains trivial. Sec-
ondly, the computational expense of running new hydrodynamic plu-
vial and coastal flood models in an EPS would add significant compu-
tational burden. With that being said, running an ensemble of the
hydraulic model presented here (a single deterministic run re-
quires ~ 120 processor hours) would be a manageable task for the HPC
facilities of leading forecast centers and so probabilistic depth grids of
these flood drivers could be constructed too. Incorporating the hydro-
dynamic model in an EPS would be a relatively straightforward addi-
tion to the method proposed here, but is one which is beyond the scope
of the current paper.

Digging deeper into the forecast uncertainties, observations of peak
streamflow from 63 USGS river gauges across the footprint domain are
compared to the corresponding NWM streamflow forecast from 27th
August 2017. All river gauges used experienced peak flow during this
forecast’s 3-day time horizon. By volume, the mean absolute error (as in
Eq. (6), but for discharge rather than water surface elevation) comes to
2970 m3s−1. For reference, this error is equivalent to roughly 80% of
the peak discharge experienced on the Lower Brazos River during
Hurricane Harvey. Errors as a proportion of the observed discharge are
shown in Fig. 5. The MAE is 290%, with a very high bias towards
overprediction (mean error of –281%). Forecast discharge on the Buf-
falo Bayou near Addicks was an eighteenfold overestimate: an im-
plausible 7129 m3s−1 when 390 m3s−1 was observed. In some cases,
though, the NWM was very accurate. For instance, on the East Fork of
the San Jacinto River near New Caney: 3492 m3s−1 was forecasted
while 3398 m3s−1 was observed. It should be noted that this a single
forecast from single point in time, while the medium-range NWM var-
iant is run four times a day for 80 time horizons. The testing presented
here, therefore, will not be representative of NWM performance during
Harvey and should not be viewed as an authoritative assessment of
model skill. It may be ill fortune that the particular Fathom flood extent
forecast selected for this study was driven by anomalously poor dis-
charge forecasts, but their benchmarking against observed flows

provides useful context for analyzing the skill of the 2D flood forecast.
Furthermore, the NWM was in its infancy around the time of Harvey
(v1.1). Improvements, both to date and in the future (v2), of this hy-
drological model after rigorous validation exercises will result in much
closer replication of observed streamflows than those presented here.
Official NOAA RFC forecasts are of much greater accuracy (Adams,
2016), but do not have total coverage of US rivers. In Fig. 6, the dis-
charge errors at USGS observation sites are plotted and polygons re-
presenting the fourteen sites are colored by their error bias (from
Table 2). Many of the USGS gauging stations do not relate to sites where
USGS benchmark flood extents were generated, perhaps explaining why
the CSIs in Table 2 are not as low as the discharge errors in Fig. 5 might
suggest. Stations are heavily concentrated in Houston, of which only
some are relevant to just one of the fourteen study sites (San Jacinto
River (Fig. 6g)). Equally, many of the sites do not have a representative
USGS gauging station: but for those that do, biases in the forecast dis-
charge are often replicated in the inundation extent (where the site
polygon and gauge point are of a similar color in Fig. 6). Forecast flood
inundation in the east of the domain was driven by NWM discharges
that are generally biased towards underprediction, which is reflected in
the bias of the flood extent (Big Cow Creek (Fig. 6c), Upper (Fig. 6k)
and Lower Neches River (Fig. 6m), Cow Bayou (Fig. 6f), Pine Island
Bayou (Fig. 6n)). Most of the remaining sites have an overpredictive
flood extent bias, where nearby gauges indicate that the NWM forecast
discharge was overpredictive also (Upper (Fig. 6b) and Lower Brazos
River (Fig. 6e) and San Jacinto River (Fig. 6g)).

The conclusions drawn in this section generally verify those found
in the wider literature that models based on some formulation of the
shallow water equations produce a more accurate simulation of flood
extent than simple planar approximations, though a performance dif-
ferential of this magnitude has not been documented previously for
fluvial flooding (in Bates et al. (2005) the planar method obtained a CSI
of 0.11 when simulating coastal floods). As fully hydrodynamic ap-
proaches become increasingly computationally tractable, the ad-
vantages of using GIS-based methods will further diminish. Intuitively,
the performance of the Fathom forecast model is lower than that of its
hindcast counterpart, partly due to some significant errors in the NWM
forecast streamflows and perhaps forecast rainfall relative to observa-
tions also. Yet, these results evidence that despite these limitations the
forecast model has fair skill in replicating benchmark flood extents for
Harvey.

3.2. High water mark comparison

The Fathom models were further tested against the raw HWMs that
the USGS used to construct the benchmark flood extents in the pre-
ceding section. These observational data represent the maximum water
surface elevation surveyed by USGS field teams as a result of Hurricane
Harvey at a given point. For the hindcast model, the mean absolute
WSE error between the selected observation points and the modelled
value at the same location is 1.03m. The influence of a small number of
large outlying error values means that the RMSE is significantly higher
at 1.71m. Fig. 7a outlines the distribution of these WSE differences,
exhibiting a Gaussian distribution about a central tendency close to 0
(mean error: 0.15m). 50% of the errors lie between −0.43m (Q25) and
0.90m (Q75), while 90% of the errors are between −2.32m (Q5) and
2.12m (Q95). Fig. 7b exhibits the expected shallowing and widening of
the error distribution when analyzing the Fathom forecast model. MAE
rises to 1.22m (RMSE=1.88m). However, this does not represent a
drastic reduction in skill from hindcast to forecast.

Point comparisons of surveyed vs. simulated WSEs are a particularly
stringent test for a model of this scale. Indeed, such examinations are
rarely carried out for analogous models, particularly uncalibrated,
large-scale, high-resolution, ones which include urban areas and
smaller streams, meaning context-setting for these results is quite dif-
ficult. The Wilson et al. (2007) model of the Amazon obtained an RMSE
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of 2.37m (0.99 m at high water) when comparing simulated water le-
vels to those derived from satellite altimetry data. Schumann et al.
(2013) calibrated their 1 km resolution forecasting model of the Lower
Zambezi River to within 0.27m of ICESat-derived water levels. This,
though, is the product of using a smooth, coarse-resolution DEM of a
very flat and wide floodplain, meaning WSEs change very little as the
flood extent grows. Obtaining low errors under such circumstances is

much less challenging than in the test case presented here, especially
when the Zambezi model has been calibrated to observations. Neal
et al. (2009), in a high-resolution, reach-scale hydraulic model of an
urban area built with local data, obtained a maximum RMSE of 0.28m
when calibrated to HWMs. As another example, the standard deviation
of errors in the calibrated Mignot et al. (2006) model of an urban area
in France was 0.53m. It should be noted that hydraulic models that

Fig. 5. Errors in National Water Model forecast discharge (Q) as a percentage of observed peak flows from USGS stream gauges. A positive error indicates NWM
underprediction (observed Q > modelled Q), while a negative error indicates overprediction (observed Q < modelled Q).

Fig. 6. Errors in National Water Model forecast discharge (Q) as a percentage of observed peak flows from USGS stream gauges (shown as points). Error Bias (Eq. (4))
is displayed for each of the 14 sites (shown as polygons): (a) Tres Palacios River, (b) Upper Brazos River, (c) Big Cow Creek, (d) Matagorda Bay, (e) Lower Brazos
River, (f) Cow Bayou, (g) San Jacinto River, (h) East Matagorda Bay, (i) Upper San Bernard River, (j) Middle San Bernard River, (k) Upper Neches River, (l) Lower San
Bernard River, (m) Lower Neches River and (n) Pine Island Bayou. Grey colors indicate underprediction, red colors indicate overprediction, white represents an
unbiased estimate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Histograms of the differences between 1134 observed and simulated water surface elevations in the Fathom (a) hindcast and (b) forecast models. (c) shows the
differences between 659 observed ground elevations and those in the DEM employed by the models. Note that 12, 13 and 9 data points fall outside of the displayed
error range in (a), (b) and (c) respectively.
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have been calibrated may not necessarily be more inherently skillful,
meaning these local-scale model errors may not be analogous to the
uncalibrated large-scale model presented here. As an example of an
operational NOAA flood forecast, Adams et al. (2018) compare mod-
elled hindcasts of their large-scale framework in the Midwest to USGS
gauged stages and found errors of< 0.5 m. While this is more accurate
than the model presented here, it required thousands of manual
bathymetric surveys to build, meaning the Adams et al. (2018) model
only simulates flooding on large rivers of known geometry. In the
context of Hurricane Harvey, where flooding from small streams and
surface runoff accounted for a considerable portion of the hazard, this
NOAA exemplar model may not have attained similar errors when
benchmarked against high water marks on the floodplain and particu-
larly where flooding was predominantly pluvial. Zheng (2018) tested
the NWM-HAND model of maximum inundation outlined in the pre-
ceding section (NOAA NWC et al., 2018) against this same set of USGS
HWMs and found the standard deviation of model error to be 4m.
Previous studies have also quantified the errors in surveyed HWMs that
such models are calibrated to or validated against. Errors are generally
0.3–0.5 m (Schumann et al., 2007; Neal et al., 2009; Horritt et al., 2010;
Fewtrell et al., 2011), owing to deposition during a hiatus in flood re-
cession (i.e. not high water), wall seepage or debris line width. These
are broadly consistent with the maximum errors reported for the HWMs
used in this study, but average errors are generally< 0.1 m (Watson
et al., 2018).

It is clear that the automatically generated forecast and hindcast
models in this paper do not obtain comparable WSE errors to bespoke
hydraulic models in the wider literature or NOAA NWS RFC forecasts,
though without hydraulic model calibration, local data and manual
operation they were never likely to. It is also important to point out the
difference in purpose between this and other models. Rather than
seeking to perfectly replicate a given flood event with few limitations
regarding processing and computation time, this is a forecast product
designed to quickly indicate areas susceptible to flooding from an in-
coming storm to enable an immediate response. Rapid exposure as-
sessments and resource allocation by first responders do not demand a
highly accurate map of water depths, but rather a broad indication of
the spatial patterns in flooding that may occur (Pitt, 2008; Price et al.
2012). Despite some sacrifice to point precision (e.g. with respect to the
accuracy of the 155 discrete forecast inundation points in NOAA AHPS),
the framework’s total coverage, both in geography and flood driver,
serves to fill the information gaps left by sporadic yet accurate local
forecasts. Besides, efforts to reduce WSE errors in the hydraulic model
are of little value when considering the commensurate or larger errors
in the meteorological and hydrological models that precede it in the
forecast cascade. Cangialosi (2018) noted that intensity and track errors
in the NOAA NHC 3-day forecasts during the 2017 hurricane season
were ~ 7ms−1 and~ 150 km respectively. The maximum total rainfall
in the NOAA WPC 3-day forecast was ~ 1000mm, yet a maximum of
over 1500mm was observed (Blake and Zelinsky, 2018). Hydrological
models, used to translate rainfall to streamflow, may also be sig-
nificantly uncertain, even if the meteorological inputs were error-free
(Blöschl et al., 2013). Generally accepted benchmarks for satisfactory
performance in hydrological models are: (i) within 25% error in si-
mulated discharge and (ii) a Nash-Sutcliffe efficiency of greater than
0.5, meaning model mean square discharge error represents less than
half of the observed variance (Moriasi et al., 2007; Refsgaard and
Knudsen, 1996; Ritter and Muñoz-Carpena, 2013). With source and
pathway uncertainties such as these propagating into the receptor
component of the forecast cascade (Fig. 1), the hydraulic model de-
viating from observations by an average of ~1m is unsurprising yet
may still be useful for event early warning and first responder pre-
paredness in the absence of local modelling strategies.

659 of the HWMs collected by the USGS also reported the height of
the water above the ground surface, meaning a surveyed ground ele-
vation can be calculated by subtracting this measurement of water

depth from the WSE. Comparing these elevation values to those con-
tained at the corresponding location in the DEM provides further con-
text for the errors shown in Fig. 7a and b. Again, it should be noted that
the observed data contends with error in both the surveyed water
surface elevation and its height above the ground: such errors could
plausibly be half a meter or more (Watson et al., 2018). Fig. 7c shows
the spread of these elevation errors: the DEM RMSE is 3.77m, though
this is heavily biased by a handful of implausibly high errors (maximum
negative error: −58.9 m; maximum positive error: 20.9 m) which are
just as likely to be due to human error in the manual ground survey as
erroneous values in the DEM. Reducing the influence of these errors by
considering MAE, the quantity stands at 1.19m. With forecast and
hindcast WSE MAEs of 1.21 and 1.03m respectively, the water levels
simulated by the model are similar to or outperform the accuracy of the
DEM, implying two key findings. Firstly, much of the WSE error is at-
tributable to the quality of the USGS NED (the source of the model
DEM) in this domain. It stands to reason, then, that in domains with a
greater proportion of LiDAR in the NED, ground, and thus water sur-
face, elevation error would drop. Once again, the assertion made by
Horritt and Bates (2002) still holds: topography is the major control on
flood inundation patterns. Secondly, although it seems counterintuitive
that errors in WSE can be smaller than the DEM from which they are
derived, this underlines the idea that relative, rather than absolute,
DEM accuracy is much more important in hydraulic modelling. How the
elevation varies between pixels in a locality controls the movement of
water over a floodplain, not a pixel’s elevation relative to a vertical
datum (though this does not apply for simulations of coastal flooding).
Typically, relative DEM errors are much lower than absolute ones:
Gesch et al. (2014) quantified a ~20% reduction in the standard de-
viation of relative compared to absolute errors in the NED at 1/3 arc
second resolution.

Fig. 8 displays the spatial distribution of the WSE errors for the
hindcast. Areas of high performance (in white; errors between −0.5
and 0.5 m) are evident across the domain, particularly in Matagorda
and Brazoria Counties south of Houston (approx. 29.2°N 95.5°W; to the
south of the top-left panel in Fig. 8), Jefferson and Hardin Counties to
Houston’s east (approx. 30.1°N 94.3°W), and in parts of Houston’s
Harris County itself (approx. 29.9°N 95.4°W). There is clear clustering
to areas of poor performance. Coastal areas in the southwest of the
domain around Corpus Christi have a positive bias, indicating the
model underpredicted observed HWMs in these areas. This is also the
case around Village Creek, north of Beaumont (approx. 30.4°N 94.2°W).
Clusters of very high negative errors are present along Houston’s Buf-
falo Bayou (approx. 29.8°N 95.5°W; to the north of the top-left panel in
Fig. 8) and the Calcasieu River in Lake Charles (30.2°N 93.2°W; to the
east of the top-right panel in Fig. 8), signaling model overprediction of
WSEs. Incorporating Fig. 9 into this interpretation, which exhibits the
spatial distribution of the DEM errors in Fig. 7c, it may be expected that
areas of high WSE error are also areas of high ground elevation error.
Observing Figs. 8 and 9 in tandem suggests that this is not the case.
Areas of low WSE error to the south of Houston are in fact dominated by
relatively high ground elevation error (as colors move away from white
towards red and black), while ground elevation errors in areas identi-
fied as having high WSE error (Houston and Lake Charles) are low or, if
anything, of the opposite sign to the WSE errors. This reinforces the
suggestion that relative, and not absolute, DEM accuracy is pre-eminent
and draws on the well-documented challenges of hydraulic modelling
in urban areas (Yu and Lane, 2006a; Mason et al., 2007; Hunter et al.,
2008), especially at large scales (Wing et al., 2017). High WSE errors
are generally confined to urban areas in this study, where horizontal,
rather than vertical, elevation accuracy (i.e. grid resolution) controls
flood model performance to a much greater extent than elsewhere. This
is due to the increased prevalence of hydraulically important anthro-
pogenic features (small-scale flow paths, building walls, levees, roads
and much else) which are unresolved by the elevation data since they
are smaller than the width of a grid cell. In the absence of the
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computational capacity available to run large-scale models at very
high-resolution (e.g. Sampson et al., 2012), which is some distance
from feasibility given doubling the granularity of grid resolution in-
creases computation time by an order of magnitude (Savage et al.,

2016), the solution to this problem may lie with nested or variable-
resolution grids where high-risk cities can be modelled at finer re-
solution (e.g. Sanders et al., 2010; Kim et al., 2014; Sanders and
Schubert, 2019) or innovative sub-grid scale solutions (e.g. Yu and

Fig. 8. The model domain containing a grid of hindcast water depths and 1134 points of WSE errors with respect to the surveyed HWMs. The top-left panel contains
Houston to the north; the top-right panel contains Lake Charles to the southeast. White and lighter colored points indicate low errors; redder colors indicate model
overprediction; greyer colors indicate model underprediction.

O.E.J. Wing, et al. Journal of Hydrology X 4 (2019) 100039

13



Lane, 2006b; Sanders et al., 2008; Schubert and Sanders, 2012; Guinot
et al., 2017): the bottleneck of the latter approach being obtaining
parameterization data at large scale.

4. Conclusions

This paper presents a flood forecasting product for hurricanes in the
US that has the potential to be used operationally in the absence of
accurate local forecasts, comprehensively testing it against ground truth
data collected by the USGS. The framework takes available hydrologic
NOAA forecasts as inputs to an existing continental-scale model struc-
ture (Wing et al., 2017), accounting for all primary flood drivers, in
order to rapidly simulate event water depth grids for a given domain
anywhere in the US. Comparing model hindcasts of Hurricane Harvey
to benchmark data of its maximum flood extent indicates that the
model has skill in picking up the spatial patterns of inundation (mean
CSI value of 0.66). When benchmarked against surveyed water surface
elevations, the model misestimates this quantity by roughly 1m on
average. This is amidst a backdrop of similar errors in the DEM and up
to ~0.5 m of error in the measured HWMs. The model in forecast mode
experiences only a moderate drop in performance relative to the
hindcast. We conclude this to be commensurate to or beneath likely
uncertainties in the preceding components of the forecast cascade, as
well as similar to errors in the underlying DEM. With expanded lidar
coverage within the USGS NED, the model presented here may

approach the accuracy of operational NOAA inundation forecasts
(Adams et al., 2018; Mashriqui et al., 2014) but with total coverage and
for a diverse range of flood drivers.

Leading forecast centers generally only produce point water levels
and flows (e.g. river discharge, storm surge height), neglecting the
crucial receptor component that translates this information to a 2D grid
of flood depths in favor of focusing almost exclusively on improved
meteorological modelling. Contemporary 1D approaches by NOAA
RFCs are likely more accurate and computationally efficient in fluvial
settings, but these are only available in limited areas with accurate local
data. This paper shows that large-scale hydraulic modelling of fluvial,
pluvial and coastal flooding can and should play a role in medium-term
forecasts, outperforming simpler GIS-based approaches. With the hy-
drodynamics of pluvial and coastal flooding from Hurricane Harvey
taking only ~6 hours to run on a single node of 20 cores and extractions
from a pre-computed library of fluvial flood maps taking only seconds,
forecast centers can couple such a module to their existing medium-
term forecast frameworks and provide benefits to a plethora of end-
users, while sacrificing only a marginal portion of available computa-
tion time. The principle of sampling from a pre-computed inventory of
flood maps could permit this framework to be applied in a probabilistic
ensemble forecast; an important method in accounting for model and
exogenic errors. This will be addressed in forthcoming research.

Employing a true hydrodynamic model which properly represents
the physics of floodplain flow is shown to outstrip the performance of a

Fig. 9. Elevation differences in the DEM (derived from the USGS National Elevation Dataset) compared to 659 USGS post-event ground surveys. White and lighter
colored points indicate similar elevations in the DEM and the survey; redder colors indicate higher elevations in the DEM than those surveyed; greyer colors indicate
lower elevations in the DEM than those surveyed.
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simplified GIS-based approach. While these planar approximations
have gained in popularity due to their “quick-and-dirty” solutions to
computationally-intensive problems, we have demonstrated that this is
not a substitute for 2D hydraulic modelling in this instance. Mass- and
momentum- conserving hydraulic codes are shown to be suitably fast
and much more accurate than zero-physics approaches, even over large
scales where such simulations have historically been intractable.

Looking to the future, improved representation of terrestrial fea-
tures – through sub-grid parameterization (e.g. Guinot et al., 2017;
Sanders and Schubert, 2019), more comprehensive inventories of de-
fense structures (Scussolini et al., 2016) and large-scale acquisition of
river channel information from imminent satellite launches (e.g.
NASA’s Surface Water and Ocean Topography satellite in 2021;
Biancamaria et al., 2016) to name but a few projects on the horizon –
will herald yet another revolutionary leap in large-scale hydraulic
modelling.

5. Data availability

Streamflow forecasts from the NOAA National Water Model are
available from https://nomads.ncep.noaa.gov/pub/data/nccf/com/
nwm/. NOAA Weather Prediction Center rainfall forecasts can be ac-
cessed at https://www.wpc.ncep.noaa.gov/qpf/day1-3.shtml. NOAA
National Hurricane Center coastal surge height forecasts are accessible
from https://slosh.nws.noaa.gov/psurge2.0/. USGS river gauge ob-
servations can be downloaded from https://waterdata.usgs.gov/nwis/
rt. Rainfall observations from the NOAA National Weather Service are
available at https://water.weather.gov/precip/download.php.
Observed coastal surge heights from NOAA Tides and Currents can be
accessed at https://tidesandcurrents.noaa.gov/gmap3/. The hydro-
dynamic model LISFLOOD-FP can be downloaded from http://www.
bristol.ac.uk/geography/research/hydrology/models/lisflood/
downloads/. Output from the NOAA National Water Center Hurricane
Harvey HAND models is available at https://www.hydroshare.org/
resource/fe85a680d0144e79b39e8c483dc1e5aa/. USGS observations
and benchmark data can be downloaded from https://www.
sciencebase.gov/catalog/item/5a85f30fe4b00f54eb36d3a9. The
Fathom Harvey depth grids presented in this study are proprietary in
nature, but can be made available for academic research purposes (i.e.
not commercial, policy or regulatory applications) by contacting
Christopher Sampson at Fathom (c.sampson@fathom.global).
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