
                          Draper, G. W., Shoemark, D. K., & Adams, J. C. (2019). Modelling the
early evolution of extracellular matrix from modern Ctenophores and
Sponges. Essays in Biochemistry, 63(3), 389-405.
https://doi.org/10.1042/EBC20180048

Peer reviewed version

Link to published version (if available):
10.1042/EBC20180048

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Portland Press at https://portlandpress.com/essaysbiochem/article-lookup/doi/10.1042/EBC20180048 .
Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1042/EBC20180048
https://doi.org/10.1042/EBC20180048
https://research-information.bris.ac.uk/en/publications/87a18211-315e-4254-baa2-9fa2aea1cd40
https://research-information.bris.ac.uk/en/publications/87a18211-315e-4254-baa2-9fa2aea1cd40


 1 

Modelling the Early Evolution of Extracellular Matrix from Modern 
Ctenophores and Sponges 
 
Graham Draper, Deborah K. Shoemark and Josephine C. Adams 
 
School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K. 
 
*Corresponding author. Email: jo.adams@bristol.ac.uk 

 
 
Keywords: Ctenophora, Integrins, Metazoa, Multicellularity, Porifera, Protein 
Domains 
 
Running Title: Early evolution of Metazoan ECM 
 
Abbreviations: ADAMTS, A disintegrin and metalloproteinase with 
thrombospondin motifs; BLAST, basic local alignment search tool; BMP1; 
Bone morphogenetic protein 1; ECM, extracellular matrix; HIF, Hypoxia 
inducible factor; MMP, Matrix metalloproteinase; SPARC, Small protein acidic 
and rich in cysteine; TGM, Transglutaminase; TSA, Transcriptome shotgun 
assembly.  

  

mailto:jo.adams@bristol.ac.uk


 2 

ABSTRACT  
Animals (metazoans) include some of the most complex living organisms on 

Earth, with regard to their multicellularity, numbers of differentiated cell types 

and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have 

major roles in the development of tissues during embryogenesis and in 

maintaining homeostasis throughout life, yet insight into the ECM proteins 

which may have contributed to the transition from unicellular eukaryotes to 

multicellular animals remains sparse. Recent phylogenetic studies place 

either ctenophores or poriferans as the closest modern relatives of the 

earliest-emerging metazoans. Here, we review the literature and 

representative genomic and transcriptomic databases for evidence of ECM 

and ECM-affiliated components known to be conserved in bilaterians, that are 

also present in ctenophores and/or poriferans. Whereas an extensive set of 

related proteins are identifiable in poriferans, there is a strikingly lack of 

conservation in ctenophores. From this perspective, much remains to be 

learnt about the composition of ctenophore mesoglea. The principal ECM-

related proteins conserved between ctenophores, poriferans and bilaterians 

include collagen IV, laminin-like proteins, thrombospondin superfamily 

members, integrins, membrane-associated proteoglycans and tissue 

transglutaminase. These are candidates for a putative ancestral ECM that 

may have contributed to the emergence of the metazoans.  

 
 
INTRODUCTION  
 
Some of the most fascinating and mysterious steps in the evolution of life on 

earth involve the debut of multicellular organisms from single-celled 

ancestors. Modern multicellular lifeforms are present in both the bacterial and 

eukaryotic domains of life and there is evidence that multicellularity has 

emerged independently multiple times [1-5]. For eukaryotes, particularly the 

Metazoa (animals), the transition from unicellularity to multicellularity is 

complex to consider because ancestral forms are either not represented in the 

fossil record, or are extremely rare and difficult to identify. Genome and 

transcriptome sequencing projects offer new routes to consider these 

evolutionary transitions more systematically. For example, an analysis of 
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genomic data from many modern prokaryotes to identify commonalities in 

protein-coding sequences allowed inference of the possible repertoire of 

proteins in a last common ancestral cell [6].  

 

In considering central attributes of multicellular organisms, the evolution of 

stable mechanisms for organised cell-to-cell attachments is a key requirement 

of multicellularity. The most complex modern multicellular organisms, 

including between 3 to about 122 different cell types, are found amongst the 

Metazoa [5]. The single-celled eukaryotes most closely related to animals are 

the choanoflagellates [7] and filastereans such as Capsaspora owczarzaki, 

[8,9]. From comparative studies of the transcriptomes and predicted 

proteomes of these protists, it has been deduced that the origin of metazoans 

probably involved the functional adaptation of pre-existing gene products, for 

example new or adapted roles of integrin and cadherin receptors, both of 

which have been identified in certain unicellular eukaryotes [10, 11], as well 

as genetic rearrangement events that led to the origin of new types of gene 

products with novel functional capacities for cell interactions and inter-cellular 

communications [12].  

 

A central mediator of metazoan multicellularity is the extracellular matrix 

(ECM), a structured extracellular network of collagens, glycoproteins, 

proteoglycans and associated carbohydrates such as glycosaminoglycans. 

The secreted proteins that build the ECM appear to fall within the novel 

category of metazoan gene products, because many ECM proteins are highly-

conserved throughout animals and yet are not represented in 

choanoflagellates or filastereans [13, 14]. Williams et al. [13] established that 

three species of these protists express distinct sets of predicted secreted 

proteins (identified by presence of a N-terminal secretory signal peptide and 

no transmembrane domain), none of which have a domain composition 

equivalent to a metazoan ECM protein, although individual domains common 

in ECM proteins are present. Specific examples are the separate domains of 

fibrillar collagens [15] or thrombospondins [16]. These data suggest that gene 

rearrangement and domain shuffling had an important role in the emergence 

of the large, multidomain, secreted proteins that characterise the metazoan 



 4 

ECM. In modern metazoans, the secretion and extracellular assembly of 

structural proteins of the ECM depends on many ECM-affiliated proteins, both 

intracellular and extracellular: for example, to effect post-translational 

modifications, proteolytic processing, or interactions with non-structural and 

matricellular proteins within the ECM [17, 18]. Thus, consideration of the 

phylogeny of these affiliated proteins is also relevant to constructing models 

for the evolution of metazoan ECM.  

 

The distinct domain architectures of secreted proteins of choanoflagellates 

and metazoans suggest that additional insights into metazoan ECM evolution 

could be ascertained from careful comparative analysis of ECM and affiliated 

proteins encoded in modern species from the earliest-diverging metazoan 

phyla. By analogy with the analysis of a prokaryotic ancestral cell [6], proteins 

in common between extant species in the earliest-diverging phyla would be 

candidates for membership of “ancestral ECM”. Of the early-diverging 

metazoan phyla (Ctenophora (comb jellies), Porifera (sponges), Placozoa and 

Cnidaria), cnidarians are, to date, by far the most-studied with regard to their 

ECM and cell-adhesion mechanisms. This relates to the lengthy history of 

Hydra as an experimental model [18], the phylogenetic position of cnidarians 

as the sister group to bilaterians, and the presence of a morphologically well-

defined ECM, the mesoglea, that, in Hydra, can be isolated away from the cell 

layers of the body wall as an acellular structure and is thus suitable for 

biochemical study [19, 20].  

 

Knowledge of the ECM of the other early-diverging phyla is much more 

sparse. Placozoa comprise an enigmatic phylum that to date includes only a 

few species and will not be considered further here [21]. A mesoglea between 

the epithelial cell layers is apparent in ctenophores, but information on its 

molecular composition is very limited (discussed further below). Sponges 

have bio-mineralised extracellular structures (spicules) embedded in a fibrillar 

meshwork, but most classes lack ECM as recognised morphologically in 

bilaterians. A limitation for the study of ctenophores and sponges until recent 

years has been a lack of laboratory model species or cell culture [22, 23].  
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The limited knowledge is significant because both Porifera and Ctenophora 

are considered to be of earlier evolutionary origin than Cnidaria, as evidenced 

by the fossil record and molecular phylogeny reconstructions [24, 25]. 

However, there remains considerable controversy over whether the sponges 

or the ctenophores are of earliest evolutionary origin, i.e., which phylum 

represents the sister group to all other animals. Historically, sponges were 

placed at the base of the animal evolutionary tree due to their simple 

morphological organisation, limited number of cell types, and the absence of 

recognisable nerve or muscle structures: both of the latter are present in 

ctenophores and cnidarians [26] (Fig. 1A). With the expansion of molecular 

phylogenetics, several studies have surprisingly placed ctenophores as the 

sister group to all other animals [e.g., 27] (Fig. 1B), whereas others continue 

to support the traditional “poriferans-sister” model [e.g, 28, 29]. Genome 

sequencing of two species of ctenophores indicated major differences in the 

categories of encoded proteins in comparison to all other metazoans, with 

many proteins of bilaterians noted to be absent [30, 31, 32]. Thus the 

“ctenophore first” hypothesis remains under active discussion and 

investigation [33, 34].  

 

The advent of genomic and transcriptomic sequencing projects for an 

increasing number of poriferan and ctenophore species has revolutionised the 

possibility to gain insight into ECM content in sponges and ctenophores, 

through analysis of the predicted proteomes of individual species. This article 

will review the published literature and discuss our findings from a recent 

detailed survey of public genomic and transcriptomic databases for ECM 

proteins in species representing three classes of sponges and three species 

of ctenophores.  

 

Known Components of ECM in Ctenophores and Poriferans 

Ctenophores. The unique anatomy and ultrastructure of ctenophores has 

been studied by light and electron microscopy, with major interest in 

developmental processes, nerve and muscle tissues, and the specialised 

rows of locomotary ciliated combs (Fig. 1C, 1D) [35, 36]. Prey capture is 

carried out by specific colloblast cells on extensible tentacles (most species) 
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or by direct engulfment (Beroe species, that lack tentacles) [27, 37].  The 

mesoglea is typically described as transparent and jelly-like. From 

transmission electron microscopy studies of the tentacles of Euplokamis, the 

mesoglea was observed to contain networks of striated fibrils, interpreted as 

collagen fibrils, as well as muscle fibres, mesenchymal cells and a network of 

nerve cells.  Curious box-like, acellular, extracellular structures were also 

observed [38]. Later immunofluorescent staining studies of Pleurobrachia 

species or Beroe abyssicola also identified many cell types within the 

bodywall mesoglea, including networks of nerve cells, muscle and other cell 

types [39-41]. Transmission electron microscopy has also provided views of a 

basement membrane-like layer that underlies ectodermal cells in 

Pleurobrachia bachei and B. ovata, but is not visible in Mnemiopsis leidyi [14]. 

There is very little direct knowledge of the composition of ctenophore 

mesoglea, but a phylogenetic study of the basement membrane proteoglycan, 

perlecan, concluded that perlecan is absent from M. leidyi [42]. Fidler et al. 

[14] detected collagen IV by immunohistochemistry as diffuse arrays in 

proximity to ectodermal cells in M. leidyi, and with more appearance of linear 

elements in Beroe and Pleurobrachia. Genomic and transcriptomic analyses 

identified many collagen IV paralogues, whereas small collagenous proteins 

(designated spongins from their initial identification in Porifera) were absent 

and a unique type of secreted protein, containing only a non-collagenous (NC) 

domain, was identified and designated NC1 protein [14].  

 

Porifera. Adult sponges are sessile, vase-shaped animals with pores that filter 

water into the body cavity for food uptake by specialised choanocytes (Fig. 

1E) [43, 44]. The body wall consists of an epithelial bilayer supported by 

mineralised spicules and a meshwork of extracellular fibrils termed the 

mesohyl (Fig. 1F). Unlike ctenophores, overt cell-cell junctions are apparent 

between epithelial cells  [45]. There are four extant classes of sponges (Fig. 

1G) and different classes have different processes of biomineralisation. In 

calcerous sponges, calcium carbonate-based spicules are assembled 

extracellularly through carbonic anhydrase activity and possibly in association 

with acidic extracellular proteins [46-48]. In siliceous sponges, silicon dioxide 

spicules are templated through intracellular and extracellular processes 
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involving (in many species) the polymerising enzyme, silicatein, and 

frequently with templating onto collagen fibres [49-51]. Silicateins are related 

to the cathepsin family of intracellular processing and degrading enzymes and 

are thought to have arisen in the sponge lineage through ancestral gene 

duplication and point mutation of cathepsin L [52]. Chitin has also been 

identified as a spicule-associated, possible template in demosponges and a 

glass sponge [53, 54].  

 

By electron microscopy, class Homoscleromorpha is distinguished by the 

presence of a basement membrane structure [55, 56]. Indeed, a collagen IV 

cloned from a homoscleromorph sponge was shown to have a basement 

membrane-like localisation [55]. In addition, sponges (along with various other 

invertebrates) encode short-chain spongins that contribute to 10nm 

microfibrils within the mesohyl. Spongins comprise around 79-100 Gly-Xaa-

Yaa triplets and 3 noncollagenous regions, with the C-terminal non-

collagenous regions having homology and a proposed shared evolutionary 

origin with the NC1 domain of collagen IV [57, 58]. Collagen fibril structures 

have been identified by ultrastructural criteria in several sponge species [59-

61] and molecular cloning led the recognition of a diversity of molecular forms 

of collagens of the fibrillar or interrupted-triple-helix types in addition to 

spongins ([62-64] and reviewed by [65]).  

 

Species-specific, carbohydrate-based cell-to-cell adhesion mechanisms have 

also been characterized functionally and biochemically in sponges. Sulphated 

polysaccharides have major roles in species-specific cell-to-cell adhesion, in 

conjunction with proteins termed aggregation factor complex, spongican or 

glyconectins [66-71]. These proteins can adopt unusual, ring-like 

conformations and appear to be specific to the demosponge lineage [72, 73]. 

Other mechanisms may involve C-type lectins and a calcium-dependent 

lectin, clathrilectin [74, 75], as well as self-association of carbohydrates [76]. 

Chemically, the sulphated polysaccharides appear very varied, with varying 

amounts of sulphated galactose, fucose, arabinose or hexuronic 

acid identified across species [77]. Examination of the structures of the acid-

labile carbohydrates of glyconectins from several species identified these to 
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include heterogeneous sulphated oligosaccharides with variable amounts of 

fucose, arabinose, or py(4,6)Galacatose residues, and thus distinct from the 

repeated disaccharide units of bilaterian glycosaminoglycans [78].  

 

With regards to other mechanisms of cell-ECM associations, integrin subunits 

have been cloned from several sponge species [79, 80, 81]. Integrin(s) have 

been implicated functionally in autograft fusion in Geodia cydonium [82] and 

the response of Microciona prolifera cells to depletion of extracellular sulphate 

[83]. The identification of vinculin in Oscarella pearsei and the localisation of 

this protein to cell-cell and cell-ECM contact sites further supports that 

poriferan integrins are likely to function in adhesion and cell signaling, as in 

bilaterians [84].  Dystroglycan-like proteins with possible laminin-binding 

capacity have been recognised in several sponges in addition to the 

dystroglycans of cnidarians and bilaterians [85].  

 

Insights from Genomics and Transcriptomics: A Structured Survey of 

ECM Proteins Encoded in Poriferans and Ctenophores 

The sequencing of the genome of the demosponge Amphimedon 

queenslandica expanded the view on candidate ECM proteins of sponges. 

Analysis of the predicted proteins indicated that, even in the absence of overt 

basement membrane-like structures, laminin-like proteins are encoded [86, 

87]. Since 2010, transcriptomes for sponges of other classes and genomes 

and transcriptomes for several species of ctenophores have been published 

[31, 32, 88, 89].  

 

To obtain a wider view of ECM and ECM-associated proteins in ctenophores 

and poriferans, we surveyed sponge and ctenophore genome- and/or 

transcriptome-predicted proteins for selected ECM and ECM-affiliated 

proteins. The ECM proteins chosen for study are highly conserved in 

invertebrate and vertebrate bilaterians [90, 91] and have known functional 

roles in the fibrils and meshworks of the ECM. A range of collagens were 

included as search tools to assist identification of possible disparate forms.  

Major glycoprotein and proteoglycan receptors that tether ECM proteins at cell 

surfaces and extracellular proteases important for ECM dynamics in 
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bilaterians were also included (Fig. 2A), along with intracellular proteins that 

are important for procollagen assembly, processing and collagen fibril 

formation (Fig. 2B) [92], or for the post-translational assembly of the core 

tetrasaccharide linker for glycosaminoglycan substitution on proteoglycan 

core proteins [93] (Fig. 2C). Spongin and silicatein are not present in 

vertebrates but were included because of their known importance in poriferan 

ECM. The suite of 41 proteins analysed is listed in Supplementary Table 1. 

The sponges species included represent the classes Demospongiae (the 

most abundant in terms of species), Homoscleromorpha and Calcerea and 

the three species of ctenophores have sequenced genomes and/or a large 

transcriptome dataset.  

 

From initial BLASTP or TBLASTN searches, protein sequences of highest 

homology (determined by evalue <1e-30 and extensive % coverage of the 

query sequence) were compiled and validated by best-reciprocal BLAST 

search. Sequences passing this step were subjected to additional quality 

control analysis for secretory signal peptides, transmembrane domains, 

overall domain architecture and, where relevant, enzyme active site. The 

results obtained are summarised in Tables 1 and 2, respectively. The 

underlying data are presented in Supplementary Tables 2-8.  

 

Collectively, the data demonstrate dramatic differences in the profile of 

conserved proteins in ctenophores versus poriferans (Fig. 3, Table 1). Many 

more proteins in common with bilaterian ECM are encoded in poriferans than 

in ctenophores. Nevertheless, the ctenophore list does include a repertoire for 

a basic cell-ECM adhesion system: cell-surface receptors, ECM proteins, a 

cross-linking enzyme and a potential ECM-proteolytic enzyme (Fig. 3). The 

proteins identified in ctenophores were for the most part present in all three 

species, with the exception of syndecan, identified only in P. bachei, and 

potential matrix metalloproteases, identified in M. leidyi and H. californensis. 

In agreement with Fidler et al. [14], many collagen IV-like paralogues were 

identified. Post-translational modifications of proline and lysine residues 

contribute to the stability of collagen triple helices in vertebrates, however only 

prolyl-4-hydroxylase and not pro-collagen lysine dioxygenase (lysine 
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hydroxylase) was identified in these ctenophores (Table 1, Fig. 3). The 

encoding of multiple integrin alpha and beta subunits (Table 1) indicates 

potential for diverse specificities of integrin-mediated cell adhesion, perhaps in 

line with the relatively large number of cell types now documented in 

ctenophores [94]. Silicatein-like proteins were identified in all three species; 

however, given the recognised general divergence of protein sequences in 

ctenophores [31, 32], in-depth studies will be needed to determine the 

relationship of these to the cathepsin family (Table 1).  

 

We examined the laminin-like proteins in more detail in view of the early 

evolution of collagen IV [14] and the central role of laminin in basement 

membrane assembly in bilaterians [95].  With the caveat that some of the 

identified sequences are incomplete, the laminin subunits identified present a 

complex picture. Although all are large proteins with many of the characteristic 

domains of laminins, many variations in domain organisation are apparent, 

including atypical domains such as thrombospondin or fibronectin III domains. 

Overall, the laminin proteins of sponges are more similar to those of 

bilaterians, yet distinctions between beta and gamma subunits are blurred at 

both the sequence and domain levels. Notably, the laminin N-domain is 

lacking from (apparently full-length) ctenophore proteins and two alpha-like 

subunits but no beta- or gamma-like subunits were identified in P. bachei (Fig. 

4). The numbers of alpha-like and beta/gamma-like subunits varied between 

species and the alpha-like subunits included at most three laminin-G domains. 

Biochemical experiments will be needed to determine if these proteins are 

capable of forming stable heterotrimers and undergoing extracellular 

polymerisation or integrin-binding. For the ctenophore proteins, it is of interest 

whether heteromers including two different alpha subunits can be assembled.  

 

We also examined the tissue transglutaminase 2- (TGM2) like proteins. In 

vertebrates, TGM2 has major roles in cross-linking fibrillin or fibronectin 

molecules into extracellular fibrils via redox-dependent processes [96, 97]. 

The TGM-like proteins identified in the ctenophores and A. queenslandica 

sponge each include all the major domains of TGM2 but have only 30%-35% 

sequence identity to human TGM2. However, at the active site of TTG2, the 
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identity is 65%-80% and the cysteine residue is completely conserved  (Fig 

5A). Molecular models of the active site region for four of the sequences, 

constructed against secondary structure alignments of four TGM2 structures 

from Protein database (4KTY_B, 1G0D_A, 1LM9_A and 2Q3Z_A), are 

presented overlaid with the structure of human TGM2 (4PYG) that was not 

used for modelling (Fig. 5B, 5C). The models demonstrate that residues within 

60nm of the active site cysteine align very well with the known structure (Fig. 

5B), as do the highly-conserved residues at the active site (Fig. 5C). We 

predict that the ctenophore and sponge proteins should be active 

transglutaminases.  

 

ECM-related proteins not found in the ctenophores raise other intriguing 

questions about the biochemical nature of ctenophore mesoglea. It was 

previously noted that core proteins of secreted proteoglycans of bilaterians 

are not conserved in early-diverging metazoans [19, 90]. However, 

carbohydrate has been reported as <1% of dry weight of ctenophores [98].  

With the exception of glucuronyl-transferase, homologues of the bilaterian 

enzymes for addition of the core O-linked saccharides (Fig. 2C), are not 

identifiable (Table 1, Fig 3). Whether this pathway mechanism evolved later or 

has been lost through lineage-specific gene losses in ctenophores is unclear. 

With regard to ECM structure, no fibrillar-like collagens were identified and the 

collagen cross-linking enzyme lysyl oxidase was also absent, raising 

questions over the nature of observed striated fibrils in ctenophore mesoglea 

[38]. However, bone morphogenetic protein 1 (BMP1), which cleaves the C-

propeptide of fibrillar procollagen [99] (Fig. 2B), was present. In bilaterians, 

BMP1 has many other substrates including a laminin gamma chain [99] and it 

may be expected that the ctenophore protein can target other substrates. In 

agreement with [14], spongin was not identified. 

 

In contrast, poriferans were confirmed to encode a wider repertoire of ECM 

proteins including fibrillar-like collagens of various domain architectures and 

fibrillin, as well as SPARC and one or more thrombospondin superfamily 

members (see [16] for details of the thrombospondin superfamily). Collagen 

IV proteins were apparent in the calcerous sponges as well as (as expected) 
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in the homoscleromorph sponge. The encoding of lysyl oxidase is in 

agreement with the detection of striated collagen fibrils in sponges [59-61]. 

Nonwithstanding the unusual carbohydrate structures reported in sponges 

(see section above), the suite of carbohydrate-addition enzymes encoded 

indicate potential for addition of the O-linked core tetrasaccharide of 

glycosaminoglycans (Table 2, Fig. 3). Other aspects of ECM in common with 

bilaterian ECM include the encoding of A Disintegrin and Metalloproteinase 

with Thrombospondin motifs (ADAMTS) proteases and a wider repertoire of 

cell-ECM attachment receptor types, including membrane-bound proteoglycan 

core proteins, dystroglycan and integrin subunits. Spongins were identified in 

A. queenslandica and O. carmela, but not in the calcerous sponges. 

Silecateins were identified as expected in the demosponge A. queenslandica 

and also in the other species examined (Table 3).  

 

Perspective 

Current laboratory experiments and analyses of genome-predicted proteins 

indicate that ctenophore ECM has a very different protein composition to other 

metazoans. This cannot be interpreted as a result of the early phylogenetic 

emergence of this phylum because poriferans, traditionally considered the 

earliest-diverging metazoans, are found to have an array of ECM and ECM-

affiliated proteins that is clearly closer to the conserved repertoire of 

cnidarians and bilaterians. The difference in ECM might be considered an 

indication that ctenophores evolved prior to poriferans, in which case the 

limited set of proteins conserved between ctenophores, poriferans and 

bilaterians can be taken to represent a prototypic “toolkit” for a minimal 

metazoan ECM [100]. The combination of collagen IV, laminin-like proteins 

and thrombospondin superfamily members is of great interest, as the concept 

of coordinated function of these three proteins within ECM has received little 

consideration.  

 

However, other factors also need to be taken into consideration. There are 

estimated to be around 5,000 species of extant poriferans, yet only about 150 

known species of ctenophores. This may reflect that the deep-sea lifestyle of 

many ctenophores makes it difficult to identify the true number of species, or 
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alternatively could indicate very different evolutionary histories of poriferans 

and ctenophores. Sponges and ctenophores evolved when oxygen levels on 

Earth were far lower than at present [101]. Indeed, members of both phyla 

lack hypoxia-inducible factor  (HIF) indicating that oxygen availability does 

not drive gene expression through the HIF pathway as in cnidarians and 

bilaterians [102]. In a “poriferan-first” evolutionary scenario, the limited 

repertoire of known ECM proteins in ctenophores would represent secondary 

gene losses, leading to a proposal of a relatively complex ECM in the 

metazoan ancestor. Many ctenophores live in the deep sea and the 

environment of low oxygen and sparse food sources [101, 103], and high 

hydrostatic pressure may have driven selection for a unique form of ECM. 

Clearly, the anatomy of ctenophores does include a mesoglea and, to date, to 

our knowledge, an unbiased study of ctenophore mesoglea by proteomic 

methods has not been carried out. Only through this type of approach will a 

clear view of ctenophore mesoglea composition be gained. A limitation of 

focusing on the ECM proteins conserved with bilaterians is that possible 

ctenophore- or poriferan-specific ECM proteins remain undisclosed. As 

discussed by others, it is very likely that a considerable “hidden biology” of 

ctenophores and poriferans remains to be discovered [104]. Nevertheless, the 

positive identification of certain ECM proteins conserved between these early-

emerging phyla and other metazoans increases the precision of models for an 

ancestral metazoan ECM.  

 

SUMMARY POINTS  
1. Ctenophores and poriferans have distinct sets of ECM-related proteins 

in comparison to the most highly-conserved ECM and ECM-affiliated 
proteins of bilaterians. 

2. In particular, ctenophores lack many of the structural ECM proteins and 
enzymes for addition of the core O-linked tetrasaccharide that is 
characteristic of bilaterian glycosaminoglycan substitutions.  

3. Proteomic studies are needed to gain more comprehensive views of 
the composition of ECM in ctenophores and poriferans. 

4. The very limited set of conserved ECM and ECM-affiliated proteins in 
ctenophores may represent a minimal toolkit that reflects the earliest 
emerging form of metazoan ECM. Given the current controversies over 
the relative phylogenetic placements of ctenophores and poriferans it 
cannot be excluded that this apparent simplicity may result from 
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secondary gene losses that are specific to the evolution of the 
ctenophore lineage.  

 
 

FIGURES AND TABLES 

Figure 1. Ctenophores and Poriferans. A, B, Schematic evolutionary trees of 

the poriferan-first (A), or ctenophore-first (B), models of metazoan evolution. 

Choanoflagellates are included as the closest outgroup. C, Morphology of a 

ctenophore, Pleurobrachia pileus. Internal organs are visible through the 

transparent mesoglea (asterisk). Key: Mouth (mo); aboral neuro-sensory 

complex (nsc); comb rows (cr); tentacles (tcl); lateral branches of tentacles  

(tentillae), (tt); tentacle root (tr), and pharynx (ph). Scale bar: 1cm. 

(reproduced from [105] under CC-BY). D, Schematic diagram of a 

ctenophore. Mesoglea is present within the tentacles and body wall 

(reproduced from [106] under CC-BY). E, Morphology of a demosponge, 

Echinoclathria gibbosa (reproduced from [107] under CC-BY). F, Diagram of 

the body wall and cell types of a sponge, (reproduced from [108]; permission 

in progress). G, Tree diagram of the four classes of extant sponges.   

Figure 2. The cell-ECM adhesion proteins included in our genomic and 

transcriptomic survey. A, Schematic diagram of molecular processes involved 

in cell-ECM adhesion; B, The major enzymes involved in procollagen 

processing and collagen fibril assembly; C, The enzymes involved in O-

linkage of the core tetrasaccharide for glycosaminoglycan addition.  

Figure 3. ECM and ECM-affiliated proteins of poriferans and ctenophores that 

are conserved with bilaterians, as identified by our survey. The Venn diagram 

includes all categories of proteins that were identified in at least one of the 

species studied. See Tables 1 and 2 and supplementary Tables for details of 

the protein identifications.  

Figure 4. Domain architectures of the laminin-like proteins identified in the 

species studied. Domains were identified in InterProScan 5. Representative 

examples of human laminin , and  chains are shown at the top. The 

number of amino acids is given in small font at the C-terminus of each protein. 

Dashed lines indicate incomplete sequence. Accession numbers are given on 

the righthand side, see Tables 1 and 2 for details. The IV-B domain (in coral) 
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is specific to the  subunit. Key: SP, signal peptide; N, laminin N-terminal 

domain; EGF, epidermal growth factor-like domain, with numbers referring to 

the number of repeated domains; IV, laminin domain IV (in blue); G, laminin G 

domain; FNIII, fibronectin type III domain; GFR, growth factor-cysteine-rich 

domain; TSR, thrombospondin type 1 domain. The G domain is structurally 

related to the Concanavalin A domain (Con A), which was identified in some 

sequences. Not to scale. 

Figure 5. Molecular modelling of the active sites of the predicted tissue 

transglutaminases identified in ctenophores and a sponge. A, CLUSTAL 

sequence alignment of the active site of human TGM2 (Hs) with the 

homologous regions of the identified ctenophore (Ml, M. leidyi; Pb, P. bachei, 

and poriferan (Aq, A. queenslandica) TGMs. See Tables 1 and 2 for full 

accession numbers. B, Structure of the active site of 4PYG.pdb (human 

TGM2) [96]. The helix is highlighted in yellow as orientation for the overlay 

models in Fig. 5C. C, Models were prepared by HHPRED and MODELLER 

[110] and are shown as Aq (pink), ML03126a (green), ML25826a (salmon) 

and Pb3462531 (silver) overlaid with the crystal structure of human TGM2 

from 4PYG.pdb, (black, with the catalytic cysteine (C277) labelled). The 

overlays show high conservation of the sidechains of residues within a 6 

Angstrom radius around the catalytic cysteine.  

 

TABLES 

Table 1. The ECM-related proteins conserved with bilaterians identified from 

the ctenophore species studied.  

Table 2. The ECM-related proteins conserved with bilaterians identified from 

the sponge species studied. 

 

SUPPLEMENTARY DATA 

Supplementary Table 1. The ECM and ECM-affiliated proteins of bilaterians 

included in our survey.  

Supplementary Tables 2-8. Summary of BLAST top hits and validations for 

the 7 species surveyed.  
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ECM/ECM-affiliated  
Protein 

Accession numbers of homologues identified 
in ctenophore species 

M. leidyi P. bachei H. californensis 

ADAMTS - - - 

Agrin - - - 

beta-1,4-galactosyltransferase 1 - - - 

beta-1,4-galactosyltransferase 2 - - - 

Bone morphogenetic protein 1 ML31401a PB3463711 GGLO01058316.1 

Bifunctional heparan sulphate N-
deacetylase/N-
sulphotransferase 

- - - 

Collagen I 
- - - 

Collagen IV 

ML034334a 
ML034337a 
ML18175a 
ML17501a 
ML034336a 
ML18198a 
ML16441a 
ML25069a 
ML18197a 
ML18176a 
ML17504a 
ML17502a 
ML034335a 

PB3460513 
PB3460485 
PB3479585 
PB3460474 
PB3479630 

GGLO01050633.1 
GGLO01050605.1 
GGLO01033148.1 
GGLO01027773.1 
GGLO01030859.1 
GGLO01027525.1 
GGLO01030860.1 
GGLO01014639.1 
GGLO01023628.1 
GGLO01020933.1 
GGLO01020934.1 

Collagen VI - - - 

Collagen X - - - 

Collagen XIV - - - 

Collagen XVIII - - - 

Collagen XXIII - - - 

Collagen XXV - - - 

Dystroglycan - - - 

Fibrillin - - - 

Fibulin - - - 

Glucuronyl-transferase ML271519a ML073039a PB3467704 GGLO01045111.1 

Glypican ML14244a PB3464484 
GGLO01048445.1 

Heparan sulphate 2-O- 
sulphotransferase 

- - - 

Hsp47 (SERPINH1) - - - 

Integrin alpha 

ML09514a 
ML463513a 
ML30811a 
ML27362a 

PB3464239 

GGLO01029506.1 
GGLO01029505.1 
GGLO01050007.1 
GGLO01050010.1 

Integrin beta 
ML068314a ML073028a 
ML04042a ML05098a  

PB3461633 
PB3460305 
PB3465728 
PB3460908 

GGLO01026249.1 
GGLO01070288.1 

Laminin alpha ML097515a - GGLO01023715.1 

Laminin beta - - GGLO01023769.1 

Laminin gamma ML05951a ML035910a 
PB3460962 
PB3479626 

GGLO01031685.1 

Lysyl hydroxylase - - 
- 

Lysyl Oxidase 
- - - 

Matrix metalloproteinase ML030215a - 
GGLO01044249.1 

Nidogen - - - 

Perlecan - - - 

Procollagen C-proteinase 
enhancer 

- - - 

Prolyl 4-hydroxylase GFAT01094412.1, 
ML257632 

PB3469803 (p) GGLO01022174 

Silicatein 

ML017310a 
ML005020a 
ML10109a 
ML007332a 

PB3466562 
PB3465824 
 

GGLO01072762.1 
GGLO01008148.1 
GGLO01041937.1 
GGLO01007610.1+ 

SPARC - - - 

Spongin - - - 

Syndecan - PB12832424 - 

Thrombospondin superfamily ML34222a PB11599022 (p) GGLO01050054(p) 

http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01029506
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01029505
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01050007
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01050010
http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
http://neurobase.rc.ufl.edu/pleurobrachia/blast
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01026249
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01070288
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01023715
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01023769
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01031685
https://www.ncbi.nlm.nih.gov/nuccore/GGLO01044249
http://neurobase.rc.ufl.edu/pleurobrachia/blast


 

Table 1. Homologues of ECM and affiliated proteins of bilaterians identified in three species of 

ctenophores. Accession numbers are from M. leidyi genome browser [31], P. bachei 

transcriptome at Neurobase [32], and GenBank TSA for the H. californensis transcriptome [109].  

Underlying BLAST results are reported in Supplementary Tables 2-4.  

Key. p = partial sequence. + BLASTP for silicatein in H.californiensis yielded >100 hits with 

many redundant sequences. Four top hits are included here.  

 

Tissue Transglutaminase 2 ML03126a PB 3462531 
GGLO01036061 

Xylosyltransferase - - - 



ECM /ECM-affiliated 
protein  

 

Accession numbers of top homologues identified in poriferan species 

O. carmella A. queenslandica L. complicata S. ciliatum 

ADAMTS 
g302.t1, g3943.t1, 
g5893.t1 
 

XP_011406035.1 
 

lcpid17910, lcgid3864 
lcpid26189,lcgid1420 
lcpid16435,lcgid3864 
lcpid14744,lcgid48263 
lcpid8832,lcgid1429 
 

scpid8465, scgid0298 
scpid14367, scgid31153 
scpid11730, scgid3308 
scpid7699, scgid3308 
scpid11197, scgid3308 

Agrin - - - - 

beta-1,4-
galactosyltransferase 1  

g6154.t1 
g11091.t1 

XP_003383478.3 
lcpid72445, lcgid57516 
lcpid108583, lcgid4190 

scpid62588, scgid16118 
scpid83531, scgid23687 

beta-1,4-
galactosyltransferase 2  

g11091 XP_003383478.3 lcpid72445, lcgid57516 scpid83531 

Bone morphogenetic 
protein 1 

g3280.t1  
 

XP_003387878.1  
 

lcpid53711  
 

scpid73058  
 

Bifunctional heparan 
sulphate N-deacetylase/N-
sulphotransferase 

g9342.t1 
 

XP_019854532.1 
 

lcpid25736, lcgid12663 
lcpid35336, lcgid53985 
lcpid65133, lcgid5933 
lcpid44097, lcgid5933 

scpid22021, scgid1378 
scpid11705, scgid14663 
scpid24542, scgid2276 
scpid19876, scgid2276 
scpid27630, scgid5678 

Fibrillar Collagen-like * 
 

g11085.t1 
g426.t1 
g10272.t1 
 

XP_003388783.2  
XP_011405131.1 
XP_011405304.1 
XP_019864450.1 
 

lcpid17276, lcgid40511, 
lcpid13783, lcgid6124 
 

scpid13476, scgid0358 
scpid12346, scgid28066, 
scpid10799, scgid31760, 
scpid12114, scgid35048 

Collagen IV 
g1079.t1 
g10977.t1 
 

- 

lcpid52947, lcgid75348 
lcpid4786, lcgid64311 
lcpid13694, lcgid38464 
lcpid16924, lcgid10403 

scpid10989, scgid8635 
scpid11320, scgid9595 
scpid8958, scgid15448 

Dystroglycan g5213.t1 - - 
scpid43419, scgid4112 
scpid78051, scgid4112 

Fibrillin 
g2667.t1 
g3633.t1 

XP_019850772.1 
XP_019859670 

lcpid4195, lcgid79342 
 

scpid6157, scgid20153 

Fibulin - - - - 

Glypican 
g1352.t1 
 

XP_003386976.1 
XP_019852741.1 

lcpid67857, lcgid45685 
lcpid32714, lcgid59020 

- 

Glucuronyl-transferase  
 

g2277.t1 
 

XP_019851580.1 
XP_019851583.1 
 

lcpid40065, lcgid0547 
scpid33216, scgid11109 
 

Heparan sulphate 2-O-
sulphotransferase 

g2593.t1 
 

- 
lcpid67263, lcgid13423 
 

scpid75685, scgid31021 
scpid39942, scgid12865 

Integrin alpha 

g1989.t1 
g9424.t1 
g551.t1 
 

XP_019848674.1 
XP_019864024.1 
XP_019864028.1 
XP_019855406.1 
XP_019855408.1 
XP_019856433.1 
XP_019850770.1 

lcpid14662, lcgid5141 
lcpid30951, lcgid20056 
lcpid24895, lcgid25747 
lcpid28736, scgid0236 
lcpid24944, lcgid0796 
lcpid38700, lcgid0796 
lcpid25998, lcgid57014 
lcpid29144, lcgid59731 
lcpid53986, lcgid5141 

scpid27434, scgid16145 
scpid34588, scgid4727 
scpid23074, scgid2395 
scpid12646, scgid0799 
scpid27708, scgid2395 
scpid23633, scgid1153 
scpid26968, scgid0799 
scpid13516, scgid3686 
scpid25262, scgid3686 
scpid47429, scgid3686 
scpid17601, scgid24595  
scpid19223, cgid26959 

Integrin beta 
g9310.t1 
g9748.t1 
 

XP_011409775.1 
XP_003388422.1 
XP_019851540.1 
XP_019864033.1 
XP_011403560.2 
XP_011404206.1 

lcpid40636, lcgid16859 
lcpid44623, lcgid59216 
lcpid32340, lcgid73219 
lcpid170227, lcgid60939 
 

scpid4557, scgid16671 
scpid20168, scgid21580 
scpid4556, scgid3103 
scpid38528, scgid18306 
scpid22880, scgid21705 
scpid49462, scgid3434 
scpid22880, scgid21705 
scpid41506, scgid3434 
scpid47976, scgid3144 
scpid29534, scgid3083 
scpid19946, scgid33446 
scpid27672, scgid3144 

Laminin alpha 
g7319.t1 
 

XP_019852585.1 lcpid6587, lcgid43813 scpid4187, scgid33329 

Laminin beta - 
XP_019854276.1 
XP_019849782.1 

lcpid31379, lcgid51207 scpid4527, scgid23872 

Laminin gamma 
 

g7968.t1 
g4177.t1 

XP_019855647.1 
lcpid13654, lcgid40757 
 

scpid4187, scgid33329 
 

Lysyl hydroxylase g1142.t1 XP_019854114.1 lcpid37848, lcgid5516 scpid32678, scgid32033 

http://www.ncbi.nlm.nih.gov/protein/761913831?report=genbank&log$=prottop&blast_rank=1&RID=BT55MP3P014
https://www.ncbi.nlm.nih.gov/protein/XP_003383478.3?report=genbank&log$=prottop&blast_rank=1&RID=PKS40WC0015
https://www.ncbi.nlm.nih.gov/protein/XP_019851580.1?report=genbank&log$=prottop&blast_rank=1&RID=PKNYJEWE014


 

Table 2. Homologues of ECM and affiliated proteins of bilaterians identified in four species of poriferans. 

Accession numbers are from genomes and transcriptome-predicted proteins of O. carmela, S. ciliatum and 

L. complicata [88] at Compagen [89], and GenBank entries of the A. queenslandica genome and 

transcriptome projects  [86, 87]. Apart from collagen IV-like collagens and spongins, the various collagens 

identified have been grouped as fibrillar-like collagens.  

Underlying BLAST results and validations are reported in Supplementary Tables 5-8.  

 

 

 

Lysyl Oxidase g7137.t1 
XP_003387025.1 
 

lcpid22308, lcgid72170 
lcpid23110, lcgid74733 

scpid30388, scgid0815 
scpid36618, cgid24646 
scpid31988, scgid0815 

Matrix metalloproteinase - - - - 

Nidogen - - - - 

Perlecan - - - - 

Procollagen C-proteinase 
enhancer 

- - - 
- 

Prolyl 4-hydroxylase  
g1383.t1 
 

XP_003383442.1 lcpid38875,lcgid64402 
scpid58888|scgid3871 
scpid40070, scgid33742 

Silicatein 
g4492.t1 g6175.t1 
g6176.t1 

XP_003383103.1  
 

lcpid104541, lcgid12146 
lcpid113056, lcgid19166 

scpid95074, scgid11171 
scpid63063, scgid35043 

SPARC 
g4839.t1 
 

- 
lcpid126889, lcgid36337, 
lcpid74779, lcgid64875 

- 

Spongin 

g1095.t1 
g988.t1 
g2075.t1 
g3758.t1 

XP_011405650.1 - - 

Syndecan - - lcpid156268, lcgid70156 - 

Thrombospondin 
Superfamily 

m162353a/g.1623
53 
 

XP_011406237.1 
lcpid9057a,  lcpid8282, 
lcpid36553 

scpid30246, scpid2291a,   
scpid12552 

Tissue Transglutaminase 2 - XP_019853849.1 - - 

Xylosyltransferase g25200.t1 XP_011404143.1 lcpid41679, lcgid69457 scpid26149, scgid20327 

http://www.ncbi.nlm.nih.gov/protein/340377014?report=genbank&log$=prottop&blast_rank=1&RID=C6HMUMNR014
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