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Abstract 9 

Soil moisture plays a key role in land-atmosphere interaction systems. Although it can be estimated 10 

through in-situ measurements, satellite remote sensing and hydrological modelling, using indicators to 11 

index soil moisture conditions is another useful way. In this study, one of these indicators, The 12 

Antecedent Precipitation Index (API) is explored. Modifications were proposed to the conventional 13 

version of API by introducing two parameters to make it more in line with the physical process. First, 14 

the recession coefficient is allowed to vary with the change of air temperature, which could take into 15 

account the variation of the evapotranspiration process. Second, the API value is restricted by the 16 

maximum value of API, accounting for the maximum water holding capacity of the soil. The modified 17 

API was then calibrated and validated by comparing with the in-situ measured soil moisture. The better 18 

correlation between these two datasets demonstrates that the modified API could better indicate soil 19 

moisture conditions, compared with the conventional API. The capability of the modified API to index 20 

soil moisture conditions was further explored by applying it to landslide predictions in the Emilia-21 

Romagna region, northern Italy. Here the recent 3-day rainfall vs the antecedent soil wetness thresholds 22 

(RS thresholds) were constructed, in which the soil wetness is indexed by the modified API. The 23 

validation of RS thresholds was carried out with the use of the contingency matrix and Receiver 24 

Operating Characteristic (ROC) curves. By comparing the prediction performance between RS 25 

thresholds and rainfall thresholds, it is found that RS threshold could provide better prediction 26 

capabilities in terms of higher hit rate and lower false alarm rate. The positive results indicate that the 27 

modified API could provide superior performance of indexing soil moisture conditions, demonstrating 28 

the effectiveness of the proposed modifications. 29 

1 Introduction 30 

Soil moisture in this study refers to the water content in the unsaturated zone. It plays a crucial role in 31 

the land-atmosphere interaction, through governing the water and energy balance between the land 32 

surface and the first layer of the atmosphere. As a result, the estimation of soil moisture is important in 33 

many scientific and practical issues. For rainfall-runoff modeling, the soil moisture condition prior to 34 

rainfall storms has been recognized as a key factor in determining the catchment runoff response  35 

(Brocca et al. 2010, Castillo et al. 2003, Koster et al. 2010). For numerical weather prediction and 36 

climate modelling, soil moisture is a major consideration due to its role in governing the partitioning of 37 

the mass and energy fluxes between the land and atmosphere (Bolten et al. 2010, Koster et al. 2004, 38 

Koster et al. 2009). The antecedent soil moisture is also known as an important factor in the initiation 39 

of rainfall-triggered landslides (Glade et al. 2000, Zêzere et al. 2015).  40 

Soil moisture estimates can be obtained in different ways, such as in-situ measurements, remote sensing 41 

and hydrological modelling. In-situ measurements are arguably the most accurate estimation of soil 42 

moisture; however, point-based measurements make it limited in terms of spatial extent (Brocca et al. 43 
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2007). Due to the high cost of installation and maintenance, the in-situ measurements are not always 44 

available in the interested areas. In previous studies, the most common use of the in-situ measured soil 45 

moisture is to calibrate and test other estimates of soil moisture. Remote sensing technology has been 46 

widely used to estimate surface soil moisture in recent years (Entekhabi et al. 2010, Kerr et al. 2010), 47 

including the Soil Moisture and Ocean Salinity (SMOS) satellite launched by European Space Agency 48 

(SEA) and the Soil Moisture Active and Passive (SMAP) program scheduled by National Aeronautics 49 

and Space Administration (NASA). Many studies have evaluated and validated the remote sensed soil 50 

moisture products by comparing them with in-situ measurements (Draper et al. 2009, Gruhier et al. 51 

2009, Jackson et al. 2010, Wagner et al. 2006). They found the remote sensed soil moisture could 52 

capture soil moisture temporal variations in good agreement with in-situ measurements. The remote 53 

sensing products can provide quantitative soil moisture information at a global scale with free 54 

availabilities, and have been applied to many hydrological, meteorological and agriculture applications, 55 

despite the coarse resolution. Some attempts have also been made to estimate soil moisture with the use 56 

of hydrological modelling. Posner and Georgakakos (2015) utilized spatially distributed operational 57 

hydrological models to estimate depth-integrated soil moisture, and then applied it to a regional 58 

forecasting system for landslide hazard threat level in EI Salvador. Valenzuela et al. (2017) analyzed 59 

soil moisture conditions of 84 landslides in Asturias, NW Spain. The soil moisture was represented with 60 

the index Available Water Capacity (AWC), which is extracted from daily water balance models. 61 

Although the model-based method is a useful way to estimate soil moisture conditions, it has a high 62 

demand for data inputs and normally computationally intensive especially for larger study areas.  63 

In addition to the aforementioned conventional methods, some indicators are also used as a means of 64 

estimating soil moisture. Antecedent Precipitation Index (API) is one of these indicators, proposed by 65 

Linsley et al. (1949). API is based on precipitation that has occurred over the preceding days, and due 66 

to the easier availability of the precipitation observations, the use of API is more practical for some 67 

applications where general indications of soil moisture conditions can meet demand. Crozier and Eyles 68 

(1980) employed this index to characterize the effect of antecedent soil moisture conditions on the 69 

occurrence of rainfall-triggered landslides. Crow et al. (2005) explored the effect of antecedent soil 70 

wetness on runoff forecasting with the use of API. Although API is considered as a useful indicator of 71 

soil moisture and easier to use in practical applications, deep investigations on its usage are still absent, 72 

and there are some questions remaining unexplored. For example, API is derived from the antecedent 73 

precipitation with a recession coefficient representing the rates of drainage and evapotranspiration 74 

processes. The choice of the length of the preceding period and the recession coefficient is unclear. The 75 

preceding period chosen as significant differs considerably in the previous studies (Crozier and Eyles 76 

1980, Zêzere et al. 2005), varying from 10 days to 60 days. As for the determination of the recession 77 

coefficient, most studies used the value of 0.84, which comes from Ottawa (United States) streamflow 78 

data in the work of Crozier and Eyles (1980). When defining the landslide-triggering rainfall thresholds 79 
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using the index for antecedent rainfall, Glade, et al. (2000) derived the recession coefficient from the 80 

recession curves of storm hydrographs for each region. The calculated thresholds show regional 81 

differences in susceptibility of a given landscape to landslide-triggering rainfall. Furthermore, there are 82 

limited investigations directly exploring the performance of API in indicating soil moisture conditions, 83 

due to the lack of in-situ measurements as the benchmark. Filling these knowledge gaps will benefit the 84 

applications of API to a wider range of practical problems.  85 

Based on the above, the aim of this study is to explore the improved usage of API to index soil moisture 86 

conditions. It is also attempted to modify API to make it more in line with the physical process.  From 87 

a hydrological point of view, there are two aspects worth improving for API. First, in the definition of 88 

API, the recession coefficient is assumed to be constant throughout the year, ignoring the variation of 89 

the evapotranspiration process, which may be related to some factors such as temperature, wind speed, 90 

relative humidity, etc. Second, the API expression lacks the consideration of the maximum water 91 

capacity of the soil layer, which may cause an overestimation of the soil moisture. Therefore, this study 92 

intends to improve the formulation of API by incorporating more considerations of the hydrological 93 

process. The performance of API in indicating soil moisture conditions is evaluated by comparing with 94 

the in-situ measurements of volumetric water content. The application of the modified API in landslide 95 

predictions is also investigated, where the antecedent soil moisture conditions before the landslide 96 

occurrences are indexed by the modified API. This study was carried out in a northern Italian region 97 

called Emilia Romagna, owing to the availability of ample landslide records and the 98 

hydrometeorological data.  99 

2 Study Area and Data Sources 100 

2.1 Study area 101 

The Emilia-Romagna region is located in the north of Italy, bordered by Apennines mountains (on the 102 

south and the west), Adriatic Sea (on the east) and Po River (on the north). There is a wide flat area in 103 

the northern and eastern portions of the region, while its southern and western areas are characterized 104 

by hills and mountains, whose maximum altitude is 2165m (Figure 1). This region has a typical 105 

Mediterranean climate: summer, from approximately May to October, is warm and dry, while winter 106 

from November to April is mild/cold and wet. 107 

The mountainous part of the Emilia-Romagna region is extremely prone to landslides. There are a 108 

variety of landslide topologies (Martelloni et al. 2011), like the rotational-translational slides, slow earth 109 

flows, complex movements, rapid shallow landslides, etc. Although the occurrence of landslides is a 110 

result of multiple factors, in the Emilia-Romagna region, the main triggering factor of landslides is 111 

rainfall. Short but intense rainfalls are more likely to trigger debris flows and shallow landslides, while 112 

deep-seated landslides and earthflows are mainly caused by moderate but prolonged periods of rainfalls 113 

(Ibsen and Casagli 2004).  114 
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 115 

Figure 1. Location of the Emilia-Romagna region as well as the location of landslides, in-situ 116 

measurement stations and the CCI-SM centroid pixels. 117 

2.2 Data sources 118 

In the study area there is a hydro-meteorological network maintained by Regional Agency for the 119 

Prevention, Environment and Energy of Emilia-Romagna (Arpae), which is able to provide a variety of 120 

observations at different temporal scales, such as rainfall, pressure, air temperature, relative humidity, 121 

wind speed, soil moisture, etc. All these data can be obtained online 122 

(http://www.smr.arpa.emr.it/dext3r/). The data used in this study was extracted the here, including the 123 

in-situ measured soil moisture, rainfall, and temperature data.  124 

There are 19 in-situ soil moisture measurement sites within the study area, where Time Domain 125 

Reflectometry (TDR) equipped with dataloggers is used to measure soil water content at different soil 126 

depths. Among these sites, only the San Pietro Capofiume site (marked with the green triangle in Figure 127 

1) could provide long-term surface soil moisture observations (at 10 cm soil depth). Therefore, this site 128 

was selected to explore the performance of API, where data of the daily average temperature, daily 129 

cumulative rainfall and soil water content are needed. Considering the completeness of the required 130 

data, data of the period from 2006 to 2016 were extracted and used for the analysis.  131 

For the purpose of applying the modified API to landslide predictions, the modified API was calculated 132 

for the landslide-prone area of the Emilia-Romagna region, and its validation needs to be evaluated 133 

http://www.smr.arpa.emr.it/dext3r/
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using the in-situ soil moisture measurements. However, due to the lack of long-term in-situ measured 134 

soil moisture in this area, remote sensed soil moisture was utilized as a proxy. The modified API was 135 

calculated based on the data from 50 weather stations (marked with red triangles in Figure 1) for the 136 

period from 2006 to 2016. The remoted sensed soil moisture adopted in this study is the state-of-the-art 137 

ESA Climate Change Initiative (CCI) soil moisture product (CCI-SM hereafter). This product is 138 

produced by merging information from multiple active and passive microwave sensors, including three 139 

harmonized satellite soil moisture datasets: a merged ACTIVE (1991-2016), a merged PASSIVE (1978-140 

2016) and a COMBINED (1978-2016). The soil moisture information provided by the CCI-SM product 141 

is the volumetric water content (m3/m3), with a daily temporal resolution, and 0.25-degree spatial 142 

resolution. In this study, the latest version (v04.2, released in early 2018) of CCI-SM COMBINED 143 

product was employed, whose pixel centroids are shown in Figure 1.  144 

The landslide data was collected from Emilia-Romagna Geological Survey, an agency maintaining a 145 

catalogue of historical landslides in the Emilia-Romagna region. The landslides recorded in this 146 

catalogue were from various sources, such as reports to local authorities, national and local press, 147 

technical documents. Most landslides that led to casualties and damage were recorded, while those with 148 

little influence or damage were more likely to be undetected. In general, a range of landslide occurrence 149 

information should be gathered, such as location, date, accuracy level of the record, characteristics 150 

(length, width, type and material), triggering factors, damage and references. However, in practice, it is 151 

difficult to collect and record all the above information. For most landslides, only the occurrence 152 

location and date were recorded. Despite such a fact, this catalogue is the most complete and detailed 153 

records of landslides in the Emilia-Romagna region, and regarded as a proxy of actual landslides (Rossi 154 

et al. 2010). In this study, only the landslides with daily accuracy in terms of the occurrence date were 155 

selected for the landslide prediction analysis, with a total of 140 (Figure 1). The landslides occurred 156 

during the period from 2006 to 2014 were used to establish the thresholds for landslide occurrence, and 157 

the landslides in the period from 2015 to 2016 were for the validation of the thresholds.  158 

3 Methods 159 

3.1 Antecedent Precipitation Index 160 

Antecedent Precipitation Index (API) is an index derived from the preceding daily rainfall, regarded as 161 

a simple surrogate measure of soil moisture. One common definition of API was proposed by Fedora 162 

(1987) to simulate storm hydrographs in the Oregon Coast Range, written as:  163 

 APIt  =  k APIt−∆t +  P∆t (1) 

where APIt is the API at time t, P∆t is the cumulative precipitation during the period from t − ∆t to t (in 164 

this study ∆t  = 1 day), and k is the recession coefficient, which is assumed constant throughout the 165 

year.  166 
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From a hydrological point of view, there are two aspects worth improving for the above formulation of 167 

API. First, assuming the recession coefficient is a constant is not in agreement with the physical process. 168 

The recession coefficient is adopted to characterize the rate of water loss, which is a result of the 169 

drainage and evapotranspiration processes. Considering that the evapotranspiration process is 170 

dependent on multiple factors (e.g. air temperature, wind speed, relative humidity) and these factors 171 

vary through the year, assuming the recession coefficient is a constant ignores the variation of these 172 

factors and their effects on soil moisture conditions. The effect of temperature on the soil moisture 173 

evolution can be found in Figure 2, which illustrates the temporal evolution of in-situ soil moisture 174 

measurements in the San Pietro Capofiume site as well as the corresponding rainfall and temperature 175 

series. As can be seen, for three dry periods (December of 2015, March and April of 2016 and July of 176 

2016), their rainfall conditions are similar, with little or zero amount. However, their soil moisture 177 

conditions show significant differences. For December of 2015, the soil remains in a wetter condition, 178 

while for other two dry periods, the water content is lower. This can be explained by the difference of 179 

the temperature during these periods. Higher temperature conditions benefit the evapotranspiration 180 

process and lead to a more loss of water, thus less water is attributed to the soil resulting in a lower 181 

water content. On the contrary, lower temperature conditions will result in the wetter soil conditions 182 

due to the reduced water loss. Therefore, it is necessary to take into account the variation of some factors 183 

that affect the evapotranspiration process. Due to the easier availability of temperature data, only 184 

temperature is considered in this study. For this purpose, the formulation of API expressed in Equation 185 

(1) is modified by allowing the recession coefficient to vary according to the change of temperature. As 186 

a line relationship is simpler and easy to implement, the variation of the recession coefficient is assumed 187 

as linear in this study: 188 

 k =  0.84 +  δ (20 − Tave) (2) 

where Tave is the daily average temperature (℃ ) and δ is a sensitivity parameter ( ℃−1 ). When δ  is 189 

equal to 0, the recession coefficient is constant as 0.84, which is widely used in the previous studies, 190 

recommended by Crozier and Eyles (1980). The reason for using 20 ℃ as the basis is that it is the most 191 

common temperature when the value of 0.84 is used.   192 
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 193 

Figure 2. Time series of in-situ soil moisture measurements in the San Pietro Capofiume site as well 194 

as the corresponding rainfall and temperature series. 195 

Second, the API expression lacks the consideration of the maximum water capacity of the soil layer. In 196 

the hydrological process, prolonged rainfall will saturate the soil allowing no additional water to be 197 

held. As a result, any additional rainfall that falls becomes overland flow. This process is termed as 198 

saturation excess overland flow. In this case, API calculated with Equation (1) will overestimate the 199 

water content in the soil. Therefore, a parameter APImax is introduced to take into account the process 200 

of saturation excess overland flow: when the value of API exceeds APImax, it is equal to APImax. 201 

The optimization of the parameter δ and APImax is carried out by comparing the modified API with the 202 

observed soil moisture for the period from 2006 to 2013. As the modified API attempts to capture soil 203 

moisture temporal variations in good agreement with in-situ measurements, Pearson correlation 204 

coefficient is used as the evaluation criterion to measure the linear correlation between the modified 205 

API and the measured soil moisture. Pearson correlation coefficient ranges from -1 to 1, where 1 is total 206 

positive linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation. The 207 

optimized parameters are then validated for the period from 2014 to 2016. Due to the lack of in-situ 208 

measured soil moisture, it is difficult to determine the optimal parameters for other locations. It is 209 

assumed that it is feasible to extrapolate the parameters at the San Pietro Capofiume site to the whole 210 

study area. In order to assess the reliability of this assumption, the modified API series is compared 211 

with the CCI-SM product for each weather station.  212 

3.2 Rainfall versus soil wetness threshold 213 

A recent rainfall versus antecedent soil wetness threshold (hereafter RS threshold) is employed to 214 

explore the application of API in landslide prediction studies. The soil wetness here is the quantification 215 

of the soil moisture condition. RS threshold consists of two components: one is the recent 3-day 216 
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cumulative rainfall (R) before the landslide occurrence, and the other is the antecedent soil wetness of 217 

the day preceding the recent 3-day (S), which is indexed by the modified API as proposed. The modified 218 

API here is scaled with the maximum and minimum value, thus ranging from 0 to 1 with higher values 219 

corresponding to wetter soil conditions. 220 

For the purpose of constructing and testing RS threshold, all datasets are divided into two periods: 2006-221 

2014 for the construction of RS threshold, and 2015-2016 for the evaluation of the threshold. RS 222 

threshold is determined by various combinations of the critical value of landslides’ rainfall and soil 223 

wetness, which are defined with their different percentiles. Taking the rainfall’s 5th percentile (P5) as 224 

an example, it means there are 5% landslides with the recent 3-day cumulative rainfall value less than 225 

P5. The two components of the RS threshold are used separately in this study: the critical value of the 226 

antecedent soil wetness is firstly used as a criterion and then the critical value of rainfall is used. The 227 

reason of not constructing the functional relation between these two components (like the power law 228 

relation between rainfall intensity and rainfall duration in the rainfall threshold) is because this 229 

relationship remains unknown, although there are some studies assuming it as the linear relation 230 

(Chleborad et al. 2008, Mirus et al. 2018, Scheevel et al. 2017). The landslide occurrence is predicted 231 

only when these two components' critical values are exceeded. The prediction performance of different 232 

thresholds is evaluated with the help of the contingency matrix and Receiver Operating Characteristic 233 

(ROC) curves. This is the most common manner used in landslide early warning studies (Gariano et al. 234 

2015, Mirus, et al. 2018, Staley et al. 2013).  235 

Hit Rate (HR) is also known as the true positive rate, and used to measure the proportion of landslides 236 

that are correctly predicted: 237 

 HR =  
TP

TP + FN
 (3) 

False Alarm Rate (FAR) is also known as the false positive rate, and used to measure the proportion of 238 

false alarms over the events when no landslide occurs: 239 

 FAR =  
FP

FP + TN
 (4) 

In Equations (3) and (4), True Positive (TP), False Negative (FN), False Positive (FP) and True Negative 240 

(TN) are four possible outcomes of the thresholds’ prediction results. TP means the threshold predicts 241 

landslide occurrences successfully; FN is an error where the threshold does not predict the occurrence 242 

of landslides; however, in reality landslides occur; FP is an error where the threshold predicts the occurs 243 

of landslides; however, there is no landslide occurrence in reality; TN means the threshold correctly 244 

predicts the non-occurrence of landslides. 245 



 

10 

 

The value of HR and FAR ranges between 0 and 1. When HR is equal to 1 and FAR is equal to 0, the 246 

optimal performance is achieved. This is referred to a perfect point. For the better measurement of the 247 

gap to the perfect point, the Euclidean distance (d) is also calculated for each threshold scenario. The 248 

smaller the distance, the better the prediction performance.  249 

 d =  √(FAR)2 + (HR − 1)2 (5) 

3.3 Rainfall threshold 250 

In order to directly compare the prediction performance of RS threshold with that of the rainfall 251 

threshold, the cumulative event rainfall E (mm) versus rainfall duration D (day) threshold was also 252 

constructed using the Frequentist approach proposed by Brunetti et al. (2010). They assumed the general 253 

formulation of threshold curves as a power law: 254 

 E =  α ∙ Dγ (5) 

where α is a scaling constant (the intercept at the value of D equal to 1), γ is the shape parameter 255 

(defining the slope of the power law curve). The cumulative rainfall E (mm) and rainfall duration D 256 

(day) are calculated based on rainfall events, which are identified using the automatic procedure 257 

proposed by Melillo et al. (2014). Thresholds with different percentiles are calculated and evaluated. 258 

The data used for the construction and test of rainfall thresholds are the same as that for RS thresholds, 259 

and the evaluation method also remains the same.   260 

4 Results 261 

4.1 The effect of the initial value 262 

Before using Equation (1) to calculate API, it was necessary to explore the effect of the initial value 263 

and the determination of the period length for recursion, as the expression of API in Equation (1) is a 264 

recursive form. For this purpose, different initial values were designed ranging from 0 to 100 mm. Once 265 

the initial value is given, the expression in Equation (1) was run for the next 200 days. The temporal 266 

evolution of API with different initial values is shown in Figure 3a. It is clear to see whatever the initial 267 

value is, the value of API after near 60 days remains the same, although there is a distinct difference in 268 

the first 20 days. In other words, the effect of initial value decreases and becomes insignificant after the 269 

60th day. In order to exclude the influence of the position of the initial day, the above procedure was 270 

repeated by choosing different dates as the initial day. Here 366 days of the year 2012 were used for 271 

analysis. It is found that the day no longer affected by the initial value distributes in the range from the 272 

57th to 65th day, with the median value as the 59th day (Figure 3b). Based on the above results, API was 273 

calculated with the initial period of 60 days, after which the initial value has no longer effect on the API 274 

value. In this study, 30 mm was used as the initial value, which is the average level of API. 275 
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 276 

Figure 3. The effect of the initial value, a) time series of API with different initial values, b) the 277 

distribution of the day no longer affected by the initial value. 278 

4.2 The modified API 279 

Two parameters 𝛿  and APImax were introduced to modify API. To optimize these two parameters, 280 

different combinations of  𝛿 and APImax  were tested. Their performance was evaluated with the use of 281 

Pearson correlation coefficient (r), which w calculated using the modified API series and the observed 282 

soil moisture series of the period from 2006 to 2013. To make the recession coefficient greater than 0.5, 283 

considering the variation range of the temperature, the sensitive parameter 𝛿 ranging from 0 to 0.03 was 284 

explored. As for APImax, if a too small value is used as APImax, API remains the same as APImax for 285 

most cases, which is not consistent with the reality. Here 10 mm was considered as the lower limit of 286 

the variation range. Given the maximum value of API, the upper limit of the variation range was 287 

determined as 200 mm.  Some representative results are showed in Figure 4.  As APImax is regarded as 288 

an indirect measure of water capacity of the soil, it should remain constant for a particular type of soil. 289 

Therefore, the value of APImax is firstly determined for the study site. It is interesting to find that for 290 

all values of 𝛿, the correlation coefficient between soil moisture and API has the best value when 291 

APImax is around 35 mm. Therefore, 35 mm is selected as the optimal value of APImax. In the case of 292 

APImax as 35 mm, it is clear that the correlation coefficient increases greatly when δ changes from 0 to 293 

greater than 0, indicating that the performance of API could be improved by allowing the recession 294 

coefficient to vary with the temperature. The improvement is obvious when δ changes from 0 to 0.01, 295 

with the correlation coefficient increasing from around 0.55 to near 0.9. However, after δ larger than 296 

0.01, increasing the value of δ no longer results in the significant improvements and even worsens of 297 

the correlation coefficient, and the optimal result is reached at δ as 0.012. As a result, the optimal value 298 

of δ is selected as 0.012.  299 
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 300 

Figure 4. The optimization of parameters δ and APImax. 301 

To validate the optimized parameters, an evaluation of the modified API during the independent period 302 

from 2014 to 2016 was carried out. The scatter plot of API against the observed soil moisture as well 303 

as the fitted curve is shown in Figure 5 for both versions of API. Hereafter, the conventional API is 304 

represented by APIc , and the modified API is represented by APIm . From Figure 5a, the linear 305 

correlation relationship between the observed soil moisture and APIc is insignificant, and it is found 306 

that a power function has the best fit to the data points. As for Figure 5b,  APIm has a significant linear 307 

positive relationship with observed soil moisture values, with Pearson correlation coefficient increasing 308 

from 0.51 to 0.88. This not only indicates that the calibrated parameters’ performance is reliable for the 309 

independent period, but also demonstrates that introducing two parameters to APIc really improves the 310 

API’s performance of indicating soil moisture conditions.  311 

 312 

Figure 5. The scatter plot of API against the observed soil moisture as well as the fitted curve, a) for 313 

APIc, b) for APIm.  314 
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 315 

Figure 6. Time series of APIc and APIm as well as rainfall for the period from November 2015 to 316 

October 2016. 317 

For better demonstrating the superior performance of APIm, the temporal evolution of APIc and APIm 318 

as well as rainfall are illustrated in Figure 6. As expected, the change pattern in terms of increase or 319 

decrease is the same for these two variables, because the decrease or increase of API is mainly related 320 

to the variation of rainfall. For instance, during the period with rainfall, the soil conditions become 321 

wetter, represented by an increase in the value of API. As for the period with little or no rainfall, the 322 

soil conditions become drier, represented by a decrease in their values. Despite the same change 323 

direction, APIc and APIm show distinct differences in terms of change degree and change range. The 324 

change degree is more dependent on the contribution of the antecedent rainfall, while the change range 325 

is related to the maximum water capacity of the soil. For the wet season from November 2015 to April 326 

2016, the difference between APIc  and APIm  is distinct, which could be explained by the two 327 

parameters introduced to APIm. The parameter δ  leads to a higher k owing to the lower temperature in 328 

the wet season, resulting in a more contribution of the antecedent rainfall. Therefore, for the period with 329 

little or no rainfall, the value of APIm will not decrease as quickly as the APIc. As for the period with 330 

intense rainfall, the value of APIm is restricted by APImax , leading to the difference in terms of change 331 

range. For the dry season from May 2016 to October 2016, the biggest difference between APIc and 332 

APIm  is the change range caused by the introduction of APImax . As for the change degree that is 333 

influenced by δ, there is no distinct difference. The reason is that during this period, the temperature is 334 

near or a little greater than 20℃, therefore the k value is similar in both expressions of APIm and APIc, 335 

and thus they have similar change degree.  336 

4.3 Parameter Extrapolation 337 

To apply the modified version of API to landslide prediction studies, the values of APIm are required, 338 

whose calculation requires the determination of the two added parameters. However, due to the lack of 339 



 

14 

 

in-situ measured soil moisture in the landslide-prone area, it is difficult to optimize them in the same 340 

way as that used in the San Pietro Capofiume site. Therefore, it is assumed that it is feasible to 341 

extrapolate the parameters at the San Pietro Capofiume site to the whole study area. In order to validate 342 

the parameter extrapolation, the APIm series was assessed with the CCI-SM product for each weather 343 

station. Here Pearson correlation coefficient was used as the criterion. The reason for not using CCI-344 

SM to calibrate parameters for the study area is that there are uncertainties associated with the satellite 345 

data, which will lead to more uncertainties to the determination of parameters and the calculation of 346 

APIm. Therefore, the CCI-SM product is only used for evaluating the parameter extrapolation. 347 

Before using CCI-SM product, its reliability and accuracy were firstly investigated. The CCI-SM series 348 

is compared with the in-situ measured soil moisture in the San Pietro Capofiume site for the period 349 

from 2006 to 2016, which are shown in Figure 7. It can be seen from Figure 7a, CCI-SM is able to 350 

capture the overall seasonal and temporal variations of soil moisture. Despite this, it is noted that there 351 

are periods that CCI-SM product shows wetter conditions than the observed. Figure 7b presents the 352 

scatter plot of CCI-SM against the observed soil moisture. The variation range for both datasets are 353 

similar, CCI-SM ranges between 0.1 and 0.4 m3/m3, and the observed soil moisture varies from 0.05 to 354 

0.43 m3/m3. Moreover, although for some dry conditions (e.g., the observed soil moisture is between 355 

0.05 to 0.25), CCI-SM product overestimates the soil moisture, in general, the data are distributed 356 

mainly around the identical line. The Pearson correlation coefficient of 0.68 also indicates the CCI-SM 357 

is generally in line with the in-situ measurements. In summary, despite some drawbacks of CCI-SM, it 358 

is considered acceptable to represent the temporal evolution of soil moisture conditions and can be used 359 

for the validation of the parameter extrapolation.  360 

 361 

Figure 7. Comparison between the observed soil moisture and CCI-SM product, a) the time series 362 

plot, b) the scatter plot with the identical line.  363 

 364 
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The validation of the parameter extrapolation was carried out for 50 weather stations within the study 365 

area. For each station, APIm of the period from 2006 to 2016 was calculated based on its rainfall and 366 

temperature datasets, with the use of those two parameters optimized in the San Pietro Capofiume site. 367 

By matching the nearest CCI-SM pixel to the station, the CCI-SM dataset can be extracted. With the 368 

APIm  and CCI-SM datasets, the Pearson correlation coefficient was calculated as the evaluation 369 

criterion. For the purpose of comparison, the same process was also carried out for APIc. The value of 370 

correlation coefficient is shown in Figure 8. As is seen, the performance of the parameter extrapolation 371 

varies with stations, with the minimum as 0.53 and the maximum as 0.78. In spite of the variance of the 372 

performance, APIm  shows a great improvement over APIc  by comparing the mean value of their 373 

correlation coefficients (growing from 0.48 to 0.70). Although the value of the correlation coefficient 374 

is not great enough, given the uncertainties associated with the CCI-SM product, the performance of 375 

the parameter extrapolation is regarded as acceptable and APIm can be used as an indicator for soil 376 

moisture conditions in the study area.  377 

 378 

Figure 8. The correlation coefficient between CCI-SM and two versions of API for 50 weather 379 

stations as well as their mean values. 380 

4.4 The application of 𝐀𝐏𝐈𝐦 381 

To further evaluate the performance of APIm in indicating soil moisture conditions, an investigation 382 

was carried out to apply it in landslide prediction studies. Here RS threshold was constructed using the 383 

rainfall and soil wetness information associated with the occurrence of landslides during the period 384 

from 2006 to 2014. For RS threshold, the rainfall indicator is the recent 3-day cumulative rainfall (R) 385 

before the landslide occurrence, and the antecedent soil wetness (S) is indexed by the  APIm of the day 386 

before the recent 3-day. Here the value of APIm is scaled with its minimum and maximum values, 387 

ranging from 0 to 1. With the rainfall and soil wetness information of all landslides, RS threshold is 388 
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determined by various combinations of these two variables' critical values, which are defined at their 389 

different percentiles (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 and 50). The percentile distribution of all landslides’ 390 

antecedent soil wetness and recent rainfall is shown in Figure 9, where the critical values of these two 391 

variables are marked with red triangles. From Figure 9a, the antecedent soil condition for more than 80% 392 

of landslides is more than 0.68, while more than 50% of landslides have antecedent soil wetness equal 393 

to 1. As for the recent 3-day cumulative rainfall in Figure 9b, it is found there are always rainfall before 394 

the landslide occurrence, although the rainfall amount varies a lot. More than 50% of landslides have 395 

the recent 3-day cumulative rainfall greater than 36 mm. The big difference of the antecedent soil 396 

wetness and 3-day cumulative rainfall of landslides is the reason why various percentiles are 397 

investigated.  398 

 399 

Figure 9. The percentile distribution of all landslides’ antecedent soil wetness and recent 3-day 400 

cumulative rainfall (soil wetness is indexed with the scaled value of APIm). 401 

The prediction performance of different RS thresholds was evaluated using the data from 2015 to 2016, 402 

whose ROC curves are shown in Figure 10. In this figure, the point represents one scenario of RS 403 

threshold, determined by one combination of the critical value of soil wetness and rainfall. The critical 404 

value of soil wetness remains the same for the points on the same curve, for instance, the critical value 405 

of soil wetness is determined with its 1st percentile (P1) for the points on the red curve. The difference 406 

among the points on the same curve is the rainfall's critical value, from right to left, the rainfall's critical 407 

value is determined by 12 different percentiles at the percentile rank of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 408 

and 50. It can be seen from Figure 10, when the critical value of the antecedent soil wetness remains 409 

the same, increasing the critical value of the recent 3-day cumulative rainfall could improve the false 410 

alarm rate sometimes at the expense of reducing the hit rate. This result also applies to the case in which 411 

the rainfall's critical value remains the same and the soil wetness' critical value increases. In order to 412 

determine the optimal critical value of the antecedent soil wetness, the area under the ROC curve (AUC) 413 

is employed, the larger the area, the better the prediction performance. Based on the value of AUC, the 414 
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critical value of the soil wetness determined with the 10th percentile could provide the best predictive 415 

capabilities (relative higher hit rates and lower false alarm rates), which is used to compare with the 416 

rainfall threshold’s performance.  417 

 418 

Figure 10. Receiver operator characteristic (ROC) curves for various RS thresholds with the area 419 

under the curve (AUC) listed (" S, Pi " means the critical value of the antecedent soil wetness is 420 

determined with the ith percentile). 421 

The rainfall thresholds with different percentile ranks were determined for comparison (Table 1a). 422 

Three thresholds with the 1st, 5th and 50th percentiles are shown in Figure 11 as well as the rainfall 423 

conditions (D, E) that are likely to trigger landslides. Rainfall conditions associated with landslides are 424 

in the range of duration 1 𝑑𝑎𝑦 ≤ 𝐷 ≤ 50 𝑑𝑎𝑦𝑠, and in the range of cumulative event rainfall 9.6𝑚𝑚 ≤425 

𝐸 ≤ 637.2𝑚𝑚, which are the ranges of validity for the threshold. Taking the percentile rank of 5 as an 426 

example, as expected, there are 5 pairs of the (D, E) data (5% of 112 rainfall conditions) below the P5 427 

threshold. It is noted that the uncertainties of the thresholds depend on the number and distribution of 428 

the empirical data, and increasing the sample size could reduce the uncertainties.  429 
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 430 

Figure 11. The rainfall thresholds with percentile ranks of 1, 5 and 50, as well as the rainfall 431 

conditions (D, E) that are likely to trigger landslides. 432 

The ROC curves are plotted in Figure 12 for rainfall thresholds and RS thresholds whose soil wetness's 433 

critical value is determined with the 10th percentile. The statistical indicators of those thresholds are 434 

summarized in Table 1. From Figure 12, it is clear that the false alarm rate is greatly reduced by the RS 435 

threshold, leading to a higher value of AUC than the rainfall threshold. To determine the optimal 436 

threshold that meets a balance between the hit rate and the false alarm rate, Euclidean distance of various 437 

thresholds is compared. The rainfall threshold with the smallest distance to the perfect point is achieved 438 

at the percentile rank of 20, where HR is 0.818 and FAR is 0.353. RS threshold has the smallest distance 439 

when the soil wetness’s critical value is defined with its 10th percentile and the rainfall’s critical value 440 

is defined with its 20th percentile, whose HR is 0.955 and FAR is 0.124. Furthermore, the optimal 441 

threshold is also determined by restricting HR as 1 due to the danger of missed alarms. In this way, the 442 

rainfall threshold has the best performance for the 3rd percentile case with FAR as 0.698, while the 443 

optimal RS threshold is achieved at the 10th percentile for both soil wetness and rainfall component, 444 

with FAR is 0.188. Through comparing these two types of the optimal thresholds, it is found that the 445 

prediction performance of the optimal RS thresholds is closer to the perfect point, compared with the 446 

optimal rainfall thresholds, indicating the application of APIm in landslide prediction studies is effective 447 

by indicating antecedent soil moisture conditions of the landslide occurrence.  448 
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 449 

Figure 12. Receiver operator characteristic (ROC) curves for rainfall thresholds and RS thresholds 450 

whose soil wetness's critical value is determined with the 10th percentile, as well as the area under the 451 

curve (AUC) listed. 452 

Table 1. The prediction results for various thresholds in terms of TP, FN, FP, FN, HR, FAR and the 453 

Euclidean distance (d). The optimal results are shown in bold. 454 

a) Rainfall thresholds 455 

P 
E =  α ∙ Dγ 

TP FN FP TN HR FAR d 
α γ 

1 4.33 0.30 22 0 612 172 1.000 0.781 0.781 

2 5.29 0.30 22 0 575 209 1.000 0.733 0.733 

3 6.01 0.30 22 0 547 237 1.000 0.698 0.698 

4 6.61 0.30 20 2 518 266 0.909 0.661 0.667 

5 7.15 0.30 20 2 499 285 0.909 0.636 0.643 

6 7.64 0.30 20 2 475 309 0.909 0.606 0.613 

7 8.11 0.30 20 2 462 322 0.909 0.589 0.596 

8 8.54 0.30 20 2 444 340 0.909 0.566 0.574 

9 8.96 0.30 20 2 428 356 0.909 0.546 0.553 

10 9.35 0.30 20 2 416 368 0.909 0.531 0.538 

20 12.94 0.30 18 4 277 507 0.818 0.353 0.397 

50 24.10 0.30 4 18 71 713 0.182 0.091 0.823 

 456 

b) RS thresholds 457 
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P for R 
Threshold value 

TP FN FP TN HR FAR d 
S(P10) R (mm) 

1 0.58 0.58 22 0 2456 6267 1.000 0.282 0.282 

2 0.58 1.03 22 0 2256 6467 1.000 0.259 0.259 

3 0.58 1.72 22 0 2114 6609 1.000 0.242 0.242 

4 0.58 2.45 22 0 1974 6749 1.000 0.226 0.226 

5 0.58 2.60 22 0 1971 6752 1.000 0.226 0.226 

6 0.58 2.74 22 0 1937 6786 1.000 0.222 0.222 

7 0.58 3.63 22 0 1796 6927 1.000 0.206 0.206 

8 0.58 4.01 22 0 1737 6986 1.000 0.199 0.199 

9 0.58 4.58 22 0 1691 7032 1.000 0.194 0.194 

10 0.58 5.14 22 0 1644 7079 1.000 0.188 0.188 

20 0.58 12.60 21 1 1079 7644 0.955 0.124 0.132 

50 0.58 36.00 16 6 338 8385 0.727 0.039 0.275 

 458 

5 Discussion 459 

The modified version of API proves to be more correlated with the observed soil moisture compared 460 

with the conventional version, as it is more in line with the physical process. Since the formulation of 461 

the modified API is simple and the input data is less demanding than the commonly used hydrological 462 

models, it is easier to be used in practical issues. One major challenge with its application is the 463 

determination of parameters. In this study, the calibration method is used to estimate the parameters. 464 

However, this approach is only applicable to sites with the observed soil moisture data. For sites with 465 

the in-situ measured soil moisture with limited temporal coverage, the calculation of APIm with the 466 

calibrated parameters would be useful for the data extension, as the temperature and rainfall data are 467 

always available for a long-term period. For sites without in-situ measurements of soil moisture, 468 

although the parameter extrapolation is an approach to help estimate parameters, the performance of 469 

parameters estimated in this way varies greatly, which can be seen from Figure 8. Using the satellite 470 

soil moisture as a proxy of the in-site measured soil moisture to calibrate parameters could be another 471 

way, however, the uncertainties associated with the remote sensed data may affect the parameter 472 

calibration. For the purpose of better applying APIm  to practical issues, the determination of the 473 

parameters needs further exploration. For instance, when the in-situ measurements of soil moisture are 474 

sufficient, some relationships could be constructed between the calibrated parameters and 475 

characteristics of different locations. In this way, the parameters could be extrapolated to ungauged sites 476 

based on these relationships, thus the application of APIm will not be restricted by the determination of 477 

parameters.  478 
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The APIm provides a useful and effective indicator for soil moisture conditions. Although it is not able 479 

to estimate the absolute soil moisture value, its good correlation with the observed soil moisture data 480 

demonstrates it could capture the temporal evolution of soil moisture conditions. As a result, using 481 

APIm  as an indicator of soil moisture conditions could provide a proxy of soil moisture for some 482 

applications, where only the general soil moisture conditions are required rather than the absolute soil 483 

water content values. The landslide early warning is one of those applications, in which APIm could be 484 

used as an index of the antecedent soil moisture conditions before landslide occurrence. Moreover, for 485 

those explorations that investigate the effect of the soil moisture conditions on the catchment runoff 486 

response,  APIm is also useful.  487 

In this study, an investigation on the application of APIm in landslide studies was performed. The APIm 488 

dataset for the landslide-prone area was derived with the parameters calibrated in the San Pietro 489 

Capofiume site, although the parameter extrapolation shows different reliability for different locations, 490 

the APIm’s correlation with the CCI-SM dataset is generally acceptable, since there are uncertainties 491 

associated with the satellite soil moisture data. In this application,  APIm was used to index antecedent 492 

soil moisture conditions, and then employed to construct RS threshold which consists of the recent 3-493 

day rainfall component and the antecedent soil wetness component. Direct comparison between RS 494 

threshold and rainfall threshold confirms that RS threshold is able to provide better prediction 495 

capabilities in terms of higher hit rate and lower false alarm rate. One possible reason for this 496 

improvement is that RS threshold takes into account the antecedent soil moisture conditions, which are 497 

widely recognized as the important factor in the initiation of landslides. As a result, it is inferred that 498 

APIm is feasible to indicate the soil moisture condition. It is noted although RS threshold considers 499 

antecedent soil moisture conditions, the only required data is the rainfall data, therefore, RS threshold 500 

used in this study could facilitate the integration of the rainfall forecasts and fulfil predicting landslide 501 

occurrence in advance for the following day.  502 

6 Conclusion 503 

In this study, API is modified by incorporating more considerations of the hydrological process. First, 504 

the recession coefficient is allowed to vary with the change of temperature, and thus more consistent 505 

with the physical process of water loss. Second, the value of API is restricted by a maximum value of 506 

API to avoid overestimating the soil moisture. The added parameters are determined and validated by 507 

comparing the APIm dataset with the in-situ measured soil moisture. The better correlation between 508 

these two datasets demonstrates that  APIm could better indicate the soil moisture condition, compared 509 

with APIc. This capability was further explored by applying APIm to landslide prediction studies. The 510 

APIm was calculated for the landslide-prone area in the Emilia-Romagna region, northern Italy, which 511 

is used to indicate the antecedent soil moisture condition when constructing RS thresholds. RS threshold 512 

shows an improved prediction performance than the rainfall threshold, with a higher hit rate and lower 513 
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false alarm rate. This improvement was the result of accounting for the antecedent soil moisture 514 

condition, further indicating the validation of APIm to indicate the soil moisture condition.  515 

The results reported here demonstrate the effectiveness of the modifications proposed to the 516 

conventional version of API, which improves the performance of API to indicate the soil moisture 517 

condition. Although the parameters of the modified API need to be calibrated for different locations, 518 

the simple formulation and easy availability of the required data make it more practical in some 519 

applications, through providing an effective proxy of soil moisture. In order to better apply the modified 520 

API to practical issues, more explorations are encouraged to test and improve its performance. 521 
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