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Abstract 
We review how animals conceal themselves in the face of the need to move, and how 

this is modulated by the dynamic components and rapidly varying illumination of 

natural backgrounds. We do so in a framework of minimising the viewer’s signal-to-

noise ratio. Motion can match that of the observer such that there is no relative motion 

cue, or mimic that of background objects (e.g. swaying leaves). For group-living 

animals, matched motion and coloration is a special case of the latter ‘motion 

masquerade’, where each animal is a potential signal against the noise of other 

individuals. Recent research shows that dynamic illumination, such as underwater 

caustics or dappled forest shade, greatly impedes detection of moving targets, so may 

change the balance of predator-prey interactions.  

 

Introduction 

The study of coloration in the natural world provides a common focus for vision 

scientists, evolutionary biologists, animal behaviourists, ecologists, geneticists and 

optical physicists [1]. The understanding of camouflage, for example, has seen great 

advances through this interdisciplinarity, and recently there has been a surge of 

interest in the interaction between coloration and behaviour, particularly movement 

[2].  Motion is the enemy of camouflage, because the common fate of moving features 

creates pop-out of figure from ground [3,4*] and can aid in object identification [5]. 

However, most natural scenes themselves contain dynamic elements – motion of 

objects in the background, such as vegetation, and rapid variation in the illumination. 

So, segmentation of a moving target, and discrimination from distractors, may not be 

as straightforward as in the psychophysics lab. In this review, we examine the extent 

to which the principles that explain the varied mechanisms of static camouflage in a 

static world apply in a dynamic visual environment. We discuss recent research on the 

extent to which dynamic illuminants and dynamic backgrounds relax the constraints 

on movement by camouflaged animals, and how behaviour can reduce the probability 

of detection and identification. 

 

Camouflage is achieved through multiple mechanisms, and different valid taxonomies 

exist [6], but a useful framework for the current review is minimisation of the signal-to-

noise (SNR) ratio [7].  The signal can be the whole organism and its attributes (identity, 

edibility, likelihood of capture, etc.) or lower-level features (surface luminance, colour 



or texture; edges) that might lead to detection and subsequent identification (Table 1 

in [7]).  Some camouflage strategies work by reducing the signal (e.g. background 

matching), some enhance noise through false identity cues, some do both (e.g. 

disruptive coloration) [7].  

 

Engineers and computer scientists are showing increasing interest in how to reduce 

the detectability of motion, particularly in the context of autonomous vehicles, and 

many of the proposed solutions are biologically inspired [8,9*]. We review such 

examples of motion camouflage, but extend this to avoiding detection within a world 

that is itself dynamic. 

 

A dynamic world 

Motion is ubiquitous in natural environments, varying in source, form and relevance, 

and animals have a range of neural mechanisms to deal with different tasks in which 

motion is relevant: simple object tracking, rapid detection of looming stimuli that might 

represent approaching threat or risk of collision, flow-field analysis from self-motion to 

guide movement, motion parallax for depth judgement [10]. Some dynamic features 

of a scene may be considered to be moving randomly (at a given spatial scale – e.g. 

moving leaves on a tree viewed from a distance), while some will consist of local 

coherent directed motion (e.g. a moving leaf on a tree viewed close-up, tumbleweed 

passing, directed caustics from water flow, passing shadows of overhead objects in 

air or water). Detecting a relevant moving object will therefore involve detection of non-

random motion of features and perceptual binding into a ‘target’ (a dynamic signal), 

and its discrimination from irrelevant moving objects (dynamic noise).  

 

The motion of objects within the environment is the most common source of non-

random dynamic noise. For example, physical features (e.g. vegetation, substrate, 

debris, or the water’s surface) moved by wind, by water currents or tidally. An 

additional case of background motion is that of other organisms, particularly those that 

move collectively within a habitat. The distribution of velocities will be dependent upon 

the social ecology of the organisms involved. For example, European starlings, 

Sturnus vulgaris, form highly coordinated flocks [11], while a swarm of Daphnia would 

represent something closer to (but not actually) random movement [12]. For a group-



living animal, conspecifics become the background from which, in the case of a 

predator attack, it is important not to be readily individuated [13]. 

 

In bright conditions, a common biproduct of dynamic physical features within the light-

path is the resulting variation of local illumination [14]. Varying illumination also 

introduces dynamic noise, which varies in time and space, and is prevalent in both the 

terrestrial (e.g. dappled light) and aquatic (e.g. water caustics) domain (Figure 1). 

Dappled light is a consequence of light passing through moving foliage [14], while 

water caustics are created by the diffraction and convergence of light through a 

spatially heterogenous water surface [15,16]. The form of both dappled light and 

caustics is a function of the forces acting on the given physical feature (vegetation or 

waves), including the strength and direction of wind, the altitude and angle of the sun, 

and the depth/height between feature and substrate [14,16]. Though both are common 

in their given domains, they differ in their scope: water caustics are more global in their 

influence than dappled light, which is often localised at the margins of shade [14]. 

Indeed, the presence of these illuminants within particular habitats has been closely 

linked to some aspects of concealment. The vertical barring and vermiculation of fish 

[16] and some felid coats [17] have been considered adaptations to the (static) 

consequences of such illumination. More fundamentally, water caustics could also 

have played a significant role in the initial evolution of colour vision [18]. With spatio-

temporal noise induced by variable illumination, the ratio of stimulation of 

photoreceptors tuned to different wavelengths is more stable than the average light 

intensity signal, so a more reliable cue to where one object ends and another begins 

[18]. 

 

One potential source of dynamic information is self-induced. Many organisms do not 

view natural scenes entirely from a fixed position but do so on the move. When an 

organism moves, objects within the viewed scene (irrespective of their relevance and 

motion) will elicit apparent motion across the organism’s retina, termed optic flow. 

Differences in optic flow, because of differences in the correlation of apparent motion 

of objects in different depth planes, can be used to break camouflage, with or without 

stereopsis [19,20]. 

 



It is within the context of such motion – of background objects, of light, of other 

organisms – that an animal must conceal itself, whether to avoid detection or 

recognition by predators, or to surprise its own prey. We now consider strategies 

which, following the framework of Merilaita et al. [7], either minimise the signal or 

enhance noise. 

 

Minimising the signal 

Background matching in the temporal domain includes self-motion that is similar to 

that of a dynamic background, and slow motion that is undetectable against a 

relatively static background. The most commonly proposed example of the former is 

the swaying motion of a stick insect (Phasmidae) with the movement of plants in a 

light breeze [21]. However, the behaviour is also consistent with the animal 

maintaining balance and contact with the substrate [2,22]. More convincing is 

Fleishman’s [23] analysis of the neotropical vine snake Oxybelis aeneus that, when 

stalking prey, shows sinusoidal oscillations at the same frequency as the 

surrounding wind-blown foliage, while Ryerson [24] identifies three species of 

colubrid snake that pair head oscillations with a dorsal pattern to achieve the same 

result. Again, these examples may be better classed as motion masquerade, false 

signals of identity (increased noise) rather than inconspicuousness through 

background motion matching. In fact, unequivocal evidence for the latter is sparse, 

the reverse problem having attracted more empirical research: how dynamic signals 

are designed to stand out from dynamic background noise; e.g.[25]. That said, the 

theoretical framework and computational tools developed for the latter are ideal for 

analysing motion camouflage itself [26-28*]. 

 

Primates are acutely sensitive to motion of even low contrast targets, detecting them 

rapidly in advance of recognition [29], and characteristic coherent motion of even a 

small number of features can be used in identification by humans and other animals, 

the basis of ‘point light’ or ‘biological motion’ experiments [30]. Therefore, moving 

slowly and/or in a saltatory fashion is an obvious way to minimise a motion signal 

against a relatively static background. The stalking behaviour of predators such as 

cats exemplifies this but, surprisingly, this has never been related, quantitatively, to 

the motion detection thresholds of relevant prey. Minimisation of motion signals may 

be why cuttlefish, which are capable of rapid colour change [31], switch to low 



contrast patterns when moving [32]. They also change their mean whole-body 

reflectance as they move over light or dark substrates [33], but only if the patch size 

is larger than their body length [34]; again consistent with reducing a motion signal 

(Figure 2).  

 

The best characterised example of a behaviour designed to minimise the motion signal 

is the tracking flight of territorial (or mate-chasing) insects. In hoverflies [35] and 

dragonflies [36], a pursuer matches its relative position and speed to that of the target 

individual such that its projected image on the target’s retina is relatively invariant, and 

so the optic flow is similar to that created by the background. The algorithms that an 

insect might use to achieve this have, more recently, been applied to control systems 

for missiles and ships that seek to intercept a target whilst minimising their own 

detectability [8,37,38] (Figure 3). 

 

In the situation where the background motion signals are due to other organisms, 

and they are similar to the target in form and motion – e.g. a flock of birds or shoal of 

fish -- they act as ‘distractors’ to the ‘target’. Here target-distractor similarity in 

appearance impedes individuation and target tracking [3,13,39], as does similarity of 

motion [40]. 

 

Increasing the noise 

If it is not possible to reduce a motion signal, the alternative for increasing SNR is to 

seek environments with high motion noise [7]. Would this work? Matchette et al. [27*] 

used computer-simulated scenes to investigate how prey detection was affected by 

the presence of water caustics and dappled light. When asked to capture moving prey 

items, human participants were significantly slower and more error-prone when 

viewing scenes with illumination that was dynamic as opposed to static. Whether this 

holds for wild animals is yet to be tested. If true, one would predict some level of habitat 

selection: mobile prey should seek safety in environments with moving background 

elements and/or illumination, while visually-orientated predators should hunt 

preferentially in low-dynamic-noise environments. 

 

Motion is typically coherent and directed, and consequently predictable. While 

irrelevant motion of the environment may provide a temporary blanket of visual noise, 



with which to mask overall detection, there are means by which an organism itself can 

lessen the coherence and predictability of a motion signal. A long-proposed solution 

is protean motion: movement that is sufficiently unpredictable so to minimise a 

predator’s ability to anticipate future position or action [41*]. Although untested, 

protean movement could even act as a moving equivalent of disruptive colouration, by 

reducing the viewer’s ability to bind features into a single percept, in this case by 

coherent motion. Iridescence, where the hue and intensity of the reflected light varies 

with the angle of view and illumination, impedes object recognition [42] and so, along 

with other mechanisms of rapid colour change [43], could have similar effects. 

 

The coherence of motion can also be broken by punctuated motion, achieved by bouts 

of movement (regular or irregular) or movement obscured via occlusion by the habitat. 

In both cases, the viewer is forced to estimate the direction and speed in order to 

extrapolate the next position. False cues of direction or speed can introduce error via 

so-called dazzle coloration [39,40,44-47]. Here, high contrast, repetitive patterns 

induce contradictory or biased motion cues [48], influencing estimations of speed 

[46,49] and/or direction [44]. Interference with optic flow cues may be why biting flies 

are deterred from landing on zebras [50]. Speed judgement errors can be accentuated 

by internal pattern motion in addition to whole-body motion [49,51], much like the 

‘passing cloud’ display of cuttlefish [31]. 

 

The role of attention 

Attention – a central concept in psychology – can be characterised as the process of 

selectively focussing on one thing whilst ignoring others [52]. Crucially, attention is a 

limited resource, and this has important implications for the detection and 

identification of moving targets. In terms of a SNR framework [7], attention can be 

thought of as increasing the signal, decreasing the noise, or both. In the context of 

motion and concealment, attention has a critical role: it allows what might otherwise 

remain undetected (or unidentified) to be revealed; conversely, a lack of attention, or 

an inability to attend to a specific target, will potentially afford that target protection. 

The success of slow movement for avoiding detection lies more in escaping the 

attraction of attention rather than sub-detection-threshold motion per se [53]. 

 



An example of the enhancement of the visibility of a stimulus is attention guiding eye, 

head and body movements in order to place the target within the visual field of the 

high-acuity fovea. However, attention is more than optimising sensory input; it is 

enhanced neural processing and so can occur covertly without a shift in gaze [52]. 

Thus, attention can alter apparent spatial resolution [54], perceived perceptual 

organisation [55], the stability of fixations [56], and be moved predictively to where a 

moving target is likely to be [57]. However, the fact that attention is limited can be 

exploited by prey via the confusion effect: the reduced predation success caused by 

difficulty in individuating prey items in a group [58]. This inability to pick out a single 

item can be attributed to an attentional bottleneck in the cognitive system of a 

predator. Increasing numbers of similar-looking, potential prey items make the 

targeting of a specific individual more difficult because of the expanding attentional 

resources required to separate the target from distractors. Coloration [39], density 

[11,58] and behaviour [40] influence the magnitude of the effect. 

 

Conclusion 

Motion camouflage may sound like an oxymoron given that, perhaps more than any 

other cue, movement breaks camouflage. However, evolution has equipped animals 

with strategies to conceal or ambiguate motion signals, and research in this field is 

accelerating. New hardware and computational tools are facilitating the 

characterisation of dynamic visual information in natural environments, and that 

available to animals moving through them. Combined with psychophysical and 

behavioural measures of detection and recognition performance, we are starting to 

understand how behaviour and coloration can be combined to minimise detectability 

in a dynamic world. However, it is attention rather than sensory constraints which will 

often limit the detection of camouflaged targets, even when they move. The next 

breakthrough is therefore likely to come with a better understanding of attentional 

processes in non-human animals and how attention is deployed when moving 

through natural, dynamic, environments. 
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Figure 1: Screenshots of water caustics on a sandy seabed at (a) 0.5 m, (b) 1.0 m 

and (c) 1.5 m (Lizard Island, Great Barrier Reef, Australia: 14°40 8 S, 145°27 34 E). 

All were filmed at midday under calm conditions using an Akaso V50 Pro (Akaso, 

www.akaso.org) positioned 40 cm above the substrate. 
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Figure 2: Left: video frames from film of a European cuttlefish swimming over dark 

and light substrates (reproduced with permission from Josef et al. 2015). Right: 

reflectance from the mantle of eight cuttlefish (blue lines) swimming over dark 

substrate of varying widths, and the outcome of a computer model based on the 

animal’s field of view (red lines). Animals only adjust their colour if the patch size is 

larger than, approximately, their body length. Reproduced with permission from 

Josef et al. (2017). 

  



 

Figure 3. Simulated path of an unmanned aerial vehicle (the ‘shadower’) tracking a 

target (the shadowee’) while implementing a “constant distance motion camouflage” 

algorithm. The latter is thought to be analogous to that used by aerial insects 

pursuing flying prey whilst minimising their own detectability. The algorithm is such 

that the shadower is perceived as a stationary object by the shadowee while 

maintaining a constant distance. In Strydom & Srinivasan’s implantation additional 

realistic constraints were included regarding the vehicle’s flight capabilities in terms 

of speed and acceleration. Reproduced with permission from Strydom & Srinivasan 

(2017). 

  



 

Graphical abstract 

Visual search in a dynamic world: a predator’s view of a school of fish. The average 

motion signal of the target (purple arrow) has to be discriminated from the motion 

noise (orange arrows) of the illuminant, background, other animals and, for group-

living species, conspecifics. The target itself may produce dynamic motion noise via 

coloration (pigment patterns and/or silvered/iridescent scales) and behaviour. 


