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Abstract 

The variability present in S-N datasets is typically characterised using probability distributions to enable the 

construction of Probability-S-N curves for design.  3-Parameter Log-Normal and Weibull distributions have 

been proposed as alternative distributions to the commonly assumed 2-Parameter Log-Normal distribution. This 

paper performs statistical characterisation of a 4340 steel S-N dataset from the Engineering Sciences Data Unit 

using a systematic methodology. The 3-Parameter Weibull distribution provided improved characterisation of 

the S-N dataset. Using a case study, it was also demonstrated that use of a 3-Parameter Weibull distribution can 

increase component safe-life values by 20% when compared to the 2-Parameter Log-Normal distribution. 
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1. Introduction 

Within the sphere of fatigue design, many components across the aerospace, nuclear, offshore, steel structures 

and wind energy sectors are designed using a ‘safe-life’ philosophy (also known as ‘life-limited’) [1]. The safe-

life of a component represents the number of duty cycles after which the component must be removed from 

service [2], regardless of whether fatigue crack propagation is observed. Safe-life components are typically 

designed using a ‘classical’ fatigue analysis approach of ‘Stress-Life’ (S-N) analysis based upon Miner’s Rule 

[1].  

At the core of stress-life analysis is the utility of S-N curves, which demonstrate how the number of cycles to 

failure (𝑁𝑓) varies with the applied cyclic stress amplitude (𝜎𝑎) for a material as shown in Figure 1 [3]. S-N 
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curves are generated from extensive specimen testing and as a result of the inherent random nature of fatigue, 

significant variability is observed in the values of 𝑁𝑓 for a given cyclic stress amplitude [4]. Whilst this paper 

focuses only on variability in material properties within fatigue design, it is important to note that variability is 

also observed within component loading and manufacturing quality (e.g. dimensional variability) [1]. The 

authors provide a wider discussion on the sources of variability in fatigue design in [5]. 

 

 

To achieve reliable fatigue design for safety-critical components, the variability within 𝑁𝑓 is often mitigated 

through the construction of Probability-S-N curves (P-S-N), which represent an S-N curve with a constant 

Probability of Survival (𝑃𝑜𝑆) [6]. A recent example demonstrating the construction of P-S-N curves is presented 

by Zhu et al [7]. Typical 𝑃𝑜𝑆 values are 99%, 97.7% and 95% [1] and an example of a P-S-N curve is shown 

in Figure 1. P-S-N curves are often referred to as ‘safe’, ‘design’, ‘characteristic’ or ‘working’ S-N curves. In 

order to construct P-S-N curves, a probability distribution type for 𝑁𝑓 must be assumed and this is typically 

either a Log-Normal or Weibull distribution [4]. Candidate distribution types for 𝑁𝑓 are fitted to S-N datasets 

using distribution fitting methods such as probability plotting or maximum likelihood estimation [8]. The 

selection of the final distribution type can then be performed by assessing the Goodness-of-Fit using statistical 

tests such as Anderson-Darling or Chi-Squared [9]. Both 2-Parameter (2P) and 3-Parameter (3P) versions of 

the Log-Normal and Weibull distributions exist [8, 10]. The 3P distributions differ from the 2P distributions 

through the introduction of a location parameter ‘𝛿’. The 𝛿 parameter acts as a ‘threshold’ value, below which 

the probability of a value occurring is nil [8, 10]. In the context of the statistical characterisation of 𝑁𝑓, the 𝛿 

parameter represents the minimum number of cycles to failure, thus inferring that there is a lower bound to the 

fatigue life of a material at a given cyclic stress amplitude [11]. Both the 2P and 3P distributions retain the shape 

Figure 1: An example of an S-N dataset and S-N curve for 4340 steel [3]. Reproduced with permission 

from IHS ESDU. 
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‘𝜆’ and scale ‘𝜎’ parameters and therefore, the 3P distributions are equivalent to the 2P distributions when 𝛿 =

0. The equations for the 3P Log-Normal and 3P Weibull Probability Density Functions (PDF) are shown in 

Equations 1 and 2 respectively, where ‘𝑥’ is the value of the random variable [10]. The impact of the threshold 

parameter when the shape and scale parameters are held constant is shown in Figure 2.  

𝑓(𝑥;  𝜆, 𝜎, 𝛿) =
1

(𝑥 − 𝛿)𝜆√2𝜋
𝑒𝑥𝑝 {−

[𝑙𝑛(𝑥 − 𝛿) − 𝜎]2

2𝜆2
} 

 

(𝑥;  𝜆, 𝜎, 𝛿) =
𝜆

𝜎
(

𝑥 − 𝛿

𝜎
)

𝜆−1

𝑒𝑥𝑝 {− (
𝑥 − 𝛿

𝜎
)

𝜆

} 

 

 

 

As the introduction of the 𝛿 parameter increases the minimum possible 𝑁𝑓 from zero when using a 3P 

distribution, it is proposed that 3P distributions could result in reduced conservatism within P-S-N curves, 

providing they are shown to provide the best-fit to the S-N dataset. Therefore, this paper aims to identify whether 

3P distributions provide improved statistical characterisation of 𝑁𝑓, along with quantifying the reduction in the 

conservatism within P-S-N curves constructed using 3P distributions. This will be achieved using a systematic 

methodology for the statistical characterisation of 𝑁𝑓 at various cyclic stress amplitudes within a 4340 steel S-

N dataset.  

1.1. Previous Application of 3-Parameter Distributions 

The application of both 3P Log-Normal and 3P Weibull distributions to characterise 𝑁𝑓 from S-N datasets has 

been presented by previous work within the literature. Work performed by Zhao et al presented one of the 

earliest investigations into the use of 3P distributions to statistically characterise 𝑁𝑓 within a steel S-N dataset, 

Figure 2: A comparison between a 2P Log-Normal and a 3P Log-Normal distribution, demonstrating the 

impact of the 𝛿 threshold (location) parameter for constant scale and shape parameters. 

(1) 

(2) 
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using classical probability plotting methods for distribution fitting [12]. Zhao et al identified that the 2P Log-

Normal distribution is more suitable for design work, due to being more conservative than the 3P Weibull 

distribution (i.e. predicting lower component safe-life values), despite the 3P Weibull distribution providing the 

best-fit to the dataset when using correlation coefficients [12]. Schijve demonstrated the applicability of 3P 

Log-Normal and 3P Weibull distributions to both steel and aluminium alloy S-N datasets, using probability 

plotting methods for distribution fitting [11]. Schijve highlighted that differences were experienced between the 

𝛿 threshold values of the 3P Log-Normal and 3P Weibull distributions [11]. More recent work conducted by 

Wei et al, provided an investigation into comparing 2P and 3P Weibull distributions when applied to aluminium 

alloy S-N datasets, using probability plotting methods for fitting and the Anderson-Darling statistical test for 

assessing Goodness-of-Fit [13]. Wei et al concluded that the 3P Weibull distribution provided a better fit to the 

dataset compared to the 2P Weibull distribution, based upon the results of the Anderson-Darling test [13]. 

Finally, Khameneh and Azadi investigated the statistical characterisation of a cast iron material, using both 

probability plotting and maximum likelihood estimation methods for distribution fitting, along with the 

Anderson-Darling test for performing a Goodness-of-Fit test [14]. Within this work, the 3P Weibull distribution 

was selected as the distribution that provided the best-fit to the S-N dataset [14]. 

The presence of a minimum number of cycles to failure has also been supported from a physical standpoint by 

Schijve’s work on statistical distributions of fatigue life [11]. Within this work it is suggested that the inclusion 

of a threshold parameter is realistic, as the zero threshold of the 2P Log-Normal and 2P Weibull distributions 

theoretically infers that the material could fail before loading has occurred [11]. This view is also supported by 

Wei et al [13]. The 3P Weibull distribution has also been proposed to represent the variability in 𝑁𝑓 using a 

physical justification within the model proposed by Castillo and Fernández-Canteli [15, 16]. Within the 

probabilistic approach proposed by Castillo and Fernández-Canteli, it is suggested that a Weibull distribution 

is more appropriate to model 𝑁𝑓 as a result of the ‘weakest link’ principle [16]. In addition, Castillo and 

Fernández-Canteli demonstrate that Weibull distributions satisfy the compatibility condition of probabilistic S-

N curves [16]. The compatibility condition requires the P-S-N curves constructed based on the variability in 𝑁𝑓 

for a given stress amplitude and the variability in stress amplitude for a given 𝑁𝑓 to be the same [16]. Therefore, 

there is a strong physical justification for investigating the use of 3P Weibull distributions to characterise the 

variability in 𝑁𝑓. 
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1.2. Paper Scope and Objectives 

The review of the literature has highlighted that 3P Log-Normal and 3P Weibull distributions can be expected 

to provide an improved fit to S-N datasets when statistically characterising 𝑁𝑓 [11-14], along with there being 

a physical basis for selecting a 3P distribution over 2P distributions [11, 15, 16]. However, the previous 

literature has not discussed or quantified the impact of 3P distributions on the construction of P-S-N curves for 

fatigue design. In addition, the distribution fitting and selection methods used within the literature often utilise 

only probability plotting methods, rather than the more statistically-rigorous maximum likelihood estimation 

approach. The common practice demonstrated in the literature also fails to perform validation of the distribution 

fitting and selection using multiple fitting methods. It is therefore proposed that an approach based on 

combining the probability plotting and maximum likelihood estimation approaches is required. Reference texts 

related to reliability and data analysis recommend that multiple fitting methods are to be used to achieve a robust 

approach to statistical characterisation [17]. 

Therefore, this paper aims to undertake a systematic and robust statistical characterisation of a rich S-N dataset 

in order to assess whether 3P distributions improve the statistical characterisation of 𝑁𝑓, along with evaluating 

the suitability of 3P distributions for constructing P-S-N curves. The reduction in conservatism when using 3P 

distributions will also be quantified through the application of the P-S-N curves to an S-N analysis case study 

based upon the Society of Automotive Engineers (SAE) keyhole geometry benchmark [18].  

 

2. Systematic Statistical Characterisation Methodology 

In order to fit the 3P distributions to an S-N dataset, a robust and systematic methodology for the statistical 

characterisation of S-N datasets was developed by the authors. The purpose of the novel statistical 

characterisation methodology is to conduct ‘Fitting’ and ‘Selection’ of the candidate distributions for 𝑁𝑓. 

‘Fitting’ is the process of generating estimates of the location, shape and scale parameters of the distribution 

PDFs and ‘selection’ is the process of testing each candidate distribution for Goodness-of-Fit (GoF), in order 

to ‘down-select’ the final distribution type [8, 10]. GoF tests either accept or reject the candidate distribution. 

The methodology aims to maximise the amount of evidence that can be generated to support the selection of 

one candidate distribution over another.  

Within the statistical characterisation methodology, multiple methods for fitting and GoF testing were required 

to provide validation. Current practice within the literature typically only uses a single fitting method and a 
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single GoF test. As 3P distributions are non-trivial from a fitting perspective [19], it is vital to perform validation 

of the distribution parameter estimates to ensure accurate values are used. The use of multiple fitting methods 

permits the limitations of each fitting method to be mitigated. The strengths and limitations of each fitting 

method will be discussed in Sections 2.3 and 2.4. The results of GoF tests also require validation as different 

GoF tests can often contradict one another. 

A systematic statistical characterisation methodology was also developed to lead users through the same process 

each time, providing rules to guide decision making to ‘down-select’ the final distribution type. A systematic 

methodology is required as engineers often do not have a significant statistical background [20], and a 

systematic methodology can support the users’ confidence in implementing statistical characterisation methods. 

In addition, as it has been suggested that the 2P Log-Normal distribution is often selected to characterise 𝑁𝑓 out 

of a desire for mathematical simplicity and convenience [19], a systematic process supports the user by enabling 

a wide range of candidate distributions to be considered prior to ‘down-selecting’ the most appropriate 

distribution. Therefore, a systematic methodology supports the review and challenge of long-held statistical 

beliefs and assumptions [21].  

The results of statistical characterisation must often be shared with other engineers, management, customers or 

regulatory bodies. Therefore, it is desirable to include intuitive and ‘visual’ methods within the statistical 

characterisation methodology, such that results can be shared with other stakeholders and to increase confidence 

in the distribution parameter estimates [17]. In addition, the methodology only utilises widely-accepted 

statistical methods, such that additional training resources would be available for engineers and users in the 

public domain. 

Figure 3 presents an overview of the systematic statistical characterisation process. The flowchart in Figure 3 

leads users first through dataset characterisation and selection of candidate distributions to fit. Distribution 

fitting is then performed using two methods in parallel for validation of the distribution parameter estimates. 

Following distribution fitting, two statistical GoF tests are performed in order to assess the ‘fit’ of each candidate 

distribution for each fitting method. The candidate distributions are then classified based upon whether their 

distribution estimates have been validated and their performance in the GoF tests. This section of the paper will 

briefly introduce each method used within the methodology. It should be noted that the methodology presented 

within this paper can be applied to all continuous datasets, both within fatigue design and the wider engineering 

community.  
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It should be noted that the distribution fitting and goodness-of-fit methods presented within the methodology 

are sensitive to the sample size of the dataset. Where possible, guidance is provided about the required sample 

sizes for the methods within the methodology. Smaller sample sizes result in error and uncertainty in estimates 

of distribution parameters and lead to the requirement to construct confidence intervals on distribution 

parameter estimates [8]. A further discussion on confidence intervals is presented in Section 5.2. Previous work 

within the literature has aimed at identifying the sample sizes required to achieve a desired confidence interval 

[22] for S-N datasets. However, as the current paper is focused on the statistical characterisation of existing S-

N datasets generated in accordance with various design standards (e.g. ASTM E739 [23]),  further consideration 

of sample size effects is not presented. 

 

2.1. Step 1: Dataset Characterisation 

The first step of the statistical characterisation process is to characterise the dataset. The two key properties of 

a dataset that can guide distribution selection are ‘support’ and ‘skew’. Support is the known possible range of 

values for the dataset and is typically driven by physical limitations [8]. For S-N data the support is [0, +∞] or 

[𝑎, +∞] where 𝑎 is the minimum 𝑁𝑓 value introduced by the 3P distribution threshold parameter. ‘Skew’ is a 

measure of how asymmetrical a dataset is about the mean value (seen as a long ‘tail’ on the distribution). The 

sample skew ‘𝛾’ of a dataset can be computed using Equation 3, where 𝜇𝑥 and 𝑠𝑥 are the mean and sample 

Figure 3: A visualisation of the statistical characterisation methodology developed by the authors 

for systematic and robust statistical characterisation. 
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standard deviation of the dataset respectively and 𝑁 is the sample size (i.e. the number of datapoints in the 

dataset) [12]: 

𝛾 =

1
𝑁

∑ (𝑥𝑖 − 𝜇𝑥)3𝑁
𝑖=1

𝑠𝑥
3

 

A positive 𝛾 value indicates that the dataset demonstrates ‘positive’ skew and therefore will have a right-hand 

distribution tail that is longer than the left, whilst a negative 𝛾 value infers the opposite [12]. S-N datasets 

typically demonstrate right tails and as a result, positive 𝛾 values would be expected [11, 12]. 

2.2. Step 2: Candidate Distributions 

After identifying the required support and sample skew of the dataset, candidate distributions can be proposed. 

The candidate distributions should consist of distribution types that are capable of representing the dataset 

support and skew. In addition, statistical characterisation provides the opportunity to challenge existing assumed 

distribution types and therefore, any previously used distribution types for the dataset under characterisation 

should be included, regardless of whether or not they provide the correct support or skew characteristics [21]. 

2.3. Step 3: Probability Plotting and Linear Rectification 

Probability plotting is a familiar tool to reliability engineers that can be used to identify whether a dataset 

belongs to an assumed distribution type [10, 17]. Within probability plotting, the data points of the dataset are 

transformed using specific empirically-based ranking equations (which approximate the relative cumulative 

frequency (RCF) ‘𝐹𝑖’ or proportion of specimens that are expected to have failed by a given value) and linear 

rectification equations for each distribution type. If a linear relationship is observed between the ranking values 

and transformed dataset, the dataset can be suggested to originate from the selected distribution [10]. The 

coefficients from linear regression (𝐴0, 𝐴1) can then be used to compute the distribution parameter estimates 

using specific linear rectification equations for each probability distribution type as found in reference texts 

[10]. An example of a 2P Log-Normal probability plot is shown in Figure 4.  

The correlation coefficient ‘𝑟’ can be computed to quantify how linear the fit is [10]. When fitting 3P 

distributions, the threshold parameter value that maximises 𝑟 is selected as the final distribution parameter 

estimate [10]. 

(3) 
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The correlation coefficient 𝑟 is computed using Equation 4 , where 𝑐𝑜𝑣(𝑋𝑇 , 𝐹𝑇) is the covariance of the 

transformed data points and transformed rank values, and 𝜎𝑋𝑡
 and 𝜎𝐹𝑡

 are the sample standard deviations of the 

transformed data points and transformed values from the rank equations respectively [10]. 

𝑟 =
𝑐𝑜𝑣(𝑋𝑇 , 𝐹𝑇)

𝜎𝑋𝑡
𝜎𝐹𝑡

 

This approach to distribution fitting will be referred to as PPLR (Probability Plotting and Linear Rectification) 

for the remainder of the paper. The strength of PPLR is that it is a visual and intuitive method that enables users 

to quickly identify the distribution parameters. The limitation of PPLR is the reliance on the selection of a 

ranking equation. An example of a ranking equation is the ‘median rank’ given in Equation 5, where 𝑖 is the 

position of the data point in the dataset when sorted from smallest to largest value (known as ‘order statistics’) 

[10].  

𝐹𝑖 =
𝑖 − 0.3

𝑁 + 0.4
 

Multiple ranking equations are available, and a selection are presented in Table A1 in the Appendix. It should 

be noted that each ranking equation only produces an approximation of the RCF and therefore, the selection of 

the ranking equation can introduce uncertainty into the PPLR fitting method. Therefore, it is recommended that 

all available ranking equations in Table A1 are used for the PPLR fitting and the ranking equation which 

maximises the correlation coefficient 𝑟 should be used as the final ranking equation. As ranking equations only 

Figure 4: An example of a probability plot for a 2P Log-Normal distribution. 

(4) 

(5) 
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provide an approximation for the RCF, an additional method for distribution fitting is required for validation of 

the distribution parameter estimates. 

2.4. Step 4: Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) methods are a statistically rigorous approach to estimating distribution 

parameter values [8].  The core philosophy behind an MLE approach is to select distribution parameter estimates 

that maximise the probability of the dataset being observed (this is known as the ‘likelihood’) [8]. Likelihood 

Functions (LF) are available in reference texts and are maximised using numerical solution processes and 

optimisation algorithms [8]. PPLR distribution parameter estimates can be used as the initial values for the 

numerical solution processes of the LF. Within this paper a ‘brute-force’ approach was used which evaluated 

the LF for a range of feasible distribution parameter values. The strength of the MLE approach is that for large 

sample sizes, the distribution parameter estimates are unbiased and the statistical uncertainty of the estimates 

can be assessed [8]. However, the limitation of the MLE approach lies in the non-trivial task of maximising the 

complex LF equations, which often require three or more maximum likelihood equations to be solved 

simultaneously using numerical optimisation processes [24]. This can lead to lack of convergence or 

convergence to a local maximum LF value rather than the global maximum, resulting in inaccurate distribution 

parameter estimates. Therefore, the PPLR methods (from Step 3) are required to validate the results from MLE. 

2.5. Step 5: Distribution Parameter Validation 

Following distribution fitting using PPLR and MLE, two sets of distribution parameter estimates will be 

available. In order to validate the distribution parameter estimates, the percentage difference between the PPLR 

and MLE estimates should be computed.  From previous studies within the literature, it has been demonstrated 

that when using multiple fitting methods and software packages to fit a single distribution type to a dataset, the 

distribution parameter estimates can vary significantly [10]. Booker et al demonstrated that the estimate for 

standard deviation could vary across a range of approximately 20% from the minimum to maximum value, 

when fitting a Normal distribution to the yield strength of a carbon steel using 6 different methods [10]. 

Therefore, within this paper, PPLR and MLE distribution parameter estimates that have a percentage difference 

of less than 20% are considered to be validated. The impact of the definition of the 20% validation threshold 

on P-S-N curves is discussed in Section 4.1.1. 
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2.6. Step 6: Chi-squared Goodness-of-Fit Test 

The first statistical test to be used within the methodology is the Chi-Squared (𝜒2) GoF test. The 𝜒2 test 

compares the frequency of observations from the dataset with the expected frequency from the fitted probability 

distribution, by dividing the dataset into 𝑛𝑏𝑖𝑛 bins using rules provided by D’Agostino and Stephens [9]. The 

𝜒2 statistic ‘𝜒𝑠
2’ is computed using Equation 6, where 𝑂𝑗 is the observed frequency in each bin and 𝐸𝑗 is the 

expected frequency, computed using the fitted Cumulative Distribution Function (CDF) [9]: 

𝜒𝑠
2 = ∑

(𝑂𝑗 − 𝐸𝑗)
2

𝐸𝑗

𝑛𝑏𝑖𝑛

𝑗=1

 

The 𝜒𝑠
2 value is then compared to a critical value ‘𝜒𝑐

2’ at a specified significance level, ‘𝛼’ (conventionally 𝛼 = 

5%), which is available in statistical tables. The distribution is then accepted if 𝜒𝑠
2 < 𝜒𝑐

2 or rejected if 𝜒𝑠
2 ≥ 𝜒𝑐

2. 

The strength of a 𝜒2 GoF test is its ability to generate critical values for any candidate distribution type. The 

limitation of the 𝜒2 GoF test is that it is accurate only for larger sample sizes and should not be used for sample 

sizes of 𝑁 < 15 [10] and should be used with caution below sample sizes of 𝑁 < 50 [21]. Therefore, an additional 

GoF test is required to provide validation for the typical sample sizes of S-N datasets.  

2.7. Step 7: Anderson-Darling Goodness-of-Fit Test 

The second statistical GoF test used within the methodology is the Anderson-Darling (A-D) test. Similar to the 

𝜒2 test, the A-D test quantifies the difference between the frequency as computed by the fitted CDF and the 

expected cumulative frequency from the dataset [9]. The test statistic for the A-D GoF test is 𝐴2, which is then 

compared to a critical value 𝐴𝑐𝑟𝑖𝑡
2  at a given significance level 𝛼. Tabulated 𝐴𝑐𝑟𝑖𝑡

2  values are available for 

Normal, 2P Log-Normal and 2P Weibull distributions, but are limited or non-existent for 3P distributions [9, 

25]. In order to produce 𝐴𝑐𝑟𝑖𝑡
2  values for 3P distributions, an approach known as a ‘parametric bootstrap’ must 

be used [26]. The parametric bootstrap generates a random sample from the fitted distribution and re-fits the 

candidate distribution to the random sample [26]. The  𝐴2 statistic is then computed, and this process is repeated 

for many iterations (typically 10,000 times) [25]. The estimate of the 𝐴𝑐𝑟𝑖𝑡
2  value is then found from the 1 − 𝛼 

percentile of the bootstrap results [25, 26]. As with the 𝜒2 GoF test, the distribution is accepted if 𝐴2 < 𝐴𝑐𝑟𝑖𝑡
2  

and rejected if 𝐴2 ≥ 𝐴𝑐𝑟𝑖𝑡
2 . 

(6) 
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A limitation of the A-D test is the requirement to generate 𝐴𝑐𝑟𝑖𝑡
2  values using a parametric bootstrap. When 

coupled with a complex MLE numerical solution approach, 10,000 iterations can typically require a few hours 

of computational run-time. 

2.8. Step 8: Distribution Classification 

One of the most significant challenges during statistical characterisation is the synthesis of all of the information 

generated during distribution fitting and GoF tests, in order to select the distribution that most accurately 

characterises the dataset. Section 3.3 provides a template for a table that can be used to record the results of 

fitting and GoF tests in one central location. In order to further assist users in selecting the final distribution 

type and to increase the systematic nature of the methodology, a series of classifications that consolidate the 

results of distribution fitting and GoF tests have been defined by the authors to simplify the distribution selection 

process. 

Table 1 shows the classifications to be used and are based on the amount of evidence available that supports 

the candidate distribution being the best-fit to the dataset. Therefore, distributions that have validated parameter 

estimates and are accepted by all GoF tests will have the lowest classification. All other classifications represent 

a ‘loss’ of supporting evidence. Classifications for sample sizes of 𝑁 < 15, where only the A-D GoF test can be 

performed, are shown in Table 2. The classifications synthesise all of the results from fitting and GoF tests (up 

to 25 elements of information) into a single value for each candidate distribution.  

Table 1: The candidate distribution classification definitions, based on validated distribution parameters and 

the outcomes of the GoF tests for sample sizes greater than or equal to 𝑁 = 15. 

 

Following classification, the lowest possible class should be identified. If only Class 4 distributions are 

available, a wider search for other potential distribution types should be conducted. Class 3 distributions may 

be used as an initial approximation to the dataset but should warrant further investigation. Both Class 1 and 

Class 2 distributions can be considered as suitable distributions, with a Class 1 distribution being preferable to 

Class 

Validated 

Distribution 

Parameter Estimates? 

PPLR – GoF Results MLE – GoF Results 

𝜒2  A-D 𝜒2  A-D 

1 Y Accept Accept Accept Accept 

2 N Accept Accept Accept Accept 

2 Y 
3 Accept, 1 Reject – Reduced Validation across GoF Tests. 

3 N 

4 

All other cases, including: 

• Validated or Unvalidated Parameters, rejected by 2 or more out of 4 GoF Tests. 

• Validated or Unvalidated Parameters, rejected by All GoF tests. 

• Incorrect skew or support.  
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a Class 2. It should be noted that current statistical characterisation practice within the literature uses only one 

fitting method and one GoF test for distribution selection [11-13]. In this case, no validation of distribution 

parameter estimates or GoF tests is performed and this is equivalent to a Class 4 in Table 1. Therefore, it can 

be seen that using Class 2 as the minimum acceptable class represents increased statistical rigour when 

characterising S-N datasets compared to existing practice. 

Table 2: The candidate distribution classification definitions, based on validated distribution parameters and 

the outcomes of the GoF tests for sample sizes less than 𝑁 = 15. 

2.9. Step 9: Final Distribution Selection 

If only one distribution type is available in the lowest of Class 1 or 2, it should be selected as the final distribution 

type. If multiple candidate distributions are present within the lowest class, the correlation coefficient value ‘𝑟’ 

from PPLR can be used to rank the remaining distributions. An 𝑟 value closer to 1 represents an improved 

distribution fit to the dataset. Therefore, the candidate distribution in the lowest class with the highest 𝑟 value 

should be selected as the final distribution type. Providing the MLE and PPLR distribution parameters are 

consistent (i.e. pass the validation check in Step 5), the 𝑟 value can also be used to represent the GoF of the 

MLE parameter estimates.  

2.10. Alternative Approaches to Distribution Fitting and Selection 

The methodology presented within this paper is based solely on ‘classical’ or ‘frequentist’ methods of 

distribution fitting and GoF testing. The use of such methods within the methodology is required to ensure 

familiarity with engineers and existing practitioners.  

An alternative approach to distribution fitting and selection is the Bayesian approach [27]. The Bayesian 

approach is based upon more advanced statistical concepts and therefore has not been used within the presented 

methodology, as engineers typically do not have a significant statistical background [20]. The Bayesian 

approach however, has been successfully applied to S-N datasets within the literature, with the view to 

exploiting the ability of the Bayesian approach to ‘update’ distribution parameter estimates based on new data 

[27]. However, as the purpose of the methodology presented within this paper is aimed at characterising existing 

Class 
Validated Distribution 

Parameter Estimates? 
A-D GoF for PPLR A-D GoF for MLE 

1 Y Accept Accept 

2 N Accept Accept 

3 Y Only 1 Test Accepts. 

4 

All other cases, including: 

• Unvalidated Parameters, rejected by 1 or more A-D test. 

• Incorrect skew or support. 
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S-N datasets of specific materials, it is not expected that there will be additional data available to update the 

probability distributions.  

It should also be noted that other GoF tests are available, such as the Kolmogorov-Smirnov (KS) [9], Cramer-

von-Mises (CvM) [9], Akaike Information Criterion (AIC) [28] and Bayesian Information Criterion (BIC) [29]. 

The KS and CvM GoF tests were not included in the methodology as the A-D test provides greater sensitivity 

in distribution tails compared to the KS test [9] and the CvM test is not as widely used within the fatigue design 

literature. AIC and BIC, which are based on the MLE methods, only provide a ‘ranking’ of distribution types, 

rather than the ‘accept-reject’ approach of the A-D and 𝜒2 GoF tests. As the correlation coefficient from PPLR 

already provides a ‘ranking’ of the distribution types, the AIC and BIC GoF tests have not been included within 

the methodology. However, in the event that further evidence is required to select one Class 1 distribution over 

another, the AIC and BIC could be considered.  

3. Statistical Characterisation of 4340 Steel S-N Dataset 

 This section of the paper will present the application of the statistical characterisation methodology to a real S-

N dataset, with the aim of investigating the application of 3P Log-Normal and 3P Weibull distributions to 

statistically characterise the variability in the value of 𝑁𝑓 across the S-N dataset. The application of the 

methodology will be demonstrated on a single stress amplitude from the S-N dataset in Section 3.2. The results 

for the complete S-N dataset will then be presented and discussed. 

3.1. Engineering Sciences Data Unit 4340 Steel S-N Dataset 

The S-N dataset used within this study is for 4340 steel, which is a high strength steel and typical of the materials 

used within aircraft landing gear components [6, 30]. The Engineering Sciences Data Unit (ESDU) provide a 

rich S-N dataset for 4340 steel [3]. The dataset is generated from fully-reversed (i.e. zero mean stress) rotating-

bending testing of coupons [3].  

The dataset and mean S-N curve for 4340 steel are shown previously in Figure 1 [3]. Within the S-N dataset, 

sample sizes vary from 𝑁 = 10 to 𝑁 = 42, with the majority of stress levels having sample sizes between 𝑁 = 

25 and 𝑁 = 30 [3].  It should be noted that the ESDU 4340 steel dataset [3] contains both ‘failure’ results (i.e. 

separation of the specimens) and ‘run-out’ results, whereby the test was terminated at a pre-determined number 

of load cycles. ‘Run-outs’ are Type I censored data points [8, 24] and require additional statistical 

characterisation methods beyond the scope of this paper (see Section 5.2). Stress levels containing only failure 
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results are known as ‘complete’ samples and these were statistically characterised using the methodology 

presented in Section 2.  

3.2. Demonstration of Statistical Characterisation Methodology on a Single Stress Level 

Considering the dataset at 𝜎𝑎 = 520 MPa, the support and skew of the dataset were identified within Step 1 of 

the statistical characterisation methodology. The sample skew value of 𝛾 = 0.948 suggested that the dataset 

shows positive skew. Based upon the discussion in Section 2.1, the support of the distribution was expected to 

be only positive values (i.e. [0, +∞]) or above a given threshold (i.e. [𝑎, +∞]). Step 2 required the selection of 

the candidate distributions. As the scope of this paper is limited to investigating the application of 3P 

distributions, only the 2P Log-Normal, 3P Log-Normal, 2P Weibull and 3P Weibull distributions were 

considered (all of these distributions provided the required support and skew characteristics). 

The probability plots from the PPLR distribution fitting process in Step 3 are shown in Figure 5. It can be seen 

from Figure 5 that all candidate distributions presented linear relationships between the transformed data points 

and rank values. It was found that the Mean ranking equation (see Table A.1. in Appendix) maximised the 

correlation coefficient for each candidate distribution. It can also be seen from Figure 5 that the 3P Weibull 

distribution minimised the deviation in the linear relationship at the lower tail of the 2P Weibull probability 

plot. This suggests an improved fit to the dataset when using a 3P distribution, supporting the presence of a 

threshold parameter. The PPLR distribution parameter estimates are shown in the results table in Table 3.  

Step 4 of the statistical characterisation methodology performed MLE fitting of the distributions and the 

resulting parameter estimates are shown in Table 3. Table 3 also shows that the maximum percentage difference 

between PPLR and MLE parameter estimates varied significantly across the different candidate distributions, 

from 4.853% to 48.612%. Using 20% difference as the threshold for validation (see Section 2.5), the results 

inferred that the 2P Log-Normal and 2P Weibull distributions are the only candidate distributions with validated 

parameter estimates (Step 5). It can also be seen from Table 3 that the threshold parameter estimates for the 3P 

Log-Normal and 3P Weibull distributions varied significantly to one another. This is consistent with the work 

conducted by Schijve who also observed inconsistency between the threshold values for 3P Log-Normal and 

3P Weibull distributions [11]. 
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Table 3: The probability plotting and maximum likelihood distribution parameter estimates for the candidate 

distributions for the number of cycles to failure at 𝜎𝑎 = 520 MPa. The maximum difference is the maximum 

percentage difference between the PPLR and MLE estimates. The PPLR ranking equation is also shown as 

(italics). 

 

Table 4 shows the results of the 𝜒2 GoF test from Step 7.  The ‘A’ prefix demonstrates that the test accepted 

the candidate distribution, whilst an ‘R’ prefix with italic values shows that the test rejected the candidate 

distribution. It can be seen from Table 4, that the 3P Weibull distribution when fitted using a PPLR approach 

Distribution 

Fitting Method 

(Ranking 

Equation) 

Distribution Parameter Estimate 
 Maximum 

Difference Location/Threshold 𝛿 Scale 𝜎 Shape 𝜆 

2P Log-

Normal 

PPLR (Mean) - 12.932 0.461 
10.333% 

MLE - 12.932 0.418 

3P Log-

Normal 

PPLR (Mean) 22253 12.861 0.472 
48.612% 

MLE 43304 12.809 0.464 

2P Weibull 
PPLR (Mean) - 504751 2.767 

4.853% 
MLE - 508269 2.508 

3P Weibull 
PPLR (Mean) 146676 342490 1.603 

21.187% 
MLE 176620 298760 1.408 

Figure 5: The probability plots for (a) 2P Log-Normal, (b) 3P Log-Normal, (c) 2P Weibull and (d) 3P 

Weibull distributions, showing the linear regression coefficients and distribution parameter estimates for 

the S-N dataset at 𝜎𝑎 = 520 MPa. The threshold parameter can be seen to improve the linear fit from the 2P 

to the 3P Weibull distribution. 

 

Distribution 

Fitting Method 

(Ranking 

Equation) 

Distribution Parameter Estimate 
 Maximum 

Difference Location/Threshold 𝛿 Scale 𝜎 Shape 𝜆 

2P Log-

Normal 

PPLR (Mean) - 12.932 0.461 
10.333% 

MLE - 12.932 0.418 

3P Log-

Normal 

PPLR (Mean) 22253 12.861 0.472 
48.612% 

MLE 43304 12.809 0.464 

2P Weibull 
PPLR (Mean) - 504751 2.767 

4.853% 
MLE - 508269 2.508 

3P Weibull 
PPLR (Mean) 146676 342490 1.603 

21.187% 
MLE 176620 298760 1.408 

 Figure 5: The probability plots for (a) 2P Log-Normal, (b) 3P Log-Normal, (c) 2P Weibull and (d) 3P 

Weibull distributions, showing the linear regression coefficients and distribution parameter estimates for 

the S-N dataset at 𝜎𝑎 = 520 MPa. The threshold parameter can be seen to improve the linear fit from the 2P 

to the 3P Weibull distribution 
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was the only candidate distribution to be rejected by the 𝜒2 GoF test at a significance level of 𝛼 = 5%. The 3P 

Weibull distribution fitted using MLE was accepted at the 𝛼 = 5% significance level by the 𝜒2 GoF test. 

Table 4: The results of the goodness-of-fit tests for the candidate distributions for number of cycles to failure 

at 𝜎𝑎 = 520 MPa. The ‘A’ and ‘R’ prefixes represent that the distribution was accepted or rejected by the 

goodness-of-fit test respectively. The final distribution classifications are also shown. 

 

 

 

 

 

The results from the A-D GoF test are shown next in Table 4 from Step 8. It can be seen that the 2P Weibull 

distribution, when fitted with PPLR and MLE was rejected at the 𝛼 = 5% significance level. This also highlights 

the importance of validating GoF tests, as the rejection of the 2P Weibull distribution by A-D contradicts its 

acceptance by the 𝜒2 test. In a similar fashion, the 3P Weibull distribution fitted using PPLR was accepted by 

the A-D GoF test despite being rejected by 𝜒2 test. 

The final column of Table 4 shows the classification of each candidate distribution for Step 10, based upon the 

Class definitions shown previously in Table 1. It can be seen from Table 4, that the 2P Log-Normal distribution 

was Class 1, the 3P Log-Normal distribution was Class 2 (due to unvalidated distribution parameter estimates), 

the 2P Weibull distribution was Class 4 (due to A-D GoF test rejecting both PPLR and MLE estimates) and the 

3P Weibull distribution was Class 3 (due to unvalidated parameter estimates and 𝜒2 rejecting the PPLR 

estimates). Therefore, in this isolated case, the 2P Log-Normal distribution should be selected, due to having 

the lowest class number. Despite having a similar correlation coefficient value to the 2P Log-Normal 

distribution, the 3P Log-Normal distribution is rejected due to the large difference of 48.612% between the 

location parameter from PPLR and MLE and therefore resulting in unvalidated distribution parameter estimates. 

3.3. Statistical Characterisation of Complete 4340 Steel S-N Dataset 

The systematic statistical characterisation methodology described in Section 2.2 and demonstrated in Section 

3.1 was then applied to the remaining complete 4340 S-N datasets at 𝜎𝑎 = 620, 600, 580 and 540 MPa (identified 

as Stress Level 1, 2, 3, 4 and 5 respectively) [3]. The results table template is shown in Table 5a and 5b and has 

been populated for all complete datasets within the ESDU 4340 steel S-N dataset. Stress Level 6 at 𝜎𝑎 = 520 

Distribution 
Fitting Method 

(Ranking Equation) 
𝜒𝑠

2 
𝜒𝑐

2 

𝛼 = 5% 
𝐴2 

𝐴𝑐
2 

𝛼 = 5% 
𝑟 Class 

2P Log-

Normal 

PPLR (Mean) 4.055 A 5.992 0.445 A 0.752 0.986 
1 

MLE 2.810 A 5.992 0.386 A 0.752 - 

3P Log-

Normal 

PPLR (Mean) 3.012 A 5.992 0.429 A 0.601 0.986 
2 

MLE 1.831 A 5.992 0.383 A 0.649 - 

2P Weibull 
PPLR (Mean) 3.535 A 5.992 0.990 R 0.757 0.968 

4 
MLE 3.648 A 7.815 0.904 R 0.757 - 

3P Weibull 
PPLR (Mean) 9.516 R 3.842 0.521 A 0.885 0.985 

3 
MLE 2.686 A 5.992 0.509 A 0.891 - 
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MPa as characterised in Section 3.2 is included in Table 5b for completeness. This section will aim to summarise 

the results of the statistical characterisation. The clearest approach to reviewing the vast amount of information 

contained within Tables 5a and 5b is to focus on each candidate distribution type individually. Only the A-D 

GoF test could be performed at Stress Level 1 at 𝜎𝑎 = 620 MPa due to the sample size of 𝑁 = 10. 

Table 5a: The distribution fitting and goodness-of-fit results for Stress Levels 1, 2 and 3 (𝜎𝑎 = 620 MPa, 600 

MPa and 580 MPa respectively). The ‘A’ and ‘R’ prefixes demonstrate that a goodness-of-fit test either accepts 

or rejects a candidate distribution. The final candidate distribution classification is shown on the right-hand side 

of the table. 

 

3.3.1. 2P Log-Normal Distribution 

From Table 5a and 5b, it can be seen that the 2P Log-Normal distribution was predominately a Class 1 

distribution across the six stress levels as it was accepted by both GoF tests at the 𝛼 = 5% significance level 

with validated distribution parameter estimates (i.e. PPLR and MLE parameter estimates are within 20%). The 

only instance whereby 2P Log-Normal distribution was higher than Class 1 was at Stress Level 2, due to 

rejection by the 𝜒2 GoF test for the PPLR distribution parameter estimates. The 2P Log-Normal distribution 

Stress Level 1 𝜎 = 620 MPa Sample Size 𝑁 10 Sample Skew 𝛾 1.528 Best Fit Distribution 2P Log-Normal 

Distribution 

Fitting 

Method  

(Rank) 

Distribution Parameter Estimate 
Maximum 

Difference 
𝜒𝑠

2 
𝜒𝑐

2  
𝛼 = 5% 

𝐴2 
𝐴𝑐

2  
𝛼 = 5% 

𝑟 Class Location 

 𝛿 

Scale 

 𝜎 

Shape  

𝜆 

2P Log-

Normal 

PPLR (EV) - 10.645 0.300 
4.590% 

- - 0.404 A 0.752 0.959 
1 

MLE - 10.665 0.286 - - 0.384 A 0.752 - 

3P Log-

Normal 

PPLR (EV) 25795 9.552 0.743 
25.584% 

- - 0.252 A 0.635 0.982 
2 

MLE 29337 9.195 1.011 - - 0.308 A 1.001 - 

2P Weibull 
PPLR (EV) - 48562 3.717 

15.990% Incorrect Skew Behaviour. Reject 2P Weibull Distribution. 4 
MLE - 49602 3.205 

3P Weibull 

PPLR 

(Hazen) 
30167 45010 0.935 

59.542% 
Produces Exponential Distribution. Reject 3P Weibull 

Distribution. 
4 

MLE 30800 111251 0.630 

Stress Level 2 𝜎 = 600 MPa Sample Size 𝑁 17 Sample Skew 𝛾 0.761 Best Fit Distribution 3P Log-Normal 

Distribution 

Fitting 

Method  

(Rank) 

Distribution Parameter Estimate 
Maximum 

Difference 
𝜒𝑠

2 
𝜒𝑐

2  
𝛼 = 5% 

𝐴2 
𝐴𝑐

2  
𝛼 = 5% 

𝑟 Class Location 

 𝛿 

Scale 

 𝜎 

Shape  

𝜆 

2P Log-

Normal 

PPLR 

(Mean) 
- 10.903 0.351 

16.012% 
6.253 R 5.992 0.390 A 0.752 0.981 

2 

MLE - 10.903 0.303 3.448 A 5.992 0.392 A 0.752 - 

3P Log-

Normal 

PPLR 

(Mean) 
26745 10.136 0.713 

15.335% 
3.750 A 5.992 0.253 A 0.626 0.990 

2 

MLE 31590 9.857 0.796 4.719 R 3.842 0.277 A 0.630 - 

2P Weibull 

PPLR 

(Mean) 
- 63416 3.348 

2.350% Incorrect Skew Behaviour. Reject 2P Weibull Distribution. 4 

MLE - 63202 3.428 

3P Weibull 

PPLR 

(Hazen) 
33711 25148 1.207 

41.284% 
3.280 A 5.992 0.205 A 1.002 0.992 

4 

MLE 35096 17800 0.860 MLE Produces Exponential Distribution - 

Stress Level 3 𝜎 = 580 MPa Sample Size 𝑁 26 Sample Skew 𝛾 0.503 Best Fit Distribution 3P Weibull 

Distribution 

Fitting 

Method  

(Rank) 

Distribution Parameter Estimate 
Maximum 

Difference 
𝜒𝑠

2 
𝜒𝑐

2  
𝛼 = 5% 

𝐴2 
𝐴𝑐

2  
𝛼 = 5% 

𝑟 Class Location 

 𝛿 

Scale 

 𝜎 

Shape  

𝜆 

2P Log-

Normal 

PPLR 

(Mean) 
- 11.394 0.309 

11.506% 
2.247 A 5.992 0.349 A 0.752 0.987 

1 

MLE - 11.394 0.277 2.563 A 5.992 0.398 A 0.752 - 

3P Log-

Normal 

PPLR 

(Mean) 
32771 10.897 0.489 

18.280% 
3.067 A 3.842 0.285 A 0.616 0.989 

2 

MLE 40102 10.732 0.517 4.318 R 3.842 0.353 A 0.616 - 

2P Weibull 

PPLR 

(Mean) 
- 101850 3.871 

0.821% Incorrect Skew Behaviour. Reject 2P Weibull Distribution. 4 

MLE - 101837 3.903 

3P Weibull 

PPLR 

(Mean) 
51936 45682 1.400 

12.577% 
1.722 A 3.815 0.253 A 0.940 0.992 

1 

MLE 55015 40578 1.330 1.884 A 3.815 0.264 A 0.911 - 
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also had high correlation coefficient values across the stress levels. The consistency of the 2P Log-Normal 

distribution to be a Class 1 distribution, along with its high correlation coefficient values suggests that the 2P 

Log-Normal distribution could provide accurate statistical characterisation of the value of 𝑁𝑓 across the S-N 

dataset. The demonstration of the statistical validity of the 2P Log-Normal distribution is in agreement with the 

existing and commonly held assumption that 𝑁𝑓 is 2P Log-Normally distributed [12, 19]. 

Table 5b: The distribution fitting and goodness-of-fit test results for Stress Levels 4, 5 and 6 (𝜎𝑎 = 560 MPa, 

540 MPa and 520 MPa respectively). The ‘A’ and ‘R’ prefixes demonstrate that a goodness-of-fit test either 

accepts or rejects a candidate distribution. The final candidate distribution classification is shown on the right-

hand side of the table. 

 

 

 

 

 

Stress Level 4 𝜎 = 560 MPa Sample Size 𝑁 28 Sample Skew 𝛾 0.413 Best Fit Distribution 3P Weibull 

Distribution 

Fitting 

Method  

(Rank) 

Distribution Parameter Estimate 
Maximum 

Difference 
𝜒𝑠

2 
𝜒𝑐

2  
𝛼 = 5% 

𝐴2 
𝐴𝑐

2  
𝛼 = 5% 

𝑟 Class Location 

 𝛿 

Scale 

 𝜎 

Shape  

𝜆 

2P Log-

Normal 

PPLR 

(Mean) 
- 11.848 0.320 

10.405% 
2.077 A 5.992 0.234 A 0.752 0.992 

1 

MLE - 11.849 0.290 1.498 A 5.992 0.248 A 0.752 - 

3P Log-

Normal 

PPLR 

(Mean) 
0 11.848 0.320 

Inconsistent Threshold Parameter. Reject 3P Log-Normal Distribution 4 

MLE 13798 11.740 0.317 

2P Weibull 

PPLR 

(Mean) 
- 161041 3.791 

0.903% Incorrect Skew Behaviour. Reject 2P Weibull Distribution. 4 

MLE - 161065 3.826 

3P Weibull 

PPLR 

(Mean) 
72364 83901 1.589 

16.223% 
3.230 A 5.992 0.243 A 1.013 0.993 

1 

MLE 80325 72189 1.471 1.602 A 3.842 0.294 A 0.898 - 

Stress Level 5 𝜎 = 540 MPa Sample Size 𝑁 28 Sample Skew 𝛾 0.518 Best Fit Distribution 3P Weibull 

Distribution 

Fitting 

Method  

(Rank) 

Distribution Parameter Estimate 
Maximum 

Difference 
𝜒𝑠

2 
𝜒𝑐

2  
𝛼 = 5% 

𝐴2 
𝐴𝑐

2  
𝛼 = 5% 

𝑟 Class Location 

 𝛿 

Scale 

 𝜎 

Shape  

𝜆 

2P Log-

Normal 

PPLR 

(Mean) 
- 12.280 0.325 

10.533% 
1.566 A 5.992 0.286 A 0.752 0.991 

1 

MLE - 12.280 0.294 1.368 A 5.992 0.315 A 0.752 - 

3P Log-

Normal 

PPLR 

(Mean) 
54037 11.972 0.439 

20.553% 
1.266 A 3.842 0.237 A 0.673 0.992 

2 

MLE 68017 11.871 0.432 1.042 A 3.842 0.270 A 0.607 - 

2P Weibull 

PPLR 

(Mean) 
- 248920 3.697 

3.235% Incorrect Skew Behaviour. Reject 2P Weibull Distribution. 4 

MLE - 249202 3.580 

3P Weibull 

PPLR 

(Mean) 
110601 130134 1.617 

15.184% 
1.657 A 3.842 0.234 A 0.916 0.993 

1 

MLE 122587 112979 1.458 3.574 A 5.992 0.228 A 0.901 - 

Stress Level 6 𝜎 = 520 MPa Sample Size 𝑁 31 Sample Skew 𝛾 0.948 Best Fit Distribution 2P Log-Normal 

Distribution 

Fitting 

Method  

(Rank) 

Distribution Parameter Estimate 
Maximum 

Difference 
𝜒𝑠

2 
𝜒𝑐

2  
𝛼 = 5% 

𝐴2 
𝐴𝑐

2  
𝛼 = 5% 

𝑟 Class Location 

 𝛿 

Scale 

 𝜎 

Shape  

𝜆 

2P Log-

Normal 

PPLR 

(Mean) 
- 12.932 0.461 

10.333% 
4.055 A 5.992 0.445 A 0.752 0.986 

1 

MLE - 12.932 0.418 2.810 A 5.992 0.386 A 0.752 - 

3P Log-

Normal 

PPLR 

(Mean) 
22253 12.871 0.489 

48.612% 
3.012 A 5.992 0.429 A 0.601 0.986 

2 

MLE 43304 12.809 0.464 1.831 A 5.992 0.383 A 0.649 - 

2P Weibull 

PPLR 

(Mean) 
- 506862 2.630 

4.853% 
3.535 A 7.815 0.990 R 0.757 0.968 

4 

MLE - 508269 2.508 3.648 A 7.815 0.904 R 0.757 - 

3P Weibull 

PPLR 

(Mean) 
139199 353523 1.593 

21.187% 
9.516 R 3.842 0.521 A 0.885 0.985 

3 

MLE 176620 298760 1.408 2.686 A 5.992 0.509 A 0.891 - 
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3.3.2. 2P Weibull Distribution 

The 2P Weibull distribution was classified at all stress levels as Class 4 as shown in Table 5a and 5b. This was 

as a result of both the PPLR and MLE fitting process producing 𝜆 shape estimates that are in excess of  𝜆 = 3, 

producing a distribution that will demonstrate either symmetrical or negative skew [31] at Stress Level 1 to 5. 

This contradicts the positive sample skew values computed for each dataset. At Stress Level 6, the 2P Weibull 

distribution was rejected by the A-D test at 5% for both the PPLR and MLE distribution parameter estimates. 

Therefore, the 2P Weibull distribution does not provide accurate statistical characterisation of the 𝑁𝑓 values 

across the 4340 S-N dataset. 

3.3.3. 3P Log-Normal Distribution 

From Tables 5a and 5b, it can be seen that the 3P Log-Normal distribution was predominately a Class 2 

distribution across the 6 stress levels, although it was Class 4 for Stress Level 4 due to inconsistent PPLR and 

MLE location parameter estimates. Despite having larger correlation coefficient values compared to the 2P 

Log-Normal distribution and therefore suggesting a better fit, the percentage difference between the PPLR and 

MLE distribution parameter estimates typically exceeded the 20% threshold, resulting in unvalidated parameter 

estimates at Stress Levels 2 to 6. The MLE distribution parameter estimates for the 3P Log-Normal distribution 

were also rejected by the 𝜒2 test at 𝛼 = 5% for Stress Level 2 and 3. The most significant observation regarding 

the 3P Log-Normal distribution from Table 5a and 5b was the instability and inconsistency in the 𝛿 threshold 

parameter estimates. Firstly, it can be seen for Stress Level 4 that the PPLR threshold parameter estimate was 

equal to zero and therefore the 3P Log-Normal distribution was equivalent to the 2P Log-Normal distribution. 

In addition, it can be seen that the threshold parameter value did not continually increase for a reducing stress, 

as shown in Figure 6. It would be expected that the minimum number of cycles to failure defined by the 

threshold parameter would increase with reducing stress amplitude, in a similar manner to the mean number of 

cycles to failure increasing with reducing cyclic stress amplitude (i.e. the classical S-N curve response). As can 

be seen in Figure 6, the threshold parameter increases from Stress Level 1 to 3, but then rapidly decreased and 

fluctuated across Stress Level 4, 5 and 6. The instability in the threshold parameter and high class numbers 

means that the 3P Log-Normal distribution should not be used characterise the 𝑁𝑓 values within then 4340 S-N 

data set. 
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3.3.4. 3P Weibull Distribution 

Regarding the 3P Weibull distribution, Table 5a and 5b shows that for half of the characterised Stress Levels 

(3, 4 and 5), the 3P Weibull was a Class 1 distribution, with correlation coefficients at Stress Levels 3, 4 and 5 

that were higher than the other Class 1 distribution, 2P Log-Normal. Table 5a and 5b also show that the 3P 

Weibull distribution provided the best-fit for half of the stress levels. The 2P Log-Normal distribution only 

provided the best-fit for 2 stress levels. In addition, Figure 6 shows that the 𝛿 threshold parameter of the 3P 

Weibull distribution was significantly more stable, showing a continual increase in threshold value for reducing 

stress, compared to the unstable behaviour of the 3P Log-Normal distribution threshold parameter.  

 

 

However, at Stress Levels 1, 2 and 6, the 3P Weibull distribution was classified as either Class 4 or Class 3 and 

this was expected to be as a result of the challenges of fitting the 3P Weibull distribution. For Stress Level 1, 

an Exponential distribution was produced by both PPLR and MLE methods (as shown by the shape parameter 

values of 𝜆 < 1) and the 3P Weibull distribution was therefore rejected due to the incorrect skew behaviour.  

The incorrect skew behaviour is suggested to be as a result of the small sample size of 𝑁 = 10. At Stress Level 

2, PPLR produced a 3P Weibull distribution, with a high correlation coefficient and was accepted by both GoF 

tests, whilst MLE produced an Exponential distribution. This suggests that the optimisation process used to 

maximise the 3P Weibull LF converged to a local maximum, rather than the global maximum. Had the global 

maximum been identified, it would be expected that the 3P Weibull distribution would have also been Class 1 

Figure 6: A visualisation of how the 3P threshold parameter varies with reducing stress amplitude. The 3P 

Weibull distribution shows a constantly increasing threshold parameter, whilst the 3P Log-Normal 

distribution shows an unstable threshold parameter value.  
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and provided the best-fit at Stress Level 2. For Stress Level 6, the PPLR-fitted distribution was rejected by the 

𝜒2 test, whilst the MLE-fitted distribution was accepted by both GoF tests. This contradiction between the two 

fitting methods could be as a result of PPLR ranking only providing an approximation of the RCF, therefore 

introducing inaccuracy into the distribution fitting process.   

Therefore, Table 5a and 5b show that when the 3P Weibull distribution had been successfully fitted to the S-N 

dataset with validated distribution parameter estimates, it was seen to have the highest correlation coefficient 

from PPLR and should therefore could be considered as the final distribution along with the 2P Log-Normal 

distribution for the S-N dataset. Possible approaches to overcome the challenges of fitting the 3P Weibull 

distribution at Stress Levels 1, 2 and 6 are discussed further in Section 5.1. The identification of the 3P Weibull 

distribution providing the best-fit to S-N datasets supports the findings of Zhao et al [12], Wei et al [13] and 

Khameneh and Azadi [14]. 

Whilst the 3P Weibull was shown to provide the best-fit to the S-N dataset at a number of stress levels, the 2P 

Log-Normal distribution was also shown to be predominately a Class 1 distribution. Therefore, the common 

assumption that 𝑁𝑓 values are 2P Log-Normal distributed [12, 19] has also been shown to be statistically valid.  

4. Case Study: Evaluating the Reduction in Conservatism from 3-Parameter Distributions 

As the 3P Weibull distribution was shown to provide the best-fit at a number of the stress levels within the 4340 

steel S-N dataset, the impact of characterising the variability in 𝑁𝑓 values using 3P Weibull distributions on P-

S-N curves and a component’s safe-life was investigated and quantified using an S-N analysis case study. It 

should be noted that as both the 2P Weibull and 3P Log-Normal distributions were found to provide 

unacceptable fits to the 4340 steel S-N dataset in Section 3, they have not been considered for the construction 

of P-S-N curves in the following sections. 

4.1. Impact of 3-Parameter Weibull Distributions on P-S-N Curves 

The first investigation considered the 𝑁𝑓 value required to achieve a given 𝑃𝑜𝑆 at each stress level for the fitted 

2P Log-Normal and 3P Weibull distributions (𝑁𝑓𝑃𝑜𝑆
). 𝑁𝑓𝑃𝑜𝑆

  is computed using the inverse of the CDF of the 

fitted distribution [6]. Figure 7 shows the 2P Log-Normal distribution and 3P Weibull distribution fitted to the 

dataset at Stress Level 6 and the presence of the threshold parameter for the 3P Weibull distribution can be 

clearly seen. Figure 8 shows the original 4340 S-N dataset [3], with the 𝑁𝑓𝑃𝑜𝑆
 values at 99% 𝑃𝑜𝑆 for both the 

2P Log-Normal distribution and 3P Weibull distribution for Stress Levels 2 to 6 (Stress Level 1 has been omitted 
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due to the small sample size). The 99% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
  values are also shown in Table 6. A 𝑃𝑜𝑆 of 99% was selected 

as this is a typical 𝑃𝑜𝑆 used for safety-critical components in the aerospace sector [1]. 

It can be seen from Table 6 and Figures 7 and 8 that the 3P Weibull distribution 99% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
 values were 

approximately 20% larger than those of the 2P Log-Normal distribution. This suggests that the 3P Weibull 

distribution, when successfully fitted to the dataset, provides a reduction in the conservatism of the P-S-N curves 

of approximately 20%. This would suggest, neglecting all other sources of variability in fatigue design, that if 

components were designed using the 3P Weibull distribution 99% 𝑃𝑜𝑆 P-S-N curve, they would have a 

theoretical design safe-life 20% larger than if designed using the 2P Log-Normal distribution 99% 𝑃𝑜𝑆 P-S-N 

curve. Alternatively, the increase in available fatigue life could enable higher cyclic stresses to be applied to 

the component, permitting structural elements with reduced sectional areas and thicknesses. This would result 

in lighter-weight structural components when designing with the 3P Weibull P-S-N curve. Therefore, the 

improved statistical characterisation brought about by the systematic methodology selecting the 3P Weibull 

distribution could enable engineers to reduce conservatism within fatigue design, leading to longer component 

lives and increased component efficiency [2].  

 

 

 

 

 

Figure 7: A comparison of the 2P Log-Normal and 3P Weibull distributions at Stress Level 6 (520 MPa), clearly 

highlighting the presence of the 3P Weibull distribution 𝛿 threshold parameter.  
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Table 6: The 99% 𝑃𝑜𝑆 number of cycles to failure values 𝑁𝑓𝑃𝑜𝑆
 generated at each stress-level from the 2P Log-

Normal and 3P Weibull distributions. The 3P Weibull distribution can be seen to provide an increase in  𝑁𝑓𝑃𝑜𝑆
  

of approximately 20%. The successful fitting method for the 3P Weibull distribution is also shown. 

  

Whilst the focus of this paper is the construction of P-S-N curves at a specified 𝑃𝑜𝑆 for deterministic design, 

the probabilistic scatter band when using the 2P Log-Normal and 3P Weibull distributions can also be 

compared. Figure 9 shows the 𝑁𝑓𝑃𝑜𝑆
  at 99%, 50% (i.e. ‘mean’) and 1% 𝑃𝑜𝑆 values. It can be observed from 

Figure 9 that the 50% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
 values are similar for both the 2P Log-Normal and 3P Weibull distributions. 

In addition, Figure 9 shows that the 50% and 1% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
  have a smaller difference between the 2P Log-

Normal and 3P Weibull distributions, typically differing by only 10%. It should also be noted that at 50% 𝑃𝑜𝑆 

𝑁𝑓𝑃𝑜𝑆
 values, the 2P Log-Normal distribution predicts higher  𝑁𝑓𝑃𝑜𝑆

 values than the 3P Weibull. These 

observations from Figure 9 suggest that as the design P-S-N 𝑃𝑜𝑆 value increases, that the potential life increase 

offered by the 3P Weibull reduces.  

Stress Level 𝜎𝑎 (MPa) 
99% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆

 Value Percentage Increase in 𝑁𝑓𝑃𝑜𝑆
  

for 3P Weibull 2P Log-Normal 3P Weibull 

2 600 26854 (MLE) 34267 (PPLR) 27.605% 

3 580 46610 (MLE) 56291 (MLE) 20.770% 

4 560 71315 (MLE) 83490 (MLE) 17.072% 

5 540 108560 (MLE) 127408 (MLE) 17.362% 

6 520 156426 (MLE) 187999 (MLE) 20.184% 

Figure 8: A comparison of 99% 𝑃𝑜𝑆 number of cycles to failure values generated at 

each stress level by the 2P Log-Normal and 3P Weibull distribution. 4340 S-N dataset 

reproduced with permission from IHS ESDU [3]. 
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4.1.1. Impact on P-S-N Curves of Validation Threshold 

The results in Table 7 were used to investigate the impact of the 20% validation threshold of percentage 

difference between the PPLR and MLE distribution parameter estimates. Table 7 shows the maximum 

percentage difference between the distribution parameter estimates and the corresponding difference in the 99%  

𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
 values for the Class 1 2P Log-Normal distribution and 3P Weibull distributions. It should be noted 

that Table 7 omits values from Stress Level 2 as Table 5a shows that no Class 1 distributions were identified. 

It can be observed from Table 7 that all distribution parameter estimates with a maximum difference of less 

than 20% resulted in no more than a 10% difference in the 99% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
 values. Within the literature there is 

limited guidance on acceptable percentage errors and differences between 𝑁𝑓 values and whilst work presented 

in the literature has stated the use of a 5% acceptable error, there is little justification for the selection of such a 

value [22]. Therefore, a conscious effort is required within the fatigue design community to define acceptable 

error values for 𝑁𝑓 from S-N curves, accounting for both error in the statistical characterisation and selection 

of S-N curve shape. This could be achieved in future work by investigating the impact on predicted component 

lives of the error in 𝑁𝑓 values.  

 

Figure 9: A comparison of the 99%, 50% and 1% 𝑃𝑜𝑆 scatter bands constructed using 

the 2P Log-Normal and 3P Weibull distributions. 4340 S-N dataset reproduced with 

permission from IHS ESDU [3]. 
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Table 7: The relation between the maximum difference between PPLR and MLE distribution parameter 

estimates and the resulting difference in the 99% 𝑃𝑜𝑆 number of cycles to failure values. 

 

 

4.2. Impact of 3-Parameter Weibull Distribution on Component Safe-Life 

In order to further investigate the impact of assuming a 3P Weibull distribution for the construction of P-S-N 

curves, a case study was defined in order to quantify the difference in a component safe-life when using P-S-N 

curves constructed using 2P Log-Normal and 3P Weibull distributions. The SAE keyhole benchmark shown in 

Figure 10 was used as a representative component geometry [18]. The original benchmark geometry was 

retained, although it was assumed that the component was manufactured from 4340 steel, in order to utilise the 

statistical characterisation of the ESDU dataset [3]. The SAE ‘transmission’ spectrum shown in Figure 10 was 

used as the case study loading spectrum [18]. Rainflow counting was applied to the loading spectrum to identify 

individual load cycle ranges [4]. These were then converted to stress ranges, based on the nominal component 

geometry and a stress concentration factor of 𝐾𝑇 = 3, to account for the keyhole notch [1]. The Goodman mean 

stress correction was employed to convert the stress ranges into fully-reversed cyclic stress amplitudes 𝜎𝑎 [4]. 

Assuming a Basquin S-N curve shape (as is commonly performed for S-N datasets) [2, 4],  99% 𝑃𝑜𝑆 P-S-N 

curves were constructed for both the 2P Log-Normal 𝑁𝑓𝑃𝑜𝑆
 and 3P Weibull 𝑁𝑓𝑃𝑜𝑆

 values using ‘minimum’ 

fitting. The resulting curves are shown on log-log scales in Figure 11.  Minimum fitting ensures that all 

datapoints used to fit the curve, either lie on, or on the ‘conservative’ side of the curve, such that the P-S-N 

curve represents a lower 𝑁𝑓 than the 𝑁𝑓𝑃𝑜𝑆
 value. This can be seen in Figure 11 for both the 2P Log-Normal 

and 3P Weibull P-S-N curve, whereby the 𝑁𝑓𝑃𝑜𝑆
 at 𝜎𝑎 = 600 MPa and 𝜎𝑎 = 520 MPa lie on the P-S-N curves, 

whilst at all other stress levels the P-S-N curves under predict the 𝑁𝑓 value. The fatigue limit ‘𝜎𝐹𝐿’ (i.e. the 

cyclic stress amplitude below which damage is assumed to not be accumulated) was assumed to be Normally 

distributed [4]. The 99% 𝑃𝑜𝑆 fatigue limit was computed based upon a mean fatigue limit value of 𝜎𝐹𝐿 = 457 

Stress Level Distribution 

Max Difference in Parameter 

Estimates from PPLR and 

MLE 

Difference in 99% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
 

between PPLR and MLE 

Distributions 

3 
2P Log-Normal 11.506% 7.142% 

3P Weibull 12.577% 4.705% 

4 
2P Log-Normal 10.405% 6.769% 

3P Weibull 16.223% 7.768% 

5 
2P Log-Normal 10.533% 6.958% 

3P Weibull 15.184% 7.258% 

6 
2P Log-Normal 10.333% 9.546% 

3P Weibull 21.187% 15.484% 
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MPa and a sample standard deviation of 𝜎 = 13. The value for 𝜎𝐹𝐿 and standard deviation was computed using 

the ‘Probit’ method [4]. 

 

 

 

 

Fatigue damage accumulation was then computed using Miner’s Rule based upon the fully-reversed stress 

amplitudes and the total damage accumulated (𝐷𝑇) when using each P-S-N curve is shown in Table 8. Assuming 

that component failure occurs when 𝐷𝑇  = 1 (i.e. all available fatigue life has been consumed), the component 

safe-life could be computed as the inverse of the accumulated fatigue damage (i.e. the number of times that the 

Figure 10: The SAE Keyhole benchmark geometry and a section of the ‘transmission’ loading spectrum [18]. 

Figure 11: The 99% 𝑃𝑜𝑆 P-S-N curves generated from minimum fitting using the 2P Log-

Normal and 3P Weibull distributions. 4340 S-N dataset reproduced with permission from 

IHS ESDU [3].  
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‘transmission’ loading spectrum can be applied before component retirement) [4]. The resulting safe-life values 

are shown in Table 8 and it can be seen that the use of the 3P Weibull distribution results in a 22.98% increase 

in the component safe-life value. Therefore, the 3P Weibull distribution has also been shown to reduce the 

conservatism in component safe-life values, compared to the 2P Log-Normal distribution. The increase in safe-

life of 22.98% is also consistent with the increase in 𝑁𝑓𝑃𝑜𝑆
 for the 3P Weibull distribution shown previously in 

Table 6. 

Table 8: Accumulated Fatigue Damage and resulting Safe-Life values for the SAE Keyhole benchmark case 

study when using 2P Log-Normal and 3P Weibull distributions to construct P-S-N curves. 

 

 

5. Discussion 

Firstly, the application of the systematic and robust statistical characterisation methodology defined in Section 

2 demonstrated that the 3P Weibull distribution did provide an improved fit to the S-N dataset at a number of 

stress levels when compared to the 2P Log-Normal, 3P Log-Normal and 2P Weibull distributions. The 2P Log-

Normal distribution was also found to provide an acceptable fit to the S-N dataset, validating a long-held 

assumption about the variability observed in 𝑁𝑓. The statistical methodology demonstrated the desired 

systematic process and enabled the selection of the 3P Weibull distribution as the final distribution type. The 

methodology, through the use of the distribution classifications in Table 1 and 2 permitted the 25 individual 

elements for each candidate distribution to be synthesised into a single class number, simplifying the 

distribution selection process. The methodology demonstrated that 3P distributions (specifically the 3P Weibull 

distribution) can provide good fits to S-N datasets and therefore, 3P distributions should be considered as 

candidate distributions in future statistical characterisation of S-N datasets.  

As has been demonstrated in Table 6 and Table 8, the use of the 3P Weibull distribution to statistically 

characterise the variability in 𝑁𝑓 values within datasets can reduce the conservatism within both P-S-N curves 

and component safe-life values, when compared to the commonly-used and assumed 2P Log-Normal 

distribution. Within the case study, the 3P Weibull distribution was shown to increase 99% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
 values 

by approximately 20%, whilst the SAE keyhole benchmark life was increased by 22.98%. This therefore 

demonstrates that the utilisation of the 3P Weibull distribution, providing it has been shown to be the best fit to 

Fatigue Analysis Results 
99% 𝑃𝑜𝑆 P-S-N Curve Distribution 

2P Log-Normal 3P Weibull 

Accumulated Damage 𝐷𝑇  8.95 × 10-5 7.28 × 10-5 

Safe-Life 11172 13739 
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the S-N dataset, could reduce conservatism within fatigue design, potentially resulting in more lightweight 

components with longer design safe-life values. The 2P Log-Normal distribution was found to also be selected 

as a Class 1 distribution by the statistical characterisation methodology. Therefore, safety-critical industrial 

sectors may wish to retain the 2P Log-Normal as a result of the increased conservatism it introduces into fatigue 

design and component safe-life values. In addition, the 3P Weibull distribution presents a number of challenges 

regarding distribution fitting and P-S-N curve construction, coupled with increased complexity when compared 

to the 2P Log-Normal distribution, which will be explored in the remainder of this section. 

5.1. Challenges of Fitting 3-Parameter Weibull Distribution 

Whilst the 3P Weibull distribution was selected as the final distribution type to statistically characterise 𝑁𝑓 

values, there are currently limitations surrounding its adoption, including poor fits at Stress Levels 1, 5 and 6 

and challenges regarding the construction of P-S-N curves for fatigue design. 

Firstly, the comprehensive results recorded in Tables 5a and 5b enabled the interrogation of the results from 

distribution fitting and testing, in order to highlight potential distribution fitting errors and to identify why the 

3P Weibull distribution was not consistently a Class 1 distribution at all stress levels. At Stress Level 1, the 

rejected 3P Weibull distribution was expected to be as a result of the small sample size of 𝑁 = 10. Work by Wei 

et al [13], also experienced challenges when fitting 3P Weibull distributions to datasets with small sample sizes. 

In order to confirm the statistical validity of the 3P Weibull distribution at Stress Level 1, a larger sample size 

is required. Increased sample sizes would also improve the accuracy of statistical characterisation across the 

complete S-N dataset. Based on the methods used within the statistical characterisation methodology, the 

minimum required sample size would be 𝑁 = 15, as the  𝜒2 test is inaccurate for sample sizes 𝑁 < 15 [10]. It 

should be noted that such a sample size is consistent with the sample sizes suggested for S-N curve generation 

in ASTM E739 [23]. 

 At Stress Level 2, the 3P Weibull distribution was classified as Class 4 as a result of the MLE distribution 

parameters producing an Exponential distribution leading to incorrect skew characteristics. This is expected to 

be as a result of the MLE numerical solution process converging to a local maximum. An improved MLE 

solution process (e.g. sophisticated optimisation methods) could be employed to assess whether more accurate 

MLE distribution parameters could be generated. In addition, improved MLE solution processes would reduce 

the computational expense of generating bootstrap A-D critical values and could also remove the need for the 

user to interrupt or ‘tune’ the MLE fitting process to ensure convergence. 
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At Stress Level 6, it is expected that the reliance on the mean ranking equation for PPLR resulted in inaccurate 

distribution parameter estimates. A proposed solution to this is to conduct a literature review to identify if there 

are additional ranking equations beyond those presented in Table A.1 in the Appendix [32]. It can also be 

observed that all of the ranking equations are in the form shown in Equation 7, where 𝑓1 and  𝑓2 are the constant 

terms for each ranking equation (e.g. for the median rank equation, 𝑓1 = 0.3 and 𝑓2 = 0.4). 𝑓1 and  𝑓2 can vary 

between [0, 0.5] and [0, 1] respectively [32]. 

𝐹𝑖 =
𝑖 − 𝑓1

𝑁 + 𝑓2

 

Therefore, an additional proposed solution is that a ‘sweep’ through various combinations of 𝑓1 and  𝑓2 values 

could be performed to identify the pair of values that maximises the correlation coefficient 𝑟. As the 

computational expense of PPLR fitting is negligible, there is little additional resource burden in identifying the 

optimum 𝑓1 and  𝑓2 values that maximise the correlation coefficient. This is to be explored by the authors during 

future work. 

Finally, it was observed from Table 5a and 5b that the maximum difference values between PPLR and MLE 

distribution parameter estimates were greatest for the 3P Log-Normal and 3P Weibull distributions. This is 

expected to be as a result of the greater complexity of the PPLR and MLE fitting methods compared to the 2P 

distributions, resulting in distribution parameter estimates that exhibit a greater percentage difference for the 

3P distributions. The increased maximum difference values for the 3P distributions further highlights the need 

for using both PPLR and MLE methods simultaneously to validate distribution parameter estimates. 

 

5.2. Challenges of Constructing P-S-N Curves using 3-Parameter Weibull Distribution 

Beyond the challenge of fitting 3P Weibull distributions to datasets, there are further challenges regarding the 

construction of P-S-N curves for fatigue design based upon 3P Weibull distributions. These challenges must be 

overcome to widen the utility of the 3P Weibull distribution within fatigue design. 

Firstly, as discussed in Section 3.1, S-N datasets are typically comprised of both complete failure and run-out 

or ‘censored’ data. In order to generate P-S-N curves based upon the entire S-N dataset, censored distribution 

fitting and selection methods would be required. Whilst censored ‘run-out’ datasets have been outside the scope 

of this paper, the authors have investigated both fitting and testing of censored S-N datasets. The authors have 

observed that the MLE equations are significantly more complex [24], although approximate distribution 

(7) 
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parameter estimates can be sourced from modified PPLR approaches [17]. The greatest challenge when working 

with censored datasets is GoF testing. As the 𝜒2 GoF test cannot be used for censored datasets, only the A-D 

test is able to be performed, and critical values are limited (e.g. Normal) and are not always directly applicable 

to Type I censoring [9]. Therefore, future work should focus on developing GoF tests for Type I censored 

datasets. The authors have also trialled a parametric bootstrap approach for censored samples [33], with the 

view to generating 𝐴𝑐𝑟𝑖𝑡 
2 values using bootstrap samples with the same number of censored observations as the 

original sample. However, the statistical rigour of this approach is still being assessed. Recent work presented 

by Toasa Caiza and Ummenhofer details an approach that accounts for run-outs in the 3P Weibull distribution 

[34]. The implementation of statistical characterisation methods for Type I censored data would also enable 

more sophisticated P-S-N curve shapes to be fitted to the 99% 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
. An example of an improved P-S-N 

curve shape compared to the Basquin P-S-N curves used within the case study (shown in Figure 11), is the 

power law assumed for the S-N curve as shown previously in Figure 1 [3].  

The other challenge regarding the application of the 3P Weibull distribution to construct P-S-N curves is that 

design P-S-N curves are typically expressed with both a 𝑃𝑜𝑆 and a Confidence Level (CL) value [1]. CLs are 

used to produce Confidence Intervals (CIs), which represent the plausible range of the distribution parameter 

estimates that bracket the population distribution parameter [8]. A CL of 95% represents that for a series of 

samples, 95% of the confidence intervals would bracket the population distribution parameter [8]. As the CLs 

impact the width of the CI of a distribution parameter estimate, any values computed using the PDF or CDF 

(such as 𝑃𝑜𝑆 𝑁𝑓𝑃𝑜𝑆
 values) are also affected. Whilst methods and tables for constructing CIs are available for 

the 2P Log-Normal distribution [35], methods are not currently available for the 3P Weibull distribution [36]. 

This means that 𝑃𝑜𝑆/CL design P-S-N curves cannot be currently constructed for the 3P Weibull distribution. 

In addition, the width of CIs can give engineers an indication of how well a candidate distribution represents 

the dataset. Large CIs represent uncertainty in the distribution parameter estimates and therefore, can be used 

to suggest a poor fit to the dataset. Whilst parametric bootstrap methods can be used to estimate CIs [37], an 

investigation by the authors showed that the bootstrap samples for the 𝛿 threshold parameter had a bi-modal 

distribution and it is therefore currently unclear whether such an approach would produce accurate CIs for 3P 

Weibull distributions. 

In summary, the statistical characterisation of 𝑁𝑓 within S-N datasets can be seen to be a trade-off between 

reduced conservatism with fatigue design (in the form of P-S-N curves and component safe-life values) and 

increased challenges within the distribution fitting, GoF testing and construction of P-S-N curves. These 
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challenges must be overcome to confirm that the 3P Weibull distribution provides the best-fit across the 4340 

S-N dataset.  

 

6. Future Work 

Regarding future work, the authors intend to consider a wider range of 3P distributions, along with 

demonstrating the utilisation of the 3P Weibull distribution within a probabilistic approach to fatigue design. 

Firstly, it has been identified that there are other 3P distributions within the literature, such as the Generalised 

Extreme Value (GEV) distribution, which encompasses the Gumbel, Fréchet and Weibull distributions [6]. The 

GEV distribution has been recently applied to a 300M steel S-N dataset (a modification of 4340 steel) [6] and 

therefore future work should investigate the application of the GEV distribution to the 4340 S-N dataset. 

Finally, the authors’ wider research focuses on the development of a probabilistic approach to fatigue design, 

in order to compute the probability of fatigue failure for a safe-life component [5]. Probabilistic approaches 

statistically characterise the variability in each design parameter (e.g. materials data, loads data, etc.) and 

propagate the variability through to the component safe-life [38, 39]. Therefore, the development of a systematic 

statistical characterisation methodology has supported the need for accurate statistical characterisation within 

probabilistic design. Regarding the statistical characterisation of S-N datasets within probabilistic fatigue 

design, due to its better fit to the 4340 S-N dataset at some stress levels, the 3P Weibull distribution should be 

used to characterise the variability in 𝑁𝑓 values within a probabilistic approach. The authors’ future work aims 

to quantify the impact on the estimated probability of failure when using the 2P Log-Normal and 3P Weibull 

distributions within a probabilistic approach. 

 

7. Conclusions 

This paper has presented the application of a novel and systematic statistical characterisation methodology with 

a view to identifying whether 3-Paramater distributions can improve the statistical characterisation of the 

number of cycles to failure within stress-life (S-N) datasets. The reduction of conservatism within Probability-

S-N (P-S-N) curves and component safe-life values was quantified using a case study based upon the SAE 

keyhole benchmark and a rich S-N dataset for 4340 steel from the Engineering Sciences Data Unit. The 

following conclusions can be drawn from the statistical characterisation of the S-N dataset and the case study:  
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1) The statistical characterisation methodology provides a systematic and traceable process for ‘down-

selecting’ distribution types, based upon validation of distribution fitting and testing using multiple 

methods. 

2) The 3-Parameter Weibull distribution showed a superior fit to the number of cycles to failure at a number 

of stress levels within the S-N dataset. 

3) The common practice of using the 2-Parameter Log-Normal distribution to characterise the variability in 

the number of cycles to failure has been demonstrated as statistically valid for the S-N dataset. 

4) The use of the 3-Parameter Weibull distribution resulted in a 22.98% increase in the component safe-life 

when used to construct P-S-N curves compared to the 2-Parameter Log-Normal distribution. 

5) Further work is required to confirm the statistical validity of the 3-Parameter Weibull distribution, along 

with the identification of methods to construct confidence intervals for the distribution parameters of the 

3-Parameter Weibull distribution. 

It should be noted that the results shown within this paper will be specific to the 4340 S-N dataset and should 

only be used to provide an indication of the potential benefits of improved and systematic statistical 

characterisation of S-N datasets and the reduced conservatism introduced by the 3P Weibull distribution. It is 

hoped that the systematic statistical characterisation methodology presented within this paper will assist other 

engineers when characterising their own S-N datasets.  
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Appendix 

This appendix provides the ranking equations employed within the probability plotting and linear rectification 

method utilised within the systematic statistical characterisation framework [27]. Table A.1 shows the 𝑓1 and 

𝑓2 constants of the ranking equation, in the form of Equation A.1. 𝐹𝑖 is the relative cumulative frequency for 
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the order statistic 𝑖. The name of each ranking equation as used in Tables 3, 4, 5a and 5b is also given in Table 

A.1.  

 

𝐹𝑖 =
𝑖 − 𝑓1

𝑁 + 𝑓2

 

Table A.1: The ranking equations and 𝑓1 and 𝑓2 constants to be used for PPLR distribution fitting. 

 

 

Ranking Equation (Abbreviation) 𝑓1 𝑓2 

Large Samples (LS) 0 0 

Hazen Formula (Hazen) 0.5 0 

Mean Rank (Mean) 0 1 

Gumbel (Gumbel) 0.4 0.2 

Extreme Value (EV) 0.35 0 

Median Rank (Median) 0.3 0.4 

Normal (Normal) 0.3175 0.365 

(A.1.) 


