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Abstract 

In-situ fracture tests were carried out on the I12 beamline at the Diamond Light Source. Four Al-Ti metal-matrix 

composites (MMCs), with two crack lengths, were studied to assess for the impact of in-plane constraint. Synchrotron 

X-ray computed tomography and synchrotron X-ray diffraction were used to measure total strain and elastic strain 

respectively. In this work, the measured elastic strains in the samples are detailed as a function of applied load and 

compared against those predicted from a 3D elastic-plastic finite element model. The modelled strains increased 

asymptotically towards the tip of the electro discharge machined notch. The experimental results do not highlight the 

same response, which is due to a combination of blunting and low experimental spatial resolution. Far field 

experimental and measured strain fields converged, notably in the test piece containing a long notch (𝑎/𝑊 = 0.5) and 

higher levels of constraint. 
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1. Introduction 

Understanding the impact of constraint on fracture behaviour is central to the accurate, non-conservative life 

assessment of safety critical structural components used in the aerospace and nuclear industries. The fracture resistance 

of cracked bodies with low levels of plastic constraint is significantly under-estimated when using a single parameter 

fracture assessment. Attempts are therefore made to account for the impact of constraint in integrity assessment codes 

such as UK’s R6 using fracture parameters such as 𝑇 (Larsson & Carlsson, 1973), 𝑄 (O’Dowd & Shih, 1991) and 𝑇𝑧 

(Mu, Wang, Tu, & Xuan, 2016). These parameters are, however, only sensitive to either in-plane (𝑇, 𝑄) or out-of-

plane (𝑇𝑧) constraint. There is therefore a need to improve on the current methodology and move towards a simple, 

unified parameter that better addresses both in-plane and out-of-plane constraint. Recently there have been promising 

advances, with authors such as Mostafavi et al. (Mostafavi, Smith, & Pavier, 2010), Yang et al. (2013) and Seal & 

Sherry (2017) detailing parameters that capture the extent or volume of plasticity around the crack tip as a function of 

constraint. While these parameters have been shown to be sensitive to both in-plane and out-of-plane constraint, there 

is still more fundamental research required to properly quantify and validate the dependence of fracture toughness on 

3D plastic constraint (i.e. loss of both in-plane and out of plane constraint). To that end, we have used a novel 
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combination of synchrotron X-ray diffraction (XRD), X-ray computed tomography (XCT) and finite element analysis 

(FEA) to study and separate the elastic and plastic contributions to strain energy release rate with respect to both 3D 

plastic constraint and through thickness position. The following work details both the methodology used and some of 

the initial results, concentrating on the study and validation of elastic strain measurements using synchrotron X-ray 

diffraction. These results are compared against those from a 3D finite element model, with the goal being to (a) 

validate this model and (b) ultimately use the finite element model to extract parameters such as the 𝑇-stress (for 

validation and comparison against existing models) and for the calculation of the elastic portion of the strain energy 

release rate, 𝐽𝑒𝑙𝑎𝑠𝑡𝑖𝑐  with respect to 3D constraint. High energy X-ray diffraction provides us with a unique opportunity 

to experimentally validate the effect of 3D constraint and interrogate models and approaches that have previously 

been solely subject to systematic finite element studies. 

 

Nomenclature 

2𝜃   Bragg angle (°) 

𝛼, 𝑛   Ramberg-Osgood hardening coefficients 

𝑎   crack length (mm) 

𝑏, 𝑊   sample thickness and width (mm) 

𝑑, 𝑑0   lattice spacing, stress-free lattice spacing (Å) 

𝜀   strain 

𝐸   Young’s modulus (GPa) 

 

ℎ𝑘𝑙   Miller index 

𝐽𝑒𝑙𝑎𝑠𝑡𝑖𝑐    elastic strain energy release rate (J) 

𝜎   applied stress (MPa) 

𝜎0   yield strength (MPa) 

𝜐   Poission’s ratio 

𝑥, 𝑦   co-ordinate system (mm) 

 

 

2. Methodology 

2.1. Material and Samples 

Fracture tests were carried out, in-situ, at the Diamond Light Source on the I12:JEEP beamline (Drakopoulos et 

al., 2015), on Al-Ti metal matrix composite (MMC) double edge notch tension (DENT) samples. These samples had 

varying sample thicknesses (𝑏) and crack lengths (𝑎); this test matrix was chosen to allow for the assessment of 

varying levels of 3D plastic constraint on fracture and is detailed in Table 1. This research is still ongoing and the 

initial results for the two thinner specimens (𝑏 =  5 mm) are presented here alongside the novel measurement 

methodology and analysis approach. The experimental setup and sample geometry can be seen in Figure 1. 

Testing was carried out on a 10 kN Shimadzu loading frame, which was mounted in Experimental Hutch 2 (EH2), 

which was designed to accommodate large experimental setups. The fracture behaviour was interrogated through a 

combination of (a) XRD and (b) XCT or, more specifically, through the associated use of digital volume correlation 

(DVC). XRD allows for measurement of through thickness averaged elastic strain, while DVC allows for the 

characterisation of the total 3D displacement or strain fields as a function of position through thickness. In this paper 

we will detail the results of the XRD elastic strain measuremeßnts and initial attempts that have been made to model 

these using the finite element method. Note that while XRD and XCT measurements could not be made 

simultaneously, the acquisition mode could be switched semi-automatically in under 10 minutes, allowing elastic and 

total strain measurements to be made under effectively identical conditions. These measurements were carried out at 

7 load increments between 50 N and fracture, which occurred at 4.5 kN and 4.0 kN at 𝑎/𝑊 = 0.1 and 𝑎/𝑊 = 0.5 

respectively. 
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Table 1. Test matrix for the full program of work, highlighting the in-plane and out-of-plane constraint with respect to sample geometry and 

crack length. The tests highlighted in green are the subject of the current paper. 

 

 𝑏 = 5 mm 𝑏 = 20 mm 

𝑎/𝑊 = 0.1 Low in-plane 

Low out-of-plane 

Low in-plane 

High out-of-plane 

𝑎/𝑊 = 0.5 High in-plane 

Low out-of-plane 

High in-plane 

High out-of-plane 

 

 

 

 

 

 
 

 
(a) (b) (c) 

 

Fig. 1. Overview of the experiment setup. (a) Schematic view of the loading details and detector/transmission geometry; (b) DENT specimen 

where 𝑎 is the crack length, 𝑊 the width and 𝑏 its thickness; (c) a fractured specimen inside the loading jig at EH2 

 

2.2. Synchrotron X-ray Diffraction 

Monochromatic XRD was used to measure the elastic strain distribution in the Al-Ti MMC samples using a 2D 

Thales Pixium RF4343 area detector (2881 x 2880 pixels) and a beam energy of 60 keV. The sample to detector 

distance of 1.5 m allowed for a maximum diffracted angle, 2𝜃 = 8˚ and the acquisition of seven Al peaks and four Ti 

peaks. Diffraction patterns were acquired using an incoming slit size of 0.1 mm square. The initial pre-processing of 

the data leveraged the DAWN analysis suite (Filik et al., 2017), with the Debye-Scherrer rings being azimuthally 

integrated across 5˚ windows. At each loading stage and for both the sample at (a) 𝑎/𝑊 = 0.1 and (b) 𝑎/𝑊 = 0.5, 

diffraction data was acquired across a 2D grid. Each map consisted of approximately 500 points across an area 8 mm 

x 4 mm with a point spacing of 0.3 mm. In the area surrounding the notch tip, the point density was higher, with an 

associated spatial resolution of 0.15 mm. The increase in spatial resolution was chosen to better capture the high strain 

gradient observed in this region. An example of the integrated diffraction pattern can be seen in Figure 2. 
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Fig. 2. Diffraction pattern acquired from the Al-Ti MMC. The red line which overlays the integrated diffraction data highlights a Pawley refinement 

on the Al peaks. The unfitted peaks correspond to reflections from the Ti particles. 

 

2.3. Finite element analysis 

A 3D finite element model replicating the sample and test set-up was built using the Abaqus finite element software. 

Two planes of symmetry were used to reduce the volume of the sample to a quarter of the actual size; 𝑥 and 𝑦 

symmetry boundary conditions were enforced on the planes of symmetry at the edges of the model. This enabled the 

number of elements to be reduced by a factor of 4. There were two parts: a 3D rigid body, representing the loading 

fixture and a 3D deformable solid representing the sample. Load was applied on the rigid body in displacement control 

such that the correct load was achieved (as per the loads shown in Figure 6). The displacement was applied at a rigid 

body reference point which was in normal contact with the sample defined in the model. The crack was modelled as 

a contour integral crack in Abaqus. A symmetry half-crack model was used with the crack tip being along the same 

line as the crack front. The vector specifying the direction of crack extension was perpendicular to the surface of the 

notch. No degeneracy or collapsed nodes were used in the mesh. All mesh elements in the notch and those under 

boundary conditions were of equal size. To model the contact, a rigid body was defined to represent the test rig. The 

test rig was placed in contact with the sample along the outer side under the wing of the sample (see Figure 4). The 

rigid body was defined as the master and the sample surface as the slave in the surface to surface contact. The normal 

behaviour was defined as being in hard contact and the tangential behaviour was frictionless. No slave adjustment or 

surface smoothing was applied. A Ramberg-Osgood model was used to simulate elastic-plastic behaviour. This model 

uses the summation of the elastic and plastic components of strain. The parameters used were 𝐸 = 100 GPa, 𝑣 = 0.3, 

𝑛 = 6, 𝜎0 = 103 MPa, 𝛼 = 2.75, where 𝐸 is the Young’s modulus, 𝑣 the poisons ratio, 𝜎0 the yield strength, and 𝑛 and 

𝛼 describe the hardening behaviour of the material. The values were selected by fitting the Ramberg-Osgood material 

model (Eq. 1) to a tensile test carried out on the material using a flat dog bone specimen according to ASTM E8M-

16A (ASTM International, 2016); this data and the associated fit of the parameters is shown in Figure 3. 

 

𝜀 =
𝜎

𝐸
+ 𝛼 

𝜎

𝐸
(

𝜎

𝜎0

)
𝑛

 Eq. 1 

 

The edges that represent axes of symmetry were fixed along 𝑥 and 𝑦 symmetry boundary conditions (see Figure 4 for 

the coordinate system). The model used linear, 3D stress elements from the standard Abaqus library. Reduced 

integration was enabled, but second-order accuracy was not allowed. There were 14,830 elements used to mesh the 
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sample. The short and long crack models are depicted in Figure 4. To allow for comparison with the experiment data, 

the linear elastic strains in the crack (notch) opening direction were extracted. 

 

 

  

Fig. 3. The stress-strain curve for the Al-Ti MMC employed as part of this study and associated Ramberg-Osgood fit 

 

 

Fig. 4. (a) The FE model boundary conditions and (b) the finite element mesh around the crack tip for 𝑎/𝑊  = 0.1. The line running along the inner 

wing of the sample shown in (a) highlights the modelled rigid body contact and displacement (representative of the test rig), resulting in a reaction 

force, 𝑃𝑟. (c – d) The displacement fields and mesh overview for the thin (𝑏 = 5 mm) samples with a short and long notch, such that (c) 𝑎/𝑊  = 

0.1; (d) 𝑎/𝑊 = 0.5. The noted reaction force of 2 kN is representative of experimental loading to 4 kN due to the symmetry boundary conditions.  
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3. Results and Discussion 

3.1. Elastic strain fields (XRD) 

A multi-peak, Pawley refinement was used to evaluate the peak shifts and associated strain with respect to load in 

the Al matrix using the pyXe strain analysis package (Simpson, 2016). The Pawley refinement of the Al matrix is 

overlaid on the integrated diffraction profile shown in Figure 1, with the unfitted peaks corresponding to reflections 

associated with the Ti particles. Strain was calculated from peak shifts relative to a strain free, far field measure of the 

lattice parameter, 𝑑0  (Withers, Preuss, Steuwer, & Pang, 2007) measured at minimum load such that 𝜀 =  (𝑑 −
 𝑑0) / 𝑑. Further details of the diffraction analysis procedure can be found in the work of Mostafavi et al. (Mostafavi 

et al., 2017). Two examples of the 2D elastic strain field maps can be seen in in Figure 5; these detail the elastic strain 

field at 4 kN when a) 𝑎/𝑊 = 0.1 and b) 𝑎/𝑊 = 0.5. Line profiles were also extracted from these maps using 2D linear 

interpolation, with the lines being taken coincident with the centre of the notch, where 𝑦 = 0. The line profiles, shown 

as a function of applied load, can be seen in Figure 6. As noted, the strain maps and associated line profiles detail the 

strain in the Al matrix; as part of the broader study, efforts will be made to calculate the elastic strain from the Ti 

particles. This will allow the load partitioning between the two phases to be assessed. Work is also ongoing to 

determine the elastic component of the strain energy release rate, 𝐽𝑒𝑙𝑎𝑠𝑡𝑖𝑐  from the 2D strain maps using JMAN_S 

(Barhli et al., 2016). JMAN_S uses Cholesky factorisation to calculate the displacement field from the in-plane strain 

tensor field. The displacement field (and the associated stress field) are then used to calculate 𝐽𝑒𝑙𝑎𝑠𝑡𝑖𝑐  via a contour 

integral approach. 

 

      

                                      (a) (b) 

Fig. 5. 2D elastic strain (𝜀𝑦𝑦) fields acquired using XRD at an applied load of 4 kN for (a) 𝑎/𝑊 = 0.1; (b) 𝑎/𝑊 = 0.5.  
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Fig. 6. Line profiles extracted from the 2D elastic strain maps as a function of load at (a) a/W  = 0.1; (b) a/W = 0.5. 

 

3.2. FEA vs. Experimental Comparison 

A comparison between the experimental and modelled full field elastic strain (𝜀𝑦𝑦) is shown in Figure 7 for both the 

(a) short (𝑎/𝑊 = 0.1) and (b) long (𝑎/𝑊 = 0.5) notch specimens. Line profiles at 𝑦 = 0 mm have also been extracted 

and compared for both samples at loads ranging from 1 kN to 4 kN – these can be seen in Figure 8. In the sample with 

a short notch and low levels of plastic constraint, the modelled and experimental work do not show the desired level 

of agreement. In the region close to the crack tip, the FEA modelled strain is much greater in magnitude than the 

experimentally measured results (> 1000 microstrain higher at an applied load of 4 kN), and, while less severe, the 

disagreement between measured and predicted strain in the far field is still significant. A comparison between the mid 

thickness (i.e. 𝑥 = 0 mm) measured and predicted strains can be seen in Figure 9; the FEA modelled strains are between 

250 and 450 microstrain greater than the measured results. Furthermore, the general shape of the strain field is not 

well matched, with a dip in strain being predicted approximately 0.5 mm ahead of the crack tip – this is not observed 

in the experimental work. The agreement between FEA and XRD is, however, better for the long notch and, while the 

strain field near the notch is still seemingly overpredicted, the far field strains are very closely matched (<100 

microstrain difference) and the overall strain field distribution is similar to the experimentally recorded field. 

 

 

                                      (a) (b) 

Fig. 7. A comparison of the FEA (top) and experimental (bottom) elastic strain, 𝜀𝑦𝑦 at (a) a/W  = 0.1; (b) a/W = 0.5. The region in grey highlights 

regions that exceeds 3000 microstrain in the FEA analysis. 

 

The difference between the experimental and modelled results in the region close to the tip of the electro discharge 

machined notch can be attributed to at least three factors. The first two are imposed by the experimental set-up and, 

more specifically, the resolution of the measurements. XRD spatial resolution is a feature of (a) the point spacing in 

the acquisition grid (in this case approximately 150 µm) and (b) the geometry of the gauge volume, which is a function 

of the slit size and acquisition mode. In this case a 100 µm x 100 µm slit size was used with a monochromatic, pencil 

beam setup. The result of this is that the strain measurements are not discrete points but averaged across a volume 100 

µm x 100 µm x 4000 µm. Averaging through thickness increases measurement sensitivity to (a) sample misalignment 

or non-straight crack fronts and (b) changes in stress state/constraint through thickness (i.e. plane stress tending toward 

plane strain). Inaccuracies introduced by low spatial resolution are particularly acute where the strain gradient is high 
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e.g. near a notch or crack tip. Spatial resolution should ideally well match with the strain gradient but this is clearly 

limited by physical and experimental feasibility (which this experiment approached the limits of) and is not possible 

in the presence of a sharp defect.  

 

 

                                      (a)                              (b)    

Fig. 8. A comparison of line profiles extracted from the 2D elastic strain maps as a function of load at (a) a/W  = 0.1; (b) a/W = 0.5. 

 

 

                                      (a) (b) 

Fig. 9. A comparison between experimental and modelled elastic strain at mid thickness (x = 4 mm) for (a) 𝑎/𝑊  = 0.1; (b) 𝑎/𝑊 = 0.5. 

In addition to experimental factors, the authors consider it likely that much of the discrepancy can be explained by 

the manner in which the notch is treated in the FE model. It is currently modelled and meshed as a sharp defect, rather 

than a blunted notch; the results from the X-ray computed tomography (to be published separately) suggest this is 

incorrect, with significant blunting being observed. The FE model would therefore be expected to predict a strain and 

stress excursion that broadly approximates to the elastic portion of a HRR field i.e. power law hardening material, 

with stresses asymptotically increasing towards the notch. While the strain fields may not agree in this region, it is 
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expected that they would converge in the far field, where the impact of this non-optimised mesh is no longer 

significant. This is precisely the behaviour seen where 𝑎/𝑊 = 0.5 but not, as noted, where 𝑎/𝑊 = 0.1. The lack of 

constraint in the sample with the short notch will allow for more plasticity and could introduce errors in the model 

due to geometric non-linearity. In future iterations of the finite element model allowances will be made for this.  

 

4. Conclusions 

In this paper we have highlighted the initial elastic strain field results from a comprehensive experiment, which has 

leveraged developments in measuring elastic and elastic-plastic deformation fields using synchrotron X-ray diffraction 

and tomography. The through-thickness averaged elastic strains have been measured and compared against the linear 

elastic strains extracted from a 3D elastic-plastic finite element model. High energy X-ray diffraction has been shown 

to be a valuable tool for the validation of finite element models such as these and has highlighted some potential 

inaccuracies in the described model, which will be addressed in future work. Notably, while there is an acceptable 

agreement in the far field strains (particularly where 𝑎/𝑊 = 0.5), further work is required to improve the accuracy of 

the model to better represent the behaviour in the area around the tip of the notch, which does not currently capture 

blunting of the notch during loading and overpredicts the strains in this region. Using the volume of the plastic region 

in each sample, a measure of the level of 3D constraint of the plastic zone can be derived. This will enable the level 

of constraint to be characterized and a comparison can be made with the 𝐽-integral, a measure of the crack driving 

force for each level of constraint.   
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Appendix A. Supplementary material 

The integrated X-ray diffraction intensity profiles and associated elastic strains with respect to applied load can be 

accessed at https://doi.org/10.5523/bris.2lo01f5ww0vk42dqiq212z5bn5. 
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