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Abstract 

The elastodynamic scattering behaviour of a finite-sized scatterer in a homogeneous isotropic medium 

can be encapsulated in a scattering matrix (S-matrix) for each wave mode combination. In a 2-

dimension (2D) space, each S-matrix is a continuous complex-valued function of 3 variables: incident 

wave angle, scattered wave angle and frequency. In this paper, the S-matrices for various 2D scatterer 

shapes (circular voids, straight cracks, rough cracks and a cluster of circular voids) are investigated to 

find general properties of their angular and frequency behaviour. For all these shapes, it is shown that 

the continuous data in the angular dimensions of their S-matrices can be represented to a prescribed 

level of accuracy by a finite number of complex-valued Fourier coefficients that are physically related 

to the angular orders of the incident and scattered wavefields. It is shown mathematically that the 

number of angular orders required to represent the angular dimensions of an S-matrix at a given 

frequency is a function of overall scatterer size to wavelength ratio, regardless of its geometric 

complexity. This can be interpreted as a form of the Nyquist sampling theorem and indicates that there 

is an upper bound on the sampling interval required in the angular domain to completely define an S-

matrix. The variation of scattering behaviour with frequency is then examined. The frequency 

dependence of the S-matrix can be interpreted as the Fourier transform of the time-domain impulse 

response of the scatterer for each incident and scattering angle combination. Depending on the nature 

of the scatterer, these are typically decaying reverberation trains with no definite upper bound on their 

durations. Therefore, in contrast to the angular domain, there is no lower bound on the sampling interval 

in the frequency domain needed to completely define an S-matrix, although some pragmatic solutions 

are suggested. These observations may help for the direct problem (computing ultrasonic signals from 

known scatterers efficiently) and the inverse problem (characterising scatterers from measured 

ultrasonic signals). 

 

 

 

 



1 INTRODUCTION 

The scattered ultrasonic wave-field from an object (a scatterer) contains a great deal of information 

about the geometry of the object. For quantitative non-destructive evaluation (NDE) of materials and 

structures, scattering is therefore of great interest for defect detection, characterisation and sizing [1]. 

Knowledge of elastodynamic scattering, either for bulk waves or guided waves, can be used for 

parametric studies to optimise defect inspection configurations with either single-element ultrasonic 

transducers [2] or ultrasonic arrays [3-4]. A thorough understanding of the direct scattering problem is 

also a necessary prerequisite for solving the inverse problem of obtaining defect geometry from the 

scattered wave-field, examples of which include defect characterisation using experimentally-measured 

scattered signals obtained from an ultrasonic array [5-8] and quantitative damage imaging using 

minimum sensor density [9-10].  

The work described in the current paper was motivated in the first instance by the need to efficiently 

simulate scattered ultrasonic signals of arbitrary-shaped targets in the context of ultrasonic array data 

simulation. Fundamentally, this requires the simulation of data from every possible transmitter-receiver 

element combination, which is often termed the Full Matrix Capture (FMC) array data set [11]. At a 

particular scatterer, each transmitter-receiver element combination corresponds to a pair of incident and 

scattered wave directions. To simulate the FMC data associated with a particular scatterer, it is therefore 

necessary to compute the amplitude and phase of scattered signals over a range of different incident 

angles, scattered angles and frequencies. Traditionally, in direct numerical simulations such as Finite 

Element (FE) methods, for different parameters in the modelled structure, for example, the geometry of 

the structure, the location of a transmitting array element, the orientation angle and location of a 

scatterer, a separate execution of the model is required. However, an alternative and generally more 

efficient way to simulate FMC data is to pre-compute the complete scattering behaviour of a scatterer 

for all possible incident and scattering angles over the frequency range of interest; this data is termed 

the scattering matrix (S-matrix) [5, 12]. The efficiency of using a pre-computed S-matrix in array data 

simulations is based on the fact that the S-matrix is determined by the defect only and is independent 

on the array and inspection geometry parameters. The S-matrix can then be used in a ray-based hybrid 



model [4, 12-13] to simulate the FMC data for that scatterer at any position and orientation relative to 

an array. The question is to determine the most efficient way to generate the S-matrix for an arbitrary 

scatterer. Typically frequency-domain FE techniques are employed [5, 14-16]. Such FE models must 

be executed separately for a sufficient number of incident wave directions and frequencies. The 

computation burden of this type of modelling therefore depends on the execution time of each model 

and the angular and frequency sampling intervals required to capture all the information in the S-matrix. 

The latter factors are equivalent to the minimum number of angular positions and frequencies required 

to accurately characterise a scatterer to a known degree of accuracy in practice.  

In this paper, the S-matrices of several shapes of 2D embedded scatterers are first calculated at very 

high fidelity in the frequency and angular domains using appropriate methods. Each embedded scatterer 

is assumed to exist in an unbounded domain and is defined by its shape and overall size. The angular 

and frequency dependencies of these S-matrices are then investigated, as are the angular and frequency 

sampling intervals required to accurately describe them. Only the S-matrix from longitudinal incident 

and scattered wave modes for 2D embedded scatterers are considered in this paper, but similar analysis 

could be applied to the S-matrices from other wave combinations and for 3D scatterers. It should be 

noted that the paper is not about which modelling method (FE or analytical solutions) is more efficient 

to calculate an S-matrix, but on how to use the chosen modelling method most efficiently by 

determining the minimum angular and frequency increments required to completely capture scattering 

behaviour.  

2 DEFINITION OF S-MATRIX AND ITS RELATIONSHIP TO ULTRASONIC RESPONSE 

In this section, the S-matrix is formally defined and its relationship to the ultrasonic response of a 

scatterer is explained.  

2.1 Definition of S-matrix  

The interaction between ultrasonic waves and a 2D scatterer embedded in an infinite isotropic elastic 

medium is completely encoded in a set of S-matrices, one for each incident and scattered mode 

combination. For each combination, the S-matrix describes the far-field complex amplitude of scattered 



signals as a function of incident angle, scattered angle and frequency [5, 12]. Figure 1(a) shows a 

continuous plane wave of amplitude ui incident on a 2D embedded scatterer at angle 𝛼, and the angle, 

𝛽, of a scattered wave. The angles are with respect to the lateral axis of the coordinate system and are 

measured about the nominal centre of the scatterer. The scattered wave in the far-field decays in inverse 

proportion to the square root of the distance from the scatterer. If the far-field complex amplitude of the 

scattered wave measured at a distance r from the nominal centre of the scatterer is us, then the far-field 

S-matrix is defined as: 

 𝑆(𝛼, 𝛽, 𝑓) =  
𝑢𝑠

𝑢𝑖
√

𝑟


𝑒−𝑖𝑘𝑟, (1) 

where 𝑓  is the frequency of excitation, 𝜆  is the wavelength and 𝑘 = 2𝜋/𝜆  is the wave number. 

Physically, the S-matrix describes the complex amplitude of the scattered cylindrical wave if was back-

propagated to a distance of 𝜆 from the nominal centre of the scatterer. It is noted that the S-matrix is 

actually a continuous function of 3 parameters rather than a matrix; however, the term S-matrix has 

been used in the NDE field for a few years [5] and is used here for brevity. It should also be noted that 

the data in the S-matrix is equivalent to the many alternative scattering descriptions used by other 

authors, such as the far-field pattern [17], the transition or T-matrix [18], the scattering amplitude [19] 

and the directivity [20].  

(a)  (b)  

Figure. 1 Schematic diagrams illustrating notation used in (a) general model and (b) array data 

simulation of an embedded 2D scatterer with nominal center at q. 

Exact analytical solutions for elastodynamic scattering problems are limited to those for certain 

geometrically-simple scatterer shapes such as smooth planar straight cracks [21-23] and circular holes 

[24]. Approximate solutions are also available under certain conditions. For example, if a scatterer is 



large and its shape slowly-varying compared to the elastodynamic wavelength, e.g. a smoothly curved 

crack, the Kirchhoff approximation [12, 25-26] or the geometrical theory of diffraction (GTD) [13] may 

be applied. However, in reality, there are many scatterers of practical interest that have arbitrary shapes 

and for which there is no analytical model or appropriate approximate model available; the scattering 

in these cases can only be solved via direct numerical approaches such as finite elements (FE) [5, 14-

15, 26], finite differences (FD) [16], boundary elements (BE) [27], etc.  

2.2 Relationship between S-matrix and ultrasonic response of a scatterer  

Consider an embedded 2D scatterer with its nominal centre at position 𝐪, which is excited by waves 

generated by a transducer at point 𝐮, as shown in Figure 1(a). The time-domain response recorded by 

an identical receiving transducer at position 𝐯, is defined as 𝑒𝑠(𝐮, 𝐯, 𝑡), where 𝑡 is time. Assuming that 

the scatterer is in the far-field of both transducers, and that both transducers are in the far-field of the 

scatterer, the Fourier transform of 𝑒𝑠 can be written as: 

𝐸𝑠(𝐮, 𝐯, 𝐪, 𝑓) = 𝐷(𝐮, 𝐪, 𝑓)𝐷(𝐯, 𝐪, 𝑓)𝐻(𝑓)𝑆(𝛼, 𝛽, 𝑓)𝑒−2𝜋𝑖𝑓(𝜏0(𝐮,𝐪)+𝜏0(𝐯,𝐪)),                     (2) 

where 𝐷(𝐮, 𝐪) describes the transducer directivity, beam spread and attenuation between a transducer 

at 𝐮 and the point 𝐪, 𝐻(𝑓) describes the frequency spectrum of the input ultrasonic pulse, 𝜏0(𝐮, 𝐪) is 

the ultrasonic transit time between 𝐮 and point 𝐪, and 𝑆(𝛼, 𝛽, 𝑓) is the S-matrix of the scatterer. The 

angles 𝛼 and 𝛽 are determined by the positions 𝐮, 𝐯 and 𝐪. 

The previous expression can be re-written as 

𝐸𝑠(𝐮, 𝐯, 𝐪, 𝑓) = 𝐸𝑟(𝐮, 𝐯, 𝐪, 𝑓)𝑆(𝛼, 𝛽, 𝑓),                                      (3) 

where 𝐸𝑟(𝐮, 𝐯, 𝐪, 𝑓) can be regarded as a reference response to a scatterer at point q that behaves as a 

perfect omni-directional target over all frequencies. In the time-domain, the above equation implies that 

the received signal can be written as a convolution: 

𝑒𝑠(𝐮, 𝐯, 𝐪, 𝑡) = 𝑒𝑟(𝐮, 𝐯, 𝐪, 𝑡)⨂𝑠(𝛼, 𝛽, 𝑡),                                                (4) 

where 𝑠(𝛼, 𝛽, 𝑡)  is the inverse Fourier transform (with respect to frequency) of the S-matrix, 

𝑒𝑟(𝐮, 𝐯, 𝐪, 𝑡) is the inverse Fourier transform of 𝐸𝑟(𝐮, 𝐯, 𝐪, 𝑓), and ⨂ is the convolution operator. This 



interpretation of the frequency-dimension of the S-matrix will be shown to have important 

consequences. 

3 ANALYSIS OF S-MATRIX  

In this section, the S-matrix behaviour as a function of scatterer size and shape is first demonstrated 

through the theoretical S-matrices from 5 representative scatterer types. The angular and frequency 

dependences of these S-matrices are then analysed.  Finally, the application of S-matrices to simulating 

array data is introduced and the resultant ultrasonic image behaviour is analysed, as this was the original 

motivation for the work described in this paper.  

3.1 Representative scatterer types  

In order to investigate the scattering behaviour of general embedded scatterers, 5 representative types 

of scatterers of interest in NDE have been selected as shown in Figure 2(a-e): a circular void, a cluster 

of 4 circular voids, a straight crack, a slightly rough crack and an extremely rough crack. The scatterer 

size 𝑎 is defined by the smallest circumscribing circle that completely contains the scatterer; this is 

indicated by the dashed circles in Figures 2(b-e) and in the case of the circular void in Figure 2(a) this 

is simply the void diameter. The centres of these circles define the nominal centre of each type of 

scatterer. Four circular voids in type 2 scatterer have a same size as a/4 and are located randomly at 

(0.37a, 0.06a), (-0.33a, 0.18a), (0.15a, 0.34a) and (-0.06a, -0.37a) relative to the scatterer center. The 

scatterers are assumed to exist in homogeneous isotropic aluminium with a density of 2700 kg/m3, a 

Young’s modulus of 71 GPa, a Poisson’s ratio of 0.34 and hence a longitudinal wave speed of c = 6400 

m/s. Note that the S-matrices calculated from aluminium were used and analysed in this paper, but the 

results should only depend on Poisson’s ratio and the ratio of scatterer size to longitudinal wavelength.  

a)  b)  c)  d)  e)    



Figure. 2 The shape of a modelled: (a) circular void, (b) cluster of 4 circular voids, (c) straight 

crack, (d) slightly rough crack and (e) extremely rough crack.  

3.2 S-matrices of representative scatterer types 

Exact analytical scattering solutions for a circular void [24] and a straight crack [22] exist and can be 

used to calculate benchmark S-matrices for these scatterers. However, there is no exact scattering 

solutions available for the other chosen scatterers. Instead, a local FE model [15] is used. For the high-

fidelity benchmark S-matrix calculations described in this section, the incident and scattered angle 

ranges are from 0 to 360 with an angular interval of 1. Each FE model execution yields the scattering 

coefficients for all scattering angles and a single incident angle. The model for each scatterer is therefore 

executed once for each incident angle to generate the full S-matrix. 

Figures 3 and 4 show the moduli of the S-matrices for the 5 scatterer types with sizes of a/ = 0.015 

and a/ = 10 respectively. Particularly evident in Figure 4 are the diagonal ridges that run along the 

straight lines |𝛼 − 𝛽| = 180 in all cases; these correspond to the shadowing effect of the scatterer on 

the opposite side to the incident direction. In the S-matrix for the planar crack shown in Figure 4(c) 

there are also orthogonal diagonal ridges running along the straight lines 𝛼 + 𝛽 = 180 and 𝛼 + 𝛽 = 

540, which correspond to specular scattering. Comparing the S-matrices in Figures 3 and 4 for the 

same scatterer types, it can be seen that the smaller scatterers exhibit a reduced overall maximum 

scattering amplitude relative to the equivalent larger scatterers as well as more uniform scattered 

amplitudes over a wider range of angles. Comparison of the specular back-scattered ridges in the S-

matrices for rough and smooth cracks of the same size, shown in Figures 4(c-d) and 5(c-d), reveals a 

much less well-defined ridge for rough cracks. This can have the effect of either reducing or increasing 

the overall maximum scattering amplitude in the S-matrices [26, 29-30].  



a) b)    

c) d) e)  

 Figure. 3 Moduli of S-matrices of scatterers of size a/ = 0.015 of (a-e) Type 1-5. Note that the 

colour-scale is linear. 

a) b)  

c) d) e)  

Figure. 4 Moduli of S-matrices of scatterers of size a/ = 10 of (a-e) Type 1-5. Note that the 

colour-scale is linear. 

3.3 Angular behaviour of S-matrices  

Because the angular dependence of the S-matrix is periodic with interval 360, it can be represented as 

a 2-dimensional Fourier series which contains the same information as the original S-matrix. The terms 

in the Fourier series representation correspond to scattering between different angular orders of the 

incident and scattered fields.  In this section, the 2D Fourier series representations of the S-matrices 

from the 5 scatterer types are investigated to explore the maximum angular order of information present. 



A mathematical model is then proposed to explain the observed behaviour and to predict the maximum 

angular order required to accurately describe any S-matrix. The S-matrices from a large population of 

scatterers with various sizes are computed and used to validate the proposed model. Finally, a general 

angular sampling rule is proposed that can be applied to the S-matrix reconstruction for any scatterer. 

3.3.1 Examples of Fourier series representation of S-matrix 

For a specific frequency, the S-matrix as a function of incident and scattered angle can be represented 

as Fourier series [31]: 

𝑆(𝛼, 𝛽, 𝑓) =  ∑ 𝐴𝑚𝑛(𝑓)𝑒𝑖(𝑚𝛼+𝑛𝛽)
𝑚,𝑛 , (5) 

where m and n represent the incident and scattered angular orders respectively and the complex Fourier 

coefficient 𝐴𝑚𝑛 is given by  

𝐴𝑚𝑛(𝑓) =
1

4𝜋2 ∫ ∫ 𝑆(𝛼, 𝛽, 𝑓)
2𝜋

0

2𝜋

0
𝑒−𝑖(𝑚𝛼+𝑛𝛽)𝑑𝛼 𝑑𝛽. (6) 

The angular sampling interval required to accurately describe the S-matrix of a scatterer is determined 

by the number of terms needed in the summations in equation (5). Qualitatively, this is illustrated in 

Figures 5 and 6, which show the moduli, |𝐴𝑚𝑛|, of the Fourier coefficients of the equivalent S-matrices 

in Figures 3 and 4. If Figures 5 and 6 are considered separately, it can be seen that the maximum angular 

orders (i.e., the number of Fourier coefficients with amplitudes above a defined amplitude threshold) 

are similar for different types of scatterers of the same size. For example, for the scatterers with a size 

of a/ = 10 shown in Figure 6, a maximum angular order is N = 37 is sufficient to capture all Fourier 

coefficients with moduli greater than –40 dB (i.e. 1%) compared to the largest value. This suggests that 

for these scatterers, the S-matrices need to be computed at 2N + 1 = 75 intervals between 0 and 360 in 

order to capture all the information in the S-matrix to order 1% accuracy. Comparing the Fourier 

coefficients in Figures 5-6, it can be seen that a larger scatterer requires a higher maximum angular 

order and hence a smaller angular sampling interval.  



a)  b)   

c) d) e)  

Figure. 5  Moduli of Fourier coefficients of the S-matrices shown in Figure 3 for 

scatterers of size a/ = 0.015: (a-e) Type 1-5. The colour scale is decibels relative to 

the largest coefficient in each case.   

a) b)  

c) d) e)

Figure. 6Moduli of Fourier coefficients of the S-matrices shown in Figure 4 for 

scatterers of size a/ = 10: (a-e) Type 1-5. The colour scale is decibels relative to the 

largest coefficient in each case.  

3.3.2 Explanation for angular behaviour of S-matrix 

Here the scalar wave equation is considered as it allows an algebraically simple description of the 

problem. However, the same results can be obtained by considering an elastic medium.  The derivation 

in here is based on analysis of scalar wave, which could represent the acoustic case or the potential 

function describing an elastic wave. In the case of elastic waves, the scattered field contains both shear 



and longitudinal waves that need to be represented by two different potential functions. The analysis 

described here could be applied to either of these separately.  

Referring to the schematic shown in Figure 1(a), let the wave incident on a scatterer be a unit-amplitude 

plane wave with spatial dependence exp(𝑖𝐤𝛼 ∙ 𝐫) , where 𝐤𝜶  is the incident wave vector, 𝐤𝛼 =

𝑘[cos 𝛼 sin 𝛼]𝑻, and 𝐫 is position relative to the nominal centre of the scatterer. The scatterer acts as 

a secondary source and generates a scattered wave field. This field from the secondary source can be 

represented by the field due to some distribution of forces, 𝐹(𝐤𝛼 , 𝐫′), applied over a point at 𝐫′ inside 

a scatterer-free medium. The scattered wave field at any position outside the scatterer area, 𝐫 =

𝑟[cos 𝛽 sin 𝛽]𝑇  where r is the distance from the nominal centre of the scatterer and is 𝛽  is the 

scattering angle relative to the lateral axis can then be written as the convolution integral 

𝑢𝑠(𝐫) = ∫ 𝐺0(𝐫 − 𝐫′) 𝐹(𝐤𝛼 , 𝐫′)𝑑𝐫′, (7) 

where, 𝐺0(𝐫) = −
𝑖

4
𝐻0

(1)
(𝑘𝑟) is the 2D scalar Green’s function of the unbounded medium.  

If 𝐤𝛽 = 𝑘𝐫/𝑟 = 𝑘[cos 𝛽 sin 𝛽]𝑇 is defined as the scattered wave vector in the scattering direction , 

then using the asymptotic form of the Hankel function 𝐻0
(1)

, the scattered wave in the far-field can be 

written as 

𝑢𝑠(𝐫) = −
𝑒

𝑖𝜋
4

4𝜋
√


𝑟
𝑒𝑖𝐤𝛽∙𝐫 ∫ 𝐹(𝐤𝛼 , 𝐫′)𝑒−𝑖𝐤𝛽∙𝐫′

𝑑𝐫′ = 𝑆(𝛼, 𝛽, 𝑓)√


𝑟
𝑒𝑖𝐤𝛽∙𝐫, (8) 

where the far-field S-matrix is 

𝑆(𝛼, 𝛽, 𝑓) = −
𝑒

𝑖𝜋
4

4𝜋
∫ 𝐹(𝐤𝛼, 𝐫′)𝑒−𝑖𝐤𝛽∙𝐫′𝑑𝐫′. (9) 

The effective forces 𝐹(𝐤𝛼 , 𝐫) can be written as a superposition of contributions from internal sources 

whose amplitudes are related to the incident field by 

𝐹(𝐤𝛼, 𝐫) = ∫ 𝐺(𝐫, 𝐫′)𝑒𝑖𝐤𝜶∙𝐫′𝑑𝐫′. (10) 

where 𝐺(𝐫, 𝐫′) is the actual Green’s function between two points in the unbounded medium containing 

the scatterer (i.e. not the Green’s function for the scatterer-free unbounded medium, 𝐺0). 𝐺 contains all 



physical scattering processes that occur within the scatterer; for the purposes of this argument, it needs 

to exist but does not need to be known. Therefore, the S-matrix can be written in the general form, 

𝑆(𝛼, 𝛽, 𝑓) = −
𝑒𝑖𝜋/4

4𝜋
∬ 𝐺(𝐫′, 𝐫′′)𝑒𝑖(𝐤𝜶∙𝐫′−𝐤𝜷∙𝐫′′)𝑑𝐫′𝑑𝐫′′. (11) 

Using polar coordinates (𝑟′, 𝜃′), (𝑟′′, 𝜃′′) in equation (11) and substituting into equation (6), the Fourier 

coefficients 𝐴𝑚𝑛 can be written as, 

𝐴𝑚𝑛 = −
𝑒

𝑖𝜋
4

16𝜋3 ∫ 𝑟′𝑑𝑟′𝑎/2

0
∫ 𝑟′′𝑑𝑟′′𝑎/2

0
∫ 𝑑𝜃′2𝜋

0
∫ 𝑑𝜃′′2𝜋

0
[𝐺(𝑟′, 𝜃′, 𝑟′′, 𝜃′′)𝑝𝑚(𝑟′, 𝜃′)𝑞𝑛(𝑟′′, 𝜃′′)],  (12) 

where it is assumed that the scatterer is completely contained in a circle of diameter 𝑎 and the functions 

𝑝𝑚, 𝑞𝑛 are given by,  

𝑝𝑚(𝑟, 𝜃) = ∫ 𝑒𝑖𝑘𝑟cos(𝜃−𝛼)𝑒−𝑖𝑚𝛼𝑑𝛼
2𝜋

0
, 𝑞𝑛(𝑟, 𝜃) = ∫ 𝑒−𝑖𝑘𝑟cos(𝜃−𝛽)𝑒−𝑖𝑛𝛽𝑑𝛽

2𝜋

0
.                                 (13) 

Using the relationship [34], 

𝐽𝑚(𝑧) =
𝑒−𝑖𝑚𝜋/2

2𝜋
∫ 𝑒𝑖𝑧cos(𝜃−𝜑)𝑒𝑖𝑚𝜑𝑑𝜑

2𝜋

0
, (14) 

where 𝐽𝑚 is Bessel function, equation (13) can be calculated as, 

𝑝𝑚(𝑟, 𝜃) = 2𝜋𝑒−𝑖𝑚(𝜃−𝜋/2)𝐽𝑚(𝑘𝑟),   𝑞𝑛(𝑟, 𝜃) = 2𝜋𝑒𝑖𝑛(𝜃−𝜋/2)(𝐽𝑚(𝑘𝑟))
∗
.              (15) 

where * is the conjugation operator. For large positive order the Bessel function can be approximately 

written as [34], 

𝐽𝑚(𝑧) ≈
1

√2𝜋𝑚
(

𝑒𝑧

2𝑚
)

𝑚
. (16) 

Taking into account that 𝐽−𝑚(𝑧) = (−1)𝑚𝐽𝑚(𝑧) [34] the expression (12) can be estimated as, 

|𝐴𝑚𝑛| ≤
𝐺𝑀

32

𝑎4

(|𝑚|+2)(|𝑛|+2)√|𝑚𝑛|
(

𝜋𝑒𝑎

2|𝑚|
)

𝑚
(

𝜋𝑒𝑎

2|𝑛|
)

𝑛
, (17) 

where  = 2𝜋/𝑘  is the wavelength and 𝐺𝑀 is the upper bound of the function |𝐺(𝐫′, 𝐫′′)|.  

Both the terms (
𝜋𝑒𝑎

2|𝑚|
)

𝑚
 and (

𝜋𝑒𝑎

2|𝑛|
)

𝑛
 in (17) tend rapidly to zero when the quantity in parentheses is 

less than unity; in other words when |𝑚| or |𝑛| respectively exceed some critical value. Therefore an 

S-matrix can be efficiently represented by a limited number of terms in the expansion (1) for |𝑚, 𝑛| ≤



𝑁, where 𝑁 is defined from the condition 
𝜋𝑒𝑎

2
< 1 as the maximum angular order required to accurately 

describe the wave fields, which depends on the size of the scatterer according to 

𝑁 =
𝜋𝑒𝑎

2
. (18) 

The assumptions in the analysis means that the above expression is only valid in cases where 𝑁 is large, 

i.e. for large scatterers when 𝑎 ≫ . For small scatterers the approximation breaks down and the above 

expression tends to zero. To include all scatterer size cases, it is proposed that a more generally 

applicable estimate of the upper bound of 𝑁 is given by:  

𝑁 =
𝜋𝑒𝑎

2
+ 𝑁0 , (19) 

where 𝑁0 is the maximum angular order for sub-wavelength scatterers, 𝑎 ≪ . A numerical estimate 

for 𝑁0 can be found from Figure 5 as 𝑁0~3 for all chosen smallest scatterers. The behaviour of the 

scattered waves from these smallest scatterers is a sum of elementary sources such as monopole (𝑚 =

𝑛 = 0), dipoles (|𝑚| = 1, |𝑛| = 1) and quadrupoles (|𝑚| = 2, |𝑛| = 2) [32]. This is similar to the three 

nonzero singular values of the scattering coefficients from a 2D elastic cylinder [33]. It is noted that, 

for an elastic wave in a homogeneous isotropic material, the appropriate Green functions, G, and elastic 

tensors should be used in equation (11) [12], but these do not change the exponential phase term, and 

hence do not affect the form of equation (17) so equation (19) is still valid. If the scattered waves are 

from wave mode conversion, then equation (19) can be applied to obtain the different upper bounds of 

N for the incident and scattered waves by using the appropriate wavelengths.  

3.3.3 Angular sampling interval and S-matrix reconstruction in angular domain 

Because the angular dependence of the S-matrix is periodic with interval 360, Fourier interpolation 

can be used to reconstruct the S-matrix at any incident-scattered angle combination from the S-matrix 

values calculated at discretely-sampled points. The necessary sampling interval for S-matrix calculation 

is determined by the maximum angular order given by equation (19). 

To validate the maximum angular order predicted by equation (19), a large population of benchmark S-

matrices for the four scatterer shapes with sizes ranging from a/ = 0.015 to 20 in 0.015 increments 



were simulated at high angular resolution (1 increments). The maximum angular order of each 

simulated S-matrix was then extracted using thresholds of –20 dB and –60 dB relative to the highest 

amplitude coefficient. As examples, the curves with symbols in Figures 7(a-b) show the variation of 

maximum angular order of Fourier coefficient, N, with amplitude thresholds of –20 dB and -60 dB 

respectively, as a function of scatterer size, a/, for the chosen scatterers. As shown, the maximum 

angular order of Fourier coefficient starts at from a finite, non-zero value for the smallest scatterer size 

of a/ = 0.015 (corresponding to the S-matrices shown in Figure 5), and then monotonically increases 

with scatterer size. The trend is approximately linear with scatterer size and suggests that the number 

of angular orders required to characterise a scatterer of a given size can be readily estimated. Also 

shown in Figures 7(a-b) is the dashed line obtained from equation (19), i.e., 𝑁 = 𝜋𝑒𝑎/2 + 𝑁0, when 

𝑁0 = 3 corresponding to the largest angular order at the smallest straight crack size. For a similar 

problem, some researchers suggested using the Nyquist sampling criterion to decide the minimum 

number of angular observation required to decode the scattered field from a cylindrical scattering object 

with a diameter of a/ [8-9, 35]. This corresponds to the angular order of 𝑁 = 𝜋𝑎/ + 𝑁0 and the solid 

straight line in Figures 7(a-b).  Also from Figures 7(a-b) it can be observed that the angular sampling 

interval depends on scatterer size. 

(a) (b)  

Figure. 7 Maximum angular order of Fourier coefficients of S-matrix as a function of scatterer 

size based on amplitude thresholds of (a) -20 dB and (b) -60 dB.  

From Figures 7(a-b) it can be seen that the solid line obtained from the Nyquist sampling criterion 

matches the rate of increase in maximum angular order based on a -20 dB threshold, but underestimates 

the rate of increase for small scatterers if a -60 dB threshold is used. Conversely, the dashed line 

obtained from equation (19) matches the initial rate of increase in maximum angular order better if a -60 



dB threshold is used, although it somewhat overestimates the maximum angular order for larger 

scatterers. It is suggested that equation (19) is used to obtain 𝑁, and hence a conservative estimate for 

the required angular sampling interval is:  

∆𝛼 = 360/ (
𝜋𝑒𝑎

𝜆
+ 2𝑁0 + 1).                                  (20) 

It is noted that the traditional Nyquist criterion is derived by assuming that the spatial variability of the 

wavefield on the circle surrounding the defect and with the same radius as the defect (basically, on the 

defect surface) is equal to wavelength. However, this assumption is an approximation, because it 

ignores the nearfield effects. The criterion derived in this paper is based on rigorous mathematical 

analysis of the far-field S-matrix. It is shown that the angular spectrum of S-matrix has an infinite 

number of terms. However, these terms are very rapidly decreasing as their order increases, so, 

practically, only finite number of terms is needed for S-matrix reconstruction depending on the chosen 

accuracy threshold.  For example, from Figure 7 it is demonstrated that scattering information with 

amplitude above -20 dB of the maximum can be captured if the array sensors spacing is based on the 

Nyquist criterion. This is often adequate in practice. The angular sampling criterion defined in equation 

(20) suggests that more sensors can help to capture more scattering information, for example, that with 

amplitude above -60dB of the maximum. It is also noted that the same conclusion can be deduced under 

the Born approximation [8], but our analysis is more general as it applies to any type of scatterer. 

3.4 Frequency behaviour of S-matrices 

In this section, the behaviour of S-matrices with respect to frequency is investigated. This behaviour is 

first demonstrated through the S-matrices for representative scatterers at a particular incident-scattered 

angle combination, by considering their inverse temporal Fourier transforms. The calculation error due 

to inadequate sampling frequency interval is analysed. Note that the benchmark S-matrices in Section 

3.3.3, i.e., for the scatterers with sizes ranging from 0 to 20 a/ with an increment of 0.015, are 

equivalent to the frequency-dependent S-matrices for scatterers of fixed size a over a frequency range 

from f = 0 to 20 c/a with an increment of ∆𝑓 = 0.015 c/a.  



3.4.1 Examples of frequency behaviour of representative S-matrices  

Figures 8(a-e) show examples of the real (solid lines) and imaginary (dashed lines) parts of a particular 

element in the S-matrices for the five types of scatterer as functions of frequency expressed in multiples 

of 𝑐/𝑎. Figure 8(c) is for α = β = 180 while the other figures are for α = β = 90. In all cases, the 

behaviour is a rapidly-changing function of frequency. 

a) b)   

c) d) e)  

Figure. 8  Examples of the frequency behaviour of the real (solid lines) and imaginary (dashed 

lines) parts of particular terms in the S-matrices for scatterers of (a-e) Type 1-5.  

Figure 9 shows the moduli of the inverse Fourier transform (IFT) of the corresponding functions in 

Figure 8. These graphs are equivalent to the function 𝑠(𝛼, 𝛽, 𝑡) in equation (4), in that they show the 

time-domain response of the scatterer at an angle 𝛽 when a broadband pulse is incident at angle 𝛼. Note 

that corresponding to ∆𝑓 = 0.015 c/a the actual time range of the IFT is from 𝑡 = −32.8𝑎/𝑐 to 𝑡 =

32.8𝑎/𝑐; however, Figure 9 only shows the time range within |𝑡| ≤ 5𝑎/𝑐 to highlight earlier and high 

amplitude arrivals. In these graphs, time is expressed in multiples of 𝑎/𝑐, which is physically the time 

taken for a wave to travel a distance equal to the size of the scatterer, 𝑎. The locations of the peaks 

relative to 𝑡 = 0 correspond to the shifts in wave travel time due to the scatterer geometry. For example, 

the local peaks at time 𝑡 = −
𝑎

𝑐
 that are visible in Figures 9(a-c) correspond to the earliest possible 

arrival of waves scattered from a scatterer of size 𝑎 compared to waves scattered from the nominal 

centre of the scatterer. Any non-zero signal at 𝑡 < −𝑎/𝑐 is acausal and therefore non-physical. The time 



𝑡 = −𝑎/𝑐 corresponds to the earliest possible arrival of directly scattered waves, but the response signal 

can extend to 𝑡 > 𝑎/𝑐  due to reverberations within the scatterer. In Figures 9(a-d), any such 

reverberations have decayed to a very low level by time 𝑡 = 5𝑎/𝑐, while in Figure 9(e) they have not. 

This is important, as the S-matrix sampling interval required in the frequency domain is determined by 

the maximum temporal extent of 𝑠(𝛼, 𝛽, 𝑡) on either side of 𝑡 = 0. For 𝑡 < 0, this is bounded by the 

causal limit of 𝑡 = −𝑎/𝑐 , but for 𝑡 > 0  the extent is determined by reverberations and therefore 

depends on the scatterer geometry. In fact, in the case of Figure 9(e), the sampling interval in the 

frequency domain is inadequate; reverberant signals that would physically arrive at 𝑡 > 32.8𝑎/𝑐 are 

wrapped in the time-domain and appear as non-physical signals that appear to arrive at 𝑡 < −𝑎/𝑐.  

a) b)  

c) d) e)  

  

Figure. 9 Moduli of inverse Fourier transform (IFT) of example S-matrix terms shown in Figure 

8 for scatterers of (a-e) Type 1-5.  

It is noted that the reverberating waves may exist to some extent in any scatterer, for example, the creep 

waves from a circular void [24].  As reverberant waves decay exponentially to zero and therefore have 

infinitely long duration, the frequency sampling interval theoretically has to be infinitely small. With a 

finite frequency sampling interval, late arriving reverberations are wrapped in the time domain. 

Therefore, in practice, an amplitude threshold has to be defined in the time domain below in order to 

further analyse 𝑠(𝛼, 𝛽, 𝑡). Here,  𝑠(𝛼, 𝛽, 𝑡) was examined to determine the start time with a local peak 

amplitude , 𝑡1 < 0, and end time with a local peak amplitude, 𝑡2 > 0, of scattered signals for all incident 



and scattered angle combinations. For each angle combination, the times, 𝑡1 and 𝑡2, are calculated based 

on the earliest and latest instants at which the amplitude of |𝑠(𝛼, 𝛽, 𝑡)| is greater than −40 dB of the 

maximum value of |𝑠(𝛼, 𝛽, 𝑡)|.   

The results for the five scatterer types are shown in Figure 10, which shows red if 𝑡1 < −𝑎/𝑐, indicating 

the presence of non-physical, acausal signal. If 𝑡1 ≥  −𝑎/𝑐 the color represents whichever of 𝑡1 and 𝑡2 

has the larger absolute value, (indicated by the other colours in which green and blue colours are for 

advanced arrival time and later arrival time respectively). It is evident from this figure that the behaviour 

of the five scatterer types is very different. In the case of the circular void shown in Figure 10(a), there 

is negligible reverberation and 𝑡1 ≥ −𝑎/𝑐 and 𝑡2 < 𝑎/𝑐. Here, the largest time where the signal has 

significant amplitude is at 𝑡1 = −𝑎/𝑐, and is where the back-scattered signal is advanced due to the 

reduced path length for reflections from the near edge of the void. In the case of a cluster of 4 circular 

voids, the advanced arrival signals and signals with short duration are mixed. In the case of the straight 

crack and the slightly rough crack, |𝑡2| > |𝑡1| and the temporal extent of signals is governed by short 

duration time. However, for the extremely rough crack, red regions indicating the presence of acausal 

signals, which shows that the maximum duration that can be accommodated with the frequency 

sampling interval used in the simulation of even the benchmark S-matrices is inadequate.  



a) b)  

c) d)  e)  

     Figure. 10 Maximum or minimum time of IFT of S-matrices for scatterers of (a-e) Type 1-5. The 

color scales are in units of 𝑎/𝑐.    

3.4.2 Frequency sampling interval in practice 

From the perspective of frequency-domain simulations of S-matrices, it would be attractive if the 

required sampling interval in the frequency domain could be estimated a priori in a similar manner to 

the angular sampling interval, which is governed by the maximum dimension of the scatterer. 

Unfortunately, the examples in the previous section suggest that there is no equivalent upper limit on 

the frequency sampling interval. Furthermore, even if the frequency sampling interval for a particular 

scatterer is determined, there is no exact interpolation scheme in the frequency-domain as the underlying 

functions are aperiodic; again this is in contrast to the Fourier interpolation that can be exploited in the 

angular domains due to periodicity. Instead, a cubic spline interpolation process for the frequency 

domain is proposed and its accuracy quantified. 

Let the maximum duration of 𝑠(𝛼, 𝛽, 𝑡) in the time-domain be 𝑇0, indicated as the highest a/c for each 

scatterer type in Figure 10. This implies that the maximum rate of change of 𝑆(𝛼, 𝛽, 𝑓) in the frequency-

domain is associated with oscillations that have a period of Δ𝑓0 = 1/𝑇0. In order to adequately capture 

this information, the actual sample interval in the frequency domain, Δ𝑓, needs to be smaller that Δ𝑓0. 

Fourier interpolation would require a sampling interval of Δ𝑓 ≤  Δ𝑓0/2, but because 𝑆(𝛼, 𝛽, 𝑓) is not 

periodic in 𝑓 this is not an appropriate method. Instead, a local method is required, such as piecewise 



polynomial fitting. Here, cubic splines are used. It can be shown that if Δ𝑓 =  Δ𝑓0/7, the maximum 

interpolation error is <1% [36].  

3.5 Ultrasonic signal simulation using S-matrices  

Here, the examples of simulated A-scan time domain signals from the chosen scatterers are presented 

and analysed. An S-matrix frequency sampling rule for the purpose of simulating ultrasonic signals is 

suggested. In the simulations, the sound speed is c = 6400 m/s, the scatterers have a size of a = 4 mm 

and are aligned with the centre of the array in the depth direction in the modelled structure at (0, 20 

mm) as shown in Figure 1(b). The FMC data is simulated using equations (2-3) and the benchmark S-

matrices. Note that in these S-matrices, ∆𝛼 = 1, ∆𝑓 = 0.015 c/a for scatterers of type 1-5. It is noted 

that the portion of the S-matrices required is over the angular coverage range 135 ≤ 𝛼, 𝛽 ≤ 225 for 

the vertical straight crack and 45 ≤ 𝛼, 𝛽 ≤  135for the other scatterers. The specification of the 

simulated array is given in Table 1.  

Array parameter Value 

Number of elements 64 

Element width (mm) 0.53 

Element pitch (mm) 0.63 

Element length (mm) 15 

Centre frequency (MHz) 5 

Bandwidth (-6 dB) (MHz) 3-7 

Table 1. Simulated array parameters. 

From equation (4), it can be seen that the times with a local peak amplitude in Figure 9 are related to 

the phase shift of the scattered signal from a scatterer, 𝑒𝑠, relative to the reference signal, 𝑒𝑟, as shown 

in Figure 11(a) which is a 5 cycle Gaussian-windowed toneburst and has a half width of tw = 0.8 a/c. 

This is demonstrated in Figures 11(b-f) which show the examples of the simulated A-scan signals 

transmitted and received by the same centre array element from the simulated scatterers. In these 

figures, the dashed blue line in each figure indicates the arrival time of the corresponding reference 

signal, er. As shown in Figure 11(b) for a circular void, a local peak amplitude at t = -a/c in Figure 9(a) 

causes a time shift of -a/c of 𝑒𝑠 relative to 𝑒𝑟. For the other scatterers, as shown in Figures 11(c-f), the 

local peak amplitudes in Figures 9(b-e) cause the multiple pulses around the arrival time of 𝑒𝑟. Note 

that the arrival time of a back-scattered reflection from a circular cavity, i.e., -a/c, should be the earliest 



physical time shift of any of the scattered signals from scatterers with a size of a. Comparing Figures 

9(e) with 11(f), it can be seen that the convolution process has suppressed some of the non-physical 

acausal signals although there are still some appearing at t < -a/c in Figure 11(f). 

a) b) c)   

d) e) f)  

  

Figure. 11 (a) Reference signal, 𝑒𝑟, and examples of simulated A-scan signal from scatterers with shape 

type of (b-f) 1-5. 

4 RECONSTRUCTION OF S-MATRIX FROM LIMITED DATA  

In this section, the proposed guidelines for setting the angle and frequency sampling rates to accurately 

and efficiently reconstruct the scattered fields are examined and validated through the comparisons 

between the benchmark S-matrices and the reconstructed S-matrices, the benchmark TFM images and 

those generated using the reconstructed S-matrices. 

4.1 Reconstruction of S-matrix in angular domain  

An S-matrix with an angular sampling interval calculated according to equation (20) is computed first, 

and then the scattering amplitudes at any incident-scattered angles can be obtained using Fourier 

interpolation (equations 5-6). The accuracy of a reconstructed S-matrix can be examined by the root 

mean square (RMS) error,  

𝜀𝛼(∆𝛼0, 𝑓) =  
√

1

4𝜋2 ∫ ∫ [𝑆𝐹(∆𝛼0,𝑓,𝛼,𝛽)−𝑆𝐵(𝑓,𝛼,𝛽)]2𝑑𝛼
2𝜋

0
𝑑𝛽

2𝜋

0

1

4𝜋2 ∫ ∫ |𝑆𝐵(𝑓,𝛼,𝛽)|𝑑𝛼
2𝜋

0
𝑑𝛽

2𝜋

0

× 100%,                                            (21) 



where SB is a benchmark S-matrix obtained directly from the scattering model and SF is the 

reconstructed S-matrix. The results obtained from all chosen scatterer types at all frequencies and ∆𝛼 =

360/ (
𝜋𝑒𝑎

𝜆
+ 2𝑁0 + 1) show that 𝜀𝛼 ≤ 1% thus validating the proposed angular sampling interval 

rule.  

4.2 Reconstruction of S-matrix in frequency domain  

As discussed in Section 3.4, in the S-matrix reconstruction with respect to frequency, if the longest 

duration of scattered signals, 𝑇0, can be estimated, then a frequency sampling interval of ∆𝑓0 =
1

7𝑇0
 

should enable S-matrix values at any frequency to be obtained to with 1% accuracy using cubic spline 

interpolation. Here, this frequency sampling interval is first examined for the accuracy of the amplitude 

of the reconstructed S-matrices for the scatterers of types 1-3. The frequency sampling rule is then 

further discussed for application to simulating the response of an imaging algorithm. A method of 

determining the acceptable sampling frequency interval for S-matrix with unknown longest duration 

time is also suggested. 

4.2.1 Considering the accuracy of the amplitudes in S-matrix  

From Figures 10(a-d), the longest duration time for type 1-4 scatterers can be extracted as, 𝑇0 = a/c, 

5a/c , 4a/c and 25a/c respectively. The accuracy of the reconstructed S-matrix frequency obtained using 

the cubic spline interpolation method from the benchmark S-matrix with a frequency sampling interval 

of ∆𝑓0 can be indicated by the RMS error,  

𝜀𝑓(∆𝑓0, 𝛼, 𝛽) =  
√

1

𝑓𝑚
∫ [𝑆𝐼(∆𝑓0,𝑓,𝛼,𝛽)−𝑆𝐵(𝑓,𝛼,𝛽)]2𝑑𝑓

𝑓𝑚
0

1

𝑓𝑚
∫ |𝑆𝐵(𝑓,𝛼,𝛽)|𝑑𝑓

𝑓𝑚
0

× 100%,                                         (22) 

where fm is the highest frequency used in the benchmark S-matrices. Note that the large red regions as 

shown in Figure 10 (f) indicate the frequency sampling interval used in the benchmark S-matrices for 

the type 5 scatterer (extremely rough cracks) is insufficient and the frequency interval in the benchmark 

S-matrices, ∆𝑓  = 0.015 c/a, is greater than ∆𝑓0 =  0.0057 c/a for the type 4 scatterer, hence the 

reconstruction of such S-matrices is not considered in this section. In the reconstruction process, 𝜀𝑓 for 

scatterer types 1-3 over all incident and scattered angles was calculated. The results obtained from all 



scatterers at all incident-scattered angle combinations when ∆𝑓0 =
1

7𝑇0
 show that 𝜀𝑓 ≤ 1%. This hence 

validates the S-matrix reconstruction using cubic spline interpolation in the frequency domain, provided 

that the appropriate frequency interval is used for the type of scatterer. Unfortunately, the appropriate 

frequency interval is not something that is known a priori for a scatterer. 

4.2.2 Determination of the acceptable frequency sampling interval  

In practical applications, such as non-destructive evaluation, the observed scattered wave fields 

comprise the impulse response of the scatterer convolved with a reference signal, 𝑒𝑠 as modelled in 

Equation (4) and as shown in Figure 11. An inadequate frequency sampling interval causes non-physical 

signals that appear to arrive at 𝑡 < −𝑎/𝑐 in Figures 9(e), 10(e) and 11(f). These are associated with the 

rapidly-varying behaviour of the S-matrices with respect to frequency that can be seen in Figure 8(e). 

To capture these variations requires a very fine sampling interval in the frequency domain. The acausal 

energy fraction in 𝑒𝑠(𝛼, 𝛽, 𝑡)  can be used to indicate the extent of acausal energy caused by the 

inadequate frequency sampling interval and it is defined as  

                                    𝜌(∆𝑓) =
∬ ∫ |𝑒𝑠(𝛼,𝛽,𝑡,∆𝑓)|2

𝑡𝑚𝑖𝑛+
2𝑎
𝑐

𝑡𝑚𝑖𝑛
𝑑𝑡𝑑𝛼𝑑𝛽

2𝜋

0

∬ ∫ |𝑒𝑠(𝛼,𝛽,𝑡,∆𝑓)|2
𝑡𝑠+

2𝑎
𝑐

𝑡𝑠
𝑑𝑡𝑑𝛼𝑑𝛽

2𝜋

0

,                     (23) 

where 𝑡𝑚𝑖𝑛  is the minimum time of the investigated S-matrices, 𝑡𝑠 = − (
𝑎

𝑐
+ 𝑡𝑤). If the frequency 

sampling interval is adequate, 𝜌 should be close to zero because energy at 𝑡 ≤ 𝑡𝑠 is acausal and non-

physical. 

Figures 12(a-b) compare the acausal energy fraction, 𝜌, from the S-matrices for all scatterer types as a 

function of the frequency sampling interval under different er and 𝑡𝑤. 𝑒𝑟 has 100% fractional -40 dB 

bandwidth but different central frequencies, i.e., 1.25 c/a and 3.125 c/a, corresponding a pulse width of  

𝑡𝑤 = 1.2 a/c and 𝑡𝑤 = 0.48 a/c. At each specific ∆𝑓, the S-matrices used are a subset of the benchmark 

S-matrices (∆𝑓 = 0.015 c/a) with a specific down-sampling rate (i.e. larger sampling interval). It is 

noted that 𝑡𝑚𝑖𝑛 is limited by largest sampling interval in the analysis.  



Figures 12(a-b) show that the type 1-4 scatterers have low acausal energy fraction and become 

convergent at low ∆𝑓 except some variations for type 2 scatterer when a higher frequency reference 

signal is considered in Figure 12(b). It should be aware that non-monotonical trend from the acausal 

energy fraction, for example a few discrepancy points for type 5 scatterer at ∆𝑓 = 0.06 c/a, could 

indicate the local resonances of a scatterer. If it is happened in the bandwidth of er, the reverberation 

energy can be wrapped randomly in 𝑡 ≤ 𝑡𝑠 and break the monotonical trend of 𝜌 as a function of ∆𝑓.  

Combining the analysis in this section and the conclusion in Section 4.2.1, in practice, the convergence 

trend of the acausal energy fraction as a function of frequency interval can be used to determinate the 

acceptable frequency interval with regards to a defined er. In the process, the initial frequency interval 

can be set as ∆𝑓 = 
𝑐

7𝑎
 and then progressively reduced to the half of the previous ∆𝑓 until the acausal 

energy fraction shows a convergence trend with low level (𝜌 < 0.001). It is difficult to make ∆𝑓 

indefinite small and acausal signals could hence be appear in the simulation, as shown in Figure 11(f). 

However, in experiments, the non-physical acausal signals should not be appearance and the local 

resonance of a scatterer could cause a long duration rings. It is noted that, for the special cases to 

calculate S-matrices from types 1 and 3 scatterers, the frequency interval can be first set as ∆𝑓 = 
𝑐

7𝑎
 and 

𝑐

28𝑎
 respectively, and then the cubic spline interpolation method can be used to calculate scattering 

coefficient at each required frequency.  

  (a)    (b)  

Figure. 12 The comparison of 𝜌 as a function of the frequency sampling interval for types 1-5 

scatterers using 𝑒𝑟 with a central frequency of; (a-b) 1.25 c/a and 3.125 c/a.  



5 CONCLUSION 

It has been shown that the physical basis of the angular dependence of S-matrix is the integral of the 

large positive order Bessel function (equation 19) as discussed in Section 3.3. The maximum angular 

order of Fourier coefficient needed to describe the angular dependence is dependent only on overall 

scatterer size and not on the scatterer type. This agrees with the findings of another study that showed 

that the minimum number of sensors required to monitor an area was determined by the diameter of the 

entire damage cluster [10]. The fact that at a single frequency, a behaviour of a scatterer can be 

characterised by a limited number of coefficients is a restatement of the finite number of degrees of 

freedom of a scatterer for both bulk waves [5] and guided waves [9-10]. At a single frequency, Fourier 

interpolation can be used to efficiently reconstruct the full S-matrix at all angles from S-matrix data 

obtained over a limited number of angles provided that these angles satisfy the necessary angular 

sampling rule.  

From equations (3-4), it is shown that the frequency-dependence of the S-matrix is what gives rise to 

the time-domain signature of a scatterer. As shown in Figure 10, the maximum durations of scattered 

signals are highly dependent on the type of scatterer. This means that it is not possible to provide a 

general specification for the required frequency sampling interval in the same way that a required angle 

sampling interval can be specified; some types of scatterer have been shown to exhibit highly resonant 

behaviour leading to long duration signals in the time domain, which in turn requires very fine sampling 

intervals in the frequency domain to capture. Instead, the pragmatic solution is to use the acausal energy 

fraction metric to determine when an acceptable frequency interval has been reached. 

The information in S-matrix with |𝑡| ≤ 𝑎/𝑐 corresponds to scattering from spatial positions within the 

footprint of a scatterer (e.g. from the near side of a circular hole), therefore the frequency sampling  

interval must be at least sufficient to capture this. Information with 𝑡 > 𝑎/𝑐  is due to ringing within a 

scatterer and leads to a "tail" on time-domain signals. This is the true physical behaviour of the scattered 

signal in the time-domain. However, in simulation, an under-sampled S-matrix in the frequency-domain 

will lead to the information that should be in the tail of the time-domain signal being wrapped, polluting 

the true response and possibly leading to non-physical acausal signals.  



The practical consequence of the findings may lead to more efficient array data simulation (direct 

problem). For numerical simulations, the rules for determining the angular and frequency increments 

required to reconstruct an S-matrix enable minimisation of the number of numerical simulations needed 

to simulate an S-matrix and the amount of data needed for its storage. The angular and frequency 

increments relate to the maximum amount of information present in the scattered field. This knowledge 

in turn relates to how much information about the scatterer could be extracted from the scattered field 

by an inverse method.  

It is also noted that, physical array design is currently based on choosing array parameters, such as 

frequency, aperture size, array element width and pitch, to achieve best detectability including good 

image resolution, less image artefacts from grating and side lobes and good signal to noise ratio. The 

work described in the paper can help to optimise array parameters for defect characterisation. For 

example, how to design an array to achieve best possible defect detection and characterisation through 

multi-view images [4, 7]. 
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