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ABSTRACT 1 

Traveling in extreme adverse weather involves a high risk of travel delay and traffic accidents. 2 

There is a need to assess the impact of extreme weather on transport infrastructure and to find 3 

suitable mitigation strategies to alleviate the associated undesirable outcomes. Previous work in 4 

vulnerability studies applied either a constant failure probability or an assumed probabilistic 5 

distribution. Such assumptions ignored many factors causing the occurrence of road failure, 6 

especially that infrastructure components tend to fail interdependently. Based on empirical data of 7 

road failures and rainfall intensity during a typhoon, this study develops a statistical model, 8 

incorporating spatial correlations among the segments of road infrastructure, and uses it to evaluate 9 

the impact of the typhoon on travel time reliability. Mixed effects logistic regression as well as 10 

rare events logistic regression are applied to understand the factors involved in road failures and 11 

the spatial correlations of the failed segments. The analysis suggested that, in addition to the 12 

rainfall intensity, the road geometry, including elevation, land slope and distance from the nearest 13 

river, were important factors in the failure. In addition, there is a significant correlation of failures 14 

within watersheds. This model gives an insight into the characteristics of road failures and their 15 

associated travel risks, which is useful for authorities to find proper mitigations to reduce the 16 

adverse effects in future disasters.  17 

 18 

Keywords: Transport Resilience, Typhoon, Travel Time Reliability, Spatial Correlations 19 

 20 

  21 
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INTRODUCTION 1 

An extreme adverse weather event can cause significant travel disruption and thereby have 2 

consequences for the economy as a whole. Heavy rain may result in flooding, landslides, and 3 

weaken the structure of road foundations, bridges and tunnels, resulting in reduced road capacity. 4 

These problems not only reduce the speed of travel but also impose delays, since driving under 5 

extreme weather conditions involves a higher risk of accidents due the degraded road condition, 6 

reduced visibility and extended braking distances.  7 

 Understanding how mitigation strategies are influenced by interdependencies between 8 

infrastructure components should help achieve better whole system resilience during such extreme 9 

events. Multiple infrastructure components may tend to fail in an interdependent fashion as a result 10 

of their vulnerability to a common cause. For example, during a typhoon, a river surge is often one 11 

of the primary causes of road failure. Flood water from upstream flows into and subsequently 12 

floods the river basin downstream. Hence, road segments along the same stretch of river fail from 13 

surface flooding and surge water at the same time. Moreover, a failure of one infrastructure 14 

component may trigger a series of failures in other components. For example, the increased risk 15 

of traffic accidents on a congested stretch of road affected by bad weather may lead to an increased 16 

risk of traffic accidents on adjacent stretches of road if congestion spreads. In either case, the 17 

failure of infrastructure components may be correlated. However, previous works in vulnerability 18 

studies applied either a constant failure probability or an assumed probabilistic distribution. These 19 

methods do not consider how the interdependencies impact on the modelling. Thus, modelling 20 

system failure by assuming that each component fails independently is likely to lead to unrealistic 21 

outcomes.  22 

In order to develop an improved prediction methodology, this study aims to incorporate 23 

spatial correlations among the segments of a road infrastructure into a model of the impact of 24 

typhoons on road conditions and travel time reliability. Using a statistical method, two types of 25 

model, with and without correlated failure for segments within the same watershed, are developed 26 

and compared. The models are calibrated using data on road failures, geometric characteristics and 27 

rainfall intensities during Typhoon Roke in the Tokai region, Japan. The calibrated failure model 28 

of road segments then informs the probability of road segment failure and is used as an input into 29 

the measurement of travel time reliability between a given origin and destination during a typhoon. 30 

This method not only improves the prediction of the impact of the typhoon, but vulnerable 31 

locations can also be identified. These results give a better understanding of the extent of the impact 32 

of extreme weather which may help the authorities identify effective mitigation strategies.  33 

In the next section, the literature related to this study is provided. Later, the mathematical 34 

models are explained. Then we provide and discuss the calibration models described above. Finally, 35 
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the findings and recommendations are drawn from this study to improve the future research. 1 

 2 

LITERATURE REVIEW 3 

Vulnerability studies stem from reliability studies, which during 1990s focused mainly on travel 4 

time reliability on congested road networks and the probability that a network will deliver a 5 

required standard of performance (1). Over the last two decades, vulnerability studies emerged and 6 

received intense attention from numerous researchers around the world (2). Both studies have 7 

different approaches to the problem. Reliability studies focus on the reliability of transport systems, 8 

considering uncertainties that cause travel time fluctuations. Uncertainties are from demand and 9 

supply sides, such as seasonal demand fluctuations and incidents and accidents that occurred along 10 

a network and caused reduction in road capacity (3). On the other hand, vulnerability studies focus 11 

on identifying the critical segments of a transport network in order to inform mitigation strategies 12 

(4). Vulnerability studies were motivated by a growing number of natural and manmade disasters, 13 

creating a level of disruption far beyond that of daily congestion.  14 

In reliability studies, there are three methods of measuring the performance of a transport 15 

network: terminal reliability, travel time reliability, and capacity reliability. Terminal reliability, 16 

sometimes called connectivity reliability, is the earliest approach, originating with Iida and 17 

Wakabayashi (5). Terminal reliability measures the probability that a given Origin/Destination 18 

(OD) pair remains connected in a network. A network will be considered successful if at least one 19 

path that connects the OD pair is operational. However, this measurement ignores the additional 20 

congestion from the increment in travel demand on the remaining operable paths. Hence, travel 21 

time reliability takes into account the consequent congestion. This reliability measurement 22 

considers the probability that a trip between a given OD pair can be completed successfully within 23 

a specific time interval. Travel time reliability is the most common method used to evaluate 24 

network performance for normal daily congestion (6). However, during an extreme event, a 25 

network can be largely degraded and the travel time between an OD pair might increase 26 

significantly. Thus, another measurement proposed by Asakura (7) formulates the probability as a 27 

ratio of travel times between affected and normal conditions. Later, Chen et al (6, 8) introduced 28 

capacity reliability to evaluate the performance of a degradable road network. The travel time is 29 

compared between two states: with degraded and non-degraded capacities. Capacity reliability is 30 

defined as the probability that the reserve capacity of the network is greater than or equal to the 31 

required demand for a given capacity loss due to degradation.  32 

Once again, unlike reliability studies, vulnerability studies mainly focus on the 33 

identification of critical segments in a transport network. Vulnerability studies are categorized into 34 

four main groups: inventory-based risk assessment; topology-based analysis; accessibility-based 35 
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analysis, and serviceability-based analysis (1). The risk assessment considers the state of operation 1 

of individual components in a network due to the effects of internal and external factors and defines 2 

the associated risks. The topology-based approach identifies critical locations in a network based 3 

on the effects of their failure on the reduction in network connectivity, such as the works of 4 

Kermanshah and Derrible (9) and Berche et al (10). However, this category focuses on the 5 

connectivity and ignores the aspect of travel demand. Most vulnerability studies used an 6 

accessibility-based approach, which measures the loss in accessibility when one or more segments 7 

of a network failed. The consequent accessibility losses were addressed in various units, such as 8 

travel cost increment in Jenelius et al. (11) and socio-economic impact in Taylor et al. (12, 13). 9 

However, accessibility approach vulnerability studies do not account for simultaneous failure of 10 

multiple road segments. In most works, the simulation is performed by closing each link one by 11 

one and measuring the changes in accessibility. On the other hand, the serviceability-based 12 

approach analyzes the capability of a transport network to meet certain functional requirements 13 

when the network is degraded, such as the works in Sumalee and Kurauchi (14), Haghighi et al 14 

(15), Asadabadi and Miller-Hooks (16), and Wisetjindawat et al. (17, 18).  15 

Among the serviceability approaches, most works apply a constant failure probability (in 16 

(14, 15)) or use a probability distribution (in (16, 17, 18)). In the works of (17) and (18), their 17 

approach used a stochastic method by assuming a probability function to explain the occurrences 18 

of road failure due to a natural disaster. The link failure probability was assumed to follow a 19 

negative exponential distribution with a given failure rate derived from a climate data. Using this 20 

probability distribution, however, important factors, such as road geometry and surrounding 21 

environment, are not taken into consideration. In addition, the failure model assumed independent 22 

failure of each road link. In fact, there are correlations among the failed segments, as explained by 23 

flooded roads in the same floodplain. On the other hand, the work of (16) considered the locations 24 

of road elements and elevations in their failure during storms and the consequent impacts on the 25 

road network. However, it was formulated as an optimization problem and hence it becomes 26 

difficult to apply to a larger network due to computational burden. Thanks to the availability of 27 

geometry data, the failure records, and the actual typhoon intensity, this study adopts a statistical 28 

model and integrates the spatial correlation of the failure of road segments, as well as the geometric 29 

characteristics of the region, into the modeling to improve the predictive accuracy and the proposed 30 

method can be applied to a large-scale road network.  31 

The statistical analysis event distributions, using logistic regression, has gained attention 32 

in recent years. However, in the field of natural hazards, often the datasets are not approximately 33 

equal between groups (e.g., the number of road segments that fail during a typhoon may be small 34 

by comparison with the total number of road segments being considered), resulting in problems in 35 
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predictive accuracy towards the minority (19). When the occurrence of an event type is very rare, 1 

such as one or two percent, the model often has a strong bias towards the majority. For example, 2 

a seemingly good model with a 99 percent hit ratio often underestimates the occurrence of the 3 

minority event type. A logistic regression model for rare event data, or the so called rare-logit, was 4 

proposed by King and Zeng (20, 21) to deal with imbalanced binary data when one option is a 5 

dozen or even a thousand times less frequent than the other. Originally, the work was applied to 6 

predict political conflicts in pairs of countries at war each year since WW2, where the conflict 7 

percentage was only 0.34%, as normal logistic regression struggles with such tiny fractions. Many 8 

works on logistic regression for imbalanced datasets can be found, especially for applications in 9 

natural hazards, such as in Guns and Vanacker (19) and Bai et al. (22). In this study, a similar 10 

problem occurred since only approximately 5% of the road segments failed due to the 2011 11 

typhoon Roke. Without a method for correction, the failed segments are difficult to predict 12 

accurately using a normal logistic regression. The rare-logit technique for estimating rare events 13 

is hence adopted in this study.  14 

 15 

METHODOLOGY 16 

The model framework is as depicted in Figure 1. GIS maps of the rainfall intensity of the typhoon, 17 

the geometry of the region, rivers, and water system are used to calibrate the failure probability of 18 

each road segment. These maps are projected into a 100×100 m2 grids of the road system of the 19 

Tokai region. Two models are compared with and without spatial correlations. The calibrated 20 

models are used to predict the failures of road segments which later determines the failures of road 21 

links. Next, a stochastic model, like one presented in (17, 18), is used to determine travel conditions 22 

during the disaster.  23 

A Monte Carlo simulation is adopted to identify links impacted by the typhoon using the 24 

failure probability described in the next section. Based on the work by Hoghighi et al (15), we 25 

assume three failure stages of the affected links: moderate, extensive, and completely 26 

nonoperational. We again assigned the failure stage using Monte Carlo simulation. The 27 

characteristics of the affected links, including capacity and free flow speed, are reduced according 28 

to the failure stage. A set of deteriorated road networks with random failure stages is generated up 29 

to a preset number (i.e., maximum iteration). At each step, one of the generated road networks is 30 

used as an input into traffic assignment, together with the travel demand OD. This step repeats 31 

until all the generated road networks are used. The final results on the travel condition, such as 32 

link volume, traverse time etc., can be obtained and later used to derive the travel time reliability.            33 
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 1 

FIGURE 1 Analysis framework 2 

 3 

Incorporating Spatial Correlations among Road Segments into the Failure Model 4 

Mixed effects logistic regression (MELR), which is another form of Generalized Linear Mixed 5 

Model (GLMM), is often used to predict discrete outcomes when observations are correlated. This 6 

technique has been applied widely across different fields, such as medicine (23), residential choice 7 

(24) and so on. In many cases, observations are found having some kind of clustering and tendency 8 

to be correlated within clusters (25). In our context, the road failures can be viewed as spatially 9 

correlated according to their clusters (i.e., floodplain where the road segment locates). In other 10 

words, multiple components in the same floodplain normally fail together.  11 

Mathematically, GLMM includes both fixed and random effects (hence, it is called a 12 

mixed model) and the structure of the correlation can be specified in the disturbance part. Due to 13 

its flexible structure, the disturbance part can be designed to include various forms, such as, spatial 14 

and/or temporal correlations, cluster effects, and other types of correlation structures. The observed 15 
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outcomes can be in any form: discrete or continuous. GLMM has the general form 1 𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝜺        (1) 2 

where y is a [N×1] vector of observed outcomes and N is the number of observations, X is a [N×K] 3 

vector of k explanatory variables. Further, 𝜷 is a [K×1] vector of fixed-effects regression 4 

coefficients, Z is a [N×Q] design matrix for the Q random effects to specify the correlation 5 

structure, u is a [Q×1] vector of the random effect coefficients with mean 0 and variance-6 

covariance Σ, and 𝜺 is a [N×1] vector of random variables that are not explained by the model.  7 

When GLMM takes the form of logistic regression with binary outcomes for clustered 8 

data, the formulation of the binary MELR becomes as shown in Equation (2). Here y represents 9 

the probability of occurrence, which is specified in terms of log-odds (in the left side of Equation 10 

(2)), of the probability that road segment i, which belongs to cluster j, has either failed (𝑦𝑖𝑗 =1) or 11 

survives (𝑦𝑖𝑗 =0).  12 𝑙𝑜𝑔𝑖𝑡 ( Pr(𝑦𝑖𝑗=1)1−Pr(𝑦𝑖𝑗=1)) = 𝑿𝑖𝑗𝜷 + 𝒗𝑗 ,        𝑖 = 1,2, … , 𝑁; 𝑗 = 1,2, … , 𝑄  (2) 13 

Here  𝑿𝑖𝑗 is a [1×K] vector of k explanatory variables for the failure of segment i of cluster j and 14 

vj is the random effect from cluster j, obtained from Zu.  15 

This study applies MELR for cluster effects where the road segments are clustered into 16 

different watersheds. The effect of correlations of segments within the same watershed are 17 

incorporated in the designed disturbance part (Zu). In this case, the number of watersheds is 130, 18 

hence the size of the designed correlation matrix Z becomes [N×130], where N is the total number 19 

of road segments in the study area.  20 

 21 

Rare Events Logistic Regression for Predicting Road Failures 22 

Failure of segments in an infrastructure by natural hazards is considered to be a rare event. In 23 

practice, only a small percentage of failures can be found. This section describes the method used 24 

to reduce the estimation bias that occurred by applying logistic regression to an imbalanced dataset.  25 

King and Zeng (20, 21) proposed a rare events logit model, using a Monte Carlo 26 

simulation to make a biased dataset and later applying a method to fix the bias due to the random 27 

simulation. However, attention should be paid in preparing a bias dataset for the estimation. In the 28 

case of a rare travel mode choice, it might be possible to collect a number of rare samples during 29 

the data collection stage. However, this method cannot be applied in case of natural hazards, when 30 

the number of failed segments is fixed. Chawla (26) classified sampling techniques used for 31 

balancing imbalanced datasets into two categories: over and under samplings. Under-sampling the 32 

majority category and over-sampling the minority category ensures that the approximate same 33 

number of randomly selected cases are considered from each category. However, Chawla (26) 34 
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noted that both methods have short-comings; the under-sampling can potentially remove certain 1 

important samples, while over-sampling can lead to an overfitting problem on the multiple copies 2 

of the minority. The overfitting problem happens when a model describes the errors instead of the 3 

underlying relationship.  4 

Suppose �̂� is the estimated parameters obtained from using the bias dataset prepared by 5 

over or under-sampling techniques. From Equation (2), the probability that road segment i of 6 

cluster j is failed (𝑦𝑖𝑗 = ) or survived (𝑦𝑖𝑗 =0) becomes,  7 Pr(𝑦𝑖𝑗 = 1) = 𝟏𝟏+𝒆𝒙𝒑(𝑿𝑖𝑗�̂�+𝒗𝑗)          (3) 8 

where �̂� contains 𝛽0 as an estimated intercept. 9 

Next, the prior correction is applied to correct the bias from the bias dataset. This requires 10 

the prior knowledge on the fraction of the rare event in the real world. Suppose the proportion of 11 

the rare choice in the population as 𝜏 and the proportion of the rare choice in the bias dataset is �̅�. 12 

Applying the prior correction method, by leaving other parameters still the same, the correction is 13 

applied to the intercept. The corrected intercept,  , becomes 14 𝛽0 = �̂�0 − ln [(1−𝜏𝜏 )( �̅�1−�̅�)].      (4) 15 

This prior correction method is relatively easy in practice as any logistic regression 16 

software can be used for an estimation of the bias parameters and later applying the above 17 

correction term at the intercept.  18 

 19 

Travel Time Reliability Measurement 20 

The failure model determined from the previous step is used here to measure the reliability of 21 

travel time during an extreme event, using the stochastic model as shown in Figure 1. The 22 

occurrence of road failure follows the probability function of road segment failure developed in 23 

Equation (3), which is determined based on empirical data during the past typhoon. We assume 24 

three stages of failures, including moderate, extensive, and completely nonoperational, to 25 

determine the different effects on the road segments in each damage stage. Adopting the values 26 

used in Haghighi et al (15), the capacity of a link becomes 75% and 50% for moderate and 27 

extensive damage respectively. The free flow speed of a link becomes 50% for both moderate and 28 

extensive damage. Non-operational links have 0% capacity and free flow speed.  29 

The stochastic failure of the road section is used to determine the capacity of the road 30 

system during the typhoon. The daily travel demand, taken from Origin-Destination (OD) matrix 31 

of trips, including passenger cars and trucks, were calibrated from observed link traffic counts. 32 

Simultaneous failures of road links are generated using Monte Carlo simulation. For each iteration 33 
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(i.e., for each failure scenario), a random number between 0 and 1 is generated for each link and 1 

if it is lower than the calculated failure probability, then we assume the link has failed. If the link 2 

fails, another random number between 0 and 1 is generated to randomly assign the failure stage to 3 

the failed link. This process is repeated for every link in the road network. According to the 4 

generated failure stage, the capacity and free-flow speed of the link are adjusted, while other 5 

factors remain the same. Next, the generated road network is input into a traffic assignment model, 6 

using the user equilibrium traffic assignment with the standard Bureau of Public Roads (BPR) 7 

function for link travel time. In this study, we ran 50 iterations. For every iteration, the results from 8 

the traffic assignment are obtained, including link traffic volume, link traverse time, congestion 9 

level, link speed, as well as other traffic characteristics. Using the traffic assignment results, a 10 

travel time reliability as in (17, 18) can be calculated.   11 

 12 

RESULTS 13 

The road system of the Tokai region in Japan is selected as a case study. The road network is 14 

divided into 100×100 m2 grid cells. The probability of the failure of each grid cell is determined 15 

based on the typhoon rainfall intensity, elevation, land slope, distance to the nearest river and the 16 

watershed. The degraded road sections during the 2011 typhoon Roke are obtained from the past 17 

government reports, as depicted in Figure 2. The rainfall intensity, as shown in Figure 3, was 18 

obtained from the map of 24-hour maximum rainfall in the region during the typhoon.  19 

In fact, many characteristics contribute to a road failure during an extreme event. Such 20 

characteristics are, for example, floodplain, runoff patterns, soil and foundation structures. 21 

However, they are not easily traceable in practice. Instead, using other spatial geometry of the 22 

roads and integrating the spatial correlations among the road segments, the above characteristics 23 

that contribute to the risk of road failure can be covered, while the congested roads and the 24 

extended impact are modeled through a traffic simulation. Here, we adopted the proximity to the 25 

river (see Figure 4 for the maps of river systems) and the elevation of road segments (see Figures 26 

5) and land slope (see Figures 6) and included the spatial correlations among the road sections to 27 

explain the failure of a road section during a typhoon. Figure 7 shows the water system of the 28 

region in which different watersheds are depicted in different colors. There are 130 watersheds in 29 

the region, but only selected watersheds are listed in the legend due to limited space to display all 30 

items. 31 
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 1 

FIGURE 2 Observed degraded links during the 2011 typhoon Roke, 2 

 3 

 4 

FIGURE 3 24-hour maximum rainfall during the 2011 typhoon Roke (mm) 5 

 6 

 7 
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 1 

FIGURE 4 Road and river system of the Tokai region 2 

 3 

 4 

FIGURE 5 Lowest elevation of the Tokai region (m) 5 

 6 
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 1 

FIGURE 6 Highest land slope of the Tokai region (degree) 2 

 3 

 4 

 5 

FIGURE 7 Watershed system of the Tokai region 6 

(Not all are presented in the legend. 130 watersheds in total) 7 
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The calibration of the failure probability of road segments, as described in the previous 1 

section, was performed using MATLAB’s tool for Generalized Linear Mixed-Effects Models. 2 

Often, although the overall hit ratio is very high in the estimation of a rare event, a general logistic 3 

regression can hardly predict the minority. In our case, during the Roke 2011 typhoon 7,446 grids 4 

failed and 131,838 grids survived, which is a failure rate of only 5.6%. As explained previously, 5 

the method proposed by King and Zeng (20, 21), for improving the predictive accuracy of a rare 6 

event, requires a bias dataset with approximately equal numbers for the majority and minority. 7 

However, over-sampling technique leads to problems: (1) prone to overfitting problem which is 8 

when the model describes the errors instead of the underlying relationship (26, 27), (2) high 9 

computational cost during the calibration process since it has to handle an increased number of 10 

samples (28). In our case, for a 1:1 over-sampling dataset, we trained 263,676 samples, while we 11 

trained only 14,857 samples of a 1:1 under-sampling dataset. Hence, there is a huge reduction in 12 

computational cost. Four different proportions between survived and failed grids, including 1:1, 13 

1:2, 1:5 and 1:10 respectively, are prepared using Monte Carlo simulation. These datasets are used 14 

to calibrate a binary logistic regression without considering the cluster effect to find the best 15 

proportion and best dataset. We generated multiple datasets in each proportion and ones presented 16 

here gave the best prediction performance. The results are as shown in Tables 1 and 2 for under-17 

sampling and over-sampling datasets, respectively.  18 

Negative sign of the parameters indicates the tendency to survive and vice versa for the 19 

positive parameters. The higher the elevation, the slope and, the intensity of the rainfall, the higher 20 

the tendency of the road segment to fail. High elevation and land slope indicate that the road 21 

segment is in a mountainous area, where roads are narrow and surrounded by steep slopes and, 22 

hence, more vulnerable to failure during a typhoon. The closer the distance to the nearest river, the 23 

higher the tendency to fail. Higher precipitation increases the possibility of failure. Hit ratio (00) 24 

and hit ratio (11) indicate predictive accuracy of the survived and failed grids (both predicted and 25 

observed), respectively. Using the original dataset, although the predictive accuracy of survived 26 

grids is very high, only 1.9% of grids are correctly predicted as failed. Clearly, the original dataset 27 

strongly underestimates the failure.  28 

Comparing all under-sampling datasets of different proportions, the 1:1 proportion gives 29 

the best prediction of the failed grids. Increasing the proportion of the majority worsens the 30 

prediction of the minority. Likewise, the 1:1 proportion of over-sampling dataset gives the best 31 

prediction comparing with all over-sampling datasets of different proportions. In term of hit ratio, 32 

there is no significant difference in the predictive performances of both datasets from 1:1 under 33 

and over -sampling, but the number of samples of the under-sampling dataset is 17 times smaller 34 

than the over-sampling dataset. There is no benefit in devoting computational effort for the over-35 
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sampling dataset, hence we adopt the 1:1 under-sampling dataset for further calculation. 1 

 2 

TABLE 1 Calibrated Parameters using Under-sampling Technique at Different Proportions  3 

Parameters 
Original Dataset 

Under-sampling 

(1:1) 

Under-sampling  

(1:2) 

Under-sampling  

(1:5) 

Under-sampling  

(1:10) 

Estimate t-Stat Estimate t-Stat Estimate t-Stat Estimate t-Stat Estimate t-Stat 

Intercept -4.52740 -142.5 -2.14150 -40.7 -2.71210 -61.9 -3.39930 -93.3 -4.01900 -120.6 

LowestElevation (m) 0.00031 5.7 0.00069 7.6 0.00054 7.4 0.00039 6.4 0.00033 6.0 

HighestSlope (degree) 0.06750 39.1 0.09298 30.0 0.08655 34.3 0.07771 37.9 0.07101 38.6 

DistanceToRiver (m) -0.00045 -12.1 -0.00058 -11.5 -0.00053 -12.0 -0.00050 -12.4 -0.00046 -12.1 

24hrTyphoonRainfall(mm) 0.00803 62.7 0.00967 36.5 0.00934 44.6 0.00837 52.7 0.00825 59.5 

AIC 51479 16752 23419 34315 43456 

Log Likelihood -25734 -8370.8 -11704 -17152 -21723 

Number of trained samples 139,284 14,857 22,338 44,676 81,906 

Hit Ratio (00) 0.999 0.715 0.867 0.970 0.994 

Hit Ratio (11) 0.019 0.740 0.369 0.142 0.049 

 4 

TABLE 2 Calibrated Parameters using Over-sampling Technique at Different Proportions  5 

Parameters 
Original Dataset 

Over-sampling 

(1:1) 

Over-sampling  

(1:2) 

Over-sampling  

(1:5) 

Over-sampling  

(1:10) 

Estimate t-Stat Estimate t-Stat Estimate t-Stat Estimate t-Stat Estimate t-Stat 

Intercept -4.5274 -142.5 -2.1398 -171.6 -2.6497 -181.0 -3.3879 -175.3 -3.9906 -159.5 

LowestElevation (m) 0.00031 5.7 0.0007 30.9 0.0006 22.8 0.0004 12.4 0.0004 8.9 

HighestSlope (degree) 0.0675 39.1 0.0901 123.7 0.0824 98.8 0.0734 68.0 0.0682 49.5 

DistanceToRiver (m) -0.00045 -12.1 -0.0005 -45.8 -0.0005 -35.0 -0.0005 -22.9 -0.0005 -16.2 

24hrTyphoonRainfall(mm) 0.00803 62.7 0.0098 154.6 0.0090 130.2 0.0085 100.8 0.0082 78.5 

AIC 51479 299540 209150 121730 77159 

Log Likelihood -25734 -149760 -104570 -60862 -38575 

Number of trained samples 139,284 263,676 197,757 158,205 145,021 

Hit Ratio (00) 0.999 0.718 0.873 0.972 0.995 

Hit Ratio (11) 0.019 0.735 0.351 0.143 0.048 

 6 

The calibration models with and without the correlation of segments within the same 7 

watershed and with and without rare-logit are compared in Table 3. Models 1 and 2 are those 8 

presented as the original dataset and the 1:1 under-sampling in Table 1, respectively. Model 3 9 
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shows the result of inclusion of the watershed correlation using the original dataset. Model 4 uses 1 

the 1:1 under-sampling dataset and considers the watershed correlation. All fixed effect parameters, 2 

including intercept, lowest elevation, highest slope, distance to river, and rainfall intensity, are 𝜷 3 

in Equation (2). With the cluster effect, each watershed has its own intercept in addition to the 4 

fixed effected intercept for all segments, referring to vj in the same equation where j indicates 5 

watershed j. Since there are 130 watersheds, only selected watersheds are presented in the table. A 6 

high t-stat of the watershed intercept indicates a significant correlation of the segments in the 7 

watershed.  8 

Considering the quality of the prediction, there is an improvement in log-likelihood and 9 

hit ratio (11), when considering the watershed correlation. However, applying both rare-logit 10 

estimation together with the cluster effect (Model 4) achieves the best prediction. Taking the 11 

average values of the road geometry in Tajimi (Elevation = 135.8 m, Slope = 5.6o, Distance to river 12 

= 184.4 m), 113 mm of 24-hour rainfall increases the chance of road failure in Tajimi from 36.8% 13 

to 50.0%, when considering the watershed effect.  14 

The calibrated parameters of Models 2 and 4 are used to predict link failures and compare 15 

the predictions made with and without the cluster effects applied. Since a road section consists of 16 

multiple segments, we assume the road segment having the highest failure probability determines 17 

the failure probability of the entire road section. The predicted probability of road failure without 18 

and with spatial correlations are depicted in Figures 8 and 9, respectively. Without considering the 19 

cluster effects, the shape of the typhoon rainfall intensity outlines the distribution of failure 20 

probability. On the other hand, with cluster effects, the distribution of road failure probability is 21 

shaped by both the rainfall intensity and the shapes of watershed, which is more aligned with the 22 

observed failures shown in Figure 2. Taking the mid-value (138mm) of the yellow area of the 24-23 

hour rainfall map as uniform rainfall, Figure 10 predicts the failure probability when watershed 24 

effects are considered. This figure shows that mountainous area in the northeast and the Shonai 25 

river basin in the north of Nagoya become vulnerable when the 24-hour rainfall reached 138 mm. 26 

It can be interpreted that people living in the Shonai river basin and the mountainous area are likely 27 

to experience a travel risk even with moderate typhoon rainfall.   28 

  The link failure probabilities are used to measure the travel time reliability using the 29 

method described in Figure 1. A random number decides whether a link is affected, and another 30 

random number allocates the failure stage of the affected link, which is either moderate, extensive, 31 

or completely non-operational. The network used in the traffic assignment is the large-scale road 32 

network of the Tokai region, consisting of 6,682 links and 4,218 nodes covering all arterials and 33 

expressways in the region. The OD matrix of passenger cars and trucks of 626 zones are input into 34 

the traffic assignment.  35 
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TABLE 3 Calibrated Parameters for Failure of Road Segment by Typhoon 

Parameters 

Model 1 

w/o Cluster effect & w/o Rare logit 

Model 2 

w/o Cluster effect & w/ Rare logit  

Model 3 

w/ Cluster effect & w/o Rare logit  

Model 4 

w/ Cluster effect & w/ Rare logit  

Estimate t-Stat Estimate t-Stat Estimate t-Stat Estimate t-Stat 

Fixed Effects                 

Intercept -4.52740 -142.5 -2.14150 -40.7 -14.28300 -7.6 -10.96300 -6.5 

Lowest Elevation (m) 0.00031 5.7 0.00069 7.6 0.00026 3.6 0.00022 1.7 

Highest Slope (degree) 0.06750 39.1 0.09298 30.0 0.09145 38.7 0.07562 17.3 

Distance to River (m) -0.00045 -12.1 -0.00058 -11.5 -0.00077 -22.1 -0.00074 31.3 

24hrTyphoonRainfall(mm) 0.00803 62.7 0.00967 36.5 0.00951 51.9 0.01138 -14.1 

Cluster Effects (Watershed Intercept)               

…   
 

            

Watershed_ID 850507 - - - - 10.594 5.6 9.9459 5.9 

Watershed_ID 850508 - - - - 10.011 5.3 9.3615 5.5 

Watershed_ID 850509 - - - - 7.5957 4.0 6.8847 4.1 

…                 

AIC 51479 16752 39431 11493 

Log Likelihood -25734 -8370.8 -19709 -5740.3 

Hit-Ratio Predicted = 0  Predicted = 1 Predicted = 0  Predicted = 1 Predicted = 0  Predicted = 1 Predicted = 0  Predicted = 1 

Observed = 0   131748 90 94248 37590 131145 693 102471 29367 

Observed = 1  7301 145 1936 5510 6560 886 739 6707 

Hit Ratio (00) 0.999 0.715 0.995 0.777 

Hit Ratio (11) 0.019 0.740 0.119 0.901 
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 1 

FIGURE 8 Predicted link failures - without cluster effects due to the 2011 typhoon Roke 2 

(Model 2) 3 

 4 

 5 

FIGURE 9 Predicted link failures - with cluster effects due to the 2011 typhoon Roke 6 

(Model 4) 7 

 8 

 9 

 10 
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 1 

FIGURE 10 Predicted link failures - with cluster effects, assumed a 138 mm 24-hr 2 

uniform rainfall 3 

 4 

                     5 

FIGURE 11 Travel time reliability for a trip between Central Nagoya to Tajimi during 6 

Typhoon Roke 7 

 8 

 9 

 10 

 11 
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TABLE 4 Average increase in travel time per vehicle 1 

 2 

 3 

 4 

 5 

 6 

 7 

A trip between central Nagoya and Tajimi is presented here, since trips between this 8 

origin and destination were reported as being problematic during the previous typhoon. The 9 

cumulative probability of travel time between the OD pairs is shown in Figure 11, with and 10 

without cluster effects. This trip typically takes 45.4 minutes under normal conditions. The 11 

analysis suggests there is a 67% probability that this trip could take up to 4 times longer (181.7 12 

minutes) in the event of a typhoon, if cluster effects are not considered. If cluster effects are 13 

considered the probability reduces to just 14%. We also calculate the average increase in travel 14 

time per vehicle of all ODs as shown in Table 4. On average, traveling during the typhoon 15 

lengthens the trip duration by 1.2 and 2.5 times, with and without cluster effect, respectively. 16 

The duration of a trip between central Nagoya and Tajimi during the typhoon increases, on 17 

average, by 4 and 5.8 times, with and without cluster effects, respectively. 18 

 19 

CONCLUSION 20 

This paper has presented a method to statistically calculate the failure probability of 21 

road segments and the consequent deterioration in travel conditions during an extreme weather 22 

event. In previous vulnerability studies, the failure probability was assigned either as a constant 23 

failure or a negative exponential distribution. In fact, there are many more factors influencing 24 

road failure, especially geometric characteristics. Instead of a probabilistic distribution, this 25 

paper estimated the failure probability from empirical data using MELR. However, a normal 26 

logistic regression underestimates the failed segments as, in our case, a model using the original 27 

dataset can predict only 1.9% of the failed segments correctly. Thus, a rare event logistic 28 

regression was applied using an under-sampling technique. We applied a MELR for cluster 29 

data to include the spatial correlations among road segments within watersheds. As a result, the 30 

model with cluster effects using 1:1 under-sampling dataset provided the best result. The results 31 

confirmed that road geometry, including elevation, land slope, and distance to river, were 32 

important factors in failure, in addition to the rainfall intensity. Also, the results indicated a 33 

strong correlation among failed segments within watersheds. We used the failure probability to 34 

determine the impact of the typhoon on travel time reliability and considered three stages of 35 

failure: moderate, extensive, and completely non-operational. The results suggested the 36 

reliability of travel time between a given OD during the typhoon. Without considering the 37 

failure correlations, the travel time reliability might be underestimated. Importantly, this 38 

  

Average Increase in Travel Time per 

Vehicle (Times) 

All ODs Nagoya to Tajimi 

wo/ Cluster Effect 1.2 4.0 

w/ Cluster Effect 2.5 5.8 
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method achieves a better understanding of the failure characteristics as vulnerable links as a 1 

group can be identified. For example, authorities can identify regions which are susceptible to 2 

typhoons of differing intensities (from high to low) and mitigate accordingly (e.g., putting in 3 

place alternative travel options or improving the transport infrastructure) for the most 4 

vulnerable regions, potentially reducing the impact of future typhoons.  5 

 However, some problems were found during our analysis. The significant watershed 6 

intercepts were the only ones affected in the observation. This is because we have data for only 7 

one typhoon for the calibration. To improve the quality, we recommend recording information 8 

on road failures for a larger set of disasters, preferably in a GIS format to enable onward use. 9 

In our case, the failure reports were in the form of text reports and are subject to human error 10 

in their interpretation. Particularly, if the records were also to include details of the stage of 11 

failure (such as how many lanes of a road were closed), and the timing and duration of failures, 12 

the accuracy of the simulation could be improved. Temporal correlations among the failed 13 

components could then be performed and, hence, the sequence of failures might be predicted. 14 

Such information would give more insight into failure characteristics and inform better road 15 

and traffic management strategies (such as locations to install blocks to stop water surge) during 16 

an extreme event. In addition, dynamic traffic assignment (e.g., (29)) or microscopic traffic 17 

simulation (e.g., (30)) can better represent real chaos during an extreme event, although these 18 

methods require enormous calculation burden on a large-scale road network. In this study, we 19 

considered the 24-hour rainfall along with topographical characteristics of the area to predict 20 

the failure probabilities and assumed the road condition was in good condition before the 21 

typhoon. However, in fact, there are other factors influencing the failure of the road, such as 22 

soil characteristics, basement structure, and the road condition. Hence, an improved calculation 23 

can be done to include these characteristics. These issues remain for future work.             24 
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