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 15 

ABSTRACT に  16 

Homophilous behaviour plays a central role in the formation of human friendships. Individuals form 17 

social ties with others that show similar phenotypic traits, independently of relatedness. Evidence of 18 

such homophily can be found in bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western 19 

Australia, where females that use marine sponges as foraging tools often associate with other females 20 

that use sponges͘ ͚“ƉŽŶŐŝŶŐ͛ ŝƐ Ă ƐŽĐŝĂůůǇ ůĞĂƌŶĞĚ, time consuming behaviour, transmitted from mother 21 

to calf. Previous research illustrated a strong female bias in adopting this technique. The lower 22 

propensity for males to engage in sponging may be due to its incompatibility with adult male-specific 23 

behaviours, particularly the formation of multi-level alliances. However, the link between sponging 24 

and male behaviour has never been formally tested. Here, we show that male spongers associated 25 

significantly more often with other male spongers irrespective of their level of relatedness. Male 26 

spongers spent significantly more time foraging, and less time resting and travelling than did male 27 

non-spongers. Interestingly, we found no difference in time spent socialising. Our study provides novel 28 

insights into the relationship between tool use and activity budgets of male dolphins, and indicates 29 

social homophily in the 2nd-order alliance composition of tool using bottlenose dolphins.  30 

 31 

Keywords: bottlenose dolphins, tool use, alliance formation, activity budget, social networks, 32 

homophily 33 
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INTRODUCTION 36 

Individuals acquire information and behavioural skills from conspecifics through social learning across a variety 37 

of taxa, including insects, fishes, reptiles, birds and mammals (1ʹ4). Despite the widespread prevalence of 38 

social learning, this strategy may not always be beneficial, as knowledge gained from conspecifics can be 39 

maladaptive with ŽŶĞ͛Ɛ own behavioural patterns (5). It is therefore important for individuals to learn 40 

selectively from others to maximise benefits (6). Explanations for why, when and from whom individuals learn 41 

include adopting behaviour performed by the majority (7), behaviour performed by kin (8) or based on 42 

increased pay-offs (9), among others (reviewed in (4,10)). However, while social learning has received 43 

considerable attention in the literature, relatively little is known about what differences exist between the 44 

sexes and what consequences such differences might hold for adult life.  45 

 Sexual selection theory predicts that males should primarily engage in behaviours related to increasing 46 

mating opportunities, while females should invest more in behaviours related to increasing access to resources 47 

and offspring protection (11,12). Differences in behavioural requirements or preferences are therefore 48 

expected to dictate sex biases in social learning. For example, both male and female chimpanzees (Pan 49 

troglodytes) learn socially to insert flexible tools made from vegetation into termite mounds in order to extract 50 

termites, yet females learn ͚ƚĞƌŵŝƚĞ fishing͛ earlier, use it more frequently and do so more efficiently than 51 

males (13,14). The differing priorities in learning to use a tool are reflective of the different strategies of male 52 

and female chimpanzees to maximise fitness. Chimpanzees use tools in foraging contexts, thus, the benefits of 53 

engaging in such a technique should be higher for females than males. Male chimpanzees form coalitions to 54 

compete for and maintain alpha male status, a social position that confers increased reproductive opportunity 55 

(15). Consequently, males might be less inclined to invest in learning or improving complicated feeding 56 

techniques, but rather invest in social relationships with other males (16). 57 

 In the Indo-Pacific bottlenose dolphin (Tursiops aduncus) population of Shark Bay, Western Australia, 58 

sex bias is evident in a socially learned foraging technique involving the use of marine sponges as tools (17,18). 59 

Sponge-ĐĂƌƌǇŝŶŐ ;͚ƐƉŽŶŐŝŶŐ͛Ϳ ŝƐ ƚŚŽƵŐŚƚ ƚŽ ƉƌŽƚĞĐƚ ƚŚĞ ĚŽůƉŚŝŶ͛s rostrum while foraging for prey on the sea floor 60 

(17,19). Sponging allows these dolphins ;͚ƐƉŽŶŐĞƌƐ͛Ϳ to exploit a novel ecological niche by providing access to 61 

prey not available to those dolphins unfamiliar with tool use (20). Sponging is observed in both the eastern and 62 

western gulfs of Shark Bay, but only some members of particular matrilines use sponges (west: approx. 38% of 63 

all females (21); east: approx. 13% of all females (22)). This is why sponging is thought to be an exclusively 64 



vertically transmitted behaviour (18,23). Around 91% of female calves adopt sponging from their sponging 65 

mothers, while only 50% of males do so. The observed female bias in sponging is most likely reflective of a sex 66 

bias in social learning propensities at a young age (24ʹ26). 67 

 Sponging females are distinctive with regards to their activity budget, spending more time foraging 68 

and less time resting than their non-sponging female counterparts (21,24). When foraging, female spongers 69 

devote 95% of their time to sponging, compared to other foraging behaviours (24). They are also seen alone 70 

more often than non-spongers (22,24). However, when associating with other individuals, female spongers 71 

show a preference for other sponging females (22). While there is a considerable amount of data on female 72 

spongers, much less is known about male spongers. For instance, why proportionally fewer males learn and 73 

specialise in this foraging technique, and if and how sponging influences adult male behaviour, remain 74 

unknown. The latter is of particular relevance as male dolphins in Shark Bay exhibit one of the most complex 75 

social structures outside humans (reviewed in (27)). 76 

 Bottlenose dolphins in Shark Bay live in an open fission-fusion society with changing group sizes and 77 

compositions (27,28). Males form different levels of reproductive alliances with other males, driven by intense 78 

competition for access to receptive females (27). Two to three males cooperate in '1st-order' alliances to 79 

consort single oestrus females (29). These males also generally associate within larger '2nd-order' alliances 80 

comprised of 4-14 individuals, whose members cooperate to take females from rival alliances and to defend 81 

against such attacks (29). 1st- and 2nd-order allies are also frequently observed together in non-mating contexts 82 

(29). Second-order alliances are considered the stable, core unit of male social organisation in Shark Bay, while 83 

the stability of 1st-order alliances varies considerably (27). These complex social relationships among males can 84 

ůĂƐƚ ĨŽƌ ĚĞĐĂĚĞƐ ĂŶĚ ĂƌĞ ĐƌŝƚŝĐĂů ƚŽ ĞĂĐŚ ŵĂůĞ͛Ɛ ƌĞƉƌŽĚƵĐƚŝǀĞ ƐƵĐĐĞƐƐ (27). Alliances are  considered costly, as 85 

each male must invest time in the formation and maintenance of these relationships (30).  86 

Sponging is also a costly behaviour: it requires significant time investment and is associated with a 87 

decrease in overall sociability (22,24), as well as less time to rest and travel (21). The investment of time and 88 

energy into male alliance behaviours may therefore preclude engaging in time-consuming, solitary foraging 89 

techniques, such as sponging. It has been proposed that sponging might put males at a disadvantage in forming 90 

and maintaining alliances compared to males that use foraging techniques that are both less time-consuming 91 

and less solitary (17,18,21,24). However, these arguments assume that the time, social and energetic demands 92 

of sponging on males and females are similar, which has yet to be tested. Here we assess the effect of sponging 93 



on male dolphin behaviour by comparing activity budgets, sociability, and association patterns of male 94 

spongers to male non-spongers.  95 

  96 



METHODS 97 

Study site and data collection 98 

Data for this study were collected in the western gulf of Shark Bay, Western Australia, in an area that includes 99 

various habitat types, such as seagrass-rich shallow waters (< 10 m) and deep water channels with sandy 100 

substrates (> 10 m) (31). We collected behavioural and genetic data during the austral winters from 2007 to 101 

2015, identifying individual dolphins by photographs of their dorsal fins (32). During boat-based surveys of 102 

dolphin groups, within the first five minutes, we recorded GPS position, environmental parameters (including 103 

sea state, water depth and temperature), group size and composition, as well as predominant group activity 104 

(rest, travel, forage, socialise, or unknown; cf. (33) and SI). We defined group membership according to the 10 105 

m chain rule (33). Male dolphins that had been observed carrying a sponge while foraging at least twice on 106 

different days were classified as spongers (24), while males that had never been observed sponging were 107 

classified as non-spongers. Individuals that had been observed sponging only once were classified as 108 

͚unknowns͛. We obtained biopsy samples from dolphins on an opportunistic basis using a purpose-designed 109 

system for sampling small cetaceans (34). The samples were used to genetically sex individuals (35) and 110 

determine pairwise genetic relatedness (18). Further details of sampling and laboratory methods are provided 111 

in the SI. Unless otherwise specified, all analyses were conducted in R V1.1.453 (36). 112 

 113 

Data Restriction 114 

We included only independent/weaned males and excluded dependent calves (37). Only males observed more 115 

than nine times and identified as spongers or non-spongers were included in our analyses. Sex was identified 116 

either genetically (see SI) or behaviourally by several observations of alliance-typical behaviour (being observed 117 

regularly travelling side-by-side engaging in synchronous surfacing, consorting of females, or inter-group 118 

aggression with other males; cf., (27,38)). Furthermore, in order to assess males with similar association 119 

opportunities, we restricted our analyses to comparisons of male spongers with non-sponging males that also 120 

met habitat use criteria based on depth and home range overlap derived from data on sponging males. Further 121 

details on the calculation of these criteria are provided in the SI. Restricting the data in this manner resulted in 122 

a data set containing 37 male dolphins, including 13 spongers and 24 non-spongers. 123 

 124 

Effect of sponging on male activity budgets 125 



To investigate differences in activity budgets (proportions of resting, travelling, foraging, and socialising 126 

behaviour) between male spongers and non-spongers, we conducted a multivariate analysis of variance 127 

(MANOVA) with the sole predictor of whether an individual was classified as sponger or non-sponger 128 

(hereafter: foraging technique). As dependent variables, we calculated activity budgets by dividing the number 129 

of individual sightings per activity by the total number of individual sightings. We used PŝůůĂŝ͛Ɛ ƚƌĂĐĞ ;VͿ ĂƐ a test 130 

statistic due to the unequal sample sizes in our data set (39). To investigate which activity proportions, in 131 

particular, differed between male spongers and non-spongers, we performed sequential Bonferroni corrected, 132 

post-hoc, independent t-ƚĞƐƚƐ ;WĞůĐŚ͛Ɛ ƚ-test, (40)). While investigating the data structure of the multivariate 133 

activity budgets, we identified five outliers from the combined normal distribution. Thus, we conducted the 134 

MANOVA with outliers removed, retaining 32 males (spongers: n = 12, non-spongers: n = 20) in the data set 135 

(see SI for analysis with the full data set). 136 

 137 

Degree of sociability of male spongers and non-spongers 138 

To investigate whether male spongers were more or less solitary than male non-spongers, we compared their 139 

levels of sociability. We constructed an index of sociability by dividing the number of solitary sightings by the 140 

total number of sightings per individual. We compared individual sociability indices of male spongers and male 141 

non-spongers in a two-sample permutation test (10,000 permutations) implemented in the ͚perm  ͛ package 142 

(41).   143 

 To investigate the association pattern of male spongers and male non-spongers, we adhered to the 144 

following procedure. First, to maximise our ability to draw comparisons with other studies on cetaceans, we 145 

calculated Half Weight Indices (HWIs) as a measure of the proportion of time two males spent together (42). 146 

Based on the dyadic HWIs, we created a social network to analyse the association patterns between male 147 

spongers and male non-spongers. Second, we assessed whether associations in the social network followed a 148 

random  pattern or whether two individuals were seen more or less often together than expected by chance 149 

(43,44). For this analysis, we specified a daily sampling period. Third, to test whether the association indices 150 

between pairs consisting of males with similar foraging techniques (sponger ʹ sponger; non-sponger ʹ non-151 

sponger) were higher than between pairs with different foraging techniques (sponger ʹ non-sponger), we 152 

carried out a Mantel test on a similarity matrix and the matrix of dyadic associations with 10,000 permutations. 153 

The similarity matrix is a 1/0 matrix providing information on whether two individuals belong to the same 154 



group (either both spongers or both non-spongers = 1) or to different groups (sponger and non-sponger = 0). 155 

These analyses were conducted in SOCPROG 2.6 (45). 156 

In a further step, we ran a Double Decker Semi-Partialling Multiple Regression Quadratic Assignment 157 

Procedure (MRQAP-DSP; see below and (46)) to investigate whether the documented pattern of dyadic 158 

associations (between male pairs of spongers, pairs of non-spongers, and pairs of one sponger and one non-159 

sponger) could be predicted by similarity in foraging technique, even when controlling for pairwise relatedness 160 

(based on 27 microsatellite loci; see SI for more detailed information). Similarity in foraging technique was 161 

presented in two matrices: in the first, we coded similarity in sponging as 1; and vice versa in the second where 162 

similarity in non-sponging was coded as 1. Unequal dyads were assigned a value of 0 in both matrices. Separate 163 

similarity matrices allowed us to disentangle the contribution of similarity in sponging and non-sponging, 164 

respectively, to the association pattern. 165 

An MRQAP-DSP test is similar to a partial linear multiple regression with the exception that dependent 166 

and predictor variables are presented as matrices. Thus, this method tests whether an entered predictor 167 

variable significantly contributes to the explanation of the dependent matrix, whilst controlling for the other 168 

predictors. To control for the dependencies between data points, we used the MRQAP-DSP test as 169 

implemented and described in the ͚asnipe  ͛ package (47) using 10,000 permutations. We did not include 170 

mitochondrial haplotypes in the predictors due to a previously documented high correlation with foraging 171 

technique (48). Only males for which we had genetic data available were included in this test (spongers: n = 9, 172 

non-spongers: n = 16). We also repeated the MRQAP-DSP test including all genotyped males within our study 173 

population while additionaly correcting for home range overlaps (see SI).  174 

To investigate whether the association patterns found in the previous analysis were also reflected in 175 

2nd-order alliance compositions, we defined 2nd-order alliances based on dyadic HWIs. We lacked sufficient 176 

consortship data to define alliances functionally (i.e., through observation of consortship behaviour) for this 177 

study, so we could use only association strength as a proxy (33). We used an average linkage agglomerative 178 

cluster analysis assuming a hierarchical social network structure (49) performed in SOCPROG (45) and defined 179 

and applied a threshold value at which a dyad can be considered to be part of the same 2nd-order alliance. To 180 

find an appropriate threshold, we conducted a change point analysis employing the Pruned Exact Linear Time 181 

;PELTͿ ŵĞƚŚŽĚ ƐƉĞĐŝĨŝĞĚ ŝŶ ƚŚĞ ͚ĐŚĂŶŐĞƉŽŝŶƚ͛ ƉĂĐŬĂŐĞ (50) (cf. (51) and SI for more detailed information).  182 

  183 



RESULTS 184 

Between 2007 and 2015, we observed 124 male dolphins at least nine times. After applying the restrictions 185 

outlined above imposed, the resulting data set contained 37 male dolphins, of which 13 were spongers and 24 186 

were non-spongers (number of sightings: mean = 35; range = 17-68). We computed HWIs from a total of 549 187 

survey records over the nine-year study period. All males associated with at least five other individuals in the 188 

data set.  189 

 190 

Effect of sponging on male activity budgets 191 

We detected significantly different activity budgets between male spongers and non-spongers (V = 0.74, 192 

F(4,27) = 19.6, p < 0.001). Thus, foraging techniques significantly contributed to explaining an individual ŵĂůĞ͛Ɛ 193 

activity budget. Post-hoc analyses showed that male spongers foraged more, and rested and travelled less than 194 

male non-spongers. There was no significant difference in time spent socialising between male spongers and 195 

non-spongers (Tab. 1). 196 

 197 

Degree of sociability of male spongers and male non-spongers 198 

Male spongers were encountered significantly more often alone (sociability index: mean = 0.22, SE = 0.03) than 199 

male non-spongers (sociability index: mean = 0.04, SE = 0.01; p = 0.002). 200 

 Among the 37 males, the overall mean HWI was 0.09 (1,000 bootstraps: SE = 0.03), including the zeros 201 

of no associations. Considering only non-zero associations, the more conservative measure, the mean HWI was 202 

0.17 (1,000 bootstraps: SE = 0.05). The generated network based on the dyadic association indices (Fig. 1) 203 

represented a non-random social structure (10,000 permutations, 1,000 switches; SDobs = 0.17, SDrandom = 0.14, 204 

p < 0.001). Thus, some males were observed more often in association than expected by chance alone, 205 

reflecting their well-documented alliance associations (27).  206 

Association rates between pairs of males with similar foraging techniques (sponger ʹ sponger; non-207 

sponger ʹ non-sponger; mean HWI = 0.14, SD = 0.09) were significantly higher (Mantel test, t = 5.75; p < 0.01; 208 

Tab. 2) than associations between pairs with different foraging techniques (sponger ʹ non-sponger: mean HWI 209 

= 0.05, SD = 0.04). 210 

 The MRQAP regression model showed that sponging was a significant predictor of male association 211 

patterns, even after controlling for relatedness (Tab. 3). Related individuals did not associate above chance 212 



levels. These findings were also supported by the results of the MRQAP-DSP tests including all males within our 213 

study area (see SI for more information). Our analyses demonstrate that the association pattern of male 214 

dolphins inhabiting deep water and occupying similar home ranges can at least partly be explained by foraging 215 

technique.  216 

An average linkage agglomerative cluster analysis to define 2nd-order alliances resulted in a tree 217 

diagram representing the underlying data well with a cophenetic correlation coefficient of 0.98 (45,52). The 218 

PELT method resulted ŝŶ Ă ĐŚĂŶŐĞ ƉŽŝŶƚ Ăƚ HWI ш Ϭ͘Ϯϳ͘ This cut-off value is higher but well within the range of 219 

previous findings on the male dolphins of Shark Bay, in which a HWI of 0.20 has commonly been used in 220 

assigning males to 2nd-order alliances (27,33). Applying 0.27 as a threshold to define 2nd-order alliances 221 

illustrated that the tendency of male spongers to associate with other male spongers was reflected in 2nd-order 222 

alliance compositions. We identified nine 2nd-order alliances, of which two consisted exclusively of spongers, 223 

one was of mixed composition (sponger and non-sponger) and the other six were composed exclusively of non-224 

spongers (Fig. 2). Four individuals (three spongers, one non-sponger) could not be assigned to a 2nd-order 225 

alliance. Five of the non-sponging alliances and both sponging alliances have also been observed engaging in 226 

functional alliance behaviour, e.g. consorting females. A similar pattern was found when we included all males 227 

in our study population (see SI for more detail).  228 

  229 



DISCUSSION 230 

It has been hypothesised that the investment of time and energy into the formation and maintenance of male 231 

alliances likely reduces the propensity for male dolphins to engage in time-consuming, solitary foraging 232 

techniques such as sponging, thereby resulting in the strong female bias previously documented (17,18,21,24). 233 

This hypothesis was based on the assumptions that male spongers engage in different activity and social 234 

patterns than male non-spongers. Our results support these assumptions by revealing that, at least in the 235 

austral winters when data were collected, male spongers differed in their activity budgets, foraging more, and 236 

resting and travelling less than male non-spongers. Interestingly, the time spent socialising was equal among 237 

male spongers and non-spongers despite the fact that male spongers spent more time alone than male non-238 

spongers. When male spongers were observed with other males, they associated significantly more often with 239 

other male spongers. 240 

Previous studies on female activity budgets in Shark Bay also found that spongers spent a greater 241 

proportion of their time foraging and less time resting and travelling than their non-sponging counterparts 242 

(21,24),  suggesting thattime investment could be a proximate cost of sponging in comparison to other foraging 243 

techniques for both sexes. A comparison between the sexes warrants further investigation. Interestingly, 244 

socialising proportions for males seem not to be affected by these time investments, suggesting that a 245 

comparatively smaller amount of time spent restingmight be the proximate cost of sponging. However, these 246 

potential costs might be offset by having fewer competitors for food, as sponging may decrease competition 247 

for resources by providing access to a novel ecological niche (19,20). Indeed, the role of intraspecific 248 

competition on niche expansion has been reported across several taxa (53,54).  249 

Our finding that male spongers and male non-spongers spent equal amounts of time socialising 250 

contradicts the hypothesis that sponging conflicts with cooperative male alliance behaviour. However, when 251 

comparing sociability, we found that male spongers had higher proportions of solitary sightings compared to 252 

male non-spongers. Our findings thereby corroborate previous studies indicating that sponging is a largely 253 

solitary activity (21,24). The increased solitariness of male spongers might still affect cooperative male alliance 254 

behaviour negatively to some degree, even though there is no difference in socialising time.  255 

Our examination of male social structure in deep water habitat revealed that male spongers tended to 256 

associate with other male spongers rather than male non-spongers, as demonstrated by their clustering in the 257 

social network. Sponging was a significant predictor of the observed association patterns of males sharing 258 



similar home ranges even after controlling for pairwise relatedness and similarity in non-sponging. Likewise, 259 

when we repeated our analysis and included all genotyped males, similarity in sponging remained a significant 260 

predictor for social structuring (see SI for more information). These results contradict a previous study on male 261 

dolphins in eastern Shark Bay (22), which did not detect a significant effect of similarity in foraging technique 262 

on social structuring. This was most likely a result of low sample size as there are far fewer spongers, and 263 

particularly male spongers, in the eastern gulf of Shark Bay compared to the western gulf (22,31). Remarkably, 264 

in our study, while similarity in foraging technique was significant in terms of impact on social structuring, 265 

pairwise relatedness was not (Tab. 3). The absence of an effect of relatedness on the social structuring of male 266 

dolphins seems plausible; previous studies on male associations and relatedness of 2nd-order alliances reported 267 

ambiguous patterns, with only a minority of alliances showing higher relatedness than the population average 268 

(55). 269 

The high social affinity among male spongers could either indicate social learning of tool use from 270 

alliance partners or be explained by homophilous behaviour (i.e., increased associations due to similar 271 

behaviour). The established pattern of strict vertical transition of sponging (18,23) and the reported homophily 272 

related to sponging in female dolphins of Shark Bay (22), make homophily among male spongers the more 273 

parsimonious explanation. Whether the observed homophily among male spongers is driven by the males 274 

themselves or emerges as a by-product of the high social affinity of female spongers (i.e., mothers) remains 275 

unknown. Research in eastern Shark Bay has shown that juvenile males preferentially stayed in proximity to 276 

their natal associates (56), and the number of associates stays constant from infancy through the juvenile 277 

period (57). If the natal associates of spongers were also male spongers, this could explain the high social bonds 278 

between pairs or trios of sponging males. As sponging females ʹ and hence, mothers of sponging males ʹ are 279 

shown to cluster together (22), such a scenario seems plausible.  280 

The ultimate benefit of such homophilous behaviour in male spongers could be their ability to 281 

maintain the use of such a foraging technique whilst simultaneously remaining in close proximity to males 'of a 282 

similar ilk', i.e., with whom they can also engage in alliance behaviours. This argument is further strengthened 283 

when considering the composition of 2nd-order alliances. There was only one mixed 2nd-order alliance, while 284 

the other eight alliances in our data set consisted of either only male spongers or male non-spongers. The 285 

threshold resulting from our PELT analysis to identify 2nd-order alliances was higher than previously 286 

documented in Shark Bay (29), resulting in the delineation of a greater number of alliances with some having 287 



fewer members than typically reported for 2nd-order alliances (27,29). The higher threshold of 0.27 may have 288 

split some 2nd-order alliances that associated at levels of >0.20 but <0.27. Thus, the smaller 2nd-order alliances 289 

identified in our study comprising only two to three males are most likely 1st-order allies. Yet, irrespective of 290 

the threshold used to define alliances, when considering the hierarchical structure of the social network (i.e., 291 

dyadic associations assorted in a dendrogram, Fig. 2), social homophily is apparent. Given the need to 292 

synchronise activities when living in groups (i.e., in alliances) (58), males in alliances containing sponging and 293 

non-sponging individuals might be at a disadvantage relative to non-mixed alliances. Future research needs to 294 

examine whether there are differences in the structure and complexity of 2nd- and 1st-order alliances between 295 

male spongers and non-spongers. Here we suggest that the benefits of social homophily may, to a certain 296 

extent, mitigate the costs of sponging for male alliance behaviour.  297 

Apart from social homophily, behavioural plasticity might manifest itself by allied male spongers 298 

reducing the amount of time invested in sponging during the peak mating season, thus further mitigating the 299 

costs of being a male sponger to some degree. Nevertheless, the mating season in Shark Bay is only moderately 300 

seasonal, with consortships occurring during all months of the year, and a diffuse peak between September 301 

and December (59).  302 

In summary, we show that while previous assumptions that sponging affects male activity budgets and 303 

social pattern hold true, this might not necessarily stand in conflict with male alliance behaviour. The apparent 304 

cost mitigating behaviours together with the observed absence of differences in socialising proportions 305 

between male spongers and non-spongers weaken the hypothesis that sponging stands in conflict with male 306 

alliance behaviour and thereby leading to a female bias in sponging. In fact, preliminary data suggest rates of 307 

female monopolisation do not differ between male spongers and male non-spongers (unpublished data). 308 

Future research might explore the costs of sponging and how it might be mitigated in more detail, leaving room 309 

for other plausible explanations regarding the female bias in social learning of sponging. For instance, time 310 

constraints on a male dolphin during its early life may play an important role. Males are weaned earlier than 311 

females (60), and therefore have less time to learn sponging from their mothers and, instead, may need to 312 

invest time in developing social bonds with other males. Indeed, juvenile male dolphins invest more time in 313 

developing social skills than juvenile females, who instead increase their foraging rates (57). In addition, a 314 

recent study showed that an extensive training period (decades) is crucial to achieve peak performance in 315 

sponging (26). 316 



In conclusion, our study explored the impacts of sponging on male dolphin behaviour. We suggest that 317 

potential costs associated with sponging for male dolphins might be mitigated by social homophily. Revealing 318 

social homophily in bottlenose dolphins is interesting, as in humans, homophilous behaviour is a key factor in 319 

the emergence and maintenance of subcultures (61) and the establishment of attachment and close 320 

friendships (62). Our study thereby provides another example of convergence in social complexity, innovation 321 

and cultural behaviour between cetaceans and great apes (20,22,63,64). 322 
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FIGURE CAPTIONS 499 
 500 
Fig. 1: Social network of the male dolphins in the restricted data set (n = 37). The nodes represent individuals 501 
and are shaded according to foraging technique. Edges (lines) below 0.27 HWI are transparent and edge 502 
thickness corresponds to edge weight (see Figure S2 for the social network showing all edges). The graph was 503 
plotted with the force directed Fruchterman-Reingold algorithm implemented in the ͚igraph͛ package (65).  504 
 505 
 506 
Fig. 2: Hierarchical cluster diagram based on dyadic HWI measures. A HWI value of 0.27 was used as a cut-off 507 
value (grey line) to define communities (i.e., 2nd-order alliances).  508 
 509 
 510 



TABLES 

 

Tab. 1: Post-hoc, Bonferroni corrected t-tests on activity proportions of male spongers (n = 12) and non-

spongers (n = 20). Significant p- values are indicated in bold print. 

 

 

 

  

proportion 
spongers non-spongers 

t (df)(df) r p 
Mean SD Mean SD 

forage 0.45 0.02 0.20 0.02 -9.42 (26.31) 0.89 < 0.001 

rest 0.18 0.01 0.28 0.01 4.83 (27.80) 0.68 < 0.001 

travel 0.16 0.02 0.31 0.02 4.83 (27.36) 0.68 < 0.001 

socialise 0.16 0.01 0.13 0.01 -1.62 (29.99) 0.28 0.23 



Tab. 2: Mean association indices (HWI) by foraging technique of male spongers (n = 13) and non-spongers (n = 

24), 666 dyadic relationships. 

 

 

 

 

 

 

 

 

 

  

pair composition  mean HWI (SD) 

sponger に sponger 0.21 (0.11) 

non-sponger に non-sponger 0.10 (0.05) 

similar foraging technique 0.14 (0.09) 

different foraging technique 0.05 (0.04) 

overall  0.09 (0.04) 



Tab. 3: MRQAP-DSP model including only genotyped males (n = 25, 300 dyadic relationships). Significant p-

values are indicated in bold print. 

 

 

 

 

 

 

variable coefficient p 

sponger similarity 0.19 <0.001 

non-sponger similarity 0.10 <0.01 

relatedness 0.21 0.24 

F(3, 297) = 34.5, adjusted R2 = 0.25, p-value < 0.001 


