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Summary 

The diverse forms of today’s dominant vascular plant flora are generated by the sustained proliferative 

activity of sporophyte meristems at plants’ shoot and root tips, a trait known as indeterminacy [1]. 

Bryophyte sister lineages to the vascular plants lack such indeterminate meristems and have an overall 

sporophyte form comprising a single small axis which ceases growth in the formation of a reproductive 

sporangium [1]. Genetic mechanisms regulating indeterminacy are well characterised in flowering plants, 

involving a feedback loop between Class I KNOX genes and cytokinin [2, 3], and Class I KNOX expression is a 

conserved feature of vascular plant meristems [4]. The transition from determinate growth to 

indeterminacy during evolution was a pre-requisite to vascular plant diversification, but mechanisms 

enabling the innovation of indeterminacy are unknown [5]. Here we show that Class I KNOX gene activity is 

necessary and sufficient for axis extension from an intercalary region of determinate moss shoots. As in 

Arabidopsis, Class I KNOX activity can promote cytokinin biosynthesis by an ISOPENTENYL TRANSFERASE 

gene, PpIPT3. PpIPT3 promotes axis extension, and PpIPT3 and exogenously applied cytokinin can partially 

compensate for loss of Class I KNOX function. By outgroup comparison, the results suggest that a pre-

existing KNOX-cytokinin regulatory module was recruited into vascular plant shoot meristems during 

evolution to promote indeterminacy, thereby enabling the radiation of vascular plant shoot forms. 

Results and discussion 

MKN2 is necessary and sufficient to promote sporophyte axis extension in Physcomitrella 

Previous reports have identified roles for an intercalary region in promoting moss sporophyte extension [6], 

and identified three Class I KNOX genes; Moss KNOX 2 (MKN2), MKN4 and MKN5. Whilst mkn4 and mkn5 

mutants have mild developmental defects, mkn2 mutants have defective setae, but the developmental 

basis of such defects was not clear [7, 8]. To interrogate necessity and sufficiency of Class I KNOX function 

for axial extension in determinate moss shoots, we first staged wild-type (WT) sporophyte development in 

Physcomitrella (Figure 1A, 1C) in comparison to the development of mkn2 mutants (Figure 1B, 1C). Seven 

distinct stages were identified in WT sporophytes and were morphologically marked by (1) apical cell 

divisions, (2) apical cell and merophyte divisions, (3) merophyte divisions following cessation of apical cell 

activity, (4) proliferative activity in an intercalary region, (5) swelling sporangia, (6) the earliest visible 

stages of columella development and (7) full capsule expansion with a visible columella (Figure 1A, 1C). In 

mkn2 mutant sporophytes, we were able to identify each aforementioned stage except stage 4, when there 

is normally intercalary extension (Figure 1B, 1C). To quantify differences between WT and mkn2 mutant 

plants, we measured the seta-foot (SF) to sporophyte (SP) length ratio (Figure 1A, 1B, 1D). This analysis 

revealed a reduction in SF to SP length ratio from about 40% in WT sporophytes to 30% in mutants, 

supporting the notion that intercalary extension is impaired in mkn2 mutants (Figure 1D). Thus, MKN2 is 

necessary for correct sporophyte axis extension. To test whether MKN2 is sufficient to promote intercalary 

extension, we expressed a full length MKN2 cDNA under control of the maize ubiquitin promoter in WT 
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sporophytes using the pTHUBI>>MKN2 vector (See STAR Methods and Figure S1). Whilst most MKN2oe 

transgenic plants obtained were sterile, the elongated setae of sporophytes obtained in two independent 

transgenic lines (n = 6) suggested that MKN2 over-expression promotes axis extension (Figure 1E). To 

circumvent sterility problems, we introduced an MKN2-glucocorticoid receptor (GR) fusion into the mkn2 

mutant background under control of the maize ubiquitin promoter (Figure 1F-1I). This permitted 

constitutive expression of an MKN2-GR fusion protein and allowed MKN2 relocation to the nucleus to 

activate downstream targets following dexamethasone application, and an mkn2 mutant line was 

transformed with a GR expression cassette (mkn2/GR) as a negative control (Figure 1F-1I). Transgenic 

plants were grown in sporophyte inducing conditions (see STAR Methods), and following fertilization, one 

mkn2/GR and two mkn2/MKN2-GR transgenic lines were soaked in a mock or 1 μM dexamethasone 

solution. Whilst no morphological effect of dexamethasone on the mkn2/GR control line was observed, 

dexamethasone application to mkn2/MKN2-GR transgenic lines resulted in the development of mature 

sporophytes in which the SF/SP length ratio increased by about 5-10% (Figure 1H-1I). Both gain of function 

approaches yielded data that were consistent with a role for MKN2 in promoting axis extension from an 

intercalary region in Physcomitrella sporophytes. 

MKN2 suppresses the chloronema to caulonema transition and promotes gametophore initiation 

Mosses have biphasic life cycles in which the multicellular gametophyte is dominant and comprises 

filamentous protonemata and shoot-like structures (gametophores). The spread of gametophytes across a 

surface is determined by the activity of two filament types whose segregated functions are marked by 

switches in cell identity and morphology; chloronemata have short cells with many chloroplasts and 

transverse cross walls, and caulonemata have longer cells with fewer chloroplasts and oblique cross walls 

[9]. Whilst some authors have found MKN2 expression to be undetectable in gametophytes [8], others 

have identified up-regulation of MKN2 expression in caulonemata [10] or gametophores [11], but no loss-

of-function mutant phenotypes have been reported. We were unable to detect MKN2 expression by RT-

PCR in wild-type gametophyte tissues and confirmed that mkn2 mutants have normal morphology in 

gametophytes (Figure S1), but wished to identify any developmental effects of ectopic MKN2 expression. 

We found that MKN2oe transgenic lines had abnormal gametophyte phenotypes whose severity positively 

correlated with MKN2 expression levels (Figure 2A and 2B, Figure S1). The most striking was that plant 

spread was reduced to about 40% of the WT area (Figure 2A and 2C), and we reasoned that this reduction 

could reflect a defective chloronema to caulonema transition. To test this hypothesis, we dissected 

filaments comprising over 8 cells from plants and measured the length of the first sub-apical cell and the 

second proximal cell of side-branches comprising 3 or more cells (Figure 2B and 2E). This sampling strategy 

was chosen to ensure like-for-like comparison of cell types in protonemal tissues with considerable 

variation in overall appearance. In WT plants, cell length was greater in primary filaments than in side-

branches, but in MKN2oe plants both cell types had the same length as cells in WT side branches (Figure 
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2B, 2E). Furthermore, all cells had transversely oriented division walls, consistent with chloronemal identity 

(Figure 2F-2H). These data suggest that ectopic MKN2 expression in gametophytes suppresses the normal 

switch from chloronema to caulonema identity in protonemal tissues. We also noted that the density of 

gametophores per plant was elevated to about 150% of WT levels, and gametophores initiated from 

chloronema cells (Figure S1) in MKN2oe plants (Figure 2D), suggesting that ectopic MKN2 expression 

promotes gametophore initiation. 

Plants with elevated cytokinin levels phenocopy MKN2 over-expressors 

In Physcomitrella, the switch from chloronema to caulonema identity and gametophore initiation are both 

hormonally regulated by cytokinin; whilst cytokinin suppresses caulonema formation, it promotes 

gametophore initiation [12, 13]. Although previously published work suggests that Class I KNOX genes do 

not regulate cytokinin biosynthesis in Physcomitrella [8], the phenotypes of MKN2oe lines suggested 

perturbations in cytokinin levels. To test the hypothesis that the mutant phenotypes of MKN2oe transgenic 

lines reflect elevated cytokinin levels, we first treated WT plants with a range of concentrations of the 

aromatic cytokinin 6-benzylaminopurine (BAP) (Figure S2). We found that WT plants treated with 10 nM 

BAP had similar phenotypes to MKN2oe transgenics. Plant spread was reduced, the length of caulonemata 

sub-apical cells was reduced, and gametophore density was increased with respect to untreated controls 

(Figure 2A-2E). To determine whether elevating endogenous cytokinin levels similarly affected 

development, we grew transgenics in which overexpression of the Physcomitrella ISOPENTENYL 

TRANSFERASE-1 gene (PpIPT1oe) up-regulates cytokinin biosynthesis [14]. In comparison to WT, PpIPT1oe 

transgenic lines had reduced plant spread and increased gametophore density, and sub-apical and side 

branch cell lengths were similar to WT side branch cell lengths (Figure 2A-2E). In both PpIPT1oe transgenic 

lines and BAP-treated WT plants, most filament tip cells had transversely oriented division walls, suggesting 

that filaments had chloronema identity (Figure 2F-2H). Thus, upregulation of an endogenous cytokinin 

biosynthesis pathway can trigger similar developmental responses to exogenously applied cytokinin and 

MKN2 over-expression in Physcomitrella gametophytes. 

MKN2 promotes cytokinin biosynthesis via PpIPT3 

To determine whether MKN2 promotes cytokinin biosynthesis, we quantified cytokinin levels in three 

independent MKN2oe transgenic lines by liquid chromatography coupled to tandem mass spectrometry 

(LC-MS/MS) [14, 15] (Figure 3A). Twenty-five different cytokinin types were analysed: isopentenyladenine 

(iP), trans-zeatin (tZ), cis-zeatin (cZ) and dihydrozeatin (DHZ), and their nucleotide, nucleoside and glycoside 

derivatives. Eleven cytokinin types were detected, including the gametophore-inducing cytokinins iP, 

isopentenyladenosine (iPR) and tZ [16]. All cytokinins showed increased levels in MKN2oe transgenic lines 

relative to WT controls, except isopentenyladenosine-5′monophosphate (iPR5'MP), trans-zeatin riboside O-

glucoside (tZROG) and tZ that were slightly reduced in MKN2oe#1 and MKN2oe#3 plants respectively 

(Figure 3A). Thus, ectopic MKN2 expression is sufficient to promote cytokinin biosynthesis. In Arabidopsis, 
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KNOX proteins promote cytokinin biosynthesis by upregulating IPT expression [2, 3]. To determine how 

MKN2 up-regulates cytokinin biosynthesis in Physcomitrella, we first grew previously described 

dexamethasone-inducible mkn2/MKN2-GR expression lines (Figure 1) on 1 μm dexamethasone or a mock 

control (Figure 3B). Whilst no morphological effect of dexamethasone on an mkn2/GR control line was 

observed, two mkn2/MKN2-GR lines had reduced spread in comparison to mock-treated controls, 

consistent with the notion that MKN2 promotes cytokinin biosynthesis (Figure 3B, 3C). To test the 

hypothesis that MKN2 acts via PpIPTs, we first searched the Physcomitrella genome for IPT homologues, 

finding six previously identified genes, PpIPT1-PpIPT6 [8]. Our sequence analysis showed PpIPT2 to lack a 

key functional domain and it was therefore discluded from further analyses as a likely pseudogene. We also 

found two further homologues that we named PpIPT7 and PpIPT8 (Figure S3, Data  S1). We next analysed 

PpIPT expression patterns by a preliminary RT-PCR in an mkn2/GR control line and two mkn2/MKN2-GR 

lines before and after dexamethasone application (Figure 3D). Whilst PpIPT6, PpIPT7 and PpIPT8 expression 

was undetectable, RT-PCR showed down-regulation of PpIPT5 expression following dexamethasone 

application, and MKN2-dependent up-regulation of PpIPT1, PpIPT3 and PpIPT4 expression (Figure 3D). We 

used three biological replicates of qRT-PCR to verify PpIPT1, PpIPT3 and PpIPT4 activation by MKN2. We 

were unable to confirm MKN2 activation of PpIPT1 and PpIPT4 expression, but found that PpIPT3 

expression strongly increased in response to dexamethasone application and relative to a PpUBI reference 

gene (Figure 3E). PpIPT3 expression levels positively correlated with the strength of the mutant phenotype 

in transgenic lines (Figure 3B-3E), and expression was induced by four hours following dexamethasone 

treatment, suggesting that PpIPT3 could be an early target of MKN2 (Figure S3). PpIPT3 expression was also 

elevated in mkn2/MKN2-GR sporophytes following dexamethasone application (Figure 3F). These data 

suggest a role for MKN2 in promoting PpIPT3 expression and cytokinin biosynthesis in Physcomitrella 

gametophytes, and in promoting PpIPT3 expression in sporophytes. 

PpIPT3 promotes axial extension in Physcomitrella sporophytes 

In Arabidopsis, shoot indeterminacy depends on expression of both Class I KNOX and IPT genes, and loss-of-

function knox mutant phenotypes are rescued by upregulated IPT expression [2, 3]. The data in Figure 3 

show that in Physcomitrella, MKN2 can activate cytokinin biosynthesis by PpIPT3, suggesting that a KNOX-

cytokinin regulatory interaction is conserved between Arabidopsis and Physcomitrella. However, most of 

these experiments were undertaken in an ectopic context in gametophytes, so inferences about 

homologies in meristem function between mosses and vascular plants should be made with caution. To 

further explore roles for cytokinin biosynthesis in sporophyte axis extension, we first analysed PpIPT 

expression patterns using Physcomitrella eFP Browser data [17], showing that PpIPT3 was expressed at a 

relevant stage of sporophyte development (Figure S3). To test the potential involvement of PpIPT3 in 

sporophyte axis extension, we engineered Ppipt3 mutant lines using a CRISPR approach with three guide 

RNAs targeted to exon 1 or exon 3 of the PpIPT3 locus (See STAR Methods). These were used in pairs to 
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generate lines with three independent genomic deletions (Figure 4A), and sequencing showed that 

Ppipt3CR#1 and Ppipt3CR#2 lines had deletions of 70 or 117 amino acid residues in the predicted PpIPT3 

protein sequence, respectively (Figure 4B). In contrast, the Ppipt3CR#3 line had a frame shift mutation that 

introduced a premature stop codon at position 140 of the predicted PpIPT3 protein sequence (Figure 4B). 

The mutant phenotypes of these three lines were characterised in both life cycle stages. Ppipt3 

gametophytes had disrupted morphology relative to wild-type plants, showing an increase in plant spread 

(Figure 4C, 4D). This phenotype fits well with prior understanding of hormone functions in protonemata [9, 

18], and suggests that mutants have a lower cytokinin level permissive to a stronger chloronema to 

caulonema transition than normal. Whilst Ppipt3CR#1 and Ppipt3CR#2 mutant sporophytes showed no obvious 

phenotypic differences from WT sporophytes, the Ppipt3CR#3  mutant had sporophytes with a SF/SP length 

ratio that was significantly lower than WT (Figure 4E, 4F). The stronger effect of the Ppipt3CR#3 lesion than 

Ppipt3CR#1 and Ppipt3CR#2 lesions is consistent with the predicted effects of different mutant alleles on 

PpIPT3 protein structure and the notion that PpIPT3 promotes sporophyte axis extension (Figure 4E, 4F). 

PpIPT3 and cytokinin can partially compensate for loss of MKN2 function in Physcomitrella sporophytes 

To further explore the link between MKN2, cytokinin and seta elongation, we first attempted to restore axis 

extension in mkn2 mutants by PpIPT overexpression. However, this experiment rendered plants sterile or 

near-sterile, so it was not possible to quantify sporophyte phenotypes (Figure S4). We then attempted to 

complement the mkn2 mutant phenotype by targeting the PpIPT3 coding sequence into the MKN2 locus in 

mkn2 mutants (Figure 4G), which were originally generated by targeted replacement of MKN2 with a G418 

resistance cassette [8]. To verify PpIPT3 targeting, mkn2/MKN2>>PpIPT3 Iines were first grown on selective 

media containing G418 (Figure 4H), and sensitive lines were then genotyped to confirm insertion of the 

PpIPT3 cDNA into the MKN2 locus (Figure 4I). Phenotypic characterisation showed that two lines had 

elevated SF/SP length ratios relative to mkn2 mutants, suggesting that PpIPT3 can partially compensate for 

loss of MKN2 function (Figure 4J-K). Finally, we considered whether exogenously applied cytokinin can 

compensate for mkn2 mutant defects by growing WT and mutant plants in sporophyte inducing conditions 

and soaking them in cytokinin after fertilization (Figure 4L-M). This showed that BAP and iP could both 

partially restore axis extension to mkn2 sporophytes. Thus PpIPT3 is likely to act downstream of MKN2 to 

produce cytokinin and promote intercalary meristem function and seta elongation in Physcomitrella. 

This work aimed to explore genetic mechanisms involved in the origin of vascular plant meristems and 

hence focused on a mechanism operating in sporophytes. Previously published work showing that 

Physcomitrella Class I KNOX genes do not act via conserved downstream pathways used tissue from WT 

and mkn2/4/5 triple mutant sporophytes in RT-PCR with primers to amplify 6 PpIPT homologues [8]. In 

contrast, we have taken a gain of function approach, showing that overexpression of a Class I KNOX gene 

can upregulate cytokinin biosynthesis in Physcomitrella, and a complementation approach showing that 

PpIPT3 and cytokinin can partially compensate for loss of KNOX function. Whilst differences in technical 
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approach are one possible reason to account for the discrepancy between our results and previous results, 

it is also possible that MKN2 could act antagonistically with MKN4 and MKN5 to regulate cytokinin 

biosynthesis in Physcomitrella sporophytes, and therefore their effect would be cancelled out in the 

mkn2/4/5 triple mutants. The activation of cytokinin biosynthesis by a Class I KNOX protein in 

Physcomitrella suggests that a KNOX-cytokinin regulatory module is conserved between vascular plants and 

mosses, and reveals a fundamental role of KNOX genes. By outgroup comparison, it follows that vascular 

plant KNOX-cytokinin-regulated meristem functions may have derived directly from a functional unit 

operating in their ancestors, predating the origin of indeterminate sporophyte growth. We therefore 

propose that there is genetic homology between the proliferative zones of vascular plant meristems and 

the intercalary region of moss setae. We speculate more broadly on the evolution of land plant meristems 

elsewhere [1, 5, 19].  
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Figure 1. MKN2 is necessary and sufficient for seta extension from an intercalary region in Physcomitrella 

sporophytes. Also see Figure S1. 
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(A, B) Differential interference contrast (DIC) micrographs of cleared wild-type (n = 45) (A) and mkn2 (n = 

71) (B) sporophytes. Stages are defined as follows: (1) apical cell divides, (2) apical cell and merophytes 

divide, (3) apical cell has stopped and merophytes divide, (4) intercalary meristem is active, (5) sporangium 

swells, (6) columella axis is visible and (7) columella axis is fully formed. Dashed boxes mark regions 

magnified in (C), brackets indicate swelling sporangia (5), blue arrowheads indicate columella axes (6, 7), 

and dashed and plain arrow lines indicate the seta-foot region (SF) and the full sporophyte length (SP), 

respectively.  Scale bar = 50 μm. (C) Insets are close-ups of stages 1-4 and show apical cells (asterisks), 

apical cell and merophyte divisions (black and white arrowheads, respectively), and the intercalary region.  

(D) The seta-foot to sporophyte length ratio decreased significantly in mkn2 mutants with respect to wild-

type controls (Wilcoxon signed-rank test different from WT, *p < 0.05) (n ≥ 26). (E) Mature sporophytes of 

MKN2oe transgenic lines showed elongated and bent seta relative to WT plants and mkn2 mutants. (F) 

Schematic of the genetic construct, pMP1575>>MKN2, used to generate MKN2-GR over-expressing lines in 

the mkn2 mutant background (mkn2/MKN2-GR). (G) PCR analysis detected the presence of glucocorticoid 

receptor gene (GR) and hygromycin selection marker (HYG) in all transgenic lines, and MKN2-GR transgene 

in mkn2/MKN2-GR lines only. PpUBI (Pp1s56_52_v6.1) was used as an internal control. (H-I) The seta-foot 

to sporophyte length ratio increased significantly in response to dexamethasone (dex) in mkn2 lines over-

expressing a MKN2-GR protein fusion, but not a GR protein only (Wilcoxon signed-rank test different from 

mock, *p < 0.05) (n ≥ 14). Scale bar = 200 μm. 
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Figure 2. MKN2 expression phenocopies cytokinin-mediated developmental change in Physcomitrella 

gametophytes. Also see Figure S2. 

(A) Plant spread was reduced in MKN2oe and PpIPT1oe transgenics and plants treated with 10 nM 6-

benzylaminopurine (BAP) relative to WT and mock-treated controls. Scale bar = 5 mm. (B) Confocal 

micrographs of Calcofluor stained protonemata showed that cells of the primary filaments were shorter in 

MKN2oe, PpIPT1oe and BAP-treated WT plants than in controls. Scale bar = 200 μm. Boxes indicate cell 

types represented in (E). (C-D) Plant spread (n ≥ 16) (C) and gametophore density (n ≥ 7 colonies) (D) were 

significantly different from corresponding controls in MKN2oe and PpIPT1oe transgenics and BAP-treated 

WT plants (Wilcoxon signed-rank test different from control, *p < 0.05). (E) Sub-apical and side-branch cell 
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lengths (n ≥ 24) were not significantly different from each other in MKN2oe and PpIPT1oe transgenics 

(Wilcoxon signed-rank test, op > 0.05), and were more similar to each other in BAP-treated WT plants than 

to corresponding controls. (F) Close-up of confocal microscope images shown in (B). White arrowheads 

indicate cell division planes at the tip of protonemal filaments. Scale bar = 60 μm. (G) Diagram of the tip of 

a protonemal filament. Arrowhead indicates division walls, and alpha (α) indicates the orientation of 

division plane with respect to the filament axis. (H) Alpha angle values of WT plants were close to 55° which 

corresponds to an oblique cell division plane and caulonemal identity. Alpha angle values of MKN2oe and 

PpIPToe plants were close to 90° indicating that cell division planes were transverse, showing chloronemal 

identity. Alpha angle values of BAP-treated WT plants were lower in average than MKN2oe and PpIPToe 

lines but significantly higher than mock-treated WT plants (n = 15; Wilcoxon signed-rank test different from 

control, *p < 0.05).  
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Figure 3. MKN2 regulates cytokinin levels in Physcomitrella gametophytes, acting via PpIPT3. Also see 

Figure S3. 

(A) Cytokinin (CK) profiling by LC-MS/MS showed a global increase in CK levels in three independent 

MKN2oe transgenic lines (#1, #2 and #3) relative to WT controls. MKN2oe #1 is the line shown in Figure 2 

(see Figure S1 for MKN2oe #2 and #3 transgenic line phenotypes). Box plots represent data from four 

biological replicates and CK levels are expressed in pmol per gram of fresh weight (pmol/g F.W.). iP, 

isopentenyladenine; iPR, isopentenyladenosine; iPR5′MP, isopentenyladenosine-5′-monophosphate; tZ, 

trans-zeatin; tZR, trans-zeatin riboside; tZOG, trans-zeatin O-glucoside; tZROG, trans-zeatin riboside O-

glucoside; cZ, cis-zeatin; cZR, cis-zeatin riboside; cZOG, cis-zeatin O-glucoside; cZROG, cis-zeatin riboside O-

glucoside. (B) Plant spread was reduced in mkn2/MKN2-GR transgenics treated with 1 μM dexamethasone 

(dex) relative to mock-treated controls, but remained similar in mock and dex-treated mkn2/GR 

transgenics. Scale bar = 5 mm. (C) Plant spread (n ≥ 14) was significantly different in dex-treated 

mkn2/MKN2-GR transgenics and corresponding controls, but was similar in mock and dex-treated mkn2/GR 

transgenics (Wilcoxon signed-rank test, *p < 0.05). (D) RT-PCR analysis suggested probable induction of 

PpIPT1, PpIPT3 and PpIPT4 in response to 1 μM dex in mkn2/MKN2-GR transgenics but not in mkn2/GR 

controls. Expression of PpIPT5 and PpIPT6-PpIPT8 was repressed by dex, or not detected respectively. 

PpUBI (Pp1s56_52_v6.1) was used as internal control. (E) Quantitative RT-PCR analysis showed that the 

expression of PpIPT3 but not PpIPT1 and PpIPT4 was induced in mkn2/MKN2-GR in response to 1 μM dex 

application, but there was no induction in mkn2/GR transgenics (mean fold change of three independent 

biological replicates ± SE). (F) Quantitative RT-PCR analysis showed that PpIPT3 expression was induced in 

mkn2/MKN2-GR sporophytes in response to 1 μM dex application, but there was no induction in mkn2/GR 

controls (mean fold change of four independent biological replicates ± SE). 
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Figure 4. PpIPT3 promotes sporophyte axis extension in wild-type plants and partially compensates for 

axis elongation defects in mkn2 mutants. Also see Figure S3 and Figure S4. 

(A) Architecture of the WT PpIPT3 genomic locus showing the position of three PpIPT3-specific sgRNAs 

(arrowheads), and (B) resultant edits at the protein level revealed by sequencing. Blue boxes indicate WT 

sequence, white boxes indicate a deletion and a red box indicates a frame shift mutation. (C) Gametophyte 

spread was increased in Ppipt3 mutants relative to WT controls (scale bar = 5 mm), and quantitative 

analysis (D) showed that gametophyte spread (n ≥ 26) differed significantly (Wilcoxon signed-rank test 

different from control, *p < 0.05). (E-F) The seta-foot to sporophyte length ratio was significantly reduced 

in Ppipt3CR#3 sporophytes relative to WT controls (Wilcoxon signed-rank test different from mock, *p < 0.05) 

(n ≥ 34). Scale bar = 250 μm. (G) Schematic showing the targeting strategy used to generate mkn2 

MKN2>>PpIPT3 lines. (H) mkn2 mutant gametophytes but not mkn2 MKN2>>PpIPT3 transgenics were 

resistant to G418. Scale bar = 5 mm. (I) PCR analysis detected the expected size shift at the MKN2 locus 

after replacement of the G418 resistance cassette with the PpIPT3 cDNA (1), and the presence of the 

PpIPT3 cDNA in all mkn2 MKN2>>PpIPT3 transgenic lines but not the mkn2 mutant (2). (J-K) The seta-foot 

to sporophyte length ratio was significantly increased in sporophytes of mkn2 MKN2>>PpIPT3 #2 and #3 

transgenic lines in comparison to mkn2 controls (Wilcoxon signed-rank test different from mock, *p < 0.05) 

(n ≥ 36). Scale bar = 250 μm. (L-M) The seta-foot to sporophyte length ratio slightly increased in response 

to 10 μM iP or 10 μM BAP application in WT plants (Wilcoxon signed-rank test different from mock, ♢p < 

0.08), but increased more strongly in mkn2 mutants (Wilcoxon signed-rank test different from mock, *p < 

0.05) than in mock-treated controls (n ≥ 8). Dashed line indicates the seta-foot region. Scale bar = 100 μm. 

 

STAR METHODS 

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the Lead Contact, Jill Harrison (jill.harrison@bristol.ac.uk). Please note that the transfer of transgenic 

materials will be subject to MTA and any relevant import permits. 

 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 

Physcomitrella plant growth 

The Gransden strain of Physcomitrella patens was used as the wild-type background for generating 

MKN2oe, mkn2/GR, mkn2/MKN2-GR and mkn2/MKN2>>PpIPT3 transgenic lines, and the Villersexel strain 

of Physcomitrella patens was used as the wild-type background for generating Ppipt3 CRISPR mutants. 

Plants were cultivated in sterile conditions on BCDAT medium (250 mg/L MgSO4.7H2O, 250 mg/L KH2PO4 

mailto:jill.harrison@bristol.ac.uk
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(pH 6.5), 1010 mg/L KNO3, 12.5 mg/L, FeSO4.7H2O, 0.001% Trace Element Solution (0.614 mg/L H3BO3, 

0.055 mg/L AlK(SO4)2.12H2O, 0.055 mg/L CuSO4.5H2O, 0.028 mg/L KBr, 0.028 mg/L LiCl, 0.389 mg/L 

MnCl2.4H2O, 0.055 mg/L CoCl2.6H2O, 0.055 mg/L ZnSO4.7H2O, 0.028 mg/L KI and 0.028 mg/L SnCl2.2H2O), 

0.92 g/L di-ammonium tartrate (C4H12N2O6) and 8 g/L agar with CaCl2 added to a 1 mM concentration after 

autoclaving) at 23 °C in continuous light or under a 16h light/8h dark cycle, at 50-150 µmolm-2s-1 in 

Panasonic MLR-351/352 growth cabinets. Phenotypic analyses of gametophyte development were 

undertaken using 1 mm2 spot cultures. Sporophyte cultures were initiated from macerated protonemal 

cultures grown for 5-10 days on BCDAT plates overlain with cellophane discs and then transferred to 

rehydrated Jiffy-7 peat pellets. Sporophyte cultures were grown at 23°C in continuous light for 6-8 weeks, 

and transferred to 16°C in short day (8h photoperiod) and low light (40 µmolm-2s-1) conditions for a 

minimum of 3 weeks before collecting developing or mature sporophytes. For pharmacological treatments, 

6-benzylaminopurine (BAP), isopentenyladenine (iP), dexamethasone (dex), cycloheximide (chx) or solvent 

controls (water for BAP and iP, 70% ethanol for dex and chx) were incorporated into BCDAT plates or used 

in water solutions to soak sporophyte cultures, at concentrations stated in the main text. 

 

METHOD DETAILS 

PpIPT identification and phylogenetic analysis 

Arabidopsis thaliana, Oryza sativa and Selaginella moellendorffii sequences were identified from [21] and 

[22], and Physcomitrella sequences were obtained by BLAST against the genome (accessible at Phytozome). 

All retrieved sequences were scanned against the InterPro protein signature databases to identify 

characteristic conserved domains. All Physcomitrella IPT (PpIPT) sequences except PpIPT2 contained a 

dimethylallyltransferase domain (IPR039657) (see Data S1). PpIPT2 was therefore considered a likely 

pseudo-gene and was excluded from phylogenetic analyses. Protein sequences were aligned using the 

mutiple sequence alignment clustal omega tool (default parameters) and the tree was generated using the 

ClustalW2 phylogeny tool (default parameters). Figtree software was use for tree visualization. 

Physcomitrella patens gene identifiers are PpIPT1: Pp1s96_115V6.1, Pp3c3_37040V3.1; PpIPT2: 

Pp1s432_30V6.1; PpIPT3: Pp1s280_8V6.1, Pp3c27_70V3.1; PpIPT4: Pp1s64_135V6.1, Pp3c5_9400V3.1; 

PpIPT5: Pp1s14_391V6.1, Pp3c6_21360V3.1; PpIPT6: Pp1s341_1V6.1, Pp3c16_6080V3.1; PpIPT7: 

Pp1s137_3V6.1, Pp3c23_12330V3.1; and PpIPT8: Pp1s137_19V6.1, Pp3c23_12370V3.1. 

Molecular biology 

Genomic DNA extraction 

To genotype mutants, around 100 mg of 1 to 2-week old protonemal tissues were ground in liquid nitrogen 

and resuspended in 700 μl of DNA extraction buffer (2 % Hexadecyltrimethylammonium bromide (CTAB), 

1.42 M NaCl, 100 mM Tris-HCl pH 8, 20 mM EDTA pH 8, 2 % PVP and 40 μg/ml RNaseA). Samples were 
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incubated for 10 minutes at 65 ˚C and centrifugated at 15,000 g for 10 min. Supernatant was transferred to 

a clean microtube and vigourously mixed with 600 μl of 24:1 chloroform:isoamyl alcohol. Samples were 

centrifuged at 15,000 rcf for 10 min, the aqueous phase was transferred to a new tube and mixed with 450 

μl of isopropanol to precipitate DNA. Following centrifugation at 15,000 rcf for 10 min, DNA was washed 

with 200 μl of 70 % ethanol, air-dried for 15 min and resuspended in 50 μl of 10 mM Tris pH 8.0 with 1 mM 

Na2EDTA. 

Genotyping 

Transgenic lines were genotyped by PCR using standard Taq Polymerase (e.g. GoTaq Polymerase) and 1 μl 

of CTAB-extracted genomic DNA per PCR reaction. The melting temperature of all primers was between 58 

and 60°C, and sequences are listed in Table S1. PCR amplification conditions were adapted to each 

amplicon according to the manufacturer’s instructions. MKN2oe lines were screened using MKN2 forward-1 

and MKN2 reverse-1 primers (MKN2 cDNA). mkn2/GR and mkn2/MKN2-GR lines were screened using HYG 

forward and HYG reverse primers (HYG resistance cassette), and GR forward and GR reverse primers 

(Glucocorticoid receptor gene), and MKN2-GR forward and MKN2-GR reverse primers (Glucocorticoid 

receptor – MKN2 fusion gene). Ppipt3 CR#1 mutants were screened using Ppipt3-23F and Ppipt3-26R 

primers, and Ppipt3 CR#2 and CR#3 mutants were screened using Ppipt3-23F and Ppipt3-23R primers. mkn2 

MKN2 >>PpIPT3 lines were screened using IPT3-14F and IPT3-14R primers (PpIPT3 cDNA transgene) and 

MKN2locus-3F and MKN2locus-3R primers (MKN2 locus). Integration of the full length PpIPT3 cDNA into 

the MKN2 locus was further confirmed by amplifying and sequencing MKN2/PpIPT3 cDNA borders using 

MKN2-5'UTR-24F and IPT3-5'-24R, and IPT3-3'-25F and MKN2-3'UTR-25R primer pairs, respectively. PpUBI 

was used as a positive control and detected using PpUBI forward-1 and PpUBI reverse-1 primers. 

RT-PCR 

Total RNA was isolated from 7 or 28-day old spot cultures using the QIAGEN RNeasy™ method. RNA was 

DNase treated prior to reverse transcription with SuperScript II following manufacturer’s guidelines. 

Semi-quantitative RT-PCR was undertaken using UBIQUITIN (Pp1s56_52V6.1) as a loading control, which 

was amplified using PpUBI forward-2 and PpUBI reverse-2, or PpUBI forward-3 and PpUBI reverse-3 

primers. PpIPT1, PpIPT3-PpIPT8 and MKN2 genes were respectively amplified using the following primer 

pairs: PpIPT1 forward and PpIPT1 reverse, PpIPT3 forward and PpIPT3 reverse, PpIPT4 forward and PpIPT4 

reverse, PpIPT5 forward and PpIPT5 reverse, PpIPT6 forward and PpIPT6 reverse, PpIPT7 forward and 

PpIPT7 reverse, PpIPT8 forward and PpIPT8 reverse, and MKN2 forward-4 and MKN2 reverse-4. Primer 

melting temperatures were between 58 and 60°C. PCR amplification conditions were 94°C 3 min; 94°C 30 

sec, 58°C 30 sec, 72°C 45 sec (36 cycles); 72°C 5 min. 

Quantitative RT-PCR  
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For gametophyte expression analyses, RNA and cDNA were prepared as described above. For sporophyte 

expression analyses, total RNA was isolated from immature sporophytes using the APPLIED BIOSYSTEMS 

Arcturus PicoPure RNA isolation kit (Cell Pellets protocol) following manufacturer’s guidelines. qRT-PCR was 

performed using a Brilliant III UltraFast SYBR green master mix and a Stratagene Mx3005P bioanalyser, or a 

ROCHE Fast Start Universal SYBR Green master mix and a ThermoFisher StepOnePlus Real-Time PCR 

System. Thermocycling conditions were: 95°C 3 min; 95°C 5 sec, 60°C 20 sec (40 cycles). For sporophyte 

cDNA only, a 10-cycle pre-amplification PCR was performed prior to qRT-PCR analysis. Specificity of PCR 

amplification was checked by melt curve analysis at each run. PpIPT1, PpIPT3, PpIPT4 and PpUBI genes 

were respectively amplified using the following primer pairs: PpIPT1 forward-1 and PpIPT1 reverse-1, 

PpIPT3 forward-1 and PpIPT3 reverse-1, PpIPT4 forward-1 and PpIPT4 reverse-1, PpUBI forward-4 and 

PpUBI reverse-4. Primer melting temperatures were comprised between 58 and 60°C. Expression of PpUBI 

was used as a reference to normalize gene expression levels between conditions, and Ct values were 

converted into relative expression values using the comparative Ct method [23]. 

Cloning 

Generation of MKN2 and MKN2-GR overexpression constructs  

To construct the pTHUBI-MKN2 expression vector and generate MKN2oe lines, a full length MKN2 cDNA 

was isolated by successive rounds of PCR using three pairs of nested primers (MKN2 forward-3 and MKN2 

reverse-3, MKN2 forward-2 and MKN2 reverse-2, and MKN2 forward-1 and MKN2 reverse-1). MKN2 cDNA 

was then amplified using MKN2-AttB-F and MKN2-AttB-R primers, cloned into the pDONR221 entry vector 

using the Gateway BP Clonase II enzyme, and then into the pTHUBI-Gateway destination vector using the 

Gateway LR Clonase II enzyme. To construct the pMP1575-MKN2 expression vector and generate 

mkn2/MKN2-GR lines, an MKN2 cDNA minus the stop codon was PCR amplified using MKN2-AttB-F and 

MKN2-AttB-R-noStop primers, cloned into pDONR207 using the Gateway BP Clonase II enzyme and then 

into the pMP1575 vector (a gift from Mike Prigge and Mark Estelle) using the Gateway LR Clonase II 

enzyme. The empty pMP1575 vector was used to generate mkn2/GR control lines. 

Generation of Ppipt3 CRISPR constructs 

The CRISPR-cas9 vector system described hereafter is based on Gateway Technology. Vectors were adapted 

from [24] for use in Physcomitrella by Magdalena Bezanilla’s laboratory. To generate Ppipt3 knock-out 

constructs, a protospacer corresponding to each sgRNA targeting exon 1 (positions 162 and 365) and exon 

3 (position 1455) was designed using CRISPOR software. Corresponding oligo pairs (sgR-IPT3-EX1-162-F and 

sgR-IPT3-EX1-162-R, sgR-IPT3-EX1-365-F and sgR-IPT3-EX1-365-R, and sgR-IPT3-EX3-1455-F and sgR-IPT3-

EX3-1455-R) were annealed and inserted downstream of a U6 promoter, into the BsaI site of the pENTR-

PpU6p-sgRNA-L1R5 or pENTR-PpU6p-sgRNA-L5L2 entry vectors (a gift from Magdalena Bezanilla). Then, 

they were transferred to the pMH-Cas9-gate destination vector that contains the Cas9 enzyme coding 

sequence and a hygromycin resistance cassette for transient antibiotic selection, using the Gateway LR 



 

 19 

Clonase II enzyme. Resulting plasmids were named pMH-Cas9_sgR-IPT3-EX1-162_EX1-365, pMH-Cas9_sgR-

IPT3-EX1-162_EX3-1455 and pMH-Cas9_sgR-IPT3-EX1-365_EX3-1455, respectively. 

Generation of MKN2>>PpIPT3 complementation constructs 

Two plasmids were made to replace the G418 resistance cassette from the mkn2 mutant with the full-

length PpIPT3 cDNA. The first was used to disrupt the G418 coding sequence and provide transient 

hygromycin resistance for plant selection. A protospacer corresponding to a G418 specific sgRNA was 

designed using the CRISPOR software. Corresponding oligos (sgR-G418-YCL1-F and sgR-G418-YCL1-R) were 

annealed and inserted downstream of a U6 promoter, into the BsaI site of the pENTR-PpU6p-sgRNA-L1L2, 

and then into pMH-Cas9-gate as described above to obtain pMH-Cas9_sgR-G418. The second plasmid 

contains the gene replacement cassette. 5’ and 3’ MKN2 flanking regions, and a full length PpIPT3 cDNA, 

were PCR amplified with the Phusion DNA polymerase using MKN2-5'-164-F and MKN2-5'-164-R, MKN2-3'-

167-F and MKN2-3'-167-R, and IPT3-168-F and IPT3-168-R primer pairs, respectively. An MKN2-5’ fragment 

was subcloned into pGEM-T EASY and, an MKN2-3’ fragment was inserted downstream of the MKN2 5’ 

fragment using SpeI and NdeI restriction sites. The PpIPT3 cDNA fragment was subsequently cloned into 

the SpeI site between MKN2 5’ and 3’ fragments to obtain pGEMT-MKN2_5'-IPT3-MKN2_3'. Both plasmids 

were used together in a transformation to generate complementation lines. 

Physcomitrella genetic transformation 

Plasmid DNA was purified using the QIAGEN Plasmid Plus Midi system and diluted in water at a 

concentration of 1 µg/µL prior to transformation. For overexpression approaches only, plasmid DNA was 

also linearized using SwaI (pTHUBI-MKN2) or SfiI (pMP1575-MKN2) restriction enzymes and cleaned up 

using a NucleoSpin Gel and PCR Clean-up or similar kit. All steps below were performed in sterile 

conditions. Protonemal cultures used for genetic transformation were initiated from 5-10 day old tissues 

and grown for 5 days maximum on BCDAT plates overlain with autoclaved cellophane disks. Protonemal 

tissue was digested in a 1% driselase / 8% mannitol solution for 1 hour or so, at room temperature. The 

resulting suspension was filtered through a 100 μm nylon mesh, and cells were centrifuged at 90 g for 4 

minutes and washed in an 8% mannitol solution three times. Protoplasts were resuspended in 8% mannitol 

at a concentration of 3.2 x 106 cell/ml. In a 13 ml tube, 150 μl of the protoplast suspension was gently 

mixed with 150 μl of 2xMaMg (61 g/L MgCl2, mannitol 80 g/L, MES 2 g/L, pH 5.6), 15 μl DNA per construct 

and 300 μl PEG solution (23.6 g/L Ca(NO3).4H2O, 4.76 g/L HEPES, 72.8 g/L mannitol, 400 g/L PEG6000, pH 

7.5). The PEG-protoplast mixture was heat shocked at 45°C for 5 minutes, cooled down at 20°C for a further 

10 minutes and progressively diluted over one hour with 8% mannitol to reach a final volume of 12 ml. The 

protoplast suspension was centrifuged at 90 g for 4 minutes, resuspended in BCDAT with 8% mannitol and 

10 mM CaCl2, and incubated overnight at 23°C in the dark. The next day, The protoplast suspension was 

centrifuged at 90 g for 4 minutes and resuspended in BCDAT with 8% mannitol, 10 mM CaCl2 and 0.4% agar 

and plated onto BCDAT plates containing 8% mannitol, 10 mM CaCl2 and 0.8% agar and overlain with sterile 
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cellophane disks, and incubated at 23°C in photoperiod conditions described above. After 5 days, 

cellophane disks were transferred to BCDAT plates supplemented with 20 mg/L Hygromycin B. After 7 days, 

cellophane disks were transferred to BCDAT medium without antibiotic. A second round of antibiotic 

selection was performed for transformations involving stable insertion of the antibiotic resistance cassette 

(i.e. MKN2oe, mkn2/GR and mkn2/MKN2-GR lines). For CRISPR approaches involving transient selection, 

only one round of antibiotic selection was performed. All lines were screened by PCR, RT-PCR and/or 

sequencing as described in the Molecular Biology section.  

Phenotyping and imaging 

To assess whole plant and sporophyte phenotypes, 4 week-old spot cultures and mature sporophytes were 

imaged using a Keyence VHX-1000E digital microscope with a 20-50 X or 50-200 X objective. Filaments were 

dissected from 10 day-old cultures, stained with 0.1 % Calcofluor (Fluorescent Brightener 28) or 50 mg/ml 

Propidium Iodide, and imaged using Leica (Wetzlar, Germany) TCS5 or SP8 confocal microscopes with HCX 

PL FLUOTAR 10x/0.30, HC FLUOTAR L 25x/0.95 or HCX APO L 40x/0.80 objectives. Laser excitation used a 

Diode 405 line, and emission was collected from a 420–460 nm band. Quantitative measurements were 

undertaken using ImageJ or Keyence software. Gametophore density was calculated as the number of 

gametophores on a plant divided by the area of the plant. The proportion of gametophores with 

sporophytes was calculated following hand dissection of c. 100 gametophores from a sporophyte induction 

culture. DIC micrographs of sporophytes cleared in Hoyer’s medium (15 g gum arabic, 100 g chloral 

hydrate, 10 g glycerol for 25 ml distilled water) were taken using a Leica DMRXA microscope with an HCPL 

APO 10 X/0.40 objective.  

Cytokinin quantification 

To quantify cytokinin profiles, 50 mg of tissue was isolated from 10-day old cultures and snap frozen in 

liquid nitrogen. Samples were processed as described in detail in a methods paper published by Novák et 

al. (2008) [15]. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analyses were undertaken using R. Experimental sample sizes and statistical methods detail are 

given in the legends for Figures 1-4 and S1-S4. 

 

DATA AND CODE AVAILABILITY STATEMENT 

IPT protein sequence data are included in Data S1. Further data are available on request from the lead 

author. 
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Data S1. IPT alignment used for phylogenetic analysis. Related to STAR Methods and Figure S3. 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial and Virus Strains  

E. coli strain DH5α Widely distributed N/A 

E. coli strain DB3.1 Widely distributed N/A 

Chemicals and Recombinant Proteins 

GoTaq polymerase Promega Cat#M7122 

Phusion High-Fidelity DNA polymerase ThermoFisher Cat#F530S 

Superscript II reverse transcriptase ThermoFisher Cat#18064022 

Restriction enzymes for cloning New England Biolabs N/A 

DNase Fermentas Cat#EN0525 

RNAse A ThermoFisher Cat#R1253 

Plant agar Duchefa Cat#P1001 

Driselase (basidiomycetes sp.) Sigma-Aldrich Cat#8037 

Polyethylene glycol (PEG) 6000 Sigma-Aldrich Cat#81255 

2-iP Duchefa Cat# D0906 

6-Benzylaminopurine (6-BAP) Duchefa Cat# B0904 

G418 disulphate Melford Cat#G0175 

Hygromycin B Melford Cat#H7502 

Dexamethasone Sigma-Aldrich Cat#D1756 

Cycloheximide Sigma-Aldrich Cat#01810 

Propidium iodide Sigma-Aldrich Cat#P4864 

Calcofluor White / FB 28 Sigma-Aldrich Cat#F3543 

Chloral hydrate Sigma-Aldrich Cat#C8383 

Gum arabic Widely distributed N/A 

Glycerol Widely distributed N/A 

Ethanol Widely distributed N/A 

Chloroform Widely distributed N/A 

Isoamyl alcohol Widely distributed N/A 

D-mannitol Sigma-Aldrich Cat#M9647 

MES Sigma-Aldrich Cat#69892 

HEPES Sigma-Aldrich Cat#H3375 

CTAB Sigma-Aldrich Cat#H6269 

PVP Sigma-Aldrich Cat#PVP10 

Critical Commercial Assays 

RNeasy RNA extraction kit QIAGEN Cat#74104 
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Plasmid Plus Midi kit QIAGEN Cat#12943 

Arcturus PicoPure RNA Isolation Kit ThermoFisher Cat#KIT0204 

Brilliant III UltraFast SYBR green master mix Agilent Cat#600882 

Fast Start Universal SYBR Green master mix Roche Cat#04913914001 

Gateway BP Clonase II enzyme mix ThermoFisher Cat#11789020 

Gateway LR Clonase II enzyme mix ThermoFisher Cat#11791020 

Nucleospin Gel and PCR Clean-up kit Machery Nagel Cat#740609.10 

Experimental Models: Organisms/Strains 

Physcomitrella patens Gransden Widely available N/A 

Physcomitrella patens Villersexel Widely available N/A 

Physcomitrella patens mkn2 mutant [8] N/A 

MKN2oe #1 line This study N/A 

MKN2oe #2 line This study N/A 

MKN2oe #3 line This study N/A 

mkn2 / GR line This study N/A 

mkn2 / MKN2-GR #1 line This study N/A 

mkn2 / MKN2-GR #2 line  This study N/A 

Ppipt3 CR#1 mutant This study N/A 

Ppipt3 CR#2 mutant This study N/A 

Ppipt3 CR#3 mutant This study N/A 

mkn2 MKN2>>PpIPT3#1 line This study N/A 

mkn2 MKN2>>PpIPT3#2 line This study N/A 

mkn2 MKN2>>PpIPT3#3 line This study N/A 

Recombinant DNA 

pTHUBI-IPT1 [14] N/A 

pTHUBI-MKN2  This study N/A 

pMP1575-MKN2 This study N/A 

pGEMT-MKN2_5'-PpIPT3-MKN2_3' This study N/A 

pMH-Cas9_sgR-G418  This study N/A 

pMH-Cas9_sgR-PpIPT3-EX1-162_EX1-365 This study N/A 

pMH-Cas9_sgR-PpIPT3-EX1-162_EX3-1455 This study N/A 

pMH-Cas9_sgR-IPT3-EX1-365_EX3-1455 This study N/A 

pENTR-PpU6p-sgRNA-L1R5 Bezanilla lab Addgene 113737 

pENTR-PpU6p-sgRNA-L5L2 Bezanilla lab Addgene 113738 

pENTR-PpU6p-sgRNA-L1L2 Bezanilla lab Addgene 113735 

pMH-Cas9-gate Bezanilla lab Addgene 113742 

pMP1575 Estelle lab  N/A 

pTHUBI-Gateway [20] N/A 
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pDONR221 ThermoFisher Cat#12536017 

pDONR207 Invitrogen N/A 

pGEMT-EASY Promega Cat#A1360 

Software and Algorithms 

Clustal omega tool www.ebi.ac.uk/Tools/msa N/A 

ClustalW2 phylogeny tool www.ebi.ac.uk/Tools/phylogeny N/A 

Phytozome www.phytozome.jgi.doe.gov/pz/portal.html N/A 

Figtree  www.tree.bio.ed.ac.uk/software/figtree v1.4.3 

CRISPR design software www.crispor.tefor.net N/A 

ImageJ www.Imagej.net v1.4.8 

Addgene repository  
www.addgene.org/kits/bezanilla-crispr-
physcomitrella/ 

N/A 

Moss eFP browser 
www.bar.utoronto.ca/efp_physcomitrella/cgi-
bin/efpWeb.cgi   

N/A 

Miscellaneous   

Jiffy-7 peat pellets (38 mm) www.jiffypot.com/en/products/jiffy7.html  Widely distributed 
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Figure S1. MKN2 expression levels positively correlate with phenotype severity in MKN2oe lines. Related 

to Figure 1. (A) Schematic of the genetic construct (pTHUBI>>MKN2) used to generate MKN2 over-

expressing lines (MKN2oe). 35S and UBI, constitutive promoters; T, Nos terminator; HPTII, hygromycin 

resistance gene. (B) RT-PCR analysis detected strong expression of MKN2 in three independent 

pTHUBI>>MKN2 (MKN2oe) transgenic lines but not in untransformed WT controls. PpUBI (Pp1s56_52_v6.1) 

was used as internal control. (C) Gametophytes appeared similar in WT and mkn2 mutant plants. Scale bar 

= 5 mm. (D) Gametophyte spread (n ≥ 26) and shoot density (n ≥ 10 colonies) were similar (Wilcoxon 

signed-rank test p > 0.05) in WT and mkn2 mutant plants. (E) Plant spread and protonemal elongation were 

reduced in proportion to MKN2 expression levels in transgenic lines. MKN2oe #1 is shown in Figure 2. Scale 

bar = 5 mm. (F) Plant spread (n ≥ 21) and shoot density (n ≥ 7 colonies) were significantly different in 

different MKN2oe lines and WT plants (mean ± SD; t-test different from WT, *p < 0.05). Triangles indicate 

data replicated from Figure 1. (G) Confocal micrographs of propidium iodide stained protonemata showed 

that gametophore buds (stars) initiated from chloronema cells in MKN2oe plants (blue, chlorophyll ; 

magenta, PI). Scale bar = 100 μm. 
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Figure S2. Exogenous cytokinin reduces protonemal elongation and colony area. Related to Figure 2. (A) 

WT plants treated with increasing concentrations of benzylaminopurine (BAP) showed proportional 

reduction in colony size and protonemal elongation. Gametophore development was impaired in plants 

treated with 50 nM BAP or more. Scale bar = 5 mm. (B) Colony area was significantly reduced in BAP 

treated plants compared to mock treated controls (mean ± SD; n = 16; t-test different from mock, *p < 

0.05). Triangles indicate data replicated from Figure 1. 
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Figure S3. PpIPTs are active when the intercalary meristem is active. Related to Figure 3, Figure 4 and 

Data S1. (A) Relationship between IPT proteins from A. thaliana, O. sativa, S. moellendorffii and P. patens. 

The neighbour-joining tree was generated using the alignment of IPT amino acid sequences from 

Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii and Physcomitrella patens in Supplemental 

Dataset 1. (B) PpIPT3 expression is induced by cyclohexamide (CHX) irrespective of the genetic background. 

Quantitative RT-PCR analysis of PpIPT3 gene expression 4 hours after mock, 10 μM dexamethasone (DEX), 

10 μM CHX or both 10 μM DEX and 10 μM CHX (D/C) treatment in mkn2/GR and mkn2/MKN2-GR #1 

transgenic lines. PpIPT3 gene expression is significantly induced by DEX in mkn2/MKN2-GR #1 plants and 

not mkn2/GR plants, but responds to CHX irrespective of the genetic background (mean fold change of two 

independent biological replicates relative to mock treatment ± SE). (C) eFP Browser expression data for 

Physcomitrella IPT genes. Asterisks indicate stages at which expression was first detected, in the case of 

PpIPT3 coinciding with intercalary meristem activity. 
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Figure S4.  Effects of PpIPT1 overexpression and exogenous cytokinin treatments on sporophyte 

development. Related to Figure 4. (A) RT-PCR analysis detected high levels of PpIPT1 expression in 

gametophytes of different mkn2 pTHUBI>>PpIPT1 (PpIPT1oe) lines in comparison to untransformed mkn2 

mutants. PpUBI was used as an internal control. (B) Bar plots show that the percentage of gametophores 

bearing at least one sporophyte was strongly or completely reduced relative to mkn2 mutants in 

mkn2/PpIPT1oe transgenic lines (n ≥ 70 gametophores). 

 

Table S1. Names and sequences of PCR primers used. Related to STAR Methods. 
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