
                          Zhang, H., Dong, Y., Palomares-Carrascosa, I., & Zhou, H. (2018). Failure
Mode and Effect Analysis in a Linguistic Context: A Consensus-Based
Multiattribute Group Decision-Making Approach. IEEE Transactions on
Reliability, 68(2), 566-582. [8482309].
https://doi.org/10.1109/TR.2018.2869787

Peer reviewed version

License (if available):
Other

Link to published version (if available):
10.1109/TR.2018.2869787

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://doi.org/10.1109/TR.2018.2869787 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1109/TR.2018.2869787
https://doi.org/10.1109/TR.2018.2869787
https://research-information.bris.ac.uk/en/publications/failure-mode-and-effect-analysis-in-a-linguistic-context(c1b1604e-c77a-4829-b0f2-1d65fa843129).html
https://research-information.bris.ac.uk/en/publications/failure-mode-and-effect-analysis-in-a-linguistic-context(c1b1604e-c77a-4829-b0f2-1d65fa843129).html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

Failure Mode and Effect Analysis in a Linguistic

Context: A Consensus-Based Multiattribute Group

Decision-Making Approach
Hengjie Zhang , Yucheng Dong , Iván Palomares-Carrascosa, and Haiwei Zhou

Abstract—Failure mode and effect analysis (FMEA) is an effec-
tive risk-management tool, which has been extensively utilized to
manage failure modes (FMs) of products, processes, systems, and
services. Almost all FMEA models are concerned with how to get a
complete risk order of FMs from highest to lowest risk. However,
in many situations, it may be sufficient to classify the FMs into
several ordinal risk classes. Meanwhile, generating a consensual
decision is crucial for the FMEA problem because 1) reaching con-
sensus will enhance the connections among FMEA participants,
and 2) a highly accepted group solution to the FMEA problem can
be generated. Thus, this study proposes a consensus-based group
decision-making framework for FMEA with the aim of classify-
ing FMs into several ordinal risk classes in which we assumed that
FMEA participants provide their preferences in a linguistic way us-
ing possibilistic hesitant fuzzy linguistic information. In the FMEA
framework, a consensus-driven methodology is presented to gen-
erate the weights of risk factors. Following this, an optimization-
based consensus rule guided by a minimum adjustment distance
policy is devised, and an interactive model for reaching consensus
is developed to generate consensual FM risk classes. In order to
justify its validity of the proposal, our framework is applied for the
risk evaluation of proton beam radiotherapy.

Index Terms—Consensus, failure mode and effect analysis
(FMEA), failure mode classification, multiattribute group decision-
making, reliability management.

NOMENCLATURE

D Detection.

FM Failure mode.
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FMEA FM and effect analysis.

GDM Group decision making.

HFLTSs Hesitant fuzzy linguistic term sets.

MAGDM Multi-attribute GDM.

O Occurrence.

PHFLTSs Possibilistic HFLTSs.

PHFLAM Possibilistic hesitant fuzzy linguistic as-

sessment matrix.

RPN Risk priority number.

S Severity.

Notations

{s0 , . . . , sg} Linguistic term set.

H Hesitant fuzzy linguistic term set.

PH Possibilistic hesitant fuzzy linguistic term

set.

{TM1 , . . . ,TMm} Set of FMEA members.

{FM1 , . . . ,FMn} Set of FMs.

{RF1 , . . . ,RFy} Set of risk factors.

V (k) Individual PHFLAM provided by TMk .

V (c) Collective PHFLAM.

λ Weight vector of FMEA members.

Ω Information on set of known risk factor

weights.

Cj The jth risk class of FMs.

Tj Number of FMs in Cj .

PV(k) Preference vector derived from V (k) .

w Weight vector of risk factors.

CL Consensus level among FMEA members.

I. INTRODUCTION

R
ELIABILITY engineering addresses the estimation, pre-

vention, and management of high levels of “lifetime” en-

gineering uncertainty and risks of failure, which has received

wide attention in various areas [16], [65]. Failure mode and

effects analysis (FMEA) is a highly structured, and system-

atic reliability-management instrument, which is very useful

for evaluating and eliminating potential failure modes (FMs) of

products, processes, systems, and services [5], [39], [52].

By employing FMEA tools, it is possible to identify where

and how a specific product or system might fail. Likewise, the

frequency, effects, and potential causes of a group of FMs can

be analyzed in detail. The FMEA approach was first imple-

mented in the United States aerospace industry by National
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Aeronautics and Space Administration [4], and it has become

ever since an integral tool in the Six Sigma process improve-

ment [30]. When applying FMEA, the past design experience

can be transformed into the ability to foresee future problems.

In this way, some of the potential risks can be avoided at the

early stages of the design. Given these advantages, FMEA has

been used extensively in many industries, including aerospace,

nuclear, electricity, manufacturing, marine, and healthcare [15],

[23], [33], [61].

In traditional FMEA, the RPN is utilized to generate the risk

priorities of potential FMs. Effectively, the RPN of an FM is

determined by calculating the product of three risk factors: oc-

currence (O), severity (S), and detection (D). Usually, the FMs

are evaluated based on each of the three risk factors (i.e., O, S,

and D) using a 10-point qualitative scale [52], with the larger

ordinal score indicating a stronger evidence for a hazardous

situation. According to the RPN values of the identified FMs,

their risk priorities are determined. Increased attention should

be paid to those FMs with the highest RPN values, and a series

of recommended actions is subsequently conducted to avoid or

mitigate these FMs. The RPN is recalculated after the failure

risk has been mitigated to confirm the effectiveness of the im-

plemented corrective actions. For analytical references to the

detailed steps on how to complete an FMEA process, we refer

the interested reader to Liu [36] and Stamatis [52]. Even though

the RPN-based FMEA method has been used extensively in

quality improvement efforts, it has received some criticism in

the literature (see [38] and [47]). First, accurate quantitative as-

sessments on every FM with respect to risk factors are needed in

the conventional RPN-based FMEA method. However, in some

real-world FMEA problems, risk assessment information is of-

ten uncertain and imprecise rather than accurate, due to the lack

of insightful data, time pressure, and inherent vagueness exhib-

ited by experts in the area. Second, the conventional RPN-based

FMEA methods do not take into account the relative importance

of the existing risk factors, being assumed that the importance

weights of risk factors are equally distributed. This assump-

tion might be neither realistic nor precise when considering a

real-world application of FMEA.

To overcome the inherent deficiencies analyzed above as-

sociated with the conventional RPN-based FMEA methods, a

large body of research has been devoted in the past decades to

develop and introduce various new risk priority models in the

literature, most of which have focused on the effective handling

of the uncertainty and imprecision in decision information at

hand. For instance, Bowles and Peláez [4] initially presented a

fuzzy logic-based FMEA method for dealing with some of the

drawbacks in the traditional methods based on strictly numeri-

cal evaluations. Bradley and Guerrero [5] developed a method

to rank FMs using a data-elicitation technique. Liu et al. [39]

proposed an integrated FMEA approach for accurate risk assess-

ment in an uncertain setting. Additionally, Liu et al. [38] and

Spreafico et al. [51] provided a comprehensive survey of the im-

provement of risk evaluation methods for FMEA. An overview

of the improvements made on FMEA approaches is provided in

Section II.

Although the conventional FMEA models as well as the im-

proved FMEA models have undeniably proven their usefulness

in practice, there are still many issues that need to be further

investigated for coping with real-world FMEA problems.

A. Decision Outcomes

Almost all FMEA models have been focused on how to gen-

erate a complete ranking of the FMs from the most prominent

to the least prominent risk. In real-world FMEA, yielding a

complete ranking of FMs is sometimes very time-consuming

because of the large number of FMs that are being handled [7].

Furthermore, in some situations, it is not necessary to derive a

complete ranking of FMs because the FMEA goal is typically

to simply distinguish between the most critical FMs and the

least critical ones. In some situations, we only need to classify

the FMs into several ordinal risk classes, ranking the risks from

the highest to the lowest (i.e., very high, high, medium, low,

and very low). For example, a large number of FMs are often

involved in the risk analysis in the manufacturing processes of

dairy industries, because dairy industries involve many stages,

including pretreatment, filling, closing, incubation, and trans-

portation for sharp cooling. In this case, FMs ordinal classifica-

tion has some merits compared to producing a complete ranking

of FMs because

1) the ordinal classification of FMs presents them as a struc-

ture that is easy to understand and visualize;

2) FMs ordinal classification allows the risk analyst to

quickly access or analyze them, and leads to a more effi-

cient decision-making and action-taking process;

3) FMs ordinal classification is easily implementable and

requires a short computational time to get the ordered

classification results of FMs.

These merits of ordinal classification of FMs have been pre-

sented in Certa et al. [9]. To our knowledge, there are very few

FMEA approaches that have focused on the ordinal classifica-

tion of the FMs into ordinal classes with the exception of the

approaches presented in Certa et al. [9] and Lolli et al. [41].

B. Diversity in Decision Group Opinions

FMEA team members typically come from different areas and

may differ in the knowledge structure, evaluation levels, as well

as practical experience, and their preferences may thus differ

substantially. Most extant FMEA methods do not take this issue

into account, and they only focus on how to obtain a ranking of

the FMs by fusing FMEA team member preference information

without addressing the issue on whether or not the consensus

level among FMEA team members can be guaranteed. In prac-

tice, achieving a consensus among FMEA participants is a cru-

cial aspect to consider, which offers a few key advantages, such

as 1) building connections among the FMEA participants. Using

a consensus-reaching model as a decision tool means taking the

time to find unity on how to proceed before moving forward

which promotes communication among FMEA participants.

2) A more effective and accepted implementation of the deci-

sion results. When FMEA participant preferences and concerns

are taken into account, they are much more likely to actively

participate in the implementation of the obtained solution to the

FMEA problem. A detailed analysis of the above advantages of
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the consensus-reaching model has been discussed in Susskind

et al. [53].

To deal with a decision problem involving multiple individ-

uals, many group decision making (GDM) and multiattribute

group decision making (MAGDM) models have been reported

in the literature [28]. In particular, numerous consensus-based

GDM and MAGDM models have been designed for support-

ing reaching consensus among a group of individuals [2], [6],

[10], [11], [17], [19], [58]. The comprehensive overview of re-

lated works provided in Section II demonstrates that research on

consensus-reaching process has been the subject of numerous

achievements [1], [46], [52]. However, they cannot be applied in

the ordinal classification of FMs based on the FMEA problem in

a straightforward manner because all of them are focused on ob-

taining a consensual complete ranking of alternatives (with FMs

being deemed as alternatives in the decision-making problem)

rather than producing an ordinal classification of alternatives.

It is therefore crucial and necessary to develop a consensus-

reaching model for supporting the achievement of consensus in

the ordinal classification-based FMEA problem of FMs.

Due to the complexity of real-world decision situations, some

individuals may often face difficulties to provide their opinions

in a precise manner. The hesitant fuzzy set (HFS) [54], [60],

[62] is an effective way for modeling uncertain opinions in de-

cision making, and their membership functions are represented

by a set of possible values. Meanwhile, decision makers will

often be more comfortable in expressing their opinions in a lin-

guistic way. Thus, by combining the merits of the HFSs and

linguistic term sets, Rodrı́guez et al. [48] further proposed the

concept of the HFLTS to increase the flexibility and expressive-

ness power of elicited linguistic preferential information. Fur-

thermore, by incorporating the possibilistic information into the

hesitant fuzzy linguistic information, the possibilistic hesitant

fuzzy linguistic assessment model was developed [59]. The pos-

sibilistic hesitant fuzzy linguistic assessment model is a useful

tool for FMEA members to express their uncertain assessment

information due to its convenience and flexibility in handling

the hesitancy and uncertainty underlying such assessments in

practical contexts [57]. Therefore, it constitutes the preference

modeling approach adopted in this study.

Motivated by the challenges of filling the research gaps and

challenges highlighted above on the existing FMEA models,

and inspired by the advances achieved on reaching consensus

in the GDM, we propose a consensus-based GDM approach

for FMEA problems in a possibilistic hesitant fuzzy linguistic

context with the aim of classifying the system/process FMs into

several ordinal risk classes (e.g., very high, high, medium, low,

and very low). In the proposed consensus-based FMEA frame-

work, we present a consensus-driven methodology to compute

the weights of the risk factors in the context of incomplete-

ness, thereby enabling a more realistic setting where not all risk

factors may be equally important. Following this, we present a

consensus rule founded on a minimum adjustment distance, and

propose an optimization model to support this consensus rule.

The optimization model is converted into a 0–1 mixed linear pro-

gramming model to facilitate its resolution. We further develop

an interactive consensus-reaching/building process for FMEA

problems on the basis of the proposed consensus rule. In the

consensus-reaching process, FMEA team members can adjust

their preferences flexibly according to the adjustment sugges-

tions generated by the optimization-based consensus rule based

on minimum adjustment distances. Finally, a case study regard-

ing the problem of evaluating risk in proton beam radiotherapy

is presented to justify the feasibility and validity of the proposed

methodology.

The remainder of this study is arranged as follows. In

Section II, we briefly review the literature of improved FMEA

methods as well as the literature regarding consensus building

in GDM. Section III introduces preliminaries regarding linguis-

tic decision-making representational models considered in this

study. Section IV presents the target consensus-based FMEA

problem, proposing its resolution framework. Following this,

Section V devises a consensus-driven optimization-based model

to determine the weights of risk factors, and Section VI devel-

ops a consensus-reaching process with a minimum adjustment

distance to support reaching consensus in the FMEA problem.

Subsequently, the feasibility and validity of the proposed FMEA

method are demonstrated using a case study in Section VII and

a comparison analysis is completed in Section VIII. Finally, the

conclusions of this study and a discussion on future research

directions are outlined in Section IX.

II. LITERATURE REVIEW

This section reviews some related works on improved FMEA

methods as well as the consensus-reaching processes in GDM

problems owing to their relevance with the scope of this study.

A. Failure Mode Evaluations in FMEA

As mentioned previously, it is often difficult for an FMEA

expert to quantify his/her assessment as an exact value in a

numerical scale such as 1–10, for instance. Thus, a large num-

ber of approaches/methodologies have been reported to model

the uncertainties of the assessment information from FMEA

team members. Bowles and Peláez [4] introduced a fuzzy logic

theory approach for generating a rankings of FMs involved in an

FMEA problem. Additional FMEA approaches that are based

on fuzzy logic theory can be found in [23], [31], [43], [47], [63],

and [65]. An evidential reasoning approach is employed by sev-

eral researchers to deal with the assessment of information with

uncertainty in the FMEA, including those proposed by Chin

et al. [12] and Liu et al. [37]. Adhikary et al. [18] adopted gray

numbers to quantify the assessment information of the FMs with

respect to the risk factors. In addition, the linguistic assessment

approach has been utilized to deal with the uncertainty faced

by FMEA team members’ evaluation information. Based on in-

terval two-tuple linguistic information, a rigorous risk ranking

method was proposed by Liu et al. [39] to improve the FMEA

accuracy. Recently, Huang et al. [29] applied linguistic dis-

tribution assessments to represent risk evaluation information

collected from FMEA team members. Other FMEA methods

have been reported to model the ambiguity involved in FMEA

problems, such as those using rough sets [49], and two-tuple

linguistic variables [35].
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Moreover, HFLTSs [48], which increased the flexibility and

richness of linguistic elicitation, have been recently applied in

the FMEA by Liu et al. [40]. Furthermore, the possibilistic hes-

itant fuzzy linguistic term sets (PHFLTSs) have been developed

in the literature by incorporating possibilistic information [59].

Compared with other linguistic models, the PHFLTSs are more

effective in modeling the uncertainty and hesitancy in practi-

cal applications. Thus, the use of a linguistic method based on

PHFLTSs provides an added value in managing linguistic risk

evaluations in the FMEA problem. To our knowledge, PHFLTSs

have not been adopted yet by existing FMEA models to denote

uncertain assessments by FMEA members.

B. Risk Factor Weights in FMEA

To overcome the drawback of RPN-based FMEA concern-

ing the importance of risk factors, many approaches, includ-

ing subjective and objective weighting approaches, have been

reported to derive the importance of risk factors. The direct

assessment [39], analytic hierarchy process [64], and Delphi

methods [67], are commonly used methods for the determina-

tion of the subjective importance of risk factors. Additionally,

the data envelopment analysis [12], [13] is typically utilized to

deduce the objective risk factor weights. Liu et al. [39] utilized

a combined approach to compute the degrees of importance of

the risk factors in FMEA, in which the objective weights were

derived based on statistical distances. Song et al. [50] employed

the entropy-based weighting approach for computing the risk

factors’ objective weights, and a combined approach was then

presented to integrate subjective and objective weights of risk

factors. Recently, Liu et al. [40] reported a novel weight deter-

mination method, and the basic principle of this method was

based on the fact that the most serious FM(s) should have the

“greatest relation grade” to the reference sequence.

When applying FMEA, a multidisciplinary team that consists

of multiple experts, a group of FMs, and a set of risk factors

are often involved. The team members express their assess-

ment information of FMs with respect to multiple risk factors.

Thus, the FMEA can be regarded as a complicated MAGDM

problem [40]. In particular, the FMEA team members can be

seen as decision makers, and FMs can be deemed as alter-

natives, while risk factors can be perceived as attributes in the

MAGDM. In MAGDM problems, consensus-driven approaches

aimed at maximizing the consensus level among all individuals

have been recently adopted with the additional aim of determin-

ing the weights of attributes [20]. To our knowledge, there is no

research focused on undertaking a consensus-driven approach

for computing the weights of risk factors in FMEA problems as

of yet.

C. Prioritization of FMs in FMEA

As mentioned above, the determination of the priority order-

ing of FMs in FMEA can be seen as an MAGDM problem [40].

It is worth noting that the MADM or MAGDM methods have

proved to be useful approach to rank FMs.

For instance, Franceschini and Galetto [22] presented an

MADM method for determining the risk order of FMs in FMEA.

Their method is capable of addressing qualitative assessment in-

formation without necessitating a numerical conversion. Song

et al. [50] adopted a TOPSIS method to produce the prior-

ity ordering of FMs in FMEA. Liu et al. [40] reported an

integrated MADM model to generate the risk order of FMs

under the context of uncertainty. Huan et al. [29] applied an

improved TODIM-based FMEA method for determining the

risk order of FMs. Mohsen and Fereshteh [42] proposed an ex-

tended VIsekriterijumska optimizacija i KOmpromisno Resenje

(VIKOR) method based on an entropy measure for the FM risk

assessment. Wang et al. [55] reported an FMEA method by us-

ing the house of reliability-based rough VIKOR approach. Other

studies regarding prioritization of FMs can be found in [5], [12],

[13], [18], [23], and [31].

The above prioritization approaches are all focused on how to

generate a complete ranking of FMs rather than on the ordinal

classification of FMs. However, deriving a complete ranking of

FMs is sometimes infeasible in practice owing to a possibly large

number of FMs that are being handled [7]. Furthermore, some

real-life scenarios, such as FMEA do not require a complete

ranking of FMs [9], [41]. Certa et al. [9] developed an alterna-

tive approach for the criticality assessment of process/system

FMs. In their work, the ELECTRE TRI method was utilized to

classify FMs into several ordinal risk classes with the risk levels

ranked from high to low. Lolli et al. [41] developed an MADM

method named FlowSort-GDSS to divide FMs into several ordi-

nal risk classes. In addition, both the method introduced by Lolli

et al. and all other existing FMEA models focused on the di-

rect aggregation of the different assessments of FMEA member

information and the prioritization of FMs, in such a manner so

that the consensus was not addressed among FMEA members.

D. Consensus-Reaching Processes in the GDM

A vast number of consensus models have been reported in

literature to help decision makers reach a consensus in GDM.

For example, Altuzarra et al. [2] investigated the problem of

reaching consensus in AHP–GDM from a Bayesian perspec-

tive. Herrera-Viedma et al. [25] and Choudhury et al. [14] pro-

posed consensus models for GDM problems with different pref-

erence representation structures. Ben-Arieh et al. [3] devised

a minimum cost consensus with quadratic cost functions. Wu

and Xu [57] developed consensus frameworks that simultane-

ously managed individual consistency and consensus in GDM

with hesitant fuzzy linguistic preference relations. Pérez et al.

[44] suggested a dynamic consensus model to manage deci-

sion situations in which the set of alternatives changed dynam-

ically. Moreover, Alonso et al. [1] and Kacprzyk and Zadrozny

[32] developed web-based consensus support systems. Recently,

Capuano et al. [8] and Wu et al. [56] developed two approaches

for undertaking consensus-reaching processes in which the

trust relationship among individuals was considered. Palomares

et al. [46] presented a consensus model for large-group decision

making capable of identifying and managing noncooperative

behaviors. Additional approaches for establishing consensus in

GDM can be found in Dong et al. [19] and Herrera-Viedma

et al. [24]. A detailed survey of existing consensus models un-
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der fuzzy contexts can be found in Palomares et al. [45]. To our

knowledge, all these consensus models were focused on how

to generate a complete ranking of alternatives under consensus

rather than deriving a classification of decision alternatives on

several ordinal classes.

From the above literature, the following observations are out-

lined:

1) the PHFLTSs have not been adopted to model uncertain

assessment information by existing FMEA models;

2) most FMEA models are focused on how to generate a

complete risk order of FMs from the highest to the lowest

risk, and there is a clear shortage of FMEA approaches

that focus on the ordinal classification of the FMs;

3) the consensus among all FMEA team members is not

taken into account by any of the existing FMEA ap-

proaches, and the existing consensus-reaching processes

are envisaged to determine a comprehensive ranking of

alternatives.

Therefore, they cannot be applied directly in the FM ordinal

classification-based FMEA problem. All of these research gaps

motivated us to propose a consensus-based MAGDM approach

for the FMs ordinal classification-based FMEA problem in the

possibilistic hesitant fuzzy linguistic context.

III. PRELIMINARIES

This section introduces some basic knowledge regarding the

two-tuple linguistic model, and the possibilistic hesitant fuzzy

linguistic assessments information, which constitute the repre-

sentative models for linguistic preferential information utilized

in the framework proposed in this study.

A. Two-Tuple Linguistic Model

The basic notations and operational laws of linguistic vari-

ables were introduced in Herrera and Martinez [27]. Let S =
{s0 , . . . , sg} be a linguistic term set with odd granularity g + 1,

where the term sj signifies a possible value for a linguistic vari-

able. The linguistic term set is typically required to satisfy the

following additional characteristics:

1) the set is ordered: si ≤ sj if and only if i ≤ j;

2) there is a negation operator such that neg(sj ) = sg−j .

Herrera and Martı́nez [27] reported a notable symbolic model

for computation with words: the two-tuple linguistic model.

Let S be a linguistic term set within the granularity interval

[0, g]. The two-tuple that expresses the equivalent information

to β ∈ [0, g] can be obtained using the following function:

∆ : [0, g] → S × [−0.5, 0.5), (1)

∆(β) = (si , α), with

{

si , i = round(β)

α = β − i, α ∈ [−0.5, 0.5).

(2)

In the Herrera and Martı́nez model, ∆ represents a one-to-

one mapping function. For convenience, its range is denoted as

S. The function ∆ has an inverse function ∆−1 : S → [0, g]
with ∆−1((si , α)) = i + α. For notation simplicity, this study

set ∆−1((si , 0)) = ∆−1((si)).

Let (si , α) and (sj , γ) be two linguistic two-tuples. If

∆−1((si , α)) < ∆−1((sj , γ)), then (si , α) is smaller than

(sj , γ).
The improvements of the two-tuple linguistic model have also

been developed, such as the model with a hierarchical structure

[26], and the numerical scale model [21].

B. Possibilistic Hesitant Fuzzy Linguistic Assessment

Information

The aforementioned two-tuple linguistic model is useful to

address the linguistic decision-making problems with a single

linguistic term. However, similar to HFSs [54], in linguistic

setting, decision makers may hesitate to choose values among

several available values when assessing a linguistic variable. To

deal with these situations, Rodrı́guez et al. [48] proposed the

concept of HFLTS to increase the richness and flexibility of

elicited linguistic information.

Definition 1: [48]. Let S = {s0 , . . . , sg} be a prede-

fined linguistic term set. Let L and U be two inters,

where L, U ∈ {0, 1, . . . , g} and L ≤ U . The HFLTS, H =
{sL , sL+1 , . . . , sU }, is thus an ordered finite subset of con-

secutive linguistic terms of S, where sL and sU are the lower

and upper bounds of H , respectively.

By incorporating possibilistic information into HFLTSs, PH-

FLTSs have been developed [59].

Definition 2: Let S = {s0 , . . . , sg} be as defined

above. A PHFLTS is denoted by PH = {(sL , pL ),
(sL+1 , pL+1), . . . , (sU , pU )}, where sL and sU are the

lower and upper bounds of PH, respectively, and pi ∈ [0, 1]
denote the possibility degree of linguistic term si and
∑U

i=L pi = 1.

For convenience, we use MS to denote a set of PHFLTSs

based on S.

Let PH be the mean (or expected value) for PH that can be

calculated in the following manner:

E(PH) = ∆

(

U
∑

i=L

∆−1(si) · pi

)

. (3)

Clearly, E(PH) ∈ HTS. Let PHi = {(sL(i) , p
(i)
L(i)),

(sL(i)+1 , p
(i)
L(i)+1), . . . , (sU (i) , p

(i)
U (i))} and PHj = {(sL(j ) ,

p
(j )
L(j )), (sL(j )+1 , p

(j )
L(j )+1), . . . , (sU (j ) , p

(j )
U (j ))} be two PH-

FLTSs. The comparison operation over PHi and PHj can be

defined as follows: if E(PHi) < E(PHj ), then PHi < PHj , if

E(PHi) = E(PHj ), then PHi = PHj .

Definition 3: Let PHi and PHj be defined as above. The

distance between PHi and PHj is defined by the following:

d(PHi ,PHj ) =
|∆−1(E(PHi)) − ∆−1(E(PHj ))|

g
. (4)

Clearly, d(PHi ,PHj ) ∈ [0, 1]. A larger value of

d(PHi ,PHj ) indicates a larger deviation between PHi

and PHj .

Definition 4: Let H ={sL , sL+1, ..., sU} be as defined above.

Correspondingly, H can then be transformed into a PHFLTS,
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PH = {(sL , pL ), (sL+1 , pL+1), . . . , (sU , pU )}, where

pi =
1

U − L + 1
,i = L, L+1, . . . , U. (5)

Definition 5: Let PH={(sL , pL ), (sL+1 , pL+1), . . . , (sU ,

pU )} be as defined above. Thus, PH can be transformed into

a PHFLTS over all linguistic terms in S, PH = {(si , p̂i)|i =
0, 1, . . . , g}, where

p̂i =

{

pi , i = L, L+1, . . . , U

0, otherwise.
(6)

Example 1: Let PH = {(s2 , 0.2), (s3 , 0.3), (s4 , 0.5)} be

a PHFLTS defined on S = {s0 , . . . , s6}. Using (6),

PH can be converted into PH = {(s0 , 0), (s1 , 0), (s2 , 0.2),
(s3 , 0.3), (s4 , 0.5), (s5 , 0), (s6 , 0)}.

Let {PH1 , . . . ,PHn} be a set of PHLTSs, where PHk =
{(sL(k) , pk

L(k)), (sL(k)+1 , pk
L(k)+1), . . . , (sU (k) , pk

U (k))}. Let

π = (π1 , π2 , . . . , πn )T be a weight vector that satisfies 0 ≤
πi ≤ 1 and

∑n
k=1 πk = 1. The collective PHFLT over all lin-

guistic terms in S, PH(c) = {(si , p
(c)
i )|i = 0, 1, . . . , g}, can be

generated using the hesitant fuzzy linguistic weighted average

(HFLWA) operator [59], that is

(si , p
(c)
i ) = HFLWAπ (PH1 , . . . ,PHn ) = (si ,

n
∑

k=1

πk · p̂
(k)
i )

(7)

where p̂
(k)
i is derived from PHk using (6).

IV. CONSENSUS-BASED FMEA PROBLEM AND ITS

RESOLUTION FRAMEWORK

In this section, we formally present the target consensus-

based FMEA problem in our study, and we design an MAGDM

framework to facilitate its resolution.

A. Presentation of the Consensus-Based FMEA Problem

In an FMEA problem, human decision-making behaviors are

inherently subjective to a certain extent. For this reason, it be-

comes reasonable to collect the assessment information on the

risks of FMs using a linguistic assessment domain. Possibilistic

hesitant fuzzy linguistic information can efficiently convey the

linguistic judgments of individuals. Thus, this study uses the

possibilistic hesitant fuzzy linguistic approach to address lin-

guistic assessment information from FMEA team members. As

mentioned in Section II, there are many practical FMEA situa-

tions in which the sole aim is to classify the FMs into several

ordinal risk classes. Meanwhile, making consensual decisions

is a paramount aspect in FMEA problems: the aim of reaching

consensus in such contexts is to assist FMEA team members

in improving the consensus level so as to identify acceptable

collective ordinal risk classes of FMs to the FMEA problem at

hand.

Herein, we propose the consensus-based FMEA problem

with the aim of classifying FMs into several ordinal risk classes,

which is formally proposed as follows. Suppose that there are m

team members TM = {TM1 ,TM2 , . . . ,TMm} in an FMEA,

and they need to provide assessment information of a group

of n potential FMs FM = {FM1 ,FM2 , . . . ,FMn} against a

group of y risk factors RF = {RF1 ,RF2 , . . . ,RFy}. In this

study, the FMEA team members provide their assessment infor-

mation on FMs against each risk factor using the possibilistic

hesitant fuzzy linguistic approach. Let V (k) = (v
(k)
ij )n×y be a

PHFLAM given by a team member TMk ∈ TM, where v
(k)
ij =

{(s
(k)
L(ij ) , p

(k)
L(ij )), (s

(k)
L(ij )+1 , p

(k)
L(ij )+1), . . . , (s

(k)
U (ij ) , p

(k)
U (ij ))} ∈

MS represents the possibilistic hesitant fuzzy linguis-

tic assessment of FM FMi over risk factor RFj . Let

λ = (λ1 , λ2 , . . . ,λm )T be the weight vector of FMEA mem-

bers, where λk ∈ [0, 1] signifies the relative weight of TMk , thus

satisfying
∑m

k=1 λk = 1. Several methods have been reported

to calculate λ = (λ1 , λ2 , . . . ,λm )T (see [12], [55]). The weight

vector of risk factors is denoted by w = (w1 , w2 , . . . , wy )T ,

where wi ≥ 0 (i = 1, 2, . . . , y) denotes the relative weight of

RFi , satisfying
∑y

i=1 wi = 1. In this study, the weights of risk

factors are considered as partially known.

The problem in this study is concerned with finding a con-

sensual classification of FMs into several ordinal classes us-

ing the individually elicited PHFLAMs V (k) = (v
(k)
ij )n×y (k =

1, 2, . . . , m). Without loss of generality, the FMs FM =
{FM1 ,FM2 , . . . ,FMn} are needed to classify them into q

(q ≥ 2) ordinal risk classes, which are denoted as C1 , C2 , . . . ,

Cq , respectively. The risk degree of FM in Ci is larger than that

in Cj if i < j, and the number of FMs in Ci is denoted as Ti .

B. Resolution Framework

As mentioned in Section II, all the FMEA approaches except

the works of Certa et al. [9] and Lolli et al. [41] have focused on

how to generate the complete risk order of FMs from the highest

to the lowest risk. The weights of risk factors are considered

as partially known in this paper. Inspired by recent consensus

models with minimum adjustment distance [3], [19], [25], we

propose a consensus-based FMEA framework with the aim of

classifying the FMs into several ordinal risk classes, as presented

in Fig. 1.

In this framework, there are two key processes.

1) Application of Consensus-Driven Methodology to Gener-

ate the Weights of Risk Factors: In this step, the weights of risk

factors are determined by minimizing the degree of divergence

among all FMEA team members. Meanwhile, the consensus

level among FMEA members, and the individual and collective

ordinal risk classes of FMs are also yielded.

If the consensus level among the FMEA members is accept-

able, then the risk analysis process is completed. Otherwise,

the consensus-reaching process is undertaken to help FMEA

members modify their possibilistic hesitant fuzzy linguistic as-

sessments on FMs to improve the consensus level regarding the

obtained collective ordinal risk classes of FMs.

The details of this process are presented in Section V.

2) Consensus-Reaching Process: In the consensus-reaching

process, an optimization-based model is designed to help FMEA

members obtain their optimally adjusted linguistic assessment

information, which are used as the references for FMEA mem-

bers to modify their linguistic assessment information.
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Fig. 1. Consensus-based FMEA framework.

The detailed information of the consensus-reaching process

are presented in Section VI.

This framework is described as follows: After the FMEA

members provide their possibilistic hesitant fuzzy linguistic as-

sessment information on FMs in the form of PHFLAMs, these

PHFLAMs are then aggregated into a collective form. Following

this, a consensus-driven methodology is presented to generate

the weights of risk factors from the information on incomplete

weights. Meanwhile, according to the constructed consensus-

driven optimization model, the consensus degree among all

FMEA members, the individual and collective ordinal risk

classes of FMs can also be obtained. If the current consensus

level among the FMEA members is acceptable, the consensus-

reaching process is terminated. Otherwise, an optimization-

based consensus building mechanism with minimum adjustment

distance is constructed to help FMEA members improve their

consensus level. This procedure is followed until the predefined

consensus level among all FMEA members is reached.

V. CONSENSUS-DRIVEN OPTIMIZATION-BASED MODEL TO

DETERMINE THE WEIGHTS OF RISK FACTORS

In this section, we describe the procedure for determining the

importance weights of risk factors from the incomplete weights

information using a consensus-driven methodology.

A. Format of the Weights of the Risk Factors

Let w = (w1 , w2 , . . . , wy )T be expressed as above. The

known weight information on the risk factor RFj (j =
1, 2, . . . , y) can be typically constructed using the following

basic forms [34], for i �= j:

1) weak ranking: Ω1 = {wi ≥ wj};

2) strict ranking: Ω2 = {wi − wj ≥ γij} (γij > 0);
3) ranking of differences: Ω3 = {wi − wj ≥ wk − wt}

(j �= k �= l);
4) ranking with multiples: Ω4 = {wi ≥ γij · wj} (j �= k �=

l);
5) interval form: Ω5 = {γi ≤ wi ≤ γi + εi} (0 ≤ γi ≤

γi + εi ≤ 1).
In practical FMEA, the risk factor weight structure forms of-

ten consist of multiple basic forms as presented above. Without

loss of generality, we use Ω to denote the set of known risk

factor weight information provided by FMEA team members.

In particular, Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5 .

Naturally, the consensus level among all the FMEA team

members is expected to be as high as possible. Following this

idea, we present an optimization-based model to minimize the

divergence degree among all FMEA team members by optimiz-

ing the weights of risk factors. Before formally presenting the

optimization model, we present several relevant concepts.
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B. Generating the Individual and Collective Ordinal Risk

Classes of the FMs

In this process, the individual and collective ordinal risk clas-

sifications of the FMs are generated. Two steps are included in

this process: aggregation and exploitation.

1) Aggregating FMEA Team Members’ Assessments Into a

Collective Assessment Matrix: Let V (k) = (v
(k)
ij )n×y be de-

noted as above. The collective PHFLAM V (c) = (v
(c)
ij )n×y

can be generated using the HFLWA operator, where v
(c)
ij =

{(st , p
(c)
ij,t), t = 0, 1, . . . , g} is computed as indicated as follows:

(

st , p
(c)
ij,t

)

=HFLWAλ

(

v
(1)
ij , . . . , v

(m )
ij

)

=

(

st ,

m
∑

k=1

λk · p̂
(k)
ij,t

)

(8)

where p̂
(k)
ij,t is obtained from v

(k)
ij using (6).

2) Using the Exploitation Operation to Generate the Individ-

ual and Collective Ordinal Risk Classes of FMs: In this step,

the individual and collective ordinal risk classes of FMs are

obtained.

Let PV = (pv1 ,pv2 , . . . ,pvn )T be the preference vector de-

rived from PHFLAM V = (vij )n×y , where pvi ∈ [0, g] denotes

the preference value of FMi , and calculated by,

pvi =

y
∑

j=1

wj · ∆
−1(E(vij )). (9)

For convenience, the preference vectors generated from V (k)

and V (c) are denoted as PV(k) and PV(c) , respectively.

Based on PV, the risk order of FMs, RO = (ro1 , ro2 , . . . ,

ron )T , can be achieved, where

roi = j (10)

if pvi is the jth largest value in {pv1 ,pv2 , . . . ,pvn}.

For convenience, the risk orders derived from PV(k)

and PV(c) are denoted as RO(k) = (ro
(k)
1 , . . . , ro

(k)
n )T and

RO(c) = (ro
(c)
1 , . . . , ro

(c)
n )T , respectively.

Furthermore, according to RO = (ro1 , . . . , ron )T , FM =
{FM1 , . . . ,FMn} can be classified into q ordinal risk classes,

C1 , C2 , . . . , Cq , where

FMi ∈

⎧

⎪

⎨

⎪

⎩

C1 , roi ≤ T1

Ct , T1 + · · · + Tt−1 + 1 ≤ roi ≤ T1 + · · · + Tt

Cq , roi < n − Tq

.

(11)

Obviously, FMi >FMj if FMi ∈Cu , FMj ∈ Cv , and u < v.

This means that the degree of risk of FMi is larger than FMj .

For convenience, the ordinal risk classes of FMs derived

from RO(k) are denoted as {Ck
1 , Ck

2 , . . . , Ck
q } and the ordi-

nal risk classes of FMs derived from RO(c) are denoted as

{Cc
1 , Cc

2 , . . . , Cc
q }.

C. Consensus Measure in the FMs Ordinal

Classification-Based FMEA Problem

In general, two different approaches can be adopted in con-

sensus models to determine the consensus level among a group

of individuals: 1) Computing the deviations between the individ-

ual and collective orders of the alternatives, and 2) calculating

the distances between the individual and collective evaluations

or decision matrices [45]. However, in the ordinal classification-

based FMEA problem of FMs, FMEA team members are only

concerned with the risk classification results of FMs rather than

producing a complete risk order of FMs. The extant consen-

sus measure method cannot reflect the essence of the FM or-

dinal classification-based FMEA problem. Therefore, a novel

consensus measure based on distances between individual and

collective risk classification results is presented below.

Let R = (r1 , r2 , . . . , rn )T be a vector which is used to de-

scribe the ordinal risk classes of FMs, where

ri = t (12)

if FMi ∈ Ct (i = 1, . . . , n; t = 1, . . . , q).

Using (12), R(k) = (r
(k)
1 , . . . , r

(k)
n )T and R(c) =

(r
(c)
1 , . . . , r

(c)
n )T can be, respectively, generated from

{Ck
1 , Ck

2 , . . . , Ck
q } and {Cc

1 , Cc
2 , . . . , Cc

q }.

Definition 6: The consensus level of TMk is defined by

CL(V (k)) =
1

n · (q − 1)

n
∑

i=1

|r
(k)
i − r

(c)
i | . (13)

The consensus level of {TM1 ,TM2 , . . . ,TMm} is defined

by

CL{V (1) , . . . , V (m )} =
1

m

m
∑

k=1

CL(V (k))

=
1

m × n × (q − 1)

m
∑

k=1

n
∑

i=1

|r
(k)
i − r

(c)
i | . (14)

Clearly, CL{V (1) , .., V (m )} ∈ [0, 1]. If CL{V (1) , . . . ,

V (m )} = 0, then all FMEA team members reach a unanimous

consensus regarding the obtained collective ordinal risk classes

of FMs. Otherwise, a smaller CL{V (1) , . . . , V (m )} value indi-

cates a higher consensus level among FMEA team members.

D. Consensus-Driven Optimization-Based Model

Naturally, it is expected for the consensus level among all

FMEA members to be as high as possible. That is

min
w

CL{V (1) , . . . , V (m )} =
1

m × n × (q − 1)

×

m
∑

k=1

n
∑

i=1

|r
(k)
i − r

(c)
i |. (15)

Based on this idea, we present the following optimization

model:

min
w

CL{V (1) , . . . , V (m )}

=
1

m × n × (q − 1)

m
∑

k=1

n
∑

i=1

|r
(k)
i − r

(c)
i |
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⎪

⎪

⎪

⎪
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⎪
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⎪
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⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v
(c)
ij = Fλ(v

(1)
ij , v

(2)
ij , . . . , v

(m )
ij ), t = 0, 1, . . . , g (a)

pv
(k)
i =

y
∑

j=1

wj · ∆
−1(E(v

(k)
ij )), k = 1, 2, . . . , m;

i = 1, 2, . . . , n (b)

pv
(c)
i =

y
∑

j=1

wj · ∆
−1(E(v

(c)
ij )), i = 1, 2, . . . , n (c)

ro
(k)
i = j, if pv

(k)
i is the jth largest value in

{pv
(k)
1 , . . . , pv

(k)
n } (d)

ro
(c)
i = j, if pv

(c)
i is the jth largest value in

{

pv
(c)
1 , . . . , pv

(c)
n

}

(e)

r
(k)
i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, ro
(k)
i ≤ T1

t, T1 + · · · + Tt−1 + 1 ≤ ro
(k)
i

≤ T1 + · · · + Tt

q, ro
(k)
i < n − Tq

(f)

r
(c)
i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, ro
(c)
i ≤ T1

t, T1 + · · · + Tt−1 + 1 ≤ ro
(c)
i

≤ T1 + · · · + Tt

q, ro
(c)
i < n − Tq

(g)

w ∈ Ω,
∑y

i=1 wi = 1, wi ≥ 0 (h)

(16)

In model (16), formula (a) is the aggregation operation that is

used to yield V (c) . Formulae (b) and (c) are utilized to produce

the individual and collective preference vectors of FMs, respec-

tively. Formulae (d) and (e) are utilized to produce the individual

and collective risk orders of FMs, respectively. Formulae (f) and

(g) are applied to generate the individual and collective ordinal

classification vectors of FMs, respectively.

Before solving model (16), Lemma 1 is presented.

Lemma 1: Let θ(k) = {θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
q−1} be a set of pa-

rameters, where g > θ
(k)
i > θ

(k)
i+1 ≥ 0. The following condition

is satisfied:

r
(k)
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if pv
(k)
i < θ

(k)
1

t, if θ
(k)
t < pv

(k)
i ≤ θ

(k)
t−1 , 2 ≤ t ≤ q − 1

q, if pv
(k)
i ≤ θ

(k)
q−1

. (17)

The consensus level of TMk can then be computed by the

following:

CL(V (k)) =
1

n · (q − 1)

n
∑

i=1

q−1
∑

j=1

|x
(k)
ij − x

(c)
ij | (18)

and the consensus level among {TM1 ,TM2 , . . . ,TMm} can

be computed by the following:

CL{V (1) , . . . , V (m )} =
1

m

m
∑

k=1

CL(V (k))

=
1

m · n · (q − 1)

m
∑

k=1

n
∑

i=1

q−1
∑

j=1

|x
(k)
ij − x

(c)
ij | (19)

where x
(k)
ij , x

(c)
ij ∈ {0, 1}, and determined by

{

θ
(k)
j − pv

(k)
i < x

(k)
ij · ℜ

θ
(k)
j − pv

(k)
i ≥ (x

(k)
ij − 1) · ℜ

(20)

and
⎧

⎨

⎩

θ
(c)
j − pv

(c)
i < x

(c)
ij · ℜ

θ
(c)
j − pv

(c)
i ≥ (x

(c)
ij − 1) · ℜ

(21)

where ℜ is an adequately large number.

Meanwhile, x
(k)
ij and x

(c)
ij should satisfy the following condi-

tions:

n
∑

i=1

x
(k)
ij = Tj+1 + Tj+2 + · · · + Tq , k = 1, 2, . . . , m,

j = 1, 2, . . . , q − 1 (22)
n

∑

i=1

x
(c)
ij = Tj+1 + Tj+2 + · · · + Tq , j = 1, 2, . . . , q − 1.

(23)

Proof: In (20), we have x
(k)
ij = 0 if pv

(k)
i > θ

(k)
j , and x

(k)
ij

= 1 if pv
(k)
i < θ

(k)
j . In (21), we have x

(c)
ij = 0 if pv

(c)
i > θ

(c)
j ,

and x
(c)
ij = 1 if pv

(c)
i < θ

(c)
j . Thus, we can obtain that r

(k)
i

= 1 +
∑q−1

j=1 x
(k)
ij and r

(c)
i = 1 +

∑q−1
j=1 x

(c)
ij . Thus, CL(V (k))

= 1
n ·(q−1)

∑n
i=1 |r

(k)
i − r

(c)
i | = 1

n ·(q−1)

∑n
i=1

∑q−1
j=1 |x

(k)
ij −

x
(c)
ij | and CL{V (1) , . . . , V (m )} = 1

m ·n ·(q−1)

∑m
k=1

∑n
i=1

∑q−1
j=1 |x

(k)
ij − x

(c)
ij |. This completes the proof of Lemma 1.

For simplification, let M = {1, 2, . . . , m}, N = {1, 2, . . . ,

n}, Q = {1, 2, . . . , q − 1}, and Y = {1, 2, . . . , y}.

Theorem 1: Model (16) can be converted into the following

model:

min
w

1

m · n · (q − 1)

m
∑

k=1

n
∑

i=1

q−1
∑

j=1

|x
(k)
ij − x

(c)
ij |

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p
(c)
ij,t = Fλ(p̂

(1)
ij,t , p̂

(2)
ij,t , . . . , p̂

(m )
ij,t ), t = 0, 1, . . . , g (a)

pv
(k)
i =

y
∑

j=1

wj · ∆
−1(E(v

(k)
ij )), k ∈ M, i ∈ N (b)

pv
(c)
i =

y
∑

j=1

wj · ∆
−1(E(v

(c)
ij )), k ∈ M, i ∈ N (c)

θ
(k)
j − pv

(k)
i < x

(k)
ij · ℜ, k ∈ M, i ∈ N, j ∈ Q (d)

θ
(k)
j − pv

(k)
i ≥ (x

(k)
ij − 1) · ℜ, k ∈ M, i ∈ N, j ∈ Q (e)

θ
(c)
j − pv

(c)
i < x

(c)
ij · ℜ, i ∈ N, j ∈ Q (f)

θ
(c)
j − pv

(c)
i ≥ (x

(c)
ij − 1) · ℜ, i ∈ N, j ∈ Q (g)

n
∑

i=1

x
(k)
ij = Tj+1 + Tj+2 + · · · + Tq , k ∈ M, j ∈ Q (h)

n
∑

i=1

x
(c)
ij = Tj+1 + Tj+2 + · · · + Tq , j ∈ Q (i)

w ∈ Ω,
y
∑

i=1

wi = 1, wi ≥ 0 (j)

x
(k)
ij , x

(c)
ij ∈ {0, 1}, k ∈ M, i ∈ N, j ∈ Q (k)

(24)

where p̂
(k)
ij,t is obtained from v

(k)
ij using (6).
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Theorem 1 can be directly obtained from Lemma 1. We can

thus omit the proof of this theorem.

Model (24) is denoted as M1 . In model M1 , w =
(w1 , w2 , . . . , wy )T are decision variables. Solving model M1 ,

we can obtain the optimal solution to w = (w1 , w2 , . . . , wy )T .

Theorem 2: In model M1 , we change the objective function

into minw
1

m ·n ·(q−1)

∑m
k=1

∑n
i=1

∑q−1
j=1 b

(k)
ij , and add the fol-

lowing constraints: x
(k)
ij − x

(c)
ij ≤ b

(k)
ij , −x

(k)
ij + x

(c)
ij , ≤ b

(k)
ij ,

and b
(k)
ij ≥ 0, thus formulating a new optimization model de-

noted as model M2 . We also note that models M1 and M2 are

equivalent.

Proof: In model M2 , x
(k)
ij − x

(c)
ij ≤ b

(k)
ij and −x

(k)
ij + x

(c)
ij ≤

b
(k)
ij guarantee that |x

(k)
ij − x

(c)
ij | ≤ b

(k)
ij . The objective func-

tion achieves its optimum value only when |x
(k)
ij − x

(c)
ij | = b

(k)
ij .

Thus, model M1 can be equivalently converted into model M2 .

This completes the proof of Theorem 2.

Theorem 2 shows that the optimal weights of risk factors in

model M1 can be obtained by solving model M2 . Model M2

is a 0–1 mixed linear programming model, which can be easily

solved by using diverse mathematical software toolboxes.

VI. CONSENSUS-REACHING PROCESS WITH MINIMUM

ADJUSTMENT DISTANCE

In this section, we design a model for supporting consen-

sus reaching processes to help FMEA members achieving a

collective and consensual ordinal classification of FMs. First, a

consensus rule with a minimum adjustment distance was defined

(see Section VI-A). Second, we devise an algorithmic approach

to model the consensus-reaching process among FMEA partic-

ipants (see Section VI-B).

A. Consensus Rule With Minimum Adjustment Distance

Let V (k) = (v
(k)
ij )n×y (k ∈ M) be the adjusted HFLAM as-

sociated with V (k) = (v
(k)
ij )n×y . Naturally, we hope to minimize

the adjustment distance in the consensus-reaching process, i.e.

min
m

∑

k=1

d(V (k) , V (k)) (25)

where d(V (k) , V (k)) signifies the deviation measure between

V (k) = (v
(k)
ij )n×y and V (k) = (v

(k)
ij )n×y , which can be com-

puted as follows:

d(V (k) , V (k))

=
1

n × y

n
∑

i=1

y
∑

j=1

|∆−1(E(v
(k)
ij )) − ∆−1(E(v

(k)
ij ))|

g
. (26)

Meanwhile, the predefined consensus level among all FMEA

team members should be guaranteed, i.e.

CL{V (1) , . . . , V (m )} =
1

m

m
∑

k=1

CL(V (k)) ≤ ε (27)

where ε ∈ [0, 1] is the established consensus threshold.

Following the above basic ideas, we build an optimization-

based consensus model:

min

m
∑

k=1

d(V (k) , V (k))

s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v
(c)
ij = Fπ (v

(1)
ij , . . . , v

(m )
ij ), i ∈ N, j ∈ Y

1
m

∑m
k=1 CL(v

(k)
ij ) ≤ ε

v
(k)
ij ∈ MS , k ∈ M ; i ∈ N ; j ∈ Y .

(28)

Model (28) is denoted as M3 . Different optimization-based

consensus models will be generated when setting different ag-

gregation operators/functions (Fπ ) in M3 . The use of different

aggregation functions does not alter the essence of the pro-

posed consensus-based FMEA framework. Particularly, in lin-

guistic GDM problems, the HFLWA is a widely used aggrega-

tion function. Without loss of generality, this paper investigates

the optimization-based consensus model based on HFLWA in

detail.

When HFLWA is selecting as the aggregation function of

model M3 , it can be further instantiated as the following model:

min
1

n × y × g

m
∑

k=1

n
∑

i=1

y
∑

j=1

|∆−1(E(v
(k)
ij )) − a

(k)
ij |

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a
(c)
ij =

m
∑

k=1

λk · a
(k)
ij , i ∈ N, j ∈ Y (a)

pv
(k)
i =

y
∑

j=1

wj · a
(k)
ij , k ∈ M, i ∈ N, j ∈ Y (b)

pv
(c)
i =

y
∑

j=1

wj · a
(c)
ij , i ∈ N (c)

1
m ·n ·(q−1)

m
∑

k=1

n
∑

i=1

q−1
∑

j=1

|x
(k)
ij − x

(c)
ij | ≤ ε (d)

θ
(k)
j − pv

(k)
i < x

(k)
ij · ℜ, k ∈ M, i ∈ N, j ∈ Q (e)

θ
(k)
j − pv

(k)
i ≥ (x

(k)
ij − 1) · ℜ, k ∈ M, i ∈ N, j ∈ Q (f)

θ
(c)
j − pv

(c)
i < x

(c)
ij · ℜ, i ∈ N, j ∈ Q (g)

θ
(c)
j − pv

(c)
i ≥ (x

(c)
ij − 1) · ℜ, i ∈ N, j ∈ Q (h)

m
∑

i=1

x
(k)
ij = Tj+1 + Tj+2 + · · · + Tq , k ∈ M, j ∈ Q (i)

m
∑

i=1

x
(c)
ij = Tj+1 + Tj+2 + · · · + Tq , k ∈ M, j ∈ Q (j)

g ≥ θ
(k)
1 ≥ θ

(k)
2 ≥ . . . ≥ θ

(k)
q−1 ≥ 0 (k)

g ≥ θ
(c)
1 ≥ θ

(c)
2 ≥ . . . ≥ θ

(c)
q−1 ≥ 0 (l)

0 ≤ a
(k)
ij ≤ g, k ∈ M, i ∈ N, j ∈ Y (m)

x
(k)
ij , x

(c)
ij ∈ {0, 1}, k ∈ M, i ∈ N, j ∈ Q (n)

(29)

where ∆(a
(k)
ij ) = E(v

(k)
ij ) and ∆(a

(c)
ij ) = E(v

(c)
ij ).

Model (29) is denoted as M4 .
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Theorem 4: Model M4 can be converted into a mixed 0–1

linear programming model:

min

m
∑

k=1

n
∑

i=1

y
∑

j=1

b
(k)
ij

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∆−1(E(v
(k)
ij )) − a

(k)
ij ≤ b

(k)
ij , k ∈ M, i ∈ N, j ∈ Y (a)

−∆−1(E(v
(k)
ij )) + a

(k)
ij ≤ b

(k)
ij , k ∈ M, i ∈ N, j ∈ Y (b)

a
(c)
ij =

m
∑

k=1

λk · a
(k)
ij , i ∈ N, j ∈ Y (c)

pv
(k)
i =

y
∑

j=1

wj · a
(k)
ij , k ∈ M, i ∈ N, j ∈ Y (d)

pv
(c)
i =

y
∑

j=1

wj · a
(c)
ij , i ∈ N (e)

1
m ·n ·(q−1)

m
∑

k=1

n
∑

i=1

q−1
∑

j=1

f
(k)
ij ≤ ε (f)

x
(k)
ij − x

(c)
ij ≤ f

(k)
ij , k ∈ M, i ∈ N, j ∈ Q (g)

−x
(k)
ij + x

(c)
ij ≤ f

(k)
ij , k ∈ M, i ∈ N, j ∈ Q (h)

θ
(k)
j − pv

(k)
i < x

(k)
ij · ℜ, k ∈ M, i ∈ N, j ∈ Q (i)

θ
(k)
j − pv

(k)
i ≥ (x

(k)
ij − 1) · ℜ, k ∈ M, i ∈ N, j ∈ Q (j)

θ
(c)
j − pv

(c)
i < x

(c)
ij · ℜ, i ∈ N, j ∈ Q (k)

θ
(c)
j − pv

(c)
i ≥ (x

(c)
ij − 1) · ℜ, i ∈ N, j ∈ Q (l)

m
∑

i=1

x
(k)
ij = Tj+1 + Tj+2 + · · · + Tq , k ∈ M, j ∈ Q (m)

m
∑

i=1

x
(c)
ij = Tj+1 + Tj+2 + · · · + Tq , k ∈ M, j ∈ Q (n)

g ≥ θ
(k)
1 ≥ θ

(k)
2 ≥ . . . ≥ θ

(k)
q−1 ≥ 0 (o)

g ≥ θ
(c)
1 ≥ θ

(c)
2 ≥ . . . ≥ θ

(c)
q−1 ≥ 0 (p)

0 ≤ a
(k)
ij ≤ g, k ∈ M, i ∈ N, j ∈ Y (q)

x
(k)
ij , x

(c)
ij ∈ {0, 1}, k ∈ M, i ∈ N, j ∈ Q. (r)

(30)

Proof: In model M4 , constraints (a) and (b) guarantee that

|∆−1(E(v
(k)
ij )) − a

(k)
ij | ≤ b

(k)
ij . The objective function achieves

optimum value only when |∆−1(E(v
(k)
ij )) − a

(k)
ij | = b

(k)
ij .

Moreover, constraints (g) and (h) guarantee that |x
(k)
ij − x

(c)
ij |

≤ f
(k)
ij . According to (f), we have that 1

m ·n ·(q−1)

∑m
k=1

∑n
i=1

∑q−1
j=1 |x

(k)
ij − x

(c)
ij | ≤ 1

m ·n ·(q−1)

∑m
k=1

∑n
i=1

∑q−1
j=1 f

(k)
ij

≤ ε. Thus, model M4 can be converted into model (30).

Model (30) is denoted as M5 . Theorem 4 implies that the

optimum solution of model M4 can be generated by solving

model M5 .

B. Consensus-Reaching Algorithm

Solution of the model M5 , we yield the optimal solution to

A(k) = (a
(k)
ij )n×y , which is denoted as A(k,∗) = (a

(k,∗)
ij )n×y .

Furthermore, we can obtain that E(v
(k,∗)
ij ) = ∆(a

(k,∗)
ij ). Then,

TABLE I
CONSENSUS-REACHING ALGORITHM

E(v
(k,∗)
ij ) are used as reference information for guiding FMEA

team members in modifying their preferences. When construct-

ing V (k) = (v
(k)
ij )n×y , we advise that

R.1. If E(v
(k)
ij ) < E(v

(k,∗)
ij ), we advise that TMk increase

their assessments regarding FMi with respect to RFj .

R.2. If E(v
(k)
ij ) < E(v

(k,∗)
ij ), we advise that TMk decrease

their assessments regarding FMi with respect to RFj .

R.3. If E(v
(k)
ij ) = E(v

(k,∗)
ij ), then TMk should maintain

their assessments unchanged regarding FMi with re-

spect to RFj .

The details of the consensus-reaching process are described

as follows: After the FMEA members provide individual PH-

FLAMs, V (k) = (v
(k)
ij )n×y (k ∈ M), and then these PHFLAMs
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TABLE II
FMEA OF THE TREATMENT PLANNING STAGE IN PROTON BEAM RADIOTHERAPY

are aggregated into a collective PHFLAM, V (c) = (v
(c)
ij )n×y .

Following this, model M2 is applied to generate the weights

of risk factors, w = (w1 , w2 , . . . , wy )T , from the incomplete

weight information (as described in Section V). Meanwhile, the

consensus level, CL, the individual and collective ordinal risk

classes of FMs {Ck
1 , Ck

2 , . . . , Ck
q } and {Cc

1 , Cc
2 , . . . , Cc

q } can be

also obtained. If the current consensus level CL is acceptable,

the consensus-reaching process terminates. Otherwise, model

M4 is adopted to generate A(k,∗) = (a
(k,∗)
ij )n×y . Furthermore, it

is proven that E(v
(k,∗)
ij ) = ∆(a

(k,∗)
ij ). Subsequently, E(v

(k,∗)
ij )

results from the application of M5 , and are used for guid-

ing participants in revising and providing updated PHFLAMs

V (k) = (v
(k)
ij )n×y using R.1, R.2, and R.3. This procedure is

followed until the predefined consensus level among FMEA

members is achieved.

Herein, we design a consensus-reaching algorithm to describe

the consensus-reaching process in Table I.

VII. CASE STUDY

This section shows the practical use of the proposed

consensus-based FMEA approach to the problem of treatment

planning in scanned proton beam radiotherapy (SPBR), which

is adopted from Cantone et al. [7]. Their work was focused on

how to generate a complete ranking of FMs from the most to

the least risky (i.e., least to most reliable) FM. Moreover, the

consensus issue among FMEA experts is not addressed in Can-

tone et al.’s approach. This study implements some revisions

regarding this example to better show the use of the proposed

consensus-based FMEA approach.

Active scanned proton beam (SPB) has been extensively used

in radiation therapy, which adopts the physical interaction prop-

erties of the particles with human tissue and an advanced deliv-

ery modality to improve treatment results. However, accidental

exposures are increasingly frequent nowadays in the SPBR im-

plementation process owing to the increased complexity related

to the technological and various uncontrollable factors. To ef-

fectively classify and deal with the potential risks of accidental

exposures at diverse levels when using actively SPB, the pro-

posed consensus-based MAGDM approach is utilized to identify

the critical potential FMs that might occur during a radiotherapy

treatment.

In Cantone et al. [7], 44 FMs were initially identified

during the SPBR process. For ease of illustration, six FMs

(FM1 ,FM2 , . . . ,FM6) with high RPN values are chosen in

this paper for further detailed illustration. The six FMs and their

causes and effects are listed in Table II. A multidisciplinary

FMEA team with three experts is formed to classify the six FMs

into three ordinal risk classes, ranked from the highest to the

lowest levels of risk (i.e., high, medium, and low) involved in

the proton beam radiation therapy, with each one consisting of

two FMs. The three FMEA experts are denoted as TM1 , TM2 ,

and TM3 , respectively. Considering their domain experiences

and knowledge, the weights of the three FMEA experts are set as

0.35, 0.4, and 0.25. The risk factors used to evaluate the six FMs

are O (occurrence), S (severity), and D (detection). It should be

noted that the proposed consensus-based FMEA model is capa-

ble of dealing with as many FMs and risk factors as the FMEA

experts wish to consider in the risk analysis process.

In practice, consensual decisions are crucial for implementing

a highly accepted group solution to the FMEA problem. In what

follows, the proposed consensus-based FMEA model is utilized

to solve the healthcare risk assessment problem.

First, the assessment information of the FMs with respect to

the three risk factors is modeled using a nine-grade linguistic

term set S, which is provided as follows:

S = {s0 = Absolutely Low (AL), s1 = Very Low (VL),

s2 = Low (L),

s3 = Moderately Low (ML), s4 = Moderate (M),

s5 = Moderately High (MH),

s6 = High (H),

s7 = Very High (VH), s8 = Absolutely High (AH)}.

In this case study, we set the consensus threshold to ε = 0.15.

The three individual PHFLAMs on the six FMs against every

risk factor are obtained as presented in Tables III–V.
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TABLE III
PHFLAM V (1) PROVIDED BY TM1

TABLE IV
PHFLAM V (2) PROVIDED BY TM2

TABLE V
PHFLAM V (3) PROVIDED BY TM3

TABLE VI
OPTIMALLY ADJUSTED TWO-TUPLE LINGUISTIC ASSESSMENT MATRIX F (1 ,∗)

1) By incorporating PHFLAMs V (k) (k = 1, 2, 3) into

model M2 , we can obtain the weights of the risk factors,

that is w = (0.25, 0.4, 0.35)T .

Meanwhile, the optimal value of the objective function of

M2 is generated, that is, opv = 0.3889. This indicates that the

predefined consensus level cannot be achieved by optimizing

the weights of risk factors owing to opv < ε.

Herein, we consider that w = (0.25, 0.4, 0.35)T and V (1) ,

V (2) , and V (3) , as the inputs of the optimization model M5 ,

based on which can obtain that A(k,∗) = (a
(k,∗)
ij )n×n . Further-

more, A(k,∗) = (a
(k,∗)
ij )n×n (k = 1, 2, 3) are transformed into

two-tuple linguistic assessment matrices F (k,∗) = (f
(k,∗)
ij )n×n ,

(k = 1, 2, 3), where f
(k,z ,∗)
ij = ∆(a

(k,z ,∗)
ij ), which are listed in

Tables VI–VIII.

When providing the updated PHFLAMs, V (1,1) =

(v
(1,1)
ij )6×3 , V (2,1) = (v

(2,1)
ij )6×3 , and V (3,1) = (v

(3,1)
ij )6×3 , we

suggest that

TABLE VII
OPTIMALLY ADJUSTED TWO-TUPLE LINGUISTIC ASSESSMENT MATRIX F (2 ,∗)

TABLE VIII
OPTIMALLY ADJUSTED TWO-TUPLE LINGUISTIC ASSESSMENT MATRIX F (3 ,∗)

TABLE IX
HFLAM V (1 ,1)

TABLE X
HFLAM V (2 ,1)

a) TM1 should decrease the assessment values regarding the

FM1 and FM3 with respect to S owing to E(v
(1)
12 ) >

f
(1,∗)
12 and E(v

(1)
32 ) > f

(1,∗)
32 , and TM1 should increase the

assessment value regarding FM5 with respect to S owing

to the fact that E(v
(1)
52 ) < f

(1,∗)
52 ;

b) TM2 should increase the assessment values regarding

FM2 and FM5 with respect to S owing to the facts that

E(v
(2)
22 ) < f

(2,∗)
22 and E(v

(2)
52 ) < f

(2,∗)
52 ;

c) TM3 should decrease the assessment value regarding

FM1 with respect to S owing to E(v
(3)
12 ) < f

(3,∗)
12 , and

TM3 should decrease the assessment value regarding the

FM2 with respect to S owing to the fact that E(v
(3)
22 ) >

f
(3,∗)
22 .

Without loss of generality, FMEA members provide their

updated HFLAMs, as listed in Tables IX–XI.

Again, according to (14), the consensus level among all

FMEA members can be obtained, which is cl1 = 0.3333. This

indicates that the predefined consensus level has not been

achieved owing to cl1 > ε.
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TABLE XI
HFLAM V (3 ,1)

TABLE XII
OPTIMALLY ADJUSTED TWO-TUPLE LINGUISTIC

ASSESSMENT MATRIX F (2 ,1 ,∗)

TABLE XIII
OPTIMALLY ADJUSTED TWO-TUPLE LINGUISTIC

ASSESSMENT MATRIX F (3 ,1 ,∗)

1) By incorporating PHFLAMs V (k,1) (k = 1, 2, 3) into

model M2 , we can obtain the weights of the risk factors,

that is, w1 = (0.25, 0.5, 0.25)T .

Meanwhile, the optimal value of the objective function of

M2 is generated, that is, opv2 = 0.2222. This indicates that the

predefined consensus level cannot be achieved by optimizing

the weights of risk factors owing to opv > ε.

Herein, we consider that w2 = (0.25, 0.5, 0.25)T , and that

V (1,1) , V (2,1) , and V (3,1) , as the input of the optimization model

M5 , based on which we can obtain that A(k,1,∗) = (a
(k,1,∗)
ij )n×n .

Furthermore, A(k,1,∗) = (a
(k,1,∗)
ij )n×n is transformed into two-

tuple linguistic assessment matrices F (k,1,∗) = (f
(k,1,∗)
ij )n×n

(i.e., f
(k,z ,∗)
ij = ∆(a

(k,z ,∗)
ij )), which are listed in Tables XII and

XIII. Correspondingly, F (1,∗) = F (1) .

When providing the updated HFLAMs V (k,2) (k = 1, 2, 3),
we suggest that

a) the TM1 of FMEA members maintain their HFLAMs

unchanged

b) the TM2 of FMEA members should decrease the assess-

ment value of FM4 with respect to the risk factor S owing

to the fact that E(v
(2,1)
42 ) > f

(2,1,∗)
42 ;

c) FMEA member TM3 should decrease the assessment

value of FM1 with respect to risk factor S owing to

E(v
(3,1)
12 ) > f

(3,1,∗)
12 .

Without loss of generality, the TM1 of FMEA members

set their HFLAM to V (1,2) = V (1,1) . The HFLAM V (2,2) and

V (3,2) values respectively provided by TM2 and TM3 are listed

in Tables XIV and XV, respectively.

TABLE XIV
HFLAM V (2 ,2)

TABLE XV
HFLAM V (3 ,2)

Using (9), we can obtain that

PV(1) = (4.9038, 6.1125, 5.2075, 5.28, 5.35, 5.0625)T ,

PV(2) = (5.03, 5.2375, 5.9375, 6.575, 6.1775, 4.875)T ,

PV(3) = (5.1375, 6.1763, 4.8675, 5.1425, 6.9, 6.15)T ,

PV(c) = (5.0127, 5.7784, 5.4145, 5.7636, 6.0685, 5.2594)T .

Furthermore

R(1) = (3, 1, 2, 2, 1, 3)T , R(2) = (3, 2, 2, 1, 1, 3)T ,

R(3) = (3, 1, 3, 2, 1, 2)T , R(c) = (3, 1, 2, 2, 1, 3)T .

Using (14), the consensus level can be obtained, that is, cl2 =
0.1111. This indicates that the predefined consensus level among

all FMEA members has been achieved.

According to R(c) = (3, 1, 2, 2, 1, 3)T , the collective ordi-

nal classifications regarding the FMs are C1 = {FM2 ,FM5},

C2 = {FM3 ,FM4}, and C3 = {FM1 ,FM6}. Therefore, the

most important failure modes are FM1 and FM2 , which should

be considered of great concern for risk mitigation.

VIII. COMPARISON ANALYSES

In this section, we compare our consensus-based FMEA

method with existing FMEA methods [7], [9], [13], [29], [39]–

[42], [55]. In particular, the most distinctive features of the

proposed consensus-based FMEA method are identified and

compared below against the main characteristics of nine related

FMEA methods.

1) FMs assessments: The PHFLTS is a very effective

decision-making tool owing to its convenience and flexi-

bility in handling the hesitancy and uncertainty in practical

contexts. In this study, the FMEA members are assumed

to use PHFLTS to express their assessment information

regarding the FMs with respect to the risk factors.

2) Risk analysis results of FMs: Almost all existing FMEA

methods are focused on how to yield the complete ranking

of FMs from the highest to the lowest risk. This study

focuses on the ordinal classification of FMs owing to the
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TABLE XVI
COMPARISONS OF THE CONSENSUS-BASED FMEA METHOD AND THE EXISTING FMEA METHODS

fact that the complete ranking of FMs is sometimes very

time-consuming and unnecessary. Moreover, the ordinal

classification of FMs can provide a clear indication on

which FMs are corrected first [41].

3) Methods used to determine the weights of risk factors:

Although several approaches have determined the weights

of risk factors, a method from a consensus perspective

is still lacking. This study developed a consensus-driven

optimization-based model to determine the weights of the

risk factors.

4) Consensus decision: In this study, the consensus is-

sue among FMEA members was addressed, and an

optimization-based model with minimum information

loss was constructed to support achievement of consen-

sus. To the best of our knowledge, this is the first FMEA

method that is capable of dealing with consensus issues

over the course of the FMEA, thereby providing consen-

sual collective decision results.

Moreover, the detailed comparisons between the existing

FMEA methods and the consensus-based FMEA method are

described in Table XVI.

IX. CONCLUSION

This study investigated the ordinal classification-based

FMEA problem of FMs with the possibilistic hesitant fuzzy lin-

guistic information, and developed a consensus-based MAGDM

approach to obtain the ordinal risk classes of the FMs. In the

proposed FMEA approach, the FMs were classified into several

ordinal risk classes rather than into a complete risk order. Mean-

while, an optimization-based consensus model with the mini-

mum adjustment distance was proposed to support achievement

of consensus regarding the obtained collective ordinal risk clas-

sifications of FMs. This optimization-based consensus model

was also transformed into a 0–1 mixed linear programming

model. The feasibility and validity of the proposed consensus-

based FMEA approach was justified using a case study regard-

ing the risk analysis in proton beam radiotherapy. Moreover,

the comparison analysis showed that our study constructed a

novel FMEA framework with several added values with respect

to previous related approaches.

Meanwhile, three interesting and noteworthy directions for

future research are pointed out.

1) Recently, the analysis of social relationship information

and determination of the weights of individuals based on

social network analysis have emerged as a hot topic in

GDM and MAGDM problems [56]. Therefore, we be-

lieve that it will be very interesting for future research to

develop a social network-analysis-based framework for

supporting the process of reaching consensus in FMEA

problems.

2) Real-world FMEA problems involve not only mathemat-

ical aspects but also psychological behaviors of FMEA

members. We argue that it will be interesting to investi-

gate the psychological behaviors of FMEA members in

the process of reaching consensus in FMEA problems.

3) To our knowledge, there is a lack of framework aimed

at comparing different FMEA methods. Thus, it is neces-

sary in future research to propose criteria to compare our

proposal with other FMEA methods.
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