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Abstract 

 Cystic Fibrosis (CF) is one of the most common autosomal disorders in Caucasian 

populations. This disorder creates a very opportune environment for many pathogens within the 

patient’s lung. Two common pathogens that infect CF patient’s lungs are Staphylococcus aureus 

and Stenotrophomonas maltophilia. These two species of bacteria can colonize host 

environments and establish mats of cells known as biofilms that become very difficult to 

eradicate with antibiotics. Once inside a CF lung, these pathogens must not only evade the host 

immune response but they also interact and compete with each other; however, how bacterial 

pathogens interact inside the host lung has not been well studied. This study will look 

specifically at the interactions between these two pathogens in vivo. S. maltophilia inhibits S. 

aureus biofilm formation over time in a dose-dependent manner though the mechanism is still 

unclear.  The findings of this study could provide insight into these interactions between both 

Staphylococcus aureus and Stenotrophomonas maltophilia.  

 

Introduction 

 Cystic Fibrosis is a prevalent, life-limiting disorder among Caucasian populations. CF is 

an autosomal recessive disease that results in the production of a defective cystic fibrosis 

transmembrane conductance regulator (CFTR) protein [1]. The gene that encodes this protein 

was identified in 1989 by Francis Collins, Lap-Chee Tsui and John R. Riordan [2]. The CFTR 

gene is found on the long arm of the 7th chromosome and it spans over 190kb [1]. CF is a result 

of one or more mutations within the gene that encodes the CFTR protein. This protein acts as an 

ion channel located on the cell membrane. The main role of the CFTR protein is to transport 
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chlorine and bicarbonate ions in and out of the cell.  These mutations can be classified in four 

different categories [3].  

The first class is a mutation that results in defective protein production. This occurs 

usually due to an incorrect splice site or a frameshift that results in a premature stop codon. This 

creates a CFTR protein that once inserted into the membrane cannot function correctly. This 

mutation also often results in degradation of the protein in the endoplasmic reticulum. 

 The second class is a mutation that results in defective protein processing. This is usually 

due to the protein failing to be properly modified, usually improper glycosylation of the protein. 

Glycosylation of the CFTR protein is used to direct the cell to transport it to its final destination 

within the cell membrane. When the protein is not fully glycosylated, it is typically degraded 

within the cytoplasm and is never able to reach the cell membrane and is unable to carry out its 

function as an ion transport channel.  

The third class is a mutation that results in incorrect regulation of the CFTR protein. The 

CFTR protein is activated through binding of various second messengers including cAMP [3,4]. 

These second messengers require a functional binding domain where they can interact with the 

CFTR protein in order to regulate the action of the protein. A class III mutation disrupts these 

binding domains and does not allow these second messengers to regulate the CFTR protein. 

These mutations have varying ranges of potency but in many cases results in a decrease in CFTR 

function [3].  

The fourth class is a mutation that results in defective conduction of ions across the cell 

membrane.  These mutations usually affect small chains of arginine residues on the membrane 

spanning domain of the protein. Mutations along this domain cause a reduction in flow of 
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chloride ions across the protein’s channel and significantly decrease the CFTR’s functionality 

[5]. 

 Each of the previously stated classes of mutations within the CFTR gene produce either 

non-functional or minimally functional CFTR proteins within the cell. This results in a decreased 

flow of chloride ions out of the cells, which has many effects on multiple organ systems 

throughout the body, including reduced volume and production of pancreatic secretions [6], and 

decreased reproductive function due to a defective vas deferens in males [7]. However, the effect 

that results in around 95% of all morbidity and mortality within human CF patients is due to 

reduced pulmonary function [8].  

Within the lung, mucus clearance through ciliary action of pseudostratified epithelial 

cells is one of the primary defense mechanisms to prevent infection by microorganisms. Inhaled 

particles from the air are typically trapped within mucus secreted by goblet cells. The mucus is 

then transported out of the lungs through ciliary action, which efficiently clears mucus that has 

been diluted due to a constant flow of water from the epithelial cells. When the CFTR protein is 

non-functional, there is a disruption of relative ion concentrations inside and outside of the cell. 

This change in ion concentration disrupts the regular flow of water into and out of the cell via 

osmosis. In the CF lung there is an observed loss of water efflux which creates a dehydrated state 

within the lumen. [9] When the lung is dehydrated, the mucus that is created is unable to be 

constantly removed because the cilia is unable to generate enough force to remove the 

concentrated mucus. The goblet cells within the lung are unable to detect the accumulation of 

mucus and continue to produce mucus creating an environment where the microorganisms and 

other particles that would typically be trapped and removed by ciliary action remain in the lung 

[9]. Within the thick mucus mats formed in the lung, microbes experience a large excess of 
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sugars from the many polysaccharides in mucus which allow for colonization and reproduction. 

These populations of microbe lead to both chronic and acute pulmonary infection throughout the 

life a CF patient. This increased microbial load within the lungs presents many challenges and 

ultimately shortens the lifespan of most patients to an average of just 45 years [10].  

Several pathogenic microorganisms are found more commonly within the CF lung, 

including Staphylococcus aureus and Stenotrophomonas maltophilia [11]. S. aureus is the more 

prevalent of the two bacterial species and, according to the 2015 CF Foundation Annual Patient 

Registry, was cultured from 56,792 CF sputum samples (from ~30,000 patients) whereas S. 

maltophilia was only cultured from 7,167 sputum samples during the same calendar year [12]. 

Both have very different physiological characteristics; however it has been found that these two 

microorganisms are very often found within the same CF patients [11,12]. Using the CF 

Foundation’s Annual Patient Registry, the diagnostic prevalence of 29 common CF pathogens 

was compared by members of the Yoder-Himes lab to determine if there were any trends in 

pathogen co-occurence. We found that both S. aureus and S. maltophilia were cultured from the 

same CF patient at a higher rate than what would be expected by random chance. This positive 

trendbetween S. aureus and S. maltophilia seems to indicate that there is some kind of interaction 

between the two pathogens when they invade a CF patient’s lung. In order to begin to understand 

these interactions, one must first look at the morphology and various properties that defines each 

of these species. 

 

Staphylococcus aureus 

 

 S. aureus has received a great deal attention within the scientific community due to its 

prevalence in human populations. S. aureus was first clearly identified in 1880 and was found to 

be the causative agent in both sepsis and abscess formation [13]. Today, S. aureus has been 
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found to be the causative agent in over 40% of all nosocomial (hospital acquired) infections.  In 

addition to being an opportunistic pathogen, S. aureus is known to colonize several body sites 

including the nasal, oral, and vaginal cavities and the skin, in healthy humans. Because of S. 

aureus’ ability to survive in multiple body sites, S. aureus has been found to colonize 30%-50% 

of healthy adults [14]. There is a much higher risk of colonization in adults who have Type I 

diabetes, are intravenous drug users, are surgical patients, or who are immunocompromised [15]. 

S. aureus also acts as a first colonizer in immunocompromised patients and can lead to various 

subsequent colonization by other species [16].  

 S. aureus is a Gram-positive coccus that most often appears in clusters when observed 

under light microscopy [17]. As a species S. aureus can be differentiated from the rest of its 

genus by the gold pigment of its colonies, the presence of coagulase (an enzyme that agglutinates 

proteins), as well as its ability to ferment mannitol [17]. Being a Gram-positive bacterium, the 

cell wall of S. aureus has a cell wall that is between 20-35 nm thick and is found to have around 

50% peptidoglycan by weight [18]. The chains of the peptidoglycan structures are held together 

by a 6-12 residue long, pentaglycine bridge that is specific to S. aureus [19]. This thick cell wall 

acts as a defense mechanism for S. aureus against the many environments. The cell wall allows 

the bacteria to remain in a steady state of water balance even when placed in various osmotic 

pressures. It can remain turgid when placed in a very hypotonic environment or it can protect 

itself from dessication in an extremely hypertonic environment. This feature of S. aureus is key 

to understanding how it is able to survive on both the desolate and dry environment of the skin 

and in the very moist environment of the nasal cavity.  

 The S. aureus genome consists of one circular chromosome of approximately 2.8Mb of 

DNA in addition to multiple plasmids, prophages, and transposons that contribute heavily to the 
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overall virulence of the pathogen [20]. Current proteomic data estimates that this genome 

encodes between 2,600-2,700 different proteins [21].  These proteins have many functions that 

range from metabolism to reproduction and include the proteins that promote the virulence of 

this pathogen. 

 S. aureus virulence factors have been well studied and can be broken down into four 

different categories. These groups include: proteins involved in adhesion to host cells, proteins 

that mediate the degradation of host cells, proteins that help the pathogen evade host immunity, 

and proteins that assist the pathogen in utilizing nutrients found within the host [22]. These four 

classes of protein virulence factors all work together to create a pathogen that can invade, infect 

and persist within a host. A majority of the proteins that contribute to S. aureus’ virulence are 

conserved throughout strains within the species and are located on the circular chromosome. 

However, around 25% of these factors are found on the other genetic elements and are highly 

variable between strains [20]. Most strains of S. aureus have the same basic method of infection 

however, due to the few variable virulence factors that can be passed among various 

Staphylococci bacterial strains, there some differences in the potency and methods that each S. 

aureus colony invades and infects.  

 S. aureus is unusually good at adhering to various tissues and host cells. The exact 

method that S. aureus achieves this adherence is still mostly unknown. However, there is some 

data that suggests that there are two surface factors, Microbial Surface Components Recognizing 

Adhesive Matrix Molecules (MSCRAMM) and Wall Teichoic Acids (WTA), on S. aureus that 

assist in its ability to adhere to the host [23]. These two factors seem to play some role in 

attachment of S. aureus to various kinds of epithelial tissue.  
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 Once attached, S. aureus can begin to secrete exoproteins, secreted proteins that have 

toxic effects on hosts [24], that allow for the invasion of the pathogen through the epithelial 

tissue and into the host.  The majority of S. aureus virulence factors that are produced are either 

secreted directly into the medium or are bound to the S. aureus’ membrane.. The most common 

way S. aureus secretes these proteins is through the Sec pathway, a highly conserved 

translocation pathway that allows for transport and release of proteins through a hydrophobic 

channel, though five other pathways have been identified. [20] The absence of the Sec system 

reduces the virulence S. aureus significantly [22].  The exoproteins are used by S. aureus to 

invade and transform the host system into an environment that is suitable for its own survival and 

reproduction and include the enzymes hemolysins, nucleases, lipases, hyaluronidases, and 

collagenases [25]. 

Along with these enzymes, S. aureus is also able to produce a variety of enterotoxins, 

known as pyrogenic toxin superantigens (PTSAgs). These superantigens are extremely variable 

and have been found to produce a variety of effects within the host. One of the most lethal 

effects of the PTSAgs is the ability to cause Toxic Shock Syndrome [26]. The exact mechanism 

of how PTSAgs cause Toxic Shock Syndrome is still being studied, however, one potential 

contributing mechanism that has been observed is the ability of PTSAg to bind to a highly 

conserved portion T-cell receptors [25]. This binding results in an over-activation of the host 

immune system and an over-production of cytokines. An overabundance of cytokine release 

leads to capillary leak around the site of infection. A leaky capillary is useful to initiate a very 

quick immune response. However, when PTSAgs are present, the capillary begins to leak too 

much, leading to hypotension, and ultimately multiorgan failure [25]. PTSAgs along with the 
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many other exoproteins produced by S. aureus, create an extremely effective method of invasion 

and infection.  

 Once past the epithelial barrier, S. aureus must evade the many other immune response 

elements produced by the host. One common way S. aureus accomplishes this is through the 

production of anti-opsonizing proteins that block neutrophils within the body from 

phagocytosing the pathogen [27]. S. aureus also kills leukocytes through the production of  

leukotoxins [28]. There are four known classes of these leukotoxins produced by S. aureus and 

each work to puncture pores in the membranes of various kinds of leukocytes resulting in cell 

lysis [29]. 

 Once established within a host, S. aureus can create large collections or communities of 

cells known as biofilms. These biofilms form both inside and outside of host tissues and provide 

many protective properties that a single isolated cell does not possess. In order to establish a 

biofilm a bacterial colony must first adhere to a surface and produces large extracellular matrices 

consisting of polysaccharides, lipids, proteins, and genetic material. The microorganisms within 

these biofilms are able to closely associate with each other and can exist in two forms, a free 

swimming planktonic form or an adhered form [30]. Once established, biofilms are highly 

resistant to antimicrobial compounds, such as antibiotics or human defensins, and can allow cells 

within the biofilm to survive in very harsh environments [31]. This method of resistance and 

survival is due to: (1) the difficulty of antimicrobial substances to penetrate the biofilm, (2) the 

close proximity of cells that facilitates the exchange of genetic material including resistance 

genes, and (3) the slower metabolic rates of the bacteria within the biofilm which decrease the 

efficiency of growth-dependent antimicrobial agents[31].  
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 Biofilms readily form within the lungs of Cystic Fibrosis patients [32]. The CF lungs 

create an environment well-suited for adherence and biofilm formation by S. aureus. These 

biofilms allow S. aureus to remain present in the lung and can create chronic bacterial infections 

which persists for months or years, despite the consistent use of antimicrobial agents.  

S. aureus is found most commonly to infect CF patients between the ages of 6-10 years 

of age. It has been found that 65% of all CF patients in this age range were found to be colonized 

by S. aureus. [33] Once S. aureus has invaded, through the use of biofilm structures it is able to 

persist for many years within this population. The overall nature and physiology of S. aureus 

accounts for the large prevalence of this organism in people with CF.  

 

Stenotrophomonas maltophilia 

 

 Stenotrophomonas maltophilia virulence and pathogenicity has only recently begun to be 

studied. The bacterium currently called Stenotrophomonas maltophilia was believed to be first 

cultured in the year 1943; however, it was not given its current name until 1993 [34]. For many 

years, S. maltophilia was classified within the Pseudomonas genus. After more intensive study, 

differences between the Pseudomonas genus and S. maltophilia isolates, including differences 

the 16S rRNA gene sequence, showed that these two genera were distantly related within the 

Gammaproteobacteria class.  This species was briefly reclassified as Xanthomonas maltophilia 

before being placed into its own genus of Stenotrophomonas, which currently consists of four 

different species [35]. 

S. maltophilia has not been a widely analyzed because it is an opportunistic pathogen that 

mainly infects immunocompromised hosts, especially within hospital environments, and is not 

very common among human isolates. [36] Recently, the number of nosocomial infections by S. 

maltophilia has been increasing, which has created a greater need for understanding the virulence 
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mechanism employed by this bacterial species [37]. Other than nosocomial infections, S. 

maltophilia can be found in many humid and aquatic environments [38]. The most common of 

these include bodies of water, moist soil, and animal feces. 

S. maltophilia is a Gram-negative aerobic bacterium. This species is motile through the 

use of polar, multitrichous flagella [39]. These flagella allow S. maltophilia to disperse 

throughout the various aquatic environments that this bacterial species inhabits, as well as 

allowing it to better invade susceptible hosts. This species of bacteria has also been found to 

produce adhesive proteins called fimbriae that allow it to attach to a variety of surfaces [40]. 

These various fimbriae, known as SMF-1 fimbriae, [41] exist on the outer membrane of the 

bacterium and are positively charged which allows these mostly negatively charged bacteria to 

adhere to various negatively charged surfaces. These charges interact mostly though electrostatic 

attraction  and give the bacteria an ability to stick to many surfaces [41]. This ability to adhere to 

multiple surfaces provides S. maltophilia with the first step in the formation of  biofilms [41]. 

Once these biofilms form, S. maltophilia is then able to become a very persistent pathogen that 

becomes extremely difficult to treat and eliminate.  

The entire genus of Stenotrophomonas has been found to be multi-drug resistant (MDR) 

[42]. This high level of antibiotic resistance has been associated with an anti-bacterial efflux 

pumps that allows S. maltophilia to secrete these antimicrobial agents [43]. These efflux systems 

are a very conserved method of antimicrobial resistance and have been found in other Gram-

negative bacteria, such as Pseudomonas aeruginosa and Burkholderia cepacia [44]. Other 

enzymes like β-lactamases and amino-glycoside modifying enzymes along with the efflux 

system that S. maltophilia has evolved, provides this species with resistance to many common 

clinical drug families such as β-lactams, quinolones, aminoglycosides, tetracycline [45]. In 
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addition to the intrinsic antibiotic resistance mechanisms that are already encoded in this species’ 

4.85 Mbp  genome, S. maltophilia can readily acquire other genetic material, such as plasmids 

and transposons, through horizontal gene transfer. This ability allows S. maltophilia to continue 

to build on its intrinsic MDR and presents a potential future danger that this organism could 

develop into an even more potent pathogen [46]. 

The method S. maltophilia uses to induce host virulence is poorly understood, but it has 

been observed that S. maltophilia does have a high level of immunostimulatory properties. S. 

maltophilia has been observed to activate production of both interleukin-8 by epithelial cells and 

Tissue Necrosis Factor-alpha (TNF-α) by host macrophages [47]. This activation of the immune 

system within the lungs leads to a large amount of airway inflammation, which results in 

neutrophil and macrophage recruitment. In the short term, this inflammation significantly 

decreases lung function and is an indicator of pneumonia. Other than the inflammation caused by 

S. maltophilia, very little is known about the pathogenicity of this bacterial species.  

 

Comparison of S. aureus and S. maltophilia  

S. aureus and S. maltophilia have very different morphologies and physical 

characteristics. They have very different genomic sizes, cell walls, and metabolism. However, 

these two pathogens both commonly infect CF lungs. Despite their many differences, they are 

both able to invade and persist in the same environment. However, the lung is not a uniform 

environment. There are many different microenvironments within the lung that can create unique 

niches for bacteria to colonize. Examples of microenvironments of the lung include various 

epithelial cell types, the lumen of alveoli, the lumen of the bronchioles, and the dust cells 

(alveolar macrophage). Each of these various cell and tissue types are contain different ion 
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concentrations, sugar availability, osmotic pressure, and predation levels. These biotic and 

abiotic fluctuations in the lung have an effect on bacterial growth. So when a bacterium invades 

the lung, there are certain microenvironments that the bacterial species would grow better in and 

would occupy a specific niche that would amplify the bacteria’s ability to persist. However, 

when multiple bacterial species invade the same niche, a competition for resources takes place 

and makes it difficult for both species to persist.  

In this study, we sought to examine the interactions between S. aureus and S. maltophilia. 

The goal of this study is to determine whether negative, independent, or positive interactions 

exist between these two bacterial pathogens and to provide insight into how these two species 

might function together within the CF lung. I hypothesized that, S. aureus and S. maltophilia will 

interact in vitro in an either predatory or inhibitory manner. These predatory or inhibitory 

interactions would cause a separation of the two bacteria in vivo. If true, these bacteria would 

then have very little interactions within the lung and would, therefore, lack competition that 

would limit each other’s growth. This hypothesis might explain why these two are found very 

often cultured from the same CF patients.  

 

Materials and Methods 

Growth and maintenance of bacterial strains and tissue culture cells 

The strains used in this study are found in Table1.  Strains were maintained routinely on Luria 

Broth agar (LB), Lennox formulation, and grown at 37°C.  Where indicated, 10 g/ml or 30 

g/mL chloramphenicol was added to the medium for S. aureus or S. maltophilia respectively. 

Murine RAW 264.7 4 macrophage were maintained in Dulbecco’s Modified Eagle Medium 
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(DMEM) containing 10% Fetal Bovine Serum (FBS). For routine growth, 100 µL of penicillin-

streptomycin was added to the DMEM to prevent contamination by bacteria. 

 

Table 1. Strains used in this study 

Strain Name Source Description 

S. maltophilia Strains 

M29668 

Dr. David Greenburg 

University of Texas 

Southwestern Hospital 

Clinical strain of S. maltophilia; obtained from a CF 

patient In May 2013 

TJB004 
Yoder-Himes lab collection 

University of Louisville 

Chloramphenicol 30, S. maltophilia M29668 

conjugated with pIN301 from Annette Vergunst 

[57], eGFP-expression vector, fluorescence 

confirmed by microscopy 

K279a 

Nicholas P Cianciotto 

Northwestern University 

Medical School 

Sequenced strain of S. maltophilia, originally from a 

cancer patient 

108489 

Alan Junkins 

Norton Hospital, Louisville, 

KY 

Clinical CF isolate 

CHB06092 
Dr. Greg Priebe 

Boston Children's Hospital 

Stenotrophomonas maltophilia clinical isolate from a 

female CF patient (09-176-00970) co-infected with 

methicillin resistant S. aureus. 

SM1511 
Dr. Susanna Remold 

University of Louisville 

Environmental Stenotrophomonas maltophilia  from 

a household drain in Louisville, KY 

100662 

Alan Junkins 

Norton Hospital, Louisville, 

KY 

Clinical CF isolate 

S. aureus strains 

AH3865 
Alexander Horswill 

University of Colorado 

Chloramphenicol 10, RN4220 containing pCM48 

(pCM29_dsRedExpress, camR) [58] 

T28260 

Dr. David Greenburg 

University of Texas 

Southwestern Hospital 

Clinical strain of methicillin-sensitive S. aureus; 

obtained from a CF patient in May 2013 

NRS 72 

Network of Antimicrobial 

Resistance in Staphylococcus 

aureus (NARSA) 

Clinical isolate of unknown origin isolated in 1960. 

Also known as NCTC 8325. 

NRS 253 

Network of Antimicrobial 

Resistance in Staphylococcus 

aureus (NARSA) 

Clinical isolate from 4 year old male in 2002  

Bacteremia isolate 

100619 

Alan Junkins 

Norton Hospital, Louisville, 

KY 

Clinical CF isolate 
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Mono- and Co-culture Biofilm Formation Assays 

  A single colony isolate was used to inoculate 5mL tubes of LB broth and incubated 

overnight at 37°C. Antibiotic selection was continued throughout this part of the experiment for 

the necessary strains. After 24 hours, cultures were diluted 1:50 in 5mL of LB with antibiotics. 

These tubes were incubated at 37°C until an optical density at 600 nm (O.D.600) of 0.8-1.2 was 

achieved which corresponds to mid-log phase growth.   

 Three 96-well PVC plates (Costar #2797) and rayon film covers (VWR #60941-084) 

were obtained and each was sterilized under UV light in a biosafety cabinet for 20 minutes and 

disinfected using 70% ethanol. Once all tubes of culture reached the desired O.D.600 , each 

sample was aliquoted into autoclaved, sterile test tubes containing Tryptic Soy Broth (TSB) to 

give a final concentration of 1x106 colony forming units (CFU)/mL based known ratios of 

CFU/mL concentrations to O.D.600 absorbance values previously established in the Yoder-Himes 

lab. Each tube was vortexed for five seconds and added to the wells of the 96-well PVC plates as 

indicated. For mono-culture biofilms, 60 µl each strain was added individually to at least three 

replicates wells and 60 µl of TSB was added to each. For co-culture biofilms, 60 µl of S. 

maltophilia culture was added to 60 µl of the S. aureus strain culture in at least three replicate 

well. Control wells containing 120 µl un-inoculated TSB were added to each 96-well plate to 

account for cross well contamination. Mono- , co-culture, and control wells were separated from 

each other by at least one row of empty wells to prevent cross-well contamination also. The 96-

well plates were sealed with rayon film which allow for gas exchange. Each plate was wrapped 

in aluminum foil, placed in small humidifying chamber, and incubated at  37°C. 
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Sonication and Drip Dilution 

At indicated time points, the 96-well plates were removed and the rayon film was carefully 

removed inside a biosafety cabinet. The conditioned media was removed using a micropipetter 

and each well was washed carefully with 120 µl of sterile water to avoid splashing.  One hundred 

twenty µL of 1% Tween20 was then added to each well and covered with disinfected aluminum 

sealing foil.  Plates were sonicated at 50Hz for 10 minutes in a Branson 3600 water bath 

sonicator to disrupt the biofilm structures and release the cells. Each sample was transferred to a 

flat-bottom 96-well disinfected polystyrene plate and serially diluted 10-fold in 180 µl of 

phosphate buffered saline.  A multichannel pipet was then used to extract 10 µl from each well 

left to drip down square LB agar plates until drips reached 2/3 the way down the plates. The 

plates were then covered, labelled, and placed in the 37°C incubation room for 24 hours. Viable 

cell counts were determined for each sample. The row on each plate that had between 11-100 

colonies was counted and recorded. The bacterial concentration in CFU/mL was then calculated 

based on multiplying the number of colonies and all dilution factors.  Statistical analyses were 

performed in GraphPad Prism v 5.0. 

  

Conditioned Medium Harvesting  

Two 96-well PVC plates were inoculated solely with S. maltophilia M29668 mono-

cultures or S. aureus AH3865 were prepared as described above and incubated at 37°C room for 

7 days. The same protocol was followed in order to create conditioned media for the other S. 

maltophilia strains used [K279a, 108489, CHB06092, SM1511, 100662] except that each strain 

was added to only half of a 96-well plate in order to generate enough conditioned medium.  The 

rayon films were removed and the conditioned media was transferred into a sterile centrifuge 
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tube using a micropipette and centrifuged for one hour at 5000 revolutions per minute x gravity 

(RPMxg). The conditioned media was carefully removed from the tubes and filtered through a 

0.2 µm syringe filter to remove any remaining bacteria. The filtered conditioned media were 

stored for 2-3 days at 4°C.  

 

Conditioned Medium Biofilm Assays 

S. aureus AH3865 was grown to mid-log phase and prepared for biofilm experiments as 

described above. S. aureus culture was diluted into five different S. maltophilia M29668 

conditioned media concentrations. The ratios of conditioned medium to TSB (v/v) used were 0:1, 

1:2, 1:1, 2:1, and 1:0. 120 µl of these mixtures were added replicate wells. Each condition was 

separated from each other condition by at least one well. Control wells containing only TSB or 

only S. maltophilia conditioned medium were added to each plate.  Plates were incubated, 

sonicated at the indicated time points, serially diluted, and plated as described above.  

In separate experiments, S. maltophilia conditioned medium was combined with S. 

aureus conditioned medium instead of TSB and analyzed as described above. Controls wells 

containing only S. aureus or S. maltophilia conditioned medium were inoculated with S. aureus. 

Sonication and drip dilution protocol was performed as described above. 

 

Confocal Imaging of Biofilms  

 Overnight cultures of S. maltophilia TJB004 and S. aureus AH3865 were diluted into 5 

mL of LB broth with chloramphenicol and grown to mid-log phase. One million cells of each 

strain were added to flat-bottom confocal imaging dishes (Matsunami #D113OH) either in 

mono-culture (1 x 106 CFU) or co-culture (total of 2 x 106 CFU) with 3 mL of TSB + 
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chloramphenicol. These plates were placed in a humidity chamber and incubated at 37°C for 

three or seven days. At the appropriate time, these plates were removed from the incubation 

room and washed with 3 mL of sterile PBS.  Three mL of fresh TSB was then added to each dish 

prior to imaging. Each dish was imaged under 40X oil immersion lens and two excitation 

wavelengths were used, 480 nm and 580 nm, to visualize both GFP and mCherry fluorescent 

proteins.   

 

Macrophage Internalization Assays  

 RAW 264.7 macrophage were grown in T75 flasks to ~80% confluence and diluted 

approximately 50% confluence. Sterile Corning tissue culture treated 96-well plates were 

inoculated with 100 µL diluted macrophage culture. The plate was incubated overnight at 37°C 

with 5% CO2. On the day of the experiment, the concentration of macrophage was established 

using trypan blue staining and a hemocytometer using standard protocols.  S. maltophilia 

TJB004 and S. aureus AH3865 were grown to mid-log phase and diluted to achieve the desired 

multiplicity of infection (M.O.I. expressed as the number of bacteria per eukaryotic cell) of 50 

and 100 (depending on the experiment).  Once this value was calculated, the medium from each 

well was aspirated off and replaced with bacterial mono- or co-cultures suspended in 100 µL 

fresh DMEM + FBS. These plates were centrifuged at 800 RPMxg for minutes to maximize 

contact between bacteria and macrophage. These plates were then incubated at 37°C with 50% 

CO2. After two hours, the old medium from every well was aspirated off, 100 µL of DMEM 

containing 5 mg/mL of gentamicin and penicillin-streptomycin mix was added to each well, and 

the plates were incubated at 37°C and 5% CO2. At each time point, the medium from three 

replicate wells containing S. aureus or S. maltophilia was aspirated off and each well was 
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washed with 100 µL of fresh DMEM to remove unattached bacteria from the macrophage. This 

medium was again aspirated off and 100 µL of DMEM containing 0.5% Triton X-100 was added 

to wells in order to lyse the macrophage. The media was removed from each well, serially 

diluted 10-fold, and plated via drip dilutions, and analyzed for bacterial survival as described 

above.   

 

RESULTS 

 

Biofilm analysis of single S. aureus strain with panel of S. maltophilia strains 

 To determine if S. maltophilia affected the ability of S. aureus to survive and reproduce 

in biofilms, viable cell counts from biofilms were examined over time.  To do this, we generated 

mono- or co-culture biofilms containing 1 x 106 or 2 x 106 cells respectively and incubated these 

biofilms for 1, 3, or 7 days. At each time point, S. aureus showed a significant decrease in viable 

cell counts in the presence of each S. maltophilia strain. After 3 days, viable cell counts of S. 

aureus significantly decreased in the presence of each S. maltophilia strain (Fig. 1A).  

 

 

 

 

 

 

 

 

Figure 1. Survival of S. aureus in biofilms in the presence of S. maltophilia.  S. aureus viable cell counts 

from (A) 3 day, (B) 5 day, or (C) 7 day biofilms are shown.  Error bars represent one standard deviation 

from at least three replicate cultures.  Co-culture survival was compared to mono-culture survival using 

unpaired t-tests.  **** indicates p-values of <0.0001. N.D. represents not detectable levels of data. Limit of 

detection was 1.1x102 CFU/mL. 
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Figure 2. Survival of S. maltophilia in biofilms in 

the presence of S. aureus.  S. maltophilia viable 

cell counts from (A) 3 day, (B) 5 day, or (C) 7 day 

biofilms are shown.  Error bars represent one 

standard deviation from at least three replicate 

cultures.  Co-culture survival was compared to 

mono-culture survival using unpaired t-tests. N.D. 

represents not detectable levels of data. Limit of 

detection was 1.1x102 CFU/mL. 

 

Each co-culture condition was statistically compared to the mono-culture condition containing 

only S. aureus AH3865 using an unpaired t-test. Each condition showed a highly significant 

difference compared to the mono-culture (p-

values <0.0001). The same observations are true 

of both the 5 and 7 day biofilms (Fig. 1B and C 

respectively). Each condition produced highly 

significant differences compared to the mono-

culture viable cell count (p-values<0.0001), 

showing that the presence of each S. maltophilia 

strain produced a decrease in the S. aureus viable 

cell counts. One S. maltophilia strain, K279a, 

suppressed S. aureus growth in biofilms below the 

level of detection after 7 days (Fig. 1C). In 

contrast, it was observed that there was no 

significant change between the various strains of 

S. maltophilia when grown in mono-culture 

compared to S. maltophilia grown in the presence 
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of S. aureus (Fig. 2). 

 

 

Biofilm analysis of single S. maltophilia strain with panel of S. aureus strains 

 To determine if S. maltophilia could suppress other S. aureus strains in biofilms, the 

same protocol was used from the previous experiment and viable cell counts for both S. aureus 

and S. maltophilia were obtained from mono- and co-cultures at 5 and 7 days post-inoculation.  

The co-culture condition for each strain was then compared to the mono-culture condition of the 

same strain using an unpaired t-test. After 5 days (Fig. 3A) every S. aureus strain showed a 

significant decrease in the presence of S. maltophilia. The most significant drops were that of 

strains AH3865, NRS72, and 100619. Compared to the mono-culture, each strain showed a 
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Figure 3. Viable cell counts of various S. aureus strains grown in co-culture with S. 

maltophilia M29668. S. aureus viable cell counts from (A) 5 day and (B) 7 day biofilms, were 

measured when grown in mono-culture or in co-culture with S. maltophilia M29668.  Co-culture 

survival was compared to mono-culture survival using unpaired t-tests.  Error bars indicate one 

standard deviation from the average from at least three replicate cultures .  **** indicates p-values 

of <0.0001, *** indicates p-value of <0.001, ** indicates p-value of <0.01, *indicates p-

value<0.05. N.D. represents levels of survival beneath the limit of detection (1.1x102 CFU/mL). 
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highly significant difference (p-value<0.0001). The two other strains, T28260 and NRS253, still 

showed a significant difference, just not to the extent of AH3865, NRS72, and 100619, with 

NRS253 showing the least significant drop (p-value<0.05) and T28260 showing slightly more 

significance (p-value<0.001). After 7 days, every S. aureus strain showed a significant decrease  

when grown in the presence of S. maltophilia M29668 except for S. aureus NRS253 (Fig. 3B), 

the latter possibly due to a reduced growth in mono-culture conditions compared to the other 

strains.  After 7 days, S. aureus strains AH3865, NRS253, and 100619 were not detected 

suggesting that S. maltophilia strongly suppressed the presence of these strains in biofilms. There 

was again no significant difference in the viable cell counts of S. maltophilia within the co-

culture compared to the viable cell counts of S. maltophilia alone (Fig. 4). 

 

 

 

 

  

Figure 4. Viable cell counts of S. maltophilia M29668 strains grown in co-culture with various 

S. aureus strains. S. aureus viable cell counts from (A) 5 day and (B) 7 day biofilms, were measured 

when grown in mono-culture or in co-culture with S. aureus strains listed.  Co-culture survival was 

compared to mono-culture survival using unpaired t-tests.  Error bars indicate one standard deviation 

above the average of at least three replicates. The limit of detection was 1.1x102 CFU/mL. 
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Biofilm analysis using conditioned medium from a single strain of S. maltophilia   

 To assess whether the effect of S. maltophilia on S. aureus in biofilms is the result of a 

secreted product, conditioned media was harvested was from 7 day old mono-culture S. 

maltophilia M29668 biofilms. This conditioned media was filter sterilized to remove any live S. 

maltophilia cells and the conditioned media was added in varying concentrations to live S. 

aureus cells under biofilm forming conditions. Each condition was mixed with TSB medium 

such that it had either 0% conditioned media, 25% conditioned media, 50 % conditioned media, 

75% conditioned media, or 100% conditioned media.  

 Viable cell counts were taken at both 5 days (Fig. 5A) and 7 days (Fig. 5B). At day 5 

(Fig. 5A), the viable cell counts showed no significant changes in S. aureus concentration in 25% 

conditioned media and 50% conditioned media compared to the 0% conditioned media 

condition. However, there was a highly significant decrease with both 75% conditioned media 

and 100% conditioned media (p-values <0.0001) compared to the 0% conditioned media. The 

control wells at day 5 and day 7, containing only TSB and only conditioned media with no live 

culture, did not produce any growth when plated.  
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Figure 5. S. aureus viable cell counts grown in varying concentrations of S. maltophilia M29668 

conditioned media. Viable cell counts from (A) 5 day or (B) 7 day biofilms were obtained. Viable cell 

counts under varying levels of conditioned media concentration were compared to 0% S. maltophilia 

conditioned media concentration using unpaired t-tests.  **** indicates p-values of <0.0001 

***indicates p values of <0.001 **indicates p values of <0.01. The limit of detection in this assay was 

1.1x102 CFU/mL.  Error bars indicate one standard deviation above the average. 

 



 25 

 

At day 7 (Fig. 5B), the viable cell counts again showed no significant difference at 25% 

conditioned media compared to 0% conditioned media. However, at 50% conditioned media 

there was a 2- log decrease recorded in S. aureus viable cell counts (p-values <0.001). There was 

again a 5-log decrease at 75% and 100% conditioned media compared to 0% conditioned media. 

The control wells at day 7, containing only TSB and only conditioned media with no live 

cultures, did not produce any growth when plated. Taken together, these results suggest that S. 

maltophilia secretes something that is capable of reducing S. aureus growth and persistence in 

biofilm in a dose-dependent and time-dependent manner.  

 

Biofilm Analysis with conditioned media from multiple strains of S. maltophilia   

To determine if the conditioned media harvested from various strains of S. maltophilia had a 

similar effect on S. aureus AH3865 compared to those conditioned media harvested from S. 

maltophilia M29668, conditioned media from five additional strains of S. maltophilia was used 

in two concentrations, either 50% conditioned media or 100% conditioned media doses. As a 

control for general conditioned media effects, S. aureus conditioned media was harvested and 

used in parallel. Plates were incubated for 3 days (Fig. 6A), 5 days (Fig. 6B), or 7 days (Fig. 6C). 

Because this experiment had more than two treatments, a one-way ANOVA statistical test with a 

Dunnett’s multiple comparison test was used to determine if any of the conditioned media 

conditions produced statistically significant differences when compared to the 100% S. aureus 

conditioned media. We found that every S. maltophilia strain at 100% S. maltophilia conditioned 

media concentration resulted in a statistically significant decrease in S. aureus viable counts. 

This is true for the 3 day (Fig. 6A), 5 day (Fig. 6B), and 7 day (Fig. 6C) time points. Conditioned 



 26 

Concentration of Supernatant

C
F

U
/m

L

1
0

0
%

 S
. 

a
u

re
u

s

5
0

%
 M

2
9

6
6

8

1
0

0
%

 M
2

9
6

6
8

5
0

%
 K

2
7

9
a

1
0

0
%

 K
2

7
9

a

5
0

%
 1

0
8

4
8

9

1
0

0
%

 1
0

8
4

8
9

5
0

%
 C

H
B

0
6

0
9

2

1
0

0
%

 C
H

B
0

6
0

9
2

5
0

%
 S

M
1

5
1

1

1
0

0
%

 S
M

1
5

1
1

5
0

%
 1

0
0

6
6

2

1
0

0
%

 1
0

0
6

6
2

102

103

104

105

106

107

108

109

101 0

101 1

101 2

**
** **

**
** **

Concentration of Supernatant

C
F

U
/m

L

1
0
0
%

 S
. 

a
u

re
u

s

5
0
%

 M
2
9
6
6
8

1
0
0
%

 M
2
9
6
6
8

5
0
%

 K
2
7
9
a

1
0
0
%

 K
2
7
9
a

5
0
%

 1
0
8
4
8
9

1
0
0
%

 1
0
8
4
8
9

5
0
%

 C
H

B
0
6
0
9
2

1
0
0
%

 C
H

B
0
6
0
9
2

5
0
%

 S
M

1
5
1
1

1
0
0
%

 S
M

1
5
1
1

5
0
%

 1
0
0
6
6
2

1
0
0
%

 1
0
0
6
6
2

102

103

104

105

106

107

108

109

101 0

101 1

101 2

**

**
**

** **
**

Concentration of Supernatant

C
F

U
/m

L

1
0

0
%

 S
. 
a

u
re

u
s

5
0

%
 M

2
9

6
6

8

1
0

0
%

 M
2

9
6

6
8

5
0

%
 K

2
7

9
a

1
0

0
%

 K
2

7
9

a

5
0

%
 1

0
8

4
8

9

1
0

0
%

 1
0

8
4

8
9

5
0

%
 C

H
B

0
6

0
9

2

1
0

0
%

 C
H

B
0

6
0

9
2

5
0

%
 S

M
1

5
1

1

1
0

0
%

 S
M

1
5

1
1

5
0

%
 1

0
0

6
6

2

1
0

0
%

 1
0

0
6

6
2

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 1 0

10 1 1

10 1 2

**

**

**
**

**
**

A

B

C

Figure 6. S. aureus viable cell counts grown 

in varying concentrations of S. maltophilia 

M29668 conditioned media. Viable cell 

counts from (A) 3 day, (B) 5 day, (C) 7 day 

biofilms were obtained. S. aureus was grown 

in two concentrations of S. maltophilia 

conditioned media. Viable cell counts under 

varying levels of conditioned media 

concentration were compared to 100% S. 

aureus conditioned media concentration using 

a one-way ANOVA with a Dunnett Multiple 

Comparison post-test.  **** indicates p-values 

of <0.0001 ***indicates p values of <0.001 

**indicates p values of <0.01. Limit of 

detection was 1.1x102.  Error bars indicate one 

standard deviation above the average of three 

replicates. 
 

media from some strains at day 7 also 

showed strong decreases in S. aureus 

survival, sometimes up to a 103-104 

CFU/mL fold reduction in viability (Fig. 

6C). 

 

 Assessing mono- and co-culture S. 

aureus and S. maltophilia biofilm 

structures  

Bacterial survival gives a gross 

estimate as to changes in populations in 

biofilms over time.  However, it yields no 

information into the structures being 

formed in mono- and co-culture biofilms, 

which may have implications for the likely 
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Figure 7. CLSM of mono-culture biofilms. S. maltophilia TJB004 (fluoresces green) and S. aureus 

AH3865 (fluoresces red) were imagined under 40X magnification. A-C represent S. maltophilia mono-

culture biofilms, D-F represent S. aureus mono-culture biofilms. Images shown are representative of  9 

images taken from biological triplicate cultures. Images represent 3 day biofilm growth. 

 

efficacy of therapeutic agents such as antibiotics.  To address whether co-cultures biofilms have 

different structures or phenotypic properties, we conducted pilot experiments using confocal 

laser scanning microscopy (CLSM).  This type of microscopy allows us to image 3-dimensional 

structures such as biofilms (Fig. 7).  Because these were pilot studies, we have yet to generate a  

sufficient of images to allow us to quantitate the physiological properties and establish statistical 

differences so all conclusions in this section drawn are based solely on qualitative observations 

made. The mono-culture conditions show standard growth when the bacterial cultures are left  

alone to grow. When the S. aureus mono-culture images (Fig. 7D) are compared to the S. aureus 

assay co-culture images (Fig. 8C), there appears to be a very noticeable decrease in both size of 
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the structures and number of the structures. When looking at solely the co-culture images, it 

appears as though there is a greater amount of green fluorescent S. maltophilia compared to the 

red S. aureus at both time points (Fig. 8). There also appears to be a slight decrease in both S. 

maltophilia and S. aureus from day 3 (Fig. 8A-8C) to day 7 (Fig. 8D-8F). 

 

 Internalization S. aureus and S. maltophilia by mammalian macrophage  

 While we observed that S. maltophilia can suppress S. aureus in biofilms in vitro, data 

from the CF Foundation suggests these two species are often found in the same patient. This data 

would make sense if these species occupy different niches.  Based on other studies, S. aureus is 

A B 

D E F 

A B C 

D E F 

Figure 8. CLSM of co-culture biofilms. S. maltophilia TJB004 (fluoresces green) and S. aureus 

AH3865 (fluoresces red) were imagined under 40X magnification. A-C represent 3 day co-culture 

biofilms, D-F represent 7 day co-culture biofilms. Images shown are representative of 9 images taken 

from biological triplicate cultures. 
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primarily thought to be an extracellular pathogen while S. maltophilia may be able to penetrate 

into host cells and survive.  Therefore, these two species may only rarely encounter each other in 

vivo.  I conducted internalization assays using immortalized murine macrophages, immune cells 

known to phagocytose bacteria.  This particular macrophage cell line was chosen because it 

mimics the alveolar macrophages commonly found in the lungs. RAW 264.7 murine macrophage 

were exposed to either S. aureus or S. maltophilia in mono-culture or both species in co-culture.  

After a short period of time, antibiotics were added to the medium to kill extracellular bacteria so 

we could track only those inside the host cells.  We assayed each condition over the course of 

24-48 hours to examine the growth dynamic of each mono- and co-culture sample.  Bacterial 

samples from each time point were harvested from the cultured macrophages and assessed for 

species survival. 

  Figure 9A shows the viable cell counts for both S. aureus (red) and S. maltophilia (green) 

at various hours post-inoculation. The curves as a whole did not show statistical significance 

using a two-way ANOVA algorithm. However, unpaired t-tests were conducted to compare each 

individual time point. It was found that at 8 hours, 12 hours, and 24 hours past inoculation there 

was a highly significant difference (p-value<0.0001) between the viable cell counts of S. aureus 

and S. maltophilia. S. maltophilia survived at a 3-log higher rate than S. aureus at those hours 

past inoculation than S. aureus had. At an M.O.I. of 100, S. maltophilia survived 1,000 fold 

better compared to S. aureus (p-value<0.0001) based on two-way ANOVAs.   S. aureus seemed 

to have an overall negative trend, decreasing  at each time point, while S. maltophilia seemed to 

fluctuate up and down throughout the duration of the experiment. S. aureus was also not detected 

at 144 hours post inoculation (h.p.i.) suggesting that the macrophage may have effectively 
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eliminated the S. aureus by this time. In 

contrast, internalized S. maltophilia was 

still detected at 144 h.p.i. at levels of 

~104 CFU/mL. 

Figure 9C shows another set of 

viable cell counts of S. aureus (red) and 

S. maltophilia (green). The bacteria were 

inoculated at an M.O.I. of 100 and the 

bacterial cultures were mixed.  The 

invasions occurred with bacterial co-

cultures, so each well contained both 

bacterial species. The viable cell counts 

represent the number of internalized 

bacteria from each species. Every time 

point produced viable cell counts above 

the limit of detection.  

When statistical analysis was 

carried out using a two-way ANOVAs, 

these curves were not found to be 

statistically different. However, when 

each time point was compared 

individually using an unpaired t-test, it 

was found that at 12, 24, and 48 hours 

Figure 9. Viable cell counts of S. aureus and S. 

maltophilia after internalization by murine 

macrophage. Viable cell counts (CFU/mL) at various time 

points represented as hours post- inoculation (h.p.i.) are 

shown. The red line represents S. aureus and the green line 

represents S. maltophilia. Multiplicities of infection of 50 

(A) or 100 (B and C) were used. Panels A and B represent 

mono-culture conditions.  Panel C represents co-culture 

conditions. The limit of detection was 1.1x102 CFU/mL in 

all experiments. Error bars represent one standard 

deviation above the average of three replicates. 
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showed statistical significant differences (p-values<0.001). This data suggests that after 12 hours, 

S. maltophilia is found internalized at a much higher rate than S. aureus is found internalized.  

In order to determine if the co-culture condition used for inoculation of the macrophages had an 

effect, the co-culture data from was plotted on the same graph as the monoculture data (Fig. 10). 

Each time point was then 

compared for both S. aureus 

and S. maltophilia to identify if 

the co-culture condition 

produced any statistical 

significance. For S. aureus, 

(Fig. 10A) every time point 

except 8 h.p.i. showed a 

statistically significant 

difference when compared 

using an unpaired t-test (p-

value<0.001).   S. maltophilia 

(Fig. 10B) only showed 

statistically significant 

difference at 4 h.p.i. and and 

48 h.p.i. (p-values<0.001) 

when using the unpaired t-test. 

The internalization rates of 

both bacteria seem to have 
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Figure 10. Viable cell counts of S. aureus and S. maltophilia 

after internalization by murine macrophage co-culture vs 

mono-culture. Viable cell counts (CFU/mL) at various time 

points represented as hours post- inoculation (h.p.i.) are shown. 

Panel A shows data for S. aureus and Panel B shows the data for 

S. maltophilia. M.O.I.s of 100 was used. Dark triangles represent 

mono-culture, light circles represent co-culture.  The limit of 

detection was 1.1x102 in all experiments. Error bars represent one 

standard deviation above the average of three replicates. 
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been slightly negatively affected by the co-culture condition. However, it appears as though the 

condition had a more significant negative effect on the internalization of S. aureus than it did on 

the internalization of S. maltophilia.  

 

Discussion 

 In this study, we present evidence that suggests that S. maltophilia can inhibit S. aureus 

biofilm formation in vitro.  This inhibition is at least partially mediated by one or more secreted 

substances made by multiple S. maltophilia isolates during biofilm formation.  Whether the 

effect of the secreted substance actually leads to lysis or killing of S. aureus or whether it simply 

prevents S. aureus from building a biofilm though the inhibition of extracellular polymeric 

substance remains to be determined.  It does appear that this inhibition is time- and concentration 

dependent as would be expected for a protein-based toxin or other similar inhibitory mechanism.     

 It does not appear that this inhibition is mediated through nutrient depletion (Fig. 6) 

because it was observed that this effect is observed in both nutrient rich media (TSB) and 

nutrient depleted media (S. aureus conditioned medium). Further we observed that this inhibition 

is not strain dependent (Figs. 3, 6), either on the part of S. maltophilia or on the S. aureus side 

which suggests that this mechanism of inhibition is fundamental to many strains of S. 

maltophilia rather than a recent acquisition by specific strains of S. maltophilia.  This data also 

seems to indicate that live S. maltophilia is not required for the disruption of S. aureus viability 

(Fig. 6). It has been previously shown that S. maltophilia has the ability to sense the environment 

around itself and react to that environment through the use of quorum sensing [48]. S. 

maltophilia possesses a very unique system of quorum sensing that works through the use of a 

diffusible signal factor (DSF). This system has been found to play a role in disrupting growth of 



 33 

certain organisms, such as the fungus Candida albicans. [49].  However, since the S. maltophilia 

generated the conditioned media without the presence of S. aureus, this observed inhibitory 

effect is not a direct result of S. maltophilia detecting the presence of S. aureus and actively 

generating something specific to prevent S. aureus from growing. Instead, it is more likely that 

the conditioned medium itself intrinsically contains a substance that makes it harder for S. aureus 

to grow and/or form biofilms.  

There are many potential explanations for how S. maltophilia conditioned medium could 

lead to S. aureus biofilm inhibition. One potential factor could be changing the pH of the 

medium. It has been found that pH has a very strong effect on biofilm production by S. aureus 

[48]. In an experiment carried out in 2018 by a member of the Yoder-Himes lab, it was shown 

that at very high (above 8.5) and very low pH (below 4.0) there is very weak biofilm formation 

by S. aureus [50]. S. aureus does not form very thick biofilms at pH values below 4.0 and above 

8.5. According to this 

data, there seems to be 

an optimal pH value 

slightly over pH of 6 

and in both directions 

there is a slow decline 

in biofilm density. 

That particular study 

does not reflect viable 

cell counts, but, based 

on absorbance data of 

S. maltophilia & S. aureus
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Figure 11. pH values over time of mono-culture and co-culture 

biofilms. pH values of S. aureus (Sa) mono-culture (light purple square), S. 

maltophilia (Sm) mono-culture (green circles), and co-culture with both 

species (dark purple triangles).  Data kindly provided by Josh Stewart, 

undergraduate in the Yoder-Himes lab, yet unpublished. 
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the biofilms, there seems to be a definitive decrease in the ability of S. aureus to thrive in very 

high and very low pH levels. Therefore, the negative effect that S. maltophilia conditioned media 

has on S. aureus could be attributed to pH if S. maltophilia is able to manipulate the pH of its 

conditioned medium and create a slightly higher or slightly lower pH than S. aureus’ optimal pH.  

 A collaborator within the Dr. Yoder-Himes lab carried out an experiment that looked at 

pH changes biofilms of various microbes. In this experiment (Fig. 11), the collaborator 

continuously measured the pH values over time of S. aureus in mono-culture, S. maltophilia in 

mono-culture, and in both species in co-culture. It was found that when S. maltophilia grows and 

forms a biofilm in mono-culture, its conditioned medium maintains a pH above 8. When S. 

aureus grows and forms a biofilm, its conditioned medium mostly maintains a pH between 6 and 

8. When S. aureus and S. maltophilia are grown together the pH values closely resemble those of 

S. maltophilia, around a pH of 8.5. Since, S. aureus’ ability to form biofilms significantly 

decreases when pH increases past a value of 8 [50], there is reason to believe that the elevated 

pH when grown in co-culture with S. maltophilia may be the reason that S. aureus is unable to 

grow and form biofilms at the same rate that this species does when left to grow without S. 

maltophilia. 

 The elevated pH that S. maltophilia generates one possible reason for the observed 

inhibition, however other potential mechanisms exist in closely related gram-negative species 

that could give more insight into this inhibitory effect. S. maltophilia shares many similarities 

with other gram-negative bacteria such as Pseudomonas aeruginosa. They possess similar 

methods of antibiotic resistance and cell wall maintenance [51]. This could lead one to propose 

that S. maltophilia and P. aeruginosa might also possess similar methods of S. aureus inhibition.  
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 An observed method that P. aeruginosa uses to limit the biofilm production of S. aureus 

is by forcing S. aureus into a fermentation pathway [52]. When S. aureus is grown in the 

presence of P. aeruginosa there is an observed shift in S. aureus from an aerobic pathway 

producing acetate, to an anaerobic pathway producing lactate that provides less energy to the 

organism. The exact mechanism causing this shift is unknown; however, there is evidence that 

this shift plays an important role in the inhibition of S. aureus by P. aeruginosa [52]. This shift 

in metabolism from respiration to fermentation puts S. aureus at a competitive disadvantage 

compared to P. aeruginosa. This possibly leads to S. aureus being unable to sustain substantial 

growth in the presence of P. aeruginosa and ultimately a lack of survival. This shift from 

respiration to fermentation in S. aureus could potentially also be seen with S. maltophilia due to 

the similarities with it shares with  P. aeruginosa, and could be a contributing factor to the 

inhibition seen when S. aureus is grown with S. maltophilia. However, this is more than likely 

not the reason for the observed inhibition because the observed shift in metabolism was not seen 

when S. aureus was grown in P. aeruginosa conditioned medium [52]. If this same method was 

solely responsible for the inhibition of S. aureus observed with S. maltophilia then there would 

not have been an observed inhibition in fig. 6. Further study is necessary to determine if this shift 

in metabolism does indeed occur when S. aureus is grown in co-culture with S. maltophilia. 

However, there is evidence (Fig. 6) to suggest this method of inhibition could not be solely 

responsible for the inhibition observed in this paper.  

 Another potential method of S. aureus inhibition by P. aeruginosa is through the use of 

long chain N-acylhomoserine lactones (AHL) [53]. It has been found that multiple types of these 

AHLs, produced by P. aeruginosa, reduce growth and virulence in S. aureus [54]. These 

molecules consist of a homoserine lactone ring that is N-acylated with a fatty acyl group. 
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Various lengths of acyl groups are produced by P. aeruginosa as well as may other gram-

negative bacteria. However, the long acyl chains have been found to produce an inhibitory effect 

in S. aureus [55]. This would be an ideal explanation for the potential mechanism of inhibition 

by S. maltophilia since AHLs are produced by many gram-negative species. However, it has 

been found that no environmental strains of S. maltophilia have shown to produce these 

molecules [56]. Based on the data from this paper, (Fig. 1) suggesting that the inhibitory effect of 

S. maltophilia is not strain specific and is observed in both environmental and clinical strains, it 

is highly unlikely that AHLs play any role in the inhibition of S. aureus by S. maltophilia.  

 pH appears to be the most plausible explanation for this observed inhibitory effect of S. 

maltophilia on S. aureus. However, pH may not be solely responsible for this observed effect. 

There may be other factors that all contribute to this produce this inhibition. More study of the 

molecular interactions between the two pathogens is needed to determine the exact method of 

inhibition and if there are more inhibitory factors beyond that of pH.  

 This inhibitory relationship that exists between S. maltophilia and S. aureus seems to 

contradict the data that was found in the CF patient registry that S. aureus and S. maltophilia are 

often found within the same CF sputum. However, with my current hypothesis that the two 

bacteria occupy different niches, this inhibitory effect is plausible. These two bacteria are 

extremely different and it would make sense that one would not survive in an environment that 

the other thrives in. However, when the two occupy different niches, there would be very little 

interactions between the two and there would not be the observed inhibitory effect. If true, there 

would also be a much smaller amount of nutrient competition which would allow the two to 

coexist very nicely even within the same lung. However, the question remains, do the two 

occupy different niches and if so what niches do each occupy? 
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In order to further investigate this hypothesis, an internalization assay was carried out to 

determine if there are differences in how each bacterial species invades eukaryotic cells. If it is 

observed that one has a higher rate of invasion and replication within eukaryotic cells, that might 

provide evidence that these bacteria localize within different parts of the CF lung. During this 

invasion a murine model was used to act as the eukaryotic cells. RAW 264.7 macrophages were 

invaded with both S. maltophilia and S. aureus. Antibiotics were then used to eliminate any 

extracellular pathogens, the eukaryotic cells were lysed, and the viable cell counts of each 

bacterium were recorded. This was first done solely with mono-cultures of each bacterial 

species. When the data was recorded (Fig. 6A) it was found that there was no statistically 

significant difference between the two bacteria invasion amounts at 4 h.p.i.. However, after that 

time point there was a highly significant difference between the two bacterial amounts. S. 

maltophilia showed a much higher amount of invasion and replication within the macrophage. 

There was a steep decrease in both cell counts during the first two timepoints. S. maltophilia 

seemed to rebound after this decrease at a very high rate and create viable bacterial cells within 

the macrophage. However, S. aureus was found in much lower concentrations and a much 

smaller rebound effect was observed.  

When the invasion was carried out a second time, more time points were recorded but the 

same trend was still observed. (Fig. 6B) There was the same dip at the very beginning of the 

experiment but S. maltophilia was able to rebound to a very high level. S. aureus was unable to 

achieve any rebound effect and over time decreased in viable to amounts until it was unable to be 

detected at 144 hours. S. maltophilia was still observed even at 144 h.p.i.. This same observation 

was made when invasion of macrophages was carried out using cocultures containing both S. 
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aureus and S. maltophilia. S. maltophilia; however, had significantly higher viable cell amounts 

at 12, 24, and 48 h.p.i. compared to those of S. aureus.  

This trend seems to indicate that S. maltophilia preferentially invades eukaryotic cells to 

a greater extent than S. aureus. Some recent studies corroborate this finding that S. maltophilia 

does have an ability to internalize within host macrophage and replicate efficiently once inside 

[57]. However, research is still ongoing and far from definitive. The murine tissue invasion does 

seem to suggest that S. maltophilia is able to survive within a specific microenvironment to much 

greater extent than S. aureus. This provides supports the idea that the two species are localized to 

different niches in the CF lung.  

At this point in time, the conclusion that S. aureus and S. maltophilia occupy different 

niches within the CF lung is mostly conjecture and requires further study. However, this 

theoretical conclusion makes sense based on the recorded data that S. maltophilia creates a less 

than optimal environment for S. aureus and the statistics from the CF foundation showing that 

both S. maltophilia and S. aureus are observed very often within the same CF sputum. Further 

research and study is necessary to generate more definitive answers. However, this study lays the 

foundation for understanding the various interactions and relationship between two very 

common CF pathogens, S. aureus and S. maltophilia. 
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