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ABSTRACT 

 Cystic Fibrosis (CF) is the most common lethal genetic disorder in the Caucasian 

population with an incidence of 1 per 3,000 live births and a median predicted survival of only 47 

years. Respiratory failure due to repeated pathological insults to lung tissue by infection is the 

ultimate cause of mortality in the majority of patients. The lung microenvironment created by CF 

highly favors colonization by opportunistic pathogens such as Pseudomonas aeruginosa, 

Stenotrophomonas maltophilia, Burkholderia cenocepacia, and Achromobacter xylosoxidans. 

Biofilm formation by multiple bacterial species contributes to the chronic, persistent, and difficult 

to treat nature of CF infections. This study seeks to further the limited understanding of what 

polymicrobial biofilm interactions may be occurring in the CF lung. Survival assays of bacterial 

cells grown under biofilm-forming conditions demonstrated that P. aeruginosa survival was 

inhibited, and no detectable growth occurred for B. cenocepacia or A. xylosoxidans in co-culture 

with S. maltophilia. Further experimentation including supernatant assays, treatment of biofilms 

with cell lysate, pH measurements, and laser scanning confocal microscopy have elucidated further 

hints about the potential mechanisms of this S. maltophilia-mediated inhibition. The presence of 

live S. maltophilia cells appears to be necessary for A. xylosoxidans inhibition, while B. 

cenocepacia is inhibited by both live cells and filtered S. maltophilia supernatant. Characterization 

of these interspecies relationships may further our understanding of how flora composition 

influences pathogenesis in the CF lung. 
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INTRODUCTION 

Cystic Fibrosis  

Cystic fibrosis (CF) is the most common lethal genetic disorder in the Caucasian 

population with an incidence of 1 per 3,000 live births and median life expectancy of 46.7 years 

[1]. Over 30,000 people in the United States alone suffer from the disease with an average of 

1,000 newly diagnosed cases every year, primarily through newborn screening [1]. The 

pathophysiology of the disease is wide-reaching and affects multiple organ systems, but 

progressive respiratory failure secondary to repeated and sustained pathological insults to lung 

tissue is the ultimate cause of mortality in the majority of cases [1]. The microenvironment 

created by the CF lung creates a prime breeding ground for opportunistic pathogens to colonize 

and establish chronic, persistent, and difficult to treat infections. How these pathogens establish 

themselves, interact with each other, and deteriorate the clinical course is the primary focus of 

this thesis. 

 CF is an autosomal recessive disorder caused by mutations in the cystic fibrosis 

transmembrane conductance regulator gene (CFTR). Found on chromosome 7, CFTR codes for 

an ion channel which facilitates the exchange of chloride ions between the intracellular and 

extracellular environments [2]. There are currently thousands of mutations known to cause and 

modulate the severity of CF [3]. Mutations are generally categorized into one of five groups 

depending on the mechanism by which the CFTR protein or its downstream products are 

disrupted [4]. This categorization guides clinicians in anticipating the phenotype of a particular 

patient’s disease. The most common disease-causing mutation ΔF508 is a deletion of the three 

nucleotides coding for the phenylalanine amino acid residue at position 508 in the chloride 

channel protein. Misfolding caused by this deletion primes a large fraction of the mutant CFTR 
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protein for premature degradation in the endoplasmic reticulum [5]. The remaining defective 

proteins have difficulty incorporating themselves within the plasma membrane. Their transport 

efficiency is significantly reduced compared to wild-type CFTR protein and they have half-lives 

which are much shorter [5, 6]. Roughly 90% of CF patients are heterozygous for at least one 

ΔF508, while 50% are homozygous [7]. The two next most common mutations are G542X and 

G551D, neither of which are found in more than 5% of the CF population [1]. 

 Debate continues about the exact genetic, cellular, and molecular mechanisms that 

contribute to the pathogenesis of CF. Disruption of osmoregulation is a leading theory as to the 

cause of pathophysiology. Loss of the CFTR protein renders chloride anions unable to cross the 

lipid bilayer of epithelial cells, creating a hypertonic intracellular environment relative to the 

extracellular space [8, 9]. In addition, research has also suggested that loss of CFTR increases 

sodium resorption across the membrane [10]. Both factors lead to an increased osmotic pressure 

which readily draws water out of the luminal space and into the epithelium. The physiological 

implications of this change are wide-reaching, affecting the function of nearly every exocrine 

gland in the body. Complications related to pancreatic, liver, and reproductive system 

dysfunction are common, but arguably some of the most significant consequences affecting 

morbidity and mortality are observed in the lungs. 

 Production of mucus by goblet cells and submucosal glands in the conducting portions of 

the lungs is an integral process necessary for normal respiratory function and pathogen defense. 

Normal mucus has an approximate composition of 97% water and 3% protein [11]. In CF, 

dehydration of the mucus due to changes in osmotic pressure is believed to contribute to 

impaired clearing of secretions by mucociliary action. Large glycosylated proteins known as 

mucins form the classic gel-like network characteristic of mucus and act as imitative binding 
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sites for would-be pathogens. In CF patients, mucin concentrations are much lower than samples 

from healthy control populations [12]. Loss of the CFTR protein likely contributes directly to the 

stagnation of secretions and indirectly to infection susceptibility. Retention of thick collections 

of desiccated organic material creates a reservoir of nutrients ripe for colonization by 

opportunistic pathogens. CF-related lung infections are characterized by their unusual chronicity 

and persistence. Formation of biofilms and the diversity of pathogens involved are two factors 

that severely complicate the management of what would otherwise be routine treatments for 

typical infections.  

 

Bacterial Biofilms 

Bacterial biofilms are thick, adherent mats of cells that form in aqueous or humid 

environments encased within a matrix of secreted proteins, lipids, and polysaccharides known as 

the extracellular polymeric substance (EPS) [13]. The unusually persistent and treatment-

resistant nature of CF infections is largely attributable to the development of these structures. 

Cells within biofilms have distinct profiles of gene expression compared to planktonic cells [14]. 

Biofilms themselves confer survival advantages to the cells within against a variety of biotic and 

abiotic stressors. Predation by the immune system is impaired as the EPS physically impedes 

infiltration of the biofilm by antibodies [15]. Previous studies have shown that one biofilm-

forming bacterium, Staphylococcus epidermidis, is significantly more susceptible to the innate 

immune responses when there are mutations in key EPS-forming genes [16], suggesting that 

disruption of biofilm structure may be a potential therapeutic target. 
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In addition to creating a physical barrier that protects against host defenses, the EPS 

creates a significant advantage to the cells within due to antibiotic resistance. Compared to their 

planktonic counterparts, cells existing in a biofilm may be extremely more resistant. P. 

aeruginosa exhibits a 1,000-fold increase in resistance to tobramycin when in biofilms [17]. In 

addition to the typical resistance mechanisms observed in planktonic cells such as efflux pumps, 

antibiotic-modifying enzymes, and mutations of antibiotic targets, numerous processes unique to 

biofilms have been proposed – though none alone are likely to explain the phenomenon in its 

entirety [reviewed in 18]. The EPS matrix likely inhibits the diffusion of cytotoxic compounds. 

Confocal imaging has shown that although vancomycin binds to planktonic cells in an average of 

5 min, penetration into the matrix of S. aureus biofilms may take up to an hour [19]. Gradients of 

varying antibiotic concentration could theoretically trigger the activation of adaptive resistance 

pathways well before the minimum inhibitory concentration (MIC) is reached. However, there 

are also several studies that show antibiotic penetration is not impeded and no reduction in 

viability is observed despite the presence of concentrations well above the expected MIC [19-

21]. The effects of matrix permeability thus vary greatly with the bacterial strain and antibiotic 

compound studied. 

Extracellular DNA (eDNA) released either by biofilms cells themselves or incorporated 

into the matrix from exogenous sources may play an important role in resistance. P. aeruginosa 

mutants low in eDNA production are more susceptible to aminoglycosides than wild-type cells 

and the addition of exogenous DNA from lysed polymorphonuclear leukocytes increases biofilm 

resistance [22]. Some species such as S. epidermidis have even been found to produce more 

eDNA as an adaptive response to subinhibitory concentrations of antibiotics, thus increasing 

overall biofilm resistance [23]. High concentrations of eDNA create areas of relative acidity in 
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the biofilm matrix and can facilitate chelation of ions such as Mg2+ [24, 25]. Production of 

eDNA may also facilitate local horizontal gene transfer, increasing the total number of resident 

resistant cells [26, 27]. Resistant and/or metabolically dormant phenotypic variants deep within 

the biofilm may act as ‘persisters’ [28]. Failure to eradicate these cells, which may represent as 

few as 1% of the biofilm population, helps ensure eventual reestablishment of the colony after all 

other non-resistant cells are killed [29]. In some E. coli strains, it appears that defects in the 

hydroxyl radical formation pathway allow some subpopulations of cells to exhibit enhanced 

tolerance to antibiotic exposure [30]. 

Formation of polymicrobial biofilms can facilitate cooperation and competition between 

species by bringing multiple organisms in close proximity. Of the biofilms relevant to human 

health, the oral microbiome is one of the most well studied. Hundreds of articles have explored 

the web of complex interactions that allow many organisms to survive where mono-cultures 

ordinarily could not [reviewed in 31-33]. Some of the most common opportunistic pathogens 

afflicting CF patients include P. aeruginosa,  S. maltophilia, B. cenocepacia, and A. xylosoxidans 

[1]. All are typical biofilm-forming CF species of substantial clinical interest. 

 

Pseudomonas aeruginosa 

 P. aeruginosa is a leading cause of respiratory infections in CF patients and perhaps the 

most well studied of the common CF pathogens. It is a Gram-negative facultative aerobe and is 

the second most common respiratory pathogen in the CF population, found to be infecting 44.6% 

of all monitored CF registry patients in 2017 [1]. Being the most extensively studied pathogen, 

P. aeruginosa has long served as a model organism for the investigation of biofilm formation, 
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especially as it relates to human health. The clinical relevance of P. aeruginosa is not limited to 

CF as the pathogen is also a leading cause of burn infections and sepsis [34-38]. Its propensity to 

form biofilms on both biotic and abiotic surfaces makes it a particularly common cause of 

healthcare acquired illnesses such as ventilator-associated pneumonia and catheter-based 

infections [39]. 

 There are typically two variations of P. aeruginosa strains: mucoid and non-mucoid 

phenotypes. Non-mucoid strains generally exist as free-floating planktonic cells and are the main 

pathogens in acute respiratory disease. Mucoid strains are associated with chronic infections and 

prolonged biofilm formation [40]. Mucoidy is dependent on the production and secretion of 

alginate, a polysaccharide made of mannuronic acid and guluronic acid [41] that aids cells by 

increasing surface volume, thereby reducing predation via immune cells, and increasing 

resistance to desiccation and osmotic stresses, as it is hygroscopic in nature.   

 Recent evidence suggests that the transition from free-floating cells to sessile 

communities is mediated by the increased production of the secondary messenger cyclic-di-GMP 

upon a bacterial cell’s contact with a viable surface [42]. Cells remain attached in a reversible 

manner while they divide and begin generating precursors required for EPS production.  For 

non-mucoid strains, the exopolysaccharides in EPS are most commonly Psl (containing branched 

polymers of D-glucose, D-mannose and L-rhamnose) and Pel (comprised of N-

acetylgalactosamine and N-acetylglucosamine polymers) [43, 44]. For mucoid cells, the 

dominant polysaccharide in the EPS is alginate [45].  After sufficient amounts of the EPS have 

been manufactured, the biofilm is considered irreversibly attached to a surface. Cells within the 

biofilm continue to grow within the EPS if sufficient nutrients and water are available through 

porous channels in the matrix.  The mature biofilm will then periodically release cells in a 
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process known as dispersal. Dispersed cells are free to spread and infect other areas or surfaces, 

although their transcriptome is still uniquely different from that of their wholly planktonic 

counterparts [46]. In the CF lung, mucoid biofilms permit chronic infections that are often 

refractory to therapeutic intervention. In addition to the airway obstruction they cause, prolonged 

inflammation due to sustained neutrophil activity leads to breakdown of the connective tissues 

keeping bronchioles patent and elastic. Biofilm formation is thus an important aspect of P. 

aeruginosa that affects disease progression. 

 P. aeruginosa employs a variety of virulence factors which make it a formidable 

pathogen. Many bacteria make use of one or more types of secretion systems which allow them 

to transport proteins across their phospholipid membranes either into the extracellular 

environment or directly into other cells. P. aeruginosa uses a Type III Secretion System (T3SS) 

which can deliver a suite of exotoxins directly to host cells. Four effectors are currently known: 

ExoS, ExoT, ExoU, and ExoY. ExoS and ExoT are two closely related toxins whose role 

includes disruption of the host cell cytoskeleton and induction of apoptosis [47, 48]. ExoU is a 

potent phospholipase whose activity is associated with rapid epithelial cell necrosis which 

facilitates dissemination of the pathogen [49]. ExoY is an adenylate cyclase whose activity 

within host cells interferes with normal pathways of cell signaling, disrupts the cytoskeleton, and 

inhibits cellular internalization of P. aeruginosa [50]. The importance of the T3SS in virulence 

during acute infections is clear. Patients infected with clinical isolates found to be actively 

excreting T3SS-linked toxins have worse outcomes than those with clinical isolates not 

expressing the T3SS [51]. However, this association may not hold for chronic infections. 

Evidence suggests that the importance of biofilm formation supplants expression of the T3SS in 

chronic conditions [52].  This may be mediated by cyclic-di-GMP which negatively regulates the 
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T3SS while positively regulating the genes involved in biofilm formation [53-55]. Clinical 

isolates from CF patients often express the mucoid phenotype induced by mutations that 

simultaneously increase the production of alginate and downregulate the production of the T3SS 

[56]. Although targeting elements of the T3SS for treatment may be useful in acute settings, this 

evidence suggests that finding ways to disrupt biofilms is a more pressing concern for the CF 

model. In fact, one study demonstrated that 90% of their CF participants already possessed at 

least one antibody against a component of the P. aeruginosa T3SS [57]. 

 P. aeruginosa is also a model organism for bacterial quorum sensing and its relevance to 

pathogenesis. Quorum sensing is the process of cell-to-cell communication among bacteria. Cells 

produce and respond to molecules such as acyl homoserine lactones (AHLs). Bacteria secrete 

different variations of AHLs which are unique to their specific strain or species. Increasing 

concentrations of species-specific AHLs in a location indicates increased cell density. Beyond 

certain thresholds, cells will begin to alter their gene expression in accordance with the AHL 

gradient. This allows for the coordination of community gene expression, potentially conferring 

a selective advantage against the host. P. aeruginosa employs the LasRI and RhlRI systems as 

parts of its quorum sensing [58]. Presence of both functional systems is required for the 

expression of several virulence factors including the elastase LasA, protease LasB, exotoxin A, 

and alkaline protease [59]. Quorum sensing has also been implicated in biofilm formation. Pel 

production has been shown to be regulated by quorum sensing processes [60]. Mutant strains 

lacking the LasRI system either fail to form biofilms or experience significant reduction in 

accumulated biomass [61, 62]. Las and rhl mutants produce less extracellular DNA for the EPS 

and are unable to form the mature biofilms observed in their wild-type counterparts [63]. 

Production of rhamnolipids is under direct control of the rhl system [64]. Their presence is 
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important both for maintaining the higher-order structure of P. aeruginosa biofilms and 

facilitating detachment of cells in their transition from the sessile to planktonic state [65, 66]. A 

third quorum sensing system, PQS, operates using quinolone substrates as opposed to AHLs. 

PQS mutants have been found to produce fewer siderophores, pyocyanins, elastases, and 

biofilms than wild-type P. aeruginosa [67]. These facts make quorum sensing proteins an 

attractive target for therapeutic interventions, however their importance in chronic infections 

such as CF is disputed. Although quorum sensing may play an integral role in the establishment 

and maturation of P. aeruginosa biofilms, the accumulation of las mutants in the CF lung over 

time suggests its loss may be an adaptation [68]. The presence of biofilms again complicates the 

picture. 

 P. aeruginosa has a notorious reputation for its innate multidrug resistance mechanisms. 

In the year 2017, 18% of CF patients with a positive culture for P. aeruginosa were infected with 

a multidrug resistant strain [1]. In addition to the elements that may be acquired through 

horizontal gene transfer, a number of chromosomally encoded resistance mechanisms are present 

in the P. aeruginosa genome. β-lactams are generally poor therapeutic choices due to the 

species’ inducible β-lactamase AmpC [69]. Susceptibility is usually maintained to a select few 

carbapenems, although mutations in the gene coding for the outer membrane protein OprD and 

horizontal gene transfer of metallo-carbapenemases are becoming increasingly frequent 

countermeasures [70, 71]. Development of mutations in the gene gyrA encoding for 

topoisomerase II is a common mechanism by which quinolone resistance is mediated [72]. In 

non-cystic fibrosis patients, resistance to aminoglycosides may develop due to the presence of 

aminoglycoside-modifying enzymes and 16S ribosomal subunit mutations [73]. Overexpression 

of efflux pumps such as MexXY appears to be the primary mechanism of aminoglycoside 
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resistance in CF patients with chronic P. aeruginosa infection [73, 74].  It has also been shown 

that selective pressure may result in a resistant pathogen less than ten days after initial 

antimicrobial exposure [75]. 

 P. aeruginosa is an early colonizer of the CF airway. The median age at initial infection 

in 2017 was 5.2 years [1]. A number of studies have associated early infection by P. aeruginosa 

with unfavorable outcomes including increased rate of pulmonary function decline, increased 

time of hospitalization, and increased mortality [76-78]. Multiple randomized, high-quality trials 

have demonstrated that early eradication therapy using inhaled tobramycin is effective for 

elimination of acute infection by P. aeruginosa [79-81]. A follow-up study found that patients 

who undergo successful eradication therapy have a 74% reduction in risk of contracting P. 

aeruginosa again during 5-year follow up and are 54% less likely to become colonized with the 

mucoid biofilm-forming phenotype [82]. Failure of early eradication, however, usually results in 

the progression of the infection to the chronic phenotype. Infections may progress to the mucoid 

stage in fewer than two years [83]. Novel strategies against P. aeruginosa and its biofilms will be 

required to reduce the burden of morbidity and mortality that the pathogen places on the CF 

population. 

 

Stenotrophomonas maltophilia 

 S. maltophilia is the fourth most common CF pathogen, found to be infecting 12.6% of 

all monitored patients in 2017 [1]. Rates of infection have been steadily climbing over the past 

several years, and the clinical relevance of S. maltophilia as a Gram-negative opportunistic 

pathogen is under continuous investigation. Like P. aeruginosa, it is a frequent cause of 
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nosocomial infections such as pneumonia, sepsis, and urinary infections secondary to its 

propensity for biofilm formation on a wide array of abiotic and biotic surfaces [84-86]. S. 

maltophilia’s exact level of clinical importance has been and continues to be a subject of 

controversy. However, recent research has begun to show some important links between S. 

maltophilia infection and clinical outcomes. 

 S. maltophilia is host to a wide array of secreted enzymes whose actions facilitate 

colonization, survival, and infection within hosts. S maltophilia has been found to have two gene 

loci which purportedly code for a Type II Secretion System (T2SS). Of the two loci, the gene 

encoding the Xps protein has been shown to be essential for the proteolytic activities associated 

with the presence of a T2SS. S. maltophilia K279a mutants lacking the xps gene lost the ability 

to disrupt actin cytoskeleton organization and overall viability of A549 human lung epithelial 

cell lines [84]. Some of the major effectors delivered by the T2SS are serine proteases. For 

example, StmPr1 has broad catalytic activity against a number of human connective tissue and 

serum proteins [87, 88]. Other extracellular enzymes have been consistently found in clinical CF 

isolates including lipases, DNases, gelatinase, streptokinase, heparinase, and hyaluronidase [89]. 

Studies into the mechanisms and relative importance of this armamentarium of enzymes are 

ongoing. Clinical isolates of S. maltophilia also exhibit remarkable biofilm-forming capabilities. 

In one study utilizing the human IB3-1 bronchial cell line, S. maltophilia actually outperformed 

P. aeruginosa PAO1 in biofilm adhesiveness and proliferation [85]. Mutations of the S. 

maltophilia genes spgM, encoding a phosphoglucomutase, and rmlA, encoding a 

thymidylyltransferase, are believed to be important modulators of biofilm formation in this 

species [90].  
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 Similar to P. aeruginosa, S. maltophilia also possess a number of innate antibiotic 

resistance mechanisms which complicate therapeutic interventions. Two β-lactamases, L1 and 

L2, are regulated by AmpR, a system similar to that observed in P. aeruginosa [91]. This confers 

resistance against all β-lactams including carbapenems. Over ten different chromosomally-

encoded antibiotic efflux pumps of various classes have been found in S. maltophilia whose 

presence and overexpression are key modulators of β-lactam, quinolone, aminoglycoside, 

trimethoprim/sulfamethoxazole, chloramphenicol, and tetracycline resistance [92]. Unlike other 

pathogens, S. maltophilia has not yet been observed to develop quinolone resistance through 

genetic mutations of gyrase and topoisomerase [93]. Instead, presence of the gene qnr is thought 

to protect this cellular machinery from the harmful effects of quinolones [94]. Sulfamethoxazole 

in combination with trimethoprim is the clinician’s antibiotic of choice in treating S. maltophilia 

infections because of widespread susceptibility to the agent. However, drug-resistant strains have 

recently been isolated and have most likely arisen due to acquisition of mobile elements 

encoding the trimethoprim/sulfamethoxazole resistance gene sul2 [95]. The combination of all 

these unique resistance mechanisms can make S. maltophilia infections difficult to treat 

successfully. 

 Although quite prevalent in the CF population, the consequences of colonization and 

long-term infection with S. maltophilia are debated. A central question to this disagreement is 

whether S. maltophilia is a truly virulent pathogen which worsens clinical outcomes or is simply 

an innocent bystander whose presence represents advanced stages of disease [96]. Some studies 

have supported the former claim [97, 98]. Patients infected with S. maltophilia generally have 

poorer lung function, more pulmonary exacerbations, and an increased number of 

hospitalizations. However, these patients are also more likely to be older and co-infected with 
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other organisms such as P. aeruginosa [98]. Mortality does not seem to be affected by the 

presence of S. maltophilia, and when adjusted for other possible confounding variables such as 

age, sex, and disease severity markers, patients infected with S. maltophilia do not appear to 

have a significantly higher rate of decline in lung function [97, 98]. More recent models, though, 

have found that chronic S. maltophilia infection is an independent risk factor for acute 

pulmonary exacerbations requiring hospitalization [99]. In vitro studies with airway epithelial 

and macrophage cell lines have demonstrated the significant immunostimulatory capabilities of 

S. maltophilia [100]. CF patients with chronic infection possess circulating antibodies against the 

pathogen, suggesting an active immunologic response which could theoretically play a role in 

worsening the severity of CF lung disease [99]. A recent Cochrane systematic review could 

identify no randomized control trials specifically testing the efficacy of targeted antibiotic 

treatment against S. maltophilia during acute exacerbations [101]. These findings reflect the need 

for additional research into the role S. maltophilia plays in CF. 

 

Burkholderia cenocepacia 

 The Burkholderia cepacia complex (Bcc) is a group of over twenty-one related, 

obligately aerobic, Gram-negative bacterial species capable of causing opportunistic infections in 

humans. B. cenocepacia is the most common Bcc member found in the United States CF 

population [102]. Although not particularly common with a prevalence of only 2.4% in the CF 

population during 2017 [1], B. cenocepacia is an organism of significant clinical importance due 

to its well-documented effects on pulmonary function.  
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 As Bcc members have also been shown to be plant pathogens, particularly in onions, 

early investigation into virulence utilized plant models. Genome analysis has shown the presence 

of two Type IV secretion systems (T4SS), one of which is chromosomally encoded. In one onion 

model, disruption of the system encoded by a gene cluster on a resident plasmid of B. 

cenocepacia K56-2 demonstrated a loss of pathogenesis. This locus, termed ptwD4, showed 

strong homology to the VirD4 gene encoding the T4SS in the species Agrobacterium 

tumefaciens [103]. B. cenocepacia acts as a facultative intracellular pathogen in humans and is 

frequently found within the lung epithelium and alveolar macrophages [104, 105]. Further 

experiments have confirmed that ptwD4 is a key modulator of intracellular survival. The number 

of viable mutant cells recovered from IB3 airway epithelial cells and U937 macrophages are 

significantly smaller than wild-type B. cenocepacia. Most mutants were targeted for early 

lysosomal degradation, whereas normal cells survived and replicated within the endoplasmic 

reticulum [106]. In addition to secretion systems, the presence of quorum sensing, siderophore 

production, and lipopolysaccharide (LPS) synthesis have been shown to be essential for 

pathogenesis in a variety of mammalian models [107].  

Like P. aeruginosa and S. maltophilia, B. cenocepacia is also a notoriously pan-resistant 

organism. In addition to the AmpC system as seen in P. aeruginosa, B. cenocepacia also 

expresses a co-regulated penicillinase known as PenB which confers broad-spectrum resistance 

to most β-lactams when induced [108]. Unique core oligosaccharides that make up the LPS 

reduce outer membrane permeability to polymyxins and other antimicrobial peptides [109]. 

Fluoroquinolones are often rendered ineffective by mutations in gyrA [110]. Genomic 

sequencing has revealed that B. cenocepacia contains up to 16 different RND-class antibiotic 

efflux pumps [111, 112]. RND-3 and RND-4 are essential for resistance to tobramycin and 



19 
 

ciprofloxacin in planktonic cells, while RND-3, RND-8, and RND-9 play an integral role in 

biofilm resistance [113]. All members of the Bcc complex are capable of forming biofilms, and 

the two producers topping the list (B. multivorans and B. cenocepacia) are also the most 

common species found infecting CF patients [114]. Extreme resistance to reactive oxygen 

species in a small subset of sessile cells enables B. cenocepacia biofilms to survive and 

reestablish themselves after treatment with tobramycin [115]. Neutrophil-like dhl60 cells have 

been observed to produce less IL-8, exhibit increased rates of necrosis, and stimulate sessile 

bacterial growth when exposed to mature B. cenocepacia biofilms [116]. Thus, biofilm 

formation is believed to be an important modulator of B. cenocepacia virulence. 

B. cenocepacia is clinically relevant to CF because of its well-documented association 

with poor outcomes. CF patients infected with B. cenocepacia have been shown to have 

significantly shortened survival and increased need for medical services when matched with non-

B. cenocepacia infected individuals [117, 118]. B. cenocepacia is capable of establishing chronic 

infections within the airways just like typical CF pathogens, but its ability to cause sudden and 

severe acute illness is what sets it apart from other organisms. “Cepacia syndrome” is a 

complication of Bcc infection that is relatively rare but characterized by a rapid onset of 

necrotizing pneumonia, sepsis, and frequently results in rapid death of the individual. This 

dramatic clinical presentation far surpasses the typical consequences of intermittent acute 

pulmonary exacerbations. Cepacia syndrome is incredibly difficult to treat and considered near 

universally fatal. Emergence of Cepacia syndrome has been documented as many as 20 years 

after initial colonization with B. cenocepacia [119]. There is ample evidence that B. cenocepacia 

and other Bcc members are easily passed from person to person [120, 121] and have caused 

numerous outbreaks in CF and other clinics the U.S., Canada, Argentina, India, Israel, and 
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Europe [122-128]. In order to prevent outbreaks in hospitals and treatment centers, careful 

separation and isolation protocols are followed to prevent those colonized with B. cenocepacia 

from transmitting the bacteria to other CF patients [129]. Chronic B. cenocepacia infection is 

often a contraindication to lung transplantation due to poor post-surgical outcomes [130]. More 

research is needed to develop novel preventative and therapeutic strategies against this relatively 

uncommon but potentially devastating pathogen. 

 

Achromobacter xylosoxidans 

 A. xylosoxidans is an opportunistic, Gram-negative, aerobic pathogen with a prevalence 

of 5.8% in the 2017 CF population [1]. Acquisition from the environment is likely the primary 

method of infection. However, there is evidence to support person-to-person transmissibility 

[131, 132]. Outbreaks have been observed and studied at a number of health care centers from 

around the world [133-136]. Evidence points to potential negative impacts resulting from A. 

xylosoxidans colonization. Studies have linked CF colonization by A. xylosoxidans with a 

reduction in forced expiratory volume in one second (FEV1), greater need for transplantation, 

and increased incidence of acute pulmonary exacerbations [137-140]. Although results between 

observational clinical studies are frequently contradictory, a potential chronic inflammatory role 

of A. xylosoxidans in the CF lung at a level approaching P. aeruginosa has been documented 

[141]. Confocal imaging has shown that A. xylosoxidans readily forms biofilms both in vitro and 

in vivo, conferring an antibiotic resistance ranging from 8- to 1,000-fold higher than planktonic 

counterparts [142]. Compared to non-CF isolates, CF isolates of the species have higher binding 

affinities for proteins found in the conducting portion of the lungs such as mucin, collagen, and 

fibronectin [143]. These findings implicate specific adaptations for colonization, biofilm 
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formation, and persistence in the CF lung. Investigations into the mechanisms of virulence and 

clinical implications of long-term infection are ongoing. 

 Multi-drug resistance profiles are common among A. xylosoxidans strains. Innate 

resistance exists towards aminoglycosides, β-lactams, fluoroquinolones, and chloramphenicol. 

Genomic analysis of A. xylosoxidans strain ATCC 27061 has identified at least 50 antibiotic 

resistance related genes, many with homology to P. aeruginosa [144]. Carbapenem resistance is 

common despite absence of the well-characterized OprD porin. Only one narrow-spectrum β-

lactamase and few RND-type efflux pumps have been characterized in A. xylosoxidans [145, 

146]. However, putative genes for additional novel β-lactamases and an arsenal of at least 17 

unique efflux pump systems have been postulated as other major contributors to resistance [144]. 

 

Polymicrobial Biofilms 

Much is known about the progression of CF and patient outcomes related to single 

pathogens, but studies tend to be limited to those species in isolation even though the 

microenvironment of the CF lung allows for the development of complex microbiological 

communities. Culture-independent methods reveal a surprising amount of diversity with one 

study finding that individual sputum specimens obtained from the CF lung contained an average 

of 36 operational taxonomic units [147]. Clinically, polymicrobial infections are more complex 

than their mono-species counterparts and are often associated with worse outcomes [148]. Co-

infection with S. aureus and P. aeruginosa in CF patients has been associated with an increased 

incidence of CF-related diabetes and poor clinical outcomes [149]. Published models have 

shown that the presence or absence of certain organisms in one year may be associated with an 
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increase or decrease in the likelihood of harboring a particular pathogen during the next [150]. 

Relationships may even exist outside of the prokaryotic realm, as S. maltophilia has been shown 

to be an independent risk factor for the development of allergic bronchopulmonary aspergillosis 

[151] caused by the fungus Aspergillus fumigatus. This evidence suggests that the unique and 

dynamic populations of mixed-species biofilms are likely to modulate the clinical course. 

A number of synergistic relationships between potential CF pathogens have already been 

observed in vitro and in vivo. P. aeruginosa normally competes with S. aureus in co-culture 

planktonic conditions; however, overproduction of alginate by P. aeruginosa actually promotes 

coexistence between the two species [152]. Co-cultured P. aeruginosa and B. cenocepacia 

increase biofilm mass in vitro and appear to work synergistically to increase host immune 

response in murine models [153]. Adhesiveness of S. maltophilia to IB3-1 airway epithelial cells 

is significantly increased compared to mono-culture when inoculated in co-culture with P. 

aeruginosa [85]. With the large number of organisms affecting CF patients, a multitude of other 

interspecies interactions are likely awaiting discovery. 

Despite their potential relevance to CF, the knowledge base surrounding polymicrobial 

biofilms is relatively limited. The purpose of this study is to further explore the relationships 

observed between the Gram-negative CF pathogens S. maltophilia, B. cenocepacia, A. 

xylosoxidans, and P. aeruginosa. The rationale for studying these specific pathogens comes from 

data reported by a previous member of the Yoder-Himes lab which showed that S. maltophilia 

appeared to completely inhibit the survival of B. cenocepacia, A. xylosoxidans, and P. 

aeruginosa in co-culture biofilms [154]. I sought to replicate those findings, investigate the 

conservation of this effect, and identify possible mechanisms of action. Establishment of in vitro 

interactions between these four species may have implications for patterns of infection observed 
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in CF patients. Presence or absence of certain microbes can be predictive of subsequent 

infections, so understanding the potential mechanisms behind these findings carries significance 

for understanding the progression and treatment of CF lung disease as a whole. 
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MATERIALS AND METHODS 

Bacterial strains used in this study 

 Bacterial strains were retrieved from freezer stock by single colony isolation streaking on 

round agar plates containing the proper concentration of antibiotics for selection as indicated in 

Table 1. All bacterial strains were maintained with Luria Broth (LB, Lennox formulation) unless 

otherwise noted.  Prior to each experiment, single colony isolates taken from freezer stock 

samples were inoculated into 5 mL LB broth tubes. Liquid overnight cultures were vigorously 

aerated by placement on a rotary shaker device set at ~250 rpm.  

Table 1: Bacterial strains used in this study 

Strain 

 

Description 

 

Antibiotic 

Selection 

Source 

 

S. 

maltophilia 

K279a 

Clinical isolate - blood N/A 

Dr. Nicholas 

Cianciotto, 

Northwestern 

University 

S. 

maltophilia 

K279a + 

pIN29 

K279a strain transformed 

with pIN301 encoding 

eGFP 

30 µg/ml 

chloramphenicol 
Present study 

S. 

maltophilia 

K279a + 

pIN301 

K279a strain transformed 

with pIN301 encoding 

dsRedExpress 

30 µg/ml 

chloramphenicol 
Present study 

B. 

cenocepacia 

J2315 

Clinical isolate – CF 

sputum 
N/A 

Dr. James Tiedje, 

Michigan State 

University 

B. 

cenocepacia 

J2315 + 

pIN62 

J2315 strain transformed 

with pIN62 encoding 

dsRedExpress 

100 µg/ml 

chloramphenicol 

Rachel Thompson, 

University of Louisville 

A. 

xylosoxidans 

AU19284 

Clinical isolate – CF 

sputum 
N/A 

Dr. John LiPuma, 

University of Michigan 

P. 

aeruginosa 

C3719 

Clinical isolate – CF 

sputum; small colony 

variant 

N/A 

Dr. Stephen Lory, 

Harvard Medical 

School 



25 
 

Mono- and co-culture survival assays 

Five mL of liquid LB was inoculated with one of the following bacterial strains: S. 

maltophilia K279a, B. cenocepacia J2315, A. xylosoxidans AU19284, or P. aeruginosa C3719 

and grown overnight at 37 ºC. Cultures were diluted 1:50 for fast growing strains (S. maltophilia 

and P. aeruginosa) or 1:30 for slow growing strains (B. cenocepacia and A. xylosoxidans) and 

grown with aeration at 37 °C until an optical density 600 nm (O.D.600) of 0.8 – 1.2. Aliquots of 

each mid-log phase sample were added to autoclavable reagent reservoirs (Excel Scientific 

#160519) containing tryptic soy broth (TSB) such that the final concentration was 1.0×106 

cells/mL based on standard curves previously generated in the lab. 

 Four 96-well PVC plates (Costar #2797) and breathable rayon film covers (VWR 

#60941-084) were disinfected with 70% ethanol and sterilized under a UV lamp for at least 10 

min. Experimental conditions were such that each strain was grown alone in mono-culture, and 

B. cenocepacia, A. xylosoxidans, and P. aeruginosa were each grown in co-culture with S. 

maltophilia. Mono-cultures were seeded into replicate wells by adding 60 µL of the standardized 

cultures to 60 µL of TSB for each well. Co-culture conditions were created by adding 60 µL of 

the standardized sample (B. cenocepacia, A. xylosoxidans, or P. aeruginosa) to 60 µL of the 

standardized S. maltophilia sample in a single well. The control condition was 120 µl of TSB in 

a single well. Each condition was carried out in triplicate. All samples were added to each of four 

plates. Empty wells and columns were left between samples to reduce the risk of contamination. 

After setup was complete, each PVC plate was sealed using a sterilized rayon film and wrapped 

in aluminum foil. The bottom of a small bin was covered with paper towels and saturated with 

sterile water to prevent desiccation during incubation. The biofilms were placed in this makeshift 
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humidifying chamber and the top was sealed with Saran wrap before being placed in the 

incubator. One plate was removed from the bin at days 1, 3, 5, and 7 and processed. 

 The harvested 96-well PVC plate was unwrapped from its aluminum foil covering and 

the rayon film was carefully removed in the biosafety cabinet. Using a multichannel 

micropipettor, the remaining liquid in all wells was aspirated and discarded into a 10% (v/v) 

bleach solution. The wells were refilled with 150 µL of sterile water as a rinse and incubated for 

approximately one min. The water was pipetted off and replaced with 100 µL recovery medium, 

TSB with 1% Tween-20. An adhesive aluminum foil cover (VWR #75805-268) sterilized under 

UV light was used to reseal the plate which was placed on the bottom of a small test tube rack. 

This rack was positioned over an ultrasonic cleaner (Branson 3200) in such a way that the wells 

of the plate were partially submerged. The plate was sonicated at 60 Hz for 10 min in order to 

free viable bacterial cells from the biofilms. These conditions were previously identified by a 

former member of the lab to induce the maximal release of viable bacteria.  The plate was 

removed from the sonicator and its aluminum cover was surface disinfected with 70% ethanol. 

Each sample was serially diluted 1:10 after using a multichannel micropipettor to pierce the 

aluminum covering. 

 Square petri plates containing LB agar (one for each sample) were dried in advance by 

placing them in the 37 °C walk-in incubator approximately two hours prior to sonication. One at 

a time, 10 µL was aspirated from all of the wells of a column using a multichannel micropipettor. 

The aliquot was dripped onto a plate and allowed to run down its length until dry. Once all wells 

from all conditions had been plated in this manner, the square LB plates were placed in the 

incubator for one to two days. When colony sizes were large enough to observe without 

magnification, lanes that had between 10 and 100 colonies were counted based on colony 
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morphology and their dilution factor was used to calculate the final colony forming units (CFU) 

per mL recovered from the biofilm for each sample.  The averages, standard deviations, and 

significant differences between conditions were calculated for each comparison in GraphPad 

Prism v5.0. 

 

Biofilm supernatant survival assays 

To generate sterile supernatants, 150 µL of an overnight S. maltophilia culture was added 

to 15 mL of TSB in an autoclavable reservoir. All the wells of a UV sterilized 96-well PVC plate 

were filled with 120 µL of the inoculated TSB. The plate was covered with breathable rayon 

film, wrapped in aluminum foil, and placed in a makeshift humidifying chamber where it was 

incubated for three days. At the conclusion of the incubation period, the liquid in the wells was 

distributed into 1.5 mL microcentrifuge tubes (VWR #10025-724). The tubes were subsequently 

centrifuged at 15,000 RPM for 10 min. The supernatant was filtered using a plastic 15 mL Leur-

lock syringe with a sterile 0.2 µm polyethersulfone filter (VWR #28145-501) into a sterile 15 

mL conical vial. 

 Overnight cultures of S. maltophilia, B. cenocepacia, and A. xylosoxidans were grown to 

mid-log phase. Mono-culture wells contained 60 µL of their respectively inoculated TSB 

combined with 60 µL of PBS. The experimental wells contained 60 µL of inoculated TSB (B. 

cenocepacia or A. xylosoxidans) combined with an equal volume of 3-day S. maltophilia biofilm 

supernatant harvested the same day. Wells of 60 µL TSB with 60 µL PBS or 60 µL TSB with 60 

µL S. maltophilia supernatant were maintained as negative controls. Biofilms were made in 

triplicate. The plates were again wrapped in aluminum foil, placed in a humidifying chamber, 
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and incubated for 1, 3, 5, and 7 days. Survival of strains on each day was assessed using the 

procedures described in the preceding section.  

 

Comparison of pH in single vs. mixed species Biofilms 

 Overnight cultures of S. maltophilia, B. cenocepacia, A. xylosoxidans, and P. aeruginosa 

were inoculated and grown to mid-log phase. Two UV sterilized 96-well PVC plates were 

divided into four 8×3 sections, and all wells were filled with their respective conditions. 

Conditions were arranged so that each bacterial species was grown in mono-culture (including S. 

maltophilia and a plain TSB negative control) and pairwise in co-culture with S. maltophilia. 

Mono-culture conditions for each species consisted of wells containing 60 µL of standardized 

inoculated TSB and 60 µL of plain TSB. Co-culture conditions contained 60 µL of standardized 

inoculated TSB with 60 µL of standardized S. maltophilia inoculated TSB. Plates were covered 

in a porous adhesive film and incubated at 37 °C. Once per day for the next eight days, plates 

were briefly removed for pH measurements. For this, small pipette tips were used to puncture the 

porous adhesive covering both plates, and a narrow-tip pH electrode was placed into each well. 

Once a stable reading was recorded, the electrode was removed, rinsed with 10% bleach, and 

used to measure the pH of the next well. Wells were not remeasured. 

 

Effect of medium pH on B. cenocepacia biofilm survival  

TSB was sterilized and titrated to a pH of 9.0 using 10 M NaOH. Inoculation of overnight 

cultures and preparation of the biofilms were carried out as described above. Standardized 

aliquots of both S. maltophilia and B. cenocepacia were grown in wells containing either 120 µL 
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of plain TSB at a standard pH (approximately 7.2) or 120 µL of TSB with a pH of 9.0. Three 

replicates each of either 120 µL plain TSB or 120 µL TSB pH 9.0 were used as negative 

controls. Survival was assessed on days 1, 3, 5, and 7 as before. 

 

Effect of S. maltophilia lysate on B. cenocepacia and A. xylosoxidans biofilm survival 

A 3-day S. maltophilia biofilm plate was prepared in the same way described above in the 

supernatant experiment subsection. On day three, the remaining liquid culture in the wells was 

removed and biofilm cells were harvested using the method described for standard survival 

assays. Recovered media was consolidated into a single 15 mL conical vial. The recovery media 

was then distributed into 1.5 mL microcentrifuge tubes and sonicated at 85% amplitude for 20 

min (10 seconds on, 10 seconds off) using an ultrasonic QSonica Q800R sonicator with 6 °C 

circulating water. Standardized 60 µL inoculates of B. cenocepacia and A. xylosoxidans were 

incubated under biofilm formatting conditions either in the presence of 60 µL TSB with 1% 

Tween-20 (a positive control) or with 60 µL S. maltophilia lysate. Each condition was performed 

in triplicate. Plates were incubated for 1, 3, 5, and 7 days. Retrieval, dilution, and agar plating 

procedures on each day proceeded in a manner identical to that described in previous survival 

assays. 

 

Growth Curves for Single Species 

 To understand the potential for interspecies competition, 24-hour growth rates of S. 

maltophilia K279a, B. cenocepacia J2315, A. xylosoxidans AU19284, and P. aeruginosa C3719 

at 37 ºC were measured using spectrophotometry. Using a flat-bottom 96 well polystyrene plate, 
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three wells were allocated to each condition using a 1:100 dilution of overnight culture in TSB. 

O.D.600 measurements were taken every 15 min for 24 hours using a Tecan Infinite F200 plate 

reader. Four measurements were taken per well and averaged together in the Tecan software.  

 

Generation of fluorescent S. maltophilia K279a strains 

 Two overnight 5 mL LB tubes inoculated with S. maltophilia K279a were combined into 

a 500 mL Erlenmeyer flask containing 200 mL of pre-warmed LB. The flask was incubated until 

mid-log phase and subsequently chilled in an ice bath for 30 min. The culture was then evenly 

dispensed into four 50 mL centrifuge tubes (VWR #89039). Cells were centrifuged at 4000 × g 

for 10 min in a Sorvall RC6 floor centrifuge. Pellets were washed in 5 mL ice-cold 10% (v/v) 

glycerol and resuspended in 2 mL of glycerol/yeast/tryptone (GYT) medium. Aliquots of 200 µL 

were stored overnight at –80 ºC.  

 Aliquots of electrocompetent cells were thawed on ice. For each electroporation, 50 µL 

of electrocompetent cells was combined with 1 µL of purified plasmid (pIN29 or pIN301 - Dr. 

Anne Vergunst, University of Montpelier, France) in a sterile microcentrifuge tube. Samples 

were electroporated in a 2 mm electroporation cuvette at 2.5 kV using a Bio-Rad Micropulser 

Electroporation Apparatus (setting Ec2). Cells were mixed with 1 mL of fresh LB and incubated 

with shaking for one hour in sterile microcentrifuge tubes. One hundred µL from each sample 

was spread onto LB + 30 µg/mL chloramphenicol plates. The remaining 900 µL was centrifuged 

at 15,000 RPM for one min, the supernatant was decanted off, the pellet was resuspended in the 

small amount of remaining liquid, and this was spread on a second 30 µg/mL chloramphenicol 
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plate. Transformants were restreaked on fresh selection plates, checked for fluorescence, and 

stored in the –80 ºC freezer for later use. 

  

Confocal imaging of S. maltophilia and B. cenocepacia biofilms 

 Overnight cultures were made in 5 mL LB tubes containing proper antibiotic selection 

and grown to mid-log phase the following day. Eighteen sterile flat-bottom confocal imaging 

dishes (Matsunami #D113OH) were seeded with ~1.0 × 106 CFUs in 3 mL of TSB + 30 µg/mL 

chloramphenicol.  Six dishes contained only S. maltophilia, six contained only B. cenocepacia, 

and six contained both species. Dishes were placed in humidity chambers and incubated for three 

or seven days. At each time point, the supernatants were removed, biofilms were washed with 3 

mL of PBS, and 3 mL TSB was added to each dish prior to imaging. Five prospectively 

determined positions on each dish were imaged under 40X oil immersion magnification on a 

Nikon Eclipse Ti microscope. The bottom of each biofilm was found manually before capturing 

a z-stack of images. S. maltophilia mono-culture and B. cenocepacia + S. maltophilia co-cultures 

were imaged through 50 µm above the bottom of their biofilms, while B. cenocepacia was 

imaged through 100 µm. All images were captured and displayed using NIS-elements software. 

GFP (487 nm) and TxRed (561 nm) lasers were used as excitation wavelengths. Mono- and co-

culture conditions were scanned using both channels. 
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RESULTS 

Mono- and co-culture survival assays 

 To confirm the findings of a previous lab member showing complete inhibition of B. 

cenocepacia J2315, A. xylosoxidans AU19284, and P. aeruginosa C3719 by S. maltophilia 

K279a, all strains were grown under biofilm forming conditions either alone or in co-culture 

with S. maltophilia. Viable cell counts of B. cenocepacia, A. xylosoxidans, and P. aeruginosa on 

Figure 1: Survival of CF pathogens in co-culture in vitro. A) Viable cell counts of B. cenocepacia, 

A. xylosoxidans, and P aeruginosa in mono-culture conditions or in co-culture with S. maltophilia. 

Asterisks denote statistically significant differences between mono- and co-culture within a given 

species. Unpaired two-tailed t-tests, *p<0.05, ***p<0.001, ****p<0.0001. CFU = colony forming units. 

N.D. = not detectable. The limit of detection was 102 CFU/ml. B) Viable cells counts of S. maltophilia 

in mono-culture and all co-culture conditions. Asterisks denote statistically significant differences from 

mono-culture. One-way ANOVA w/ Bonferroni’s post-test, *p<0.05, **p<0.01, ****p<0.0001. Error 

bars represent one standard deviation of the data. 
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days 1, 3, 5, and 7 were analyzed.  Neither B. cenocepacia nor A. xylosoxidans showed any 

detectable growth in co-culture with S. maltophilia on any of the days tested. This was in stark 

contrast to mono-cultures which showed robust biofilm formation (Fig. 1A). Unpaired t-tests 

between each day’s mono-culture and co-culture conditions showed that there was also 

significantly less growth of P. aeruginosa on day 3 (p < 0.001) and day 5 (p < 0.05). Viable cell 

counts of S. maltophilia (Fig. 1B) revealed some differences in this species’ growth between the 

mono-culture and co-culture conditions. A one-way ANOVA of each day’s conditions using 

Bonferroni’s post-test showed that there was significantly less growth of S. maltophilia in co-

culture with B. cenocepacia on day 3 (p < 0.05) and with P. aeruginosa on day 3 (p < 0.01). In 

contrast, increased growth was observed in co-culture with P. aeruginosa on day 5 (p < 0.0001). 

There was more growth of S. maltophilia in all co-culture conditions compared to the 

monoculture condition on day 7.  However, only the increase observed for S. maltophilia co-

cultured with P. aeruginosa was statistically significant (p < 0.05).  Taken together, these results 

suggest that live S. maltophilia has an inhibitory effect on all the Gram-negative species tested 

here. There may even be a reciprocal effect, as S. maltophilia growth appears to have been 

enhanced when in co-culture with P. aeruginosa.  

 

Biofilm supernatant survival assays          

 I hypothesized that complete inhibition of B. cenocepacia and A. xylosoxidans may not 

require the presence of S. maltophilia cells or cell components. A survival assay using filter 

sterilized supernatant harvested from mature S. maltophilia biofilms was used to test this. Mono-

culture biofilms were grown in plain TSB for 7 days with either PBS or S. maltophilia 

supernatant. Viable cells were harvested from the biofilms on days 1, 3, 5, and 7 (Fig. 2) A two-
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way ANOVA of all B. cenocepacia data showed that the presence of S. maltophilia was 

significant (p < 0.001), however both time (p < 0.01) and the interaction between these two 

variables (p < 0.001) were also significant. Two-way ANOVAs of both all S. maltophilia data 

and all A. xylosoxidans showed significant effects for time (p < 0.01) but not for supernatant. 

Unpaired t-tests were used to compare each day’s supernatant conditions to their respective 

controls. S. maltophilia had significantly less growth on day 1 only (p < 0.001). B. cenocepacia 

had significantly and substantially less growth on day 3 (p < 0.01) and 5 (p < 0.001), but not on 

day 7. A. xylosoxidans experienced significantly less growth on day 7 only (p < 0.01).  These 

results suggest that B. cenocepacia was, to a certain degree, susceptible to treatment with S. 

maltophilia supernatant while A. xylosoxidans was not. 

  

Figure 2: Viable cell counts of Gram-negative pathogens treated with S. maltophilia supernatant. 

Asterisks denote significant differences between each species’ control and supernatant condition on 

each day. Unpaired two-tailed t-tests, *p<0.05, **p<0.01, ***p<0.001. The limit of detection was 102 

CFU/mL. Error bars represent one standard deviation of the data. 
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Comparison of pH in single vs. mixed species biofilms 

One possible means by which S. maltophilia could act to inhibit B. cenocepacia and A. 

xylosoxidans would be to alter the pH of the medium.  It has been previously shown that pH 

plays a strong role in biofilm formation by certain species [155-157].  To determine whether pH 

may play a role in inhibition of B. cenocepacia and A. xylosoxidans in co-culture biofilms, the 

pH of both single and mixed species biofilms was assessed by direct measurement.  Data for this 

experiment are shown in Figure 3. Two-way ANOVAs showed a significant effect (p < 0.0001) 

for time, co-culture inoculation with S. maltophilia, and interaction between the two variables for 

all species tested. The average pH of B. cenocepacia, A. xylosoxidans, and P. aeruginosa mono-

culture biofilms was significantly less (p < 0.01) than the pH of mono-culture S. maltophilia 

biofilms at all measured time points. The pH of the co-culture biofilms only differed 

significantly from the pH of the S. maltophilia monoculture biofilms on days 2 (p < 0.001), 4 (p 

< 0.05), and 7 (p < 0.05) for B. cenocepacia and day 7 (p < 0.05) for P. aeruginosa. There was 

no significant difference between A. xylosoxidans co-culture biofilms and S. maltophilia mono-

culture biofilms at any time point. All biofilms and the negative TSB control appeared to become 

marginally more alkaline as time progressed.  This suggests that the pH of the medium in co-

cultures with S. maltophilia tends to be dictated by S. maltophilia rather than its co-culture 

partner regardless of the species. 

 

Effect of medium pH on B. cenocepacia biofilm survival 

 I hypothesized that pH may be a factor in the inhibition of B. cenocepacia as B. 

cenocepacia was at least somewhat dependent on S. maltophilia supernatants (Fig. 2). A survival  
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Figure 3: Direct measurements of pH in single and mixed species biofilms between: a) S. 

maltophilia and B. cenocepacia. b) S. maltophilia and A. xylosoxidans. c) S. maltophilia and P. 

aeruginosa. Asterisks indicated significant differences between the S. maltophilia mono-culture and co-

culture conditions, Two-way ANOVA with Bonferroni post-test, *p<0.05, **p<0.01, ***p<0.001. 
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assay of mono-culture biofilms grown in TSB titrated to a pH of either 7.0 or 9.0 was conducted 

to analyze the effect of pH on biofilm formation for mono-cultures of S. maltophilia and B. 

cenocepacia. Viable cell counts of both species were determined as in previous experiments 

(Fig. 4). A two-way ANOVA of all S. maltophilia data showed that the effect of pH was not 

significant, but time (p < 0.0001) and interaction (p < 0.0001) were significant. Two-way 

ANOVA of all B. cenocepacia data showed the effects of pH (p < 0.01), time (p < 0.05), and 

interaction (p <0.05) were significant. Unpaired t-tests comparing each day’s controls to the pH 

9.0 conditions showed significantly less growth of S. maltophilia in the pH 9.0 condition on day 

1 (p < 0.01) and significantly more growth on day 3 (p < 0.05). No detectable colonies appeared 

on any of the plates for S. maltophilia on day 7.  This observation is probably due to 

experimenter error, potential explanations include failure to properly inoculate day 7 S. 

maltophilia pH 9.0 wells or mistakenly drip diluting the negative control instead of the S. 

maltophilia pH 9.0 condition. There was substantially less growth of B. cenocepacia in pH 9.0 

medium on day 1, though this difference was not statistically significant. Significantly less 

Figure 4: Viable cell counts of S. maltophilia and B. cenocepacia in plain TSB vs. TSB with a pH 

of 9.0. Asterisks denote significant differences between each day’s control and pH of 9.0 condition, 

unpaired two-tailed t-test, *p<0.05, **p<0.01. N.D. = not detectable. The limit of detection was 102 

CFU/ mL. Error bars represent one standard deviation of the data. 
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growth was observed on day 3 (p < 0.01) and day 7 (p < 0.01) but not day 5.  The results of this 

experiment suggest that B. cenocepacia may be pH sensitive early in biofilm formation but also 

fluctuates in susceptibility as the biofilm matures.  It is difficult to draw conclusions about the 

effect of pH on S. maltophilia biofilms though as it appears to be quite variable over time.   

 

Effect of S. maltophilia lysate on B. cenocepacia and A. xylosoxidans biofilm survival 

 Because the data from the supernatant assays showed that inhibition of A. xylosoxidans 

was not due to an effect of the supernatant and that inhibition of B. cenocepacia rebounded over 

time (Fig. 2), I hypothesized that inhibition of B. cenocepacia and A. xylosoxidans may occur in 

response to cell-mediated or cell-dependent mechanisms. To test this, I grew S. maltophilia in 

biofilms to day 3, then harvested the biofilm cells and lysed them using sonication.  This lysate 

was applied to S. maltophilia, B. cenocepacia, or A. xylosoxidans and strains were grown under 

Figure 5: Viable cell counts of Gram-negative pathogens when treated with S. maltophilia lysate. 

Asterisks denote statistically significant differences between each day’s control and lysate condition, 

unpaired two-tailed t-test, *p<0.05, **p<0.01, ***p<0.001. The limit of detection was 102 CFU/ mL. 

Error bars represent one standard deviation of the data. 
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biofilm-forming conditions over the course of 7 days.  On days 1, 3, 5, and 7, the number of 

viable cells in each biofilm were recorded (Fig. 5).  Two-way ANOVAs for each species’ data 

showed a significant effect of time for all three (p < 0.0001), a significant effect of lysate for B. 

cenocepacia (p < 0.05) and A. xylosoxidans (p < 0.001), and a significant effect of interaction for 

B. cenocepacia (p < 0.05) and A. xylosoxidans (p < 0.0001). Unpaired t-tests between each day’s 

controls and samples treated with S. maltophilia lysate showed significantly less survival of B. 

cenocepacia and A. xylosoxidans in the presence of S. maltophilia lysate on day 1 (p < 0.001 and 

p < 0.01 respectively). There was significantly more growth of S. maltophilia in the lysate 

condition on day 5 (p < 0.05) and significantly more growth of A. xylosoxidans on day 5 (p < 

0.05).  Taken together, these results suggest that lysed cells alone may be incapable of mediating 

an antagonistic effect by S. maltophilia on either B. cenocepacia or A. xylosoxidans. 

Figure 6: Growth curves of Gram-negative CF pathogens in plain TSB. Absorbances were 

measured with a wavelength of 600 nm. Data are shown for average absorbance of three biological 

replicates hourly up to 24 hours. Error bars represent one standard deviation of the data. 
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Growth curves of single species 

To determine how competition for medium resources may influence co-culture biofilms, 

growth curves for all species of interested were obtained over 24 hours. Optical densities (600 

nm) at every hour for each species tested were taken to measure biofilm growth (Fig. 6). Two-

way ANOVA with Bonferroni’s post-test shows that optical densities for B. cenocepacia, A. 

xylosoxidans, and P. aeruginosa were significantly less (p < 0.05) than that of S. maltophilia 

beginning at six, five, and seven hours, respectively. Readings for B. cenocepacia and A. 

xylosoxidans were not significantly different at any time point. P. aeruginosa had significantly 

higher measurements than B. cenocepacia and A. xylosoxidans at fourteen and eighteen hours, 

respectively. These results show that S. maltophilia is a much faster growing organism than P. 

aeruginosa, B. cenocepacia, and A. xylosoxidans. This lends support to the idea that inhibition of 

A. xylosoxidans and P. aeruginosa is dependent only upon the presence of live S. maltophilia 

cells which may establish and mature their biofilms in a manner that is prohibitive to the other 

species’ own biofilm formation. 

 

Confocal imaging of S. maltophilia and B. cenocepacia biofilms 

Confocal laser scanning microscopy was used to qualitatively investigate the differences 

in S. maltophilia, B. cenocepacia, and co-culture biofilms over time. Electroporation of S. 

maltophilia K279a was successful in transforming cells with pIN29 (dsRed) and pIN301 (eGFP) 

plasmids to generate red-fluorescent or green-fluorescent S. maltophilia strains. These strains 

could be imaged in mono-culture or in co-culture biofilms with fluorescent B. cenocepacia 
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strains previously generated in the Yoder-Himes lab to examine the structures produced by each 

strain alone or in the presence of an interacting partner.   

 Confocal imaging revealed very different morphologies between S. maltophilia and B. 

cenocepacia mono-cultures. On day 3, S. maltophilia biofilms appeared as a thin confluent lawn 

(Fig. 7A). B. cenocepacia biofilms on day 3 (Fig. 7C) exhibited a much more organized three-

dimensional structure reminiscent of stalks and mushrooms. Volumetric images showed that the 

concentration of planktonic cells also appeared to be less than that observed in S. maltophilia 

(Fig. 8). At day 7, S. maltophilia biofilms appeared thicker than at day 3 but exhibited a similarly 

confluent lawn (Fig.7B). B. cenocepacia biofilms also appeared substantially denser at day 7 

(Fig. 7F). Small circular water channels were visible in most images. Co-culture biofilms 

appeared almost identical in morphology to S. maltophilia mono-cultures on both days 3 and 7 

(Fig. 7B and E) but with singular pockets of several B. cenocepacia cells dotting the lawn. These 

observations confirm the results seen in the live cell co-culture survival assay (Fig. 1A) and 

indicate that S. maltophilia dominates in co-culture with B. cenocepacia.  
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Figure 7: Confocal microscopy of single and mixed species biofilms. Images of S. maltophilia 

K279a (eGFP) and B. cenocepacia J2315 (dsRed) biofilms were obtained at 40X magnification in 

both mono-culture (A, D, C, F) and co-culture (B, E) conditions.  Arrows highlight areas of water 

channel formation. Images shown are representative of over 15 replicates per condition (5 technical 

replicates of 3 biological replicates). 
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Figure 8: Volumetric confocal images of single and mixed species biofilms. Images of S. maltophilia 

K279a (eGFP) and B. cenocepacia J2315 (dsRed) biofilms were obtained at 40X magnification in both 

mono-culture (A, D, C, F) and co-culture (B, E) conditions.  Images shown are representative of over 

15 replicates per condition (5 technical replicates of 3 biological replicates). 
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DISCUSSION 

Despite the extensive co-occurrence of pathogens in the CF lung, study of polymicrobial 

biofilms has been relatively limited. It stands to reason that the positive and negative interactions 

between various species within the CF lung microenvironment are likely one of the numerous 

factors influencing disease progression. Synergistic interactions may work to worsen 

inflammation and lung damage by promoting proliferation of unique mixed species biofilms, 

while competition may introduce selective pressures that drive one clinical species to dominance 

over others at the expense of increased tissue damage or treatment resistance. This study sought 

to investigate the in vitro interactions between B. cenocepacia, A. xylosoxidans, P. aeruginosa, 

and S. maltophilia. 

Results from co-culture survival assays clearly demonstrated that S. maltophilia reduces 

survival of all the other Gram-negative organisms. Presence of viable B. cenocepacia or A. 

xylosoxidans cells was not detectable at or any time after 24 hours in co-culture biofilms. 

Confocal laser scanning microscopy confirmed these findings for B. cenocepacia. Co-culture S. 

maltophilia and B. cenocepacia biofilms had a morphology nearly identical to mono-culture S. 

maltophilia. Survival of P. aeruginosa in co-culture biofilms was also inhibited albeit to a much 

smaller degree. Although viable cell counts are a commonly used measure of biofilm 

quantification, there remains a possibility that all viable cells are not completely released from 

the EPS after 10 minutes of sonication. Viable cells are generally assumed to be representative of 

the community as a whole, however biofilms tend to be very heterogenous environments. The 

retrieval procedure in this experiment was identified by a former lab member to maximize the 

recovery of biofilm members while minimizing the destruction of what would be otherwise 
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viable cells. All survival assays in this project were subjected to the same recovery procedure in 

an effort to ensure that comparisons would be valid.  

Although the mechanisms are poorly understood, antagonistic relationships within mixed 

species biofilms have been observed. Pseudoalteromonas tunicate is an aggressive marine 

biofilm-forming organism that has been shown to directly and indirectly out-compete a number 

of other prokaryotic organisms [158]. A previous member of the Yoder-Himes also reported 

evidence of CF pathogen antagonism showing B. cenocepacia mediated destruction of S. aureus 

biofilms [154].  Competitive interactions between P. aeruginosa and S. aureus have even been 

observed to enhance expression of virulence factors in a way that may cause more harm to the 

host [reviewed in 159].  

Several experiments were undertaken in this study to determine the exact mechanism of 

complete B. cenocepacia/A. xylosoxidans inhibition. The supernatant survival assay was 

employed to test for a cell-independent mechanism of inhibition. Some bacterial species secrete 

molecules or enzymes that are cytotoxic towards other strains or species. Over 90% of P. 

aeruginosa strains produce antimicrobial pyocins intended to kill competing bacteria [160]. The 

identification of a novel secreted product by S. maltophilia toxic to A. xylosoxidans and/or B. 

cenocepacia would be an exciting prospect with potential therapeutic applications. As the 

biological arms race of antibiotic resistance progresses, novel antimicrobial compounds are in 

short supply yet desperately needed. However, results showed no susceptibility of A. 

xylosoxidans to the filtered supernatant. This implies that antagonism is cell-mediated. Although 

unlikely given the choice of a low-binding, hydrophilic polyethersulfone filter, an absence of 

effect could also be explained if an inhibitory substance was removed from the supernatant 

during the filtration process. B. cenocepacia survival was significantly inhibited by S. 
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maltophilia supernatant, but only on days 3 and 5. The degree of inhibition observed also did not 

match that seen in co-culture survival assays. B. cenocepacia biofilms also appeared to rebound 

from their disturbance back to a survival level equivalent with mono-culture controls by day 7. 

This could be perhaps be explained if B. cenocepacia was able to degrade S. maltophilia 

cytotoxic compounds over time or if any antagonistic molecules degraded spontaneously under 

these conditions.  B. cenocepacia has a large genome that is very adaptable and elastic [111, 161, 

162]; thus it is not too surprising that it may be able to sense and overcome inhibition by S. 

maltophilia.  However, this makes studying the mechanism underlying this inhibition more 

difficult and less likely to reveal an effective therapeutic in the future. 

Another potential, arguably less interesting cause of cell-independent inhibition that was 

considered was medium pH. All organisms have an optimal pH range at which they experience 

the most growth, and any conditions outside of that range could theoretically lead to a reduction 

in survival. If one species extrudes compounds or waste at much different rate than another 

species, coexistence may not be possible due to pH differences in the extracellular environment. 

Direct measurement of single and mixed species biofilms revealed that supernatant pH is 

dictated by S. maltophilia in all conditions tested. The pH of B. cenocepacia, A. xylosoxidans, 

and P. aeruginosa mono-culture biofilms was significantly less than that of co-culture conditions 

with S. maltophilia. Further, the pH of S. maltophilia mono-culture biofilms (approximately 9.0) 

was nearly identical to that of all co-culture biofilms. However, these data are not sufficient to 

explain co-culture inhibition in its entirety. Recall that P. aeruginosa experienced significantly 

reduced but still detectable growth in co-culture survival assays despite the differences observed 

here. Additionally, A. xylosoxidans should have been sensitive to the supernatant assay as well, 

considering that medium pH is a cell-independent process. A few studies have found that biofilm 
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production by P. aeruginosa and S. maltophilia is actually enhanced at a higher pH [155, 156]. 

The media pH survival assay carried out in this experiment showed a varying effect for S. 

maltophilia and a reductive effect for B. cenocepacia over time. This is in contrast to a 

previously published study which showed a marginal increase in viable cell count with 

increasing pH. However, inoculations were not grown under biofilm forming conditions or for 

longer than 48 hours in this particular study [157]. Further research on how media pH affects 

biofilm formation, especially for B. cenocepacia and A. xylosoxidans, will be required to 

elucidate whether pH differences might be a significant source of inhibition. 

 The lysate survival assay was employed to test for cell-dependent mechanisms of 

inhibition. There is evidence for this type of mechanism in the inhibition of S. aureus by P. 

aeruginosa in biofilms which is at least partially mediated by P. aeruginosa LPS [162].  If some 

component of S. maltophilia’s membrane or other cellular structure was responsible for 

inhibition, B. cenocepacia and A. xylosoxidans survival should be reduced when grown with S. 

maltophilia lysate. Neither species appeared to be sensitive to treatment with 3-day biofilm 

lysate, meaning that this is likely not the case. Apparently, the presence of dead, sonicated S. 

maltophilia cells is not sufficient to cause inhibition. If a cell-dependent mechanism were to be 

the cause of inhibition, it would seem that the presence of living cells is required for this to 

occur. Such cell-mediated, contact-dependent mechanisms of inter- and intra-specific 

competition have been observed in other Gram-negatives like Vibrio cholerae and Vibrio 

fischeri. These two species appear to use their secretion systems to inject toxins directly into 

other prokaryotic cells [163, 164]. Some Gram-negatives, such as the phytopathogenic 

Xanthomonas citri, possess a type IV secretion system which allows them to directly kill other 

Gram-negative bacteria in a contact-dependent manner [165]. Should S. maltophilia harbor a 
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similar system, which would not be unexpected given its close phylogenetic relationship with X. 

citri, the presence of live and physiologically active cells would be required for this process to 

occur. 

 There also exists the possibility that S. maltophilia is not actively destroying other Gram-

negative biofilms. Its growth may be rapid enough that it depletes the resources available to other 

species or establishes biofilms on all available spaces. Growth curve analysis clearly 

demonstrated that S. maltophilia was the fastest growing strain in this experiment. It was 

followed relatively closely by P. aeruginosa while B. cenocepacia and A. xylosoxidans came in a 

distant last place. These findings strongly support the possibility that indirect competition is at 

least a contributing factor to the reduced growth observed in these co-cultures. Perhaps the 

growth rate of P. aeruginosa is rapid enough to allow establishment of itself in co-culture with S. 

maltophilia before it is completely excluded, while B. cenocepacia and A. xylosoxidans simply 

lag too far behind. Future work should include time-lapse evaluations of co-culture biofilms 

utilizing confocal microscopy to better ascertain whether S. maltophilia passively outcompetes or 

actively destroys P. aeruginosa, B. cenocepacia, and A. xylosoxidans biofilms. 

In conclusion, this study demonstrates that S. maltophilia inhibits several other Gram-

negative CF pathogens in co-culture biofilms. Survival of P. aeruginosa is reduced while 

survival of B. cenocepacia and A. xylosoxidans is not detectable. No single mechanism was 

definitively shown to be the cause of this effect. Inhibition of A. xylosoxidans appears to require 

the presence of live S. maltophilia cells, while B. cenocepacia inhibition is observed with both 

live S. maltophilia cells and filtered S. maltophilia supernatant. Inhibition of A. xylosoxidans 

does not appear to be mediated by cell-independent processes and may simply be outcompeted 

before it has a chance to begin biofilm production. B. cenocepacia could be inhibited by a 
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secreted product, pH differences, competition with S. maltophilia, or some combination of the 

three. Further research that builds on this work may help narrow down the factors contributing to 

interspecies relationships within clinically relevant polymicrobial biofilms. 
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