
                          Gorochowski, T. E., Grierson, C. S., & Di Bernardo, M. (2018). Organization
of feed-forward loop motifs reveals architectural principles in natural and
engineered networks. Science Advances, 4(3), [eaap9751].
https://doi.org/10.1126/sciadv.aap9751

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1126/sciadv.aap9751

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Science Advances
at https://doi.org/10.1126/sciadv.aap9751  . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/226774446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1126/sciadv.aap9751
https://doi.org/10.1126/sciadv.aap9751
https://research-information.bris.ac.uk/en/publications/organization-of-feedforward-loop-motifs-reveals-architectural-principles-in-natural-and-engineered-networks(55161c4d-e929-4df8-b500-2e729052ca99).html
https://research-information.bris.ac.uk/en/publications/organization-of-feedforward-loop-motifs-reveals-architectural-principles-in-natural-and-engineered-networks(55161c4d-e929-4df8-b500-2e729052ca99).html


SC I ENCE ADVANCES | R E S EARCH ART I C L E
NETWORK SC I ENCE
1BrisSynBio, Life Sciences Building, Bristol BS8 1TQ, UK. 2School of Biological Sciences,
University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK. 3De-
partment of Engineering Mathematics, University of Bristol, Bristol BS8 1TH, UK. 4De-
partment of Electrical Engineering and Information Technology, University of Naples
Federico II, Via Claudio 21, Napoli, Italy.
*Corresponding author. Email: thomas.gorochowski@bristol.ac.uk
†These authors contributed equally to this work.

Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
Copyright © 2018

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

originalU.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY).
D
o

Organization of feed-forward loop motifs reveals
architectural principles in natural and
engineered networks
Thomas E. Gorochowski,1,2* Claire S. Grierson,1,2† Mario di Bernardo1,3,4†

Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural
and engineerednetworks. Detailed functional analysis hasbeenperformed formany types ofmotif in isolation, but less
is knownabouthowmotifswork together toperformcomplex tasks. To address this issue,wemeasure theaggregation
of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a
broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking
differences in motif organization. The types of connection are often highly constrained, differ between domains, and
clearly capture architectural principles. We show how this information can be used to effectively predict functionally
important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how
networked systems are constructed from motif parts and elucidate constraints that guide their evolution.
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INTRODUCTION
Networks are commonly used to represent the complex interactions
between components found in natural and engineered systems.Making
sense of these structures has so far relied on the analysis of global
topological features, such as degree distributions or clustering coeffi-
cients (1), and the classification of significant localized structures called
network motifs (2, 3).

Major progress has been made in the literature toward understand-
ing how somemotifs contribute to network structure and function. This
has involved proving that motifs exist, that they are not there by acci-
dent, and that they make significant functional contributions to net-
works (2–7). Important families of motifs that are shared by diverse
networks carrying out similar functions have been discovered (2, 5),
and attempts have been made to relate motif structure with motif
function. This earlierwork has shown thatmotifs play an important role
in gene regulation (3, 8), accelerated response times (9), dynamic stabil-
ity (10), and responses to noise (11).

Evenwith these detailed studies, the functional importance ofmotifs
is often uncertain and contested (12, 13). In particular, it is not clear
to what extent the functions of the motifs depend on the context in
which they are found (that is, their specific dynamical parameters or
their position and connections within the network) (13). For exam-
ple, Burda et al. (14) evolved gene regulatory networks in silico for
user-defined functions. They found that simple network functions re-
sulted in the emergence of motifs where each had an isolated function.
However, as more complex phenotypes were chosen, the individual role
of the emergent motifs became less clear. Instead, motifs acted more like
parts in a larger machine, and the function of each motif could only be
understood in context.

Some efforts have beenmade to study largermotif-based structures in
complex networks. Kashtan et al. (15) developed the concept of network
motif generalizations. These assume that a motif can act as a template
from which larger network structures can be built, specifically through
duplication of nodes and associated edges that share a similar role [for
example, inputs or outputs; see Kashtan et al. (15) for a formal defini-
tion]. An example of a motif generalization is the bifan where two input
nodes are connected to a set of output nodes whose number may poten-
tially vary. In this case, a single bifan (two inputs and two outputs) would
form the template motif, and variants with larger numbers of output
nodes would be classified as generalizations. Generalizations of motifs
oftenmaintain the dynamical function of the templatemotif, and specific
examples of multi-input and multi-output feed-forward loops (FFLs)
were shown to be capable of testing for signal persistence and the tem-
poral ordering of events (15). Although generalized motifs offer a way of
classifying families of relatedmotif, this approachneglects themanyways
that a givenmotif can connectwithin a substructure that does not involve
duplication or connections between motifs of completely different types
[for example, FFLs connected to feedback loops (FBLs)].

Taking an alternate approach, Benson et al. (16) examined the
higher-order organization of networks by finding highly interconnected
communities of motifs. By combining motif analysis and network
partitioning and by exploiting a number of mathematical results, these
authors were able to develop fast algorithms to identify these commu-
nities in large complex networks. Although this approach allowed for
clusters of motifs to be efficiently found and extracted, it treated an en-
tire cluster as a single entity and, thus, provided no insight into their
internal connection structure.

Here, we set out to discover how the diversity of connections between
different motifs contributes to the formation of large statistically over-
represented structures, which form an additional type of building block
in complex networks. Because previous studies have neglected these
aspects, our understanding of how motifs throughout a network coor-
dinate and tune their collective function is limited. Understanding is fur-
ther hindered by current analysis methods that are fundamentally unable
to capture how network motifs are connected to produce functionally
important topological features at these intermediate scales.Althoughmotif
aggregation has been observed previously in several biological networks
[for example, gene transcription (17) and protein interactions (18)] and
shown tobe interwovenwith global statistical properties (19), there is cur-
rently no standard way to quantify the spectrum of possible connection
types and extract the rules that might underlie the aggregation process.
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Here, we present new tools to decipher the structure of a complex
network and reveal the precise organization of connections between
network motifs to detect, categorize, and quantify motif clusters. Further-
more, we study how information flows through the nodes in these
structures. Focusing on the widespread and highly studied FFL motif,
we investigate how structures of FFLs are organized in a range of natural
and engineerednetworks.Our results reveal highly distinctive types of FFL
cluster for different types of network. Random networks have very differ-
ent distributions compared to the natural and engineered networks that
we tested.Althoughmany types of clustering are possible, often just one or
two types dominate, formingmore than 80%of the FFL clusters. A similar
observation is made for the FBL motif. The types of motif clustering that
dominate depend on the type of network.We illustrate that characterizing
network structures at the scale ofmotif clustering produces highly distinc-
tive and surprisingly simple profiles from which clear conclusions about
network structure, function, and evolution can be drawn.
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RESULTS
A broad range of biological, engineered, and social networks were
selected for analysis. These covered the transcriptional regulation of
Escherichia coli (4) and Saccharomyces cerevisiae (2), Gnutella peer-
to-peer file sharing (20), Wikipedia voting (21), air traffic control,
European Union (EU) emails (22), Little Rock Lake food web (23), me-
tabolism of E. coli and Archaeoglobus fulgidus (24), and the neural
network of Caenorhabditis elegans (25) (see text S1 for further details).
Although these networks displayed a broad range of global statistics
(table S1), in every case, the FFL motif was found to be significantly
overexpressed (P< 0.0001; table S2). This has been recognized previous-
ly for many of the networks (2, 4, 5, 7, 24) and suggests that FFLs may
play a key functional role across all these systems, acting as a generic
building block for many different types of complex system.

FFLs cluster in real-world networks
Having found FFLs to be a significant feature of the real-world net-
works, we next investigated their general organization by studying their
propensity to aggregate and become clustered (Fig. 1A). To capture this
property, we defined a measure of motif clustering (Mc) calculated as
the proportion of shared nodes between all pairs of FFLs, normalized
by the maximum number of possible shared nodes between all pairs
(Fig. 1B and Materials and Methods). A motif clustering value of 0
would correspond to each FFL in our networks being fully isolated
(sharing no nodes with any others), whereas a value of 1 would repre-
sent every FFL sharing the same two common nodes, with only a single
node differentiating each motif (a single fully clustered region). This
measure was further generalized to allow for sets containing different
types of motif (Materials and Methods; see text S2 for an example).

Analysis of the networks found FFL clustering to be a significant fea-
ture in all cases, with a positive correlation between overallmotif expres-
sion and clustering (table S2). Increases inmotif clustering are inevitable
as the density of FFLs increases. However, it is important to note that
the significance we report here relates to a null random model that
maintains the same number of FFLs (Materials andMethods). Themo-
tif clustering that we see is significantly higher than we would expect
given the number of FFLs present.

Motif clustering types and their links to network function
Motif clustering alone reveals little about the specific ways in which
FFLs become clustered andwhether there are underlying organizational
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
principles to how they interact (Fig. 1C). The dangers of considering only
the global statistical features of a network were highlighted by Li et al. (26).
They showed that, for a general statistical feature such as the degree
distribution, a near-identical power law distribution could be generated
by completely different types of underlying network structure. Further-
more, specific differences in the way particular nodes were connected in
these networks yielded large differences in their performance and reliability
to attacks, calling into question findings that often state that power law and
scale-free–like networks are inherently susceptible to targeted attacks at
hubs. This work clearly illustrated that the differences in local connections
really do matter from both a structural and a functional perspective.

To ensure that we considered such localized features, we next ana-
lyzed the specific ways in which motifs were connected by categorizing
the different possible pairwise combinations of (coherent) FFLs found
in our networks (Fig. 2). These fall into 12 types, and we quantified the
populations of each FFL combination as a fraction of the total.

Looking at the FFL clustering type distributions of the natural and
engineered networks (Fig. 2C), it is apparent that it is not just clustering
that matters; different types of FFL cluster are prominent in different
networks, and there are similarities between networks with similar
functions. This suggests that some types of FFL cluster are better suited
to specific tasks than others.We investigated this further by focusing on
specific types of clustering that are especially overrepresented. We hy-
pothesized that thesemight be cases where one ormore specific types of
FFL cluster have been subjected to strong positive selection.
Motif clustering types in biological networks
The strongest bias in our data was seen in the two metabolic networks
(figs. S1 and S2) where, in both cases, more than 70% of the FFL
clustering is of type 6 (Fig. 2C). Type 6 FFL clusters have a single
node that is an input to all the other nodes in the cluster (Fig. 2A).
In metabolic networks, these nodes represent enzymes that produce
metabolites that are consumed by multiple enzymes. The prevalence
of type 6 FFL clusters reflects the broad use of the same compound by
Motif
Mc = 1Mc = 4/6Mc = 0

Isolated Highly clustered

Increased motif clustering

Random
clustering

Structured
clustering

Mc = 
1 1 2+ +

2 2 2+ +
= 4/6

A

CB

Fig. 1. Key features of motif organization in complex networks. (A) The motif
clustering coefficient Mc represents the amount of overlap in terms of shared nodes
between all pairs of a particular set of motifs. This example shows increasing motif
clustering for a set containing a single triangular motif (highlighted in red). (B) An ex-
ample of how themotif clustering coefficient is calculated for the intermediate network
from (A). The twomotifs and shared nodes have been highlighted in red, and for each
pair of motifs, the maximum possible shared nodes are two (found in the denomina-
tor). (C) Motif clustering can occur in many different ways, be it random or structured.
Further information regarding specific types of connection betweenmotifs is required
if important underlying features are to be understood (Fig. 2).
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multiple biosynthetic pathways. It should be noted that the networks
thatwestudyhere includecofactors suchasATP(adenosine5′-triphosphate)
andADP (adenosine 5′-diphosphate), which are known to bindmetab-
olism together. Their pervasive use leads to the small-world structure of
the overall network (see fig. S3 for an example of this closely knit
architecture with some of the most highly connected node identities in-
cluded). Furthermore, although the overall concentrations of the com-
bined pools of these cofactors are highly regulated (remaining virtually
constant such that individual reactions have little effect), changes in
their individual concentrations are known to play important roles in
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
the control of other metabolic functions such as glycolysis (27). There-
fore, the inclusion of these metabolites was considered important to
capture the entire range of potential links within the network.

The functional roles that motifs might play in metabolic networks
remain unclear. However, recent comparative studies have found that
similarities in the proportions of enzyme classes between species were
related to structural features of the motifs present (7). Comparisons of
motif distributions across different organelles within a cell also showed
distinct differences that are thought to relate to the specific metabolic
functions of each compartment (7). These differences will directly affect
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Fig. 2. Classifying FFL motif clustering types and their distributions. (A) The 12 unique motif clustering types for two FFLs. To highlight the flow of information,
each node has been colored in relation to its role: input, intermediate, output, or a mixture of these roles. (B) Example network (left) with the associated motif clustering
type distribution (right), and the motif pairs and their classifications (below). (C) Motif clustering type distributions for the natural and engineered networks. Clear
signatures are shown in the types of motif clustering found. Insets have been included for distributions where motif clustering types 7 to 12 are observed at low overall
fractions. The random Erdős-Rényi distribution is generated from a network of 1000 nodes and an edge probability of 0.005 with ±1 SD from a sample of 1000 net-
works. The random duplication distribution is generated from a network of 30 nodes with ±1 SD from a sample of 1000 networks.
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the types of motif clustering that are possible, and so the highly limited
forms that we find for FFLs are likely mirrored for other motifs that are
prevalent. To test this further, we selected and analyzed an additional set
of five metabolic networks from bacteria and archaea spanning a broad
range of classes for both FFL and FBL motifs (fig. S4). These again
showed a strong bias for type 6 FFL clusters and type 2 FBL clusters.
Furthermore, for both types of motif, increases in overall motif
clustering saw stronger biases for the specific clustering types observed.

Highly constrained FFL clustering types were also found for the
transcription factor networks (fig. S5)where two types of FFL clustering,
types 6 and 12, make up 80 to 90% of the total (Fig. 2C). In type 6 FFL
clusters, a singlemaster regulator separately regulates two pairs of genes,
where, for each pair, one gene is a transcription factor regulating the
other. Type 12 FFL clusters also have a single transcription factor reg-
ulating others in the cluster, but in this case, the regulator and its target
coregulate multiple target genes. Type 12 FFL clusters enable closer co-
ordination between the expression patterns of groups of genes and have
been shown to enable temporal regulation of target genes (for example,
ordered activation) (15).

A striking feature of these motif clusters is the simple hierarchical
structure known to be present in these types of network (28, 29). This
is most evident in the E. coli network where the seven separated com-
ponents all share highly similar architectures (fig. S5A). In this network,
we tend to find that intermediate nodes connect to only a few targets
(outputs), as shown in the cluster regulated by cAMP (adenosine 3′,5′-
monophosphate) receptor protein (CRP). In this case, the large number
of separated intermediaries relates to the control of different metabolic
processes, allowing for a signal from the master regulator (CRP) to be
adjusted for a specific process’ needs. This separation also accounts for
the large numbers of type 6 FFL cluster in the motif clustering type dis-
tributions (Fig. 2C). Moreover, the highly specific types of FFL
clustering displayed suggest that these structures exhibit important
functional benefits or that other possible types of clustering see strong
negative selection. The former is supported by dynamical analyses of the
potential functions that such structures enable (3, 8, 9, 11).

The S. cerevisiae FFL clusters also exhibit a hierarchical structure but
of a far more integrated form (that is, fewer inputs and intermediaries
control many outputs; fig. S5B) (30). Lee et al. (31) also reported this
feature, finding that the number of promoter regions bound by a reg-
ulator ranged from 0 to 181 with an average of 38 interactions per reg-
ulator, with many interactions in the same functional category. This is
clearly illustrated for the large motif cluster controlled by GLN3 and
DAL80 that contains 17 output genes, all regulated by these same
two inputs (fig. S5B). This more integrated architecture leads to an in-
crease in the overall FFL clustering shown by the associated z score
(table S2) and helps explain the elevated proportion of type 12 FFL
cluster where a single input and intermediate are connected to large
numbers of outputs (Fig. 2C).

Unlike the E. coli network, the S. cerevisiae FFLs display greater
variation in their types of clustering. Diversification of motif clusters
related to specific cellular processes leads to a more complex structure
where multiple inputs are integrated to regulate target genes for dif-
ferent cellular functions. This integrative structure is evident in the
large motif cluster that contains TUP1 as a central input (fig. S5B).
Broadly, this cluster breaks up into three main parts: mating type
switching, meiosis, and biosynthesis and respiration. Although each
of these cellular processes is controlled in isolation by several inde-
pendent inputs, more complex phenotypes such as the switching of
mating type require the coordination of many of these processes in
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
unison. The TUP1 gene fulfills this role and has experimentally been
shown to act as a global transcriptional repressor (32).

One of themost widely studied examples of an ecological network is
the Little Rock Lake food web (23). Nodes represent species, and edges
denote the consumption of one species by another. Most of the FFL
clusters in this network (61%) are of types 1 and 2 (Fig. 2C and fig.
S6). In these clusters, one node is a predator that consumes all or most
of the other species in the cluster. The prevalence of these structures
reflects the fact that most of the species in the lake are consumed by
other species across trophic levels. Only a few top predators exist, with
most of these acting as omnivores.

The role of omnivory in food webs is still contested (33–37). Initial
theoretical studies found that its presence under equilibrium conditions
can destabilize food webs (33). However, more detailed collection of
species interactions has shown it to be a common property of many
types of food web (35). More recently, nonequilibrium studies of these
networks (36, 37) and consideration of potential adaptive mechanisms
(36) have revealed that omnivory can help improve system stability and
damp potential chaotic dynamics. The FFL motif captures this key re-
lationship, and motif clustering captures the higher-order forms it can
take. The prevalence of this and derived structures in the food web is
evident with FFL clusters comprising 54% of all nodes and 38% of all
edges across the entire network (table S3). Detailed investigation of
other FFL clustering types also showed a decreasing number of longer-
range predator-prey interactions across more distant trophic levels.
We found two- and three-level predation to be most common (FFL
clustering types 1 and 2), whereas four-level relationships were very
rare. This pattern is due to the limited number of trophic levels present
in this food web. Furthermore, we find it rare for multiple top-level
predators to share the same low-level but alternative intermediate-
level prey. This is due to adaptations to consume one formof prey likely
having similar benefits on potential higher-level prey.

In the C. elegans neural network, 58% of the FFL clusters are also of
type 1 or 2 (Fig. 2C and fig. S7). In these networks, the nodes are neu-
rons and the edges are synapses. Because this is a neural network, type
1 and type 2 FFL clusters are where a node receives information from all
ormost of the other nodes in the cluster. This is consistent with a highly
integrated structure, with many nodes receiving and integrating
information from multiple sources. Furthermore, theoretical studies
of the dynamics of FFL structures in neural networks have shown their
potential role in local stability (38), as well as permitting input events
that do not occur exactly simultaneously to trigger a response through
the use of the intermediate node as memory (15). Apart from these FFL
clustering types, others where one and two nodes are shared (types 2 to
6 and 7 to 12) have similar proportions. Kashtan et al. (15) showed that
generalizedmotifsmaintain the same function as their underlyingmotif
over a broader range of nodes. Therefore, combining the many
functions that motifs have been shown to exhibit with the ability for
neural networks to tune available connection strengths through synap-
tic plasticity makes the wide range of FFL clustering types capable of
many different forms of information processing.
Motif clustering types in engineered and social networks
In contrast, engineered and social networks were dominated by
alternative types of FFL clustering. The Wikipedia vote (fig. S8) and
air traffic control networks (fig. S9) saw type 6 FFL clusters highly
expressed, at 39 and 32%, respectively. For the voting network, elections
arisewhen auser requests to become an administrator.OtherWikipedia
users can then vote onwho theywant to promote. Nodes in the network
correspond to users, and an edge signifies one user voting for another.
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The strong bias for type 6 FFL clustering reflects the fact that the
preference of a voter is likely to match the candidates they vote for.
Therefore, in future elections, although both a user and a previous
candidate may have no direct social ties, their similar preferences will
make it more likely for them both to vote for the same candidate. This
embeds type 6 FFL clusters within the network. Such relationships
arise from the underlying homophily present in virtually all social net-
works (39–41), which has been shown to emerge undermany different
conditions (42).

Similarly, for the air traffic control network, amajor influence on the
structure is a requirement for robust paths to multiple destinations
while taking into account geographical limitations. In this network,
nodes are airports and edges are recommended routes. FFL clustering
types 5 and 6, both highly expressed, embody a function where a single
input spreads out tomany intermediate and output nodes. This suggests
that recommended routes attempt to reduce the local burden on specific
airports, sharing traffic that may accumulate during difficulties (for ex-
ample, weather disruptions).

The Gnutella network (fig. S10) saw a large proportion of FFL
clustering types 4 and 12, making up 33 and 18% of the FFL clusters,
respectively (Fig. 2C). These FFL clusters include only a single
intermediate node. In this network, nodes represent computers (clients
or servers) and edges denote the transmission paths between them.
Gnutella is a decentralized file-sharing protocol.When a new computer
connects to this network and requests a file, it first searches for a local
“ultrapeer” server. These are special nodes that act as a high-speed
backbone for the network and are purposefully spread out to improve
communication efficiency. Once a client is connected, the request is
processed and forwarded to the appropriate target server. The clients
can then directly connect, leading to an FFL transmission structure be-
ing generated in the network. FFL clustering types 4 and 12 both capture
this process whereby many clients (inputs) connect to target servers
(outputs), using a single ultrapeer server (intermediate).

Finally, the EU email network (fig. S11) exhibits larger proportions
of type 7 FFL clustering related to multiple inputs and a shared
intermediate and output and type 9 FFL clustering related to a three-
level hierarchy where two intermediate nodes are also connected (Fig.
2C). The majority of email within an organization will take place via an
organizational hierarchy, and these particular motifs are a likely conse-
quence. One interesting aspect is a lack of other hierarchical motifs be-
ing expressed. This reflects a segregated structurewhere it is uncommon
for high-level managers to directly interact with those more than two
levels below. It would also account for type 9 FFL clusters having the
largest overall expression of 22% because this type separates the main
input from the output through an intermediate layer.

Robustness of motif clustering to edge removal
To ensure that the specific types of FFL clustering were a robust feature
of the networks, we randomly removed 1 to 50% of edges from each
network and calculated average FFL clustering type distributions from
500 trials at eachpercentage. TheWikipedia vote andEUemail networks
were omitted because of their size and density, leading to unfeasible ex-
ecution times for a sufficient number of samples. In terms of specific
motifs, we would expect random edge removal to affect their counts
in proportion to the number of edges they contain. Therefore, FFL
clusters consisting of a single shared node (six edges) would be expected
to see a greater impact than FFL clusters sharing two nodes (five edges).

We found that, for most networks, the FFL clustering type distribu-
tions are highly robust to random edge removal (fig. S12). Some net-
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
works, such as the Little Rock Lake food web and air traffic control
networks, show virtually no change in their FFL clustering type distri-
butions even after 50% of all edges have been removed. The robustness
of this feature can be accounted for by the high FFL clustering found in
all the networks that we considered and themajority of this being in the
form of a single shared node (that is, FFL clustering types 1 to 6). In this
case, removal of an edge results in the elimination of a single FFL, loca-
lizing the effect on the overall motif clustering. To help illustrate why
this is the case, consider a network that contains a single central node
that is shared by all FFLs in the network. No matter which edge is cho-
sen, only a single FFL will be affected. Similarly, for the case where FFLs
are clustered around a pair of nodes, there is the danger that removal of
this central edge will result in all FFLs being lost. However, as the
clustering increases, the probability of picking this edge rapidly di-
minishes, leading to a structure where random edge removal is again
only likely to affect a single motif. Therefore, if clustering is high and
most motifs are clustered through a single shared node, structural per-
turbations become localized to the motif in which they occur.

The networks that see the most sensitivity to edge removal were
those of metabolism. Although small amounts of edge removal up to
15% lead to minor changes in the overall proportions of FFL clustering
types, as further edges were removed, a rapid breakdown of these
features was seen. At 50% edge removal, we find that FFL clustering
types 1 to 6 and 7 to 12 have become heavily homogenized for both
metabolic networks. A possible reason for this breakdown may relate
to the highly optimized nature of metabolism. Of all the distributions
that we analyzed, metabolic networks displayed the most highly
organized form, with nearly 80% of all FFL clustering being of a single
type. Further analysis revealed that this is due to a highly clustered
region containing a few central nodes (figs. S1 and S2). This extreme
level of clustering causesmost of the edges in the network to be concen-
trated within a few FFL clusters and increases the probability that an
edge removal will affect these structures. Unlike other networks where
similar features are found (for example, Little Rock Lake food web and
C. elegans neural network), for the metabolic networks, the reduced
number of central nodes leads to an increased density, with every
FFL being connected to a far greater number of others. Therefore, the
removal of any of these FFLs has a larger impact on the types of FFL
clustering present in the network.

Information flow through the motif clusters
Our motif clustering results suggested that some networks have very
strong prevalence for certain types of information flow (according to
our results, above 70% of the FFL clusters in a network might be of
the same type and, hence, produce similar types of information flow).
Our classification of motif clustering types identified nodes as input,
output, or intermediate, but the intermediate class encompasses nodes
with a range of very different characteristics. To further dissect
information flow within the FFL clusters, we applied an approach simi-
lar to that of Ma’ayan et al. (10) and used the notion of node spin to
classify the extent of each node as a producer, receiver, or relayer of
information (Fig. 3A). We compared the node spins of whole networks
to those of their FFL clusters (Fig. 3B and table S3). In several cases, the
extracted FFLs and the whole network have similar profiles, but there
are examples where the FFLs contribute very differently to information
flow from the whole network (for example, metabolism).

The transcription networks have very polarized node spin distribu-
tions biased toward inputs and outputs, which were similar for the en-
tire network and extracted FFLs (Fig. 3B). Analysis of the FFL clusters
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revealed an output-centric structure, with approximately 60% of nodes
acting as outputs. The remaining nodes have an input role, although
only a small percentage (12% for E. coli and 16% for S. cerevisiae) act
solely as inputs. Closer inspection finds that nodes acting solely as in-
puts are master regulators. For example, in the E. coli network, we find
the input node CRP, which has been found to regulate more than 180
genes related to catabolism of secondary carbon sources (43), as well as
other cellular processes such as biofilm formation, virulence, and nitro-
gen assimilation tonamebut a few.Another input node, FNR (fumarate-
nitrate reduction regulatory protein), regulates hundreds of genes to
control the transition from aerobic to anaerobic growth (44), as well
as many other cellular functions. The overall structure of the FFL
clusters permits incoming information to be integrated through re-
latively few intermediate nodes before being relayed to large num-
bers of outputs.

In contrast, themetabolic networks displayed a bias for intermediate
node spins in the entire network and for input and output node spins in
the FFL clusters (Fig. 3B). These differences could be explained by large
portions of the entiremetabolic networks consisting of sequential trans-
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
formations where the product of one reaction becomes the substrate for
another. These sequences of reactions lead to nodes that are balanced
(that is, having similar numbers of inputs and outputs) and result in the
node spin distribution peaking around zero. Conversely, the network of
the extracted FFLs has a highly interconnected structure (figs. S1 and
S2). This is due to commonly used cofactors (for example, ATP), which
bind the network together.When the product of one reaction is the sub-
strate to another, and when both also require one of these cofactors, an
FFL is created with all reactions where the cofactor is a product (for
example, ATP phosphoribosyltransferase). The cofactor-producing re-
actions act as inputs, and becausemany of the products from these final
reactions will feed into other reactions that do not require the same co-
factor (and so are likely to not be included in the extracted FFL net-
works), these reactions become outputs and lead to the strong bias
for input and output node spins (Fig. 3B).

The incredibly flat distribution of node spins for the C. elegans neu-
ral network shows that routes for information flow are evenly distrib-
uted with a broad range of input/output ratios. It has been shown that
FFLs in these networks can act as decision points, triggering when
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sufficient numbers of inputs are activated within a short time window
(15). By having a wide range of potential input/output ratios present
in the network, and with the previously highlighted ability of these
networks to dynamically adapt through synaptic plasticity, they are flex-
ible to a broad set of alternative functions.

A striking feature of the nonbiological networks is the convergent
node spin profiles of FFL clusters in the Gnutella file sharing, air traffic
control, and EU email networks. Although these are taken from very
different domains, this convergence reflects the precisely defined roles
of components in these engineered networks, where the vastmajority of
nodes are solely input, solely output, or solely intermediate. This segre-
gation is generally due to the functional modularity that most engi-
neered systems have. This enables the systems to predictably grow in
complexity, with specific tasks encapsulated within particular elements
of the system. For example, in the case of the Gnutella file-sharing
network, inputs and outputs represent the end users and information
providers, whereas the task of information transmission (intermediate
spins) is performed by a specialized set of ultrapeers whosemajor role is
the relay of information. In addition, the transmission of information
(Gnutella and EU email) or even planes (air traffic control) relies on the
ability of these rely points to not act as potential bottlenecks. This would
account for the large proportion of near-zero node spins where a bal-
ance of inputs to outputs is present.

Similarly, the Wikipedia vote network displayed a strong conver-
gence to an input- and output-oriented architecture, with a smaller
fraction of nodes having an output bias (small ramp in the distribu-
tions). This clearly captures the bipartite nature of the voting system,
containing members that can be classified as either voters (inputs) or
candidates (outputs). Furthermore, as a global feature, the extracted
FFL clusters display a similar distribution to the entire network,
which accounts for a large proportion of its structure (54% of nodes
and 85% of edges; table S3).

Comparison to random graph models
To test whether the types of motif clustering observed might be the
results of random evolutionary processes, we considered two random
network models. The first was an Erdős-Rényi model where every
directed edge had a fixed independent probability. The second was a
node duplication model where the network was initiated with a
template motif and then nodes were randomly chosen and duplicated,
including all associated edges. These displayed highly structured motif
clustering type distributions with clear signatures in the factions of par-
ticular motif clustering types (Fig. 2C; see text S3, figs. S13 to S15, and
table S4 for an analytical derivation of the expectedmotif clustering type
distributions for both randommodels). In all cases, the real-world net-
works showed biases in the clustering type distributions that could not
be produced by random wiring (Erdős-Rényi) or unbiased node
duplication (Fig. 2C). As we would expect, this suggests that more
complex evolutionarymechanismsmay be at work. For example, biased
node duplications or strong selective pressures allow only limited forms
of motif clustering to emerge (Fig. 4).

Role of evolution by duplication and divergence
Formany complex systems, duplication and divergence form an impor-
tant part of their evolution and are linked to the formation of highly
overlapping motif clusters. Duplication of any node within a motif will
lead to a newmotif of the same type being created that is fully clustered
with the original. This proliferation of motifs and clustering provides a
direct link between an evolutionary process and the motif clustering
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
properties of a network. Furthermore, duplication-based evolutionary
processes leave a mark on the systems they shape. This is evident from
the randomnode duplicationmodel, which exhibits increased numbers
of FFL clustering types 7, 10, and 12 (Fig. 2C). Each of these is directly
related to duplication of an input, intermediate, or output node from the
original FFL. For networks where duplication is known to occur, it is
possible to use this feature to interpret how these processes contribute
to the evolution of the system.

Although a random duplication process will lead to equal increases
in FFL clustering types 7, 10, and 12, this is not always the case in a real-
world system. Selective pressures restrict the types of duplication main-
tained because of differences in the fitness benefit that they provide.
Furthermore, theprocesses that lead toduplicationmaybebiased, leading
to different amounts of eachmotif clustering type (Fig. 4). Bymaking use
of this information, we are provided with an opportunity to measure se-
lective pressures or mechanistic biases from static network data.

Having found that biases in motif clustering type distributions may
offer a powerful means to detect remnants of an evolutionary process,
we attempted to search for signs that duplication and divergence had
played a role in the real-world networks. We searched for biases in
FFL clustering types 7, 10, and 12, related to duplication of an input,
intermediate, and output node, respectively. We focused on networks
where duplication-based evolutionary processes are thought to be pres-
ent (that is, Little Rock Lake food web, metabolism, and transcriptional
regulatory networks). In foodwebs, duplication and divergence form an
important aspect of speciation. In particular, speciation is thought to
take place through several gradual processes that see a single population
diverge because of genetic polymorphism (sympatric), barrier forma-
tion between separated groups (allopatric), the creation of an isolated
subpopulation where gene flow is restricted (peripatric), or the creation
of a partially separated subpopulation where localized evolution
Random
duplication

Biased
duplication

FFL motif clustering
type distribution

FFL motif clustering
type distribution

Convergent
duplication

FFL motif clustering
type distribution

101010 127641

Fig. 4. Routes to biased motif clustering distributions for a duplication-based
growth process. Random duplication leads to a broad distribution of specific motif
clustering types. In contrast, biased distributions exhibiting a single type of clustering
can occur through convergent duplication where all nodes remain equally likely to be
duplicated, but post-duplication processes (such as natural selection) remove non-
functional or deleterious events. Alternatively, the duplication event itself could be
biased, with some types of node having higher probability than others. This bias could
be due to functional limitations in the system (for example, physical cabling restrictions
in communication networks) or an intrinsic feature of the system itself (for example, a
mutational bias in genetic systems).
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eventually reduces the fitness of reproductive events between the two
groups (parapatric). Duplication and divergence have also been shown
to be a primary mechanism for the evolution of genetic systems (45),
covering both metabolic and transcriptional regulatory networks.

To test whether duplication had left a mark on the FFL clusters, we
analyzed the FFL clustering type distributions (Fig. 2C). For the Little
Rock Lake food web, we found increased proportions of all FFL
clustering types related to single node duplication. Furthermore, a large
biaswas seen toward type 7 FFL clusters. This is related to the duplication
of an input (producer). With no known mechanistic biases during spe-
ciation, this would suggest that low-level prey are under increased pres-
sure to diversify so as to evade generalist predators.

For the metabolic networks, we again find a clear signature of
duplication-based events, with FFL clustering types 7, 10, and 12 all
expressed in higher quantities than other types sharing two nodes
(Fig. 2C). In contrast to the Little Rock Lake food web, metabolic net-
works saw increased proportions of output-based nodes in the FFLs
(type 12 FFL clusters). Considering that genetic duplication-based
events are thought to be, for the most part, random, the reduced selec-
tive pressures for this type of duplication eventmay relate to the fact that
metabolic networks are essential to life and are therefore highly opti-
mized and controlled. Changes to this process are unlikely to be bene-
ficial to the overall fitness of an organism, and so it is reasonable that
biases may favor those duplication events that have reduced overall ef-
fect. In the case of an FFL, the input node has the greatest impact,
followed by the intermediate node and, finally, the output. This would
predict a bias toward output nodes, as seen in the metabolic networks.
In addition, diversification of outputs could also have a positive effect,
with diverse metabolic products providing a larger variety of materials
for a cell to build from.

The transcriptional regulatory networks also exhibit a strongly
biased distribution toward duplication of output nodes but display vir-
tually no duplication of input or intermediate nodes (Fig. 2C). Again, as
in the metabolic network, this may relate to limiting the impact of del-
eterious changes. However, the lack of inputs and intermediates but
large numbers of outputs also suggests that FFLs with duplicated out-
puts form structureswith beneficial functions that are positively selected
for. This is supported by studies of bifan networks, which are closely
related to output-focused FFL clusters. Such structures have been shown
to be capable of generating a wide range of useful behaviors (13).

Testing for evolution by node duplication
Because of the strength of the bias in the transcriptional regulatory net-
works and the ability to capture evolutionary relationships through
DNA sequence data, we attempted to verify whether duplication had
played a role in the creation of these FFL clusters. Concentrating on
the E. coli transcriptional regulatory network, we separated each group
of output nodes (target operons) into candidate sets that shared the
same input and intermediate node (that is, they were members of the
same FFL motif cluster). This resulted in nine candidate operon sets
(table S5). To verify whether duplication had taken place, it was neces-
sary to compare sequences that make up each of these operons and see
whether similarities are found within the same candidate set. A major
difficulty when comparing genetic sequences is the continual evolution
they undergo. Although sometimes this will relate to the evolution of a
new functional protein, the redundancy in the genetic code allows for
neutral evolution to also occur. Neutral evolution relates to genetic
changes to an individual that have no measurable effect on their fitness
or such a small effect as to not have an impact on reproductive success.
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
This random drift allows for two identical genes generated by a
duplication event to slowly diverge over time. This makes direct com-
parison of their DNA sequences difficult.

An alternative approach is to consider structural characteristics of
the proteins that a sequence encodes. Protein structure is more highly
conserved over time, and so structural classifications enable the identi-
fication of more distant relationships (46). We gathered structural do-
main assignments from the SUPERFAMILY database (47) for each of
the proteins coded for by our candidate operons, and because operons
can encode many proteins, this leads to multiple assignments for each
operon (table S5). This revealed relatively few duplication events within
candidate sets (that is, two different operons from the same candidate
set having the same structural domain assignments). However, of those
that we did detect, most occurred in sets containing only a few operons
(candidate sets 1, 4, 5, and 9; table S5). This reduces the chance they
could have occurred by other means and supports duplication playing
a role in the creation of these motif clusters.

For the other candidate sets, strong selective pressures and an abil-
ity to rewire regulatory connection would be expected for the FFL
clusters to form. This is supported by the flexible nature of regulatory
interactions. Teichmann and Babu (48) have shown in genome-wide
studies of network evolution inE. coli and S. cerevisiae that duplication
of a target gene and its regulatory element accounts for only 10% of
interactions. Themajority of interactions, approximately 90%, instead
form because of duplication of the transcription factors or regulatory
components, enabling new regulatory interactions to be easily formed.
Therefore, a combination of both duplication and strong selective
pressures likely underpins the FFL clustering that we observe in the
transcriptional networks.

Identifying functionally important nodes
Having tested for evidence that groups of nodes might duplicate, pre-
serving their connections, we developed a way to identify nodes whose
connections must have arisen in other ways. In complex networks,
nodes with critical functions tend to act across or coordinate many dif-
ferent processes. Most measures of node importance in a network rely
on simple structural features (for example, degree) or bottlenecks in the
routes between nodes (for example, betweenness). However, these
features do not fully capture a coordinating behavior. Because motif
clusters are a structure connecting numerous parts, it is easy for them
to be lost during evolution unless they are actively selected for and
maintained. This results in separate clusters often being linked to core
functionalities (Fig. 5). Although nodeswithin a clustermay have a high
connectivity (for example, DAL80 in Fig. 5B), because the interactions
are limited towithin themotif cluster, they are unlikely to play a broader
role in coordination ofmany functions across the system. Therefore, we
hypothesized that nodes spanningmotif clusters ofmany different types
might better capture those playing a key role in coordination and, thus,
are important to the system. We defined a motif clustering diversity
(MCD)measure, which was calculated as the number of different motif
clustering types that a node takes part in (Fig. 5A and Materials and
Methods). As a test, we applied this measure to the S. cerevisiae
transcription network to see whether functionally important nodes
could be found (Fig. 5B). The nodes with the highest MCD were
TUP1, GLN3, GAP1, GAT1, and DAL80. As mentioned earlier,
TUP1 is a global corepressor of transcription (32) that switches off well
over a hundred genes in diverse signaling pathways. GLN3, GAP1,
GAT1, and DAL80 together directly or indirectly regulate hundreds
of genes to optimize nutrition (49).
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To test this hypothesis further, we used experimental data on es-
sential genes in E. coli (50) and assessed whether high MCD values of
enzymes in the metabolic network were a good predictor of their es-
sentiality. The MCD was calculated for every essential node in the
network, and we found that the highest MCD value of 12 was signif-
icantly enriched (z score = 4.6, adjusting for different group sizes at
eachMCD value; Fig. 6A).We also found that FFLmotif clusters were
significantly enriched with essential nodes, suggesting that these par-
ticular motifs play an important functional role. We compared the ac-
curacy of our predictions using MCD to those of other standard
network measures of node importance, specifically node degree and
betweenness centrality (Fig. 6). We analyzed the hit rate of essential
nodes for the top 156 nodes with the highest degree, betweenness,
and MCD. This group size was chosen because it captured the full
set of nodes withMCD = 12 (covering both essential and nonessential
genes) and resulted in selecting nodes with a betweenness ≥0.0029
and degree ≥50. Although MCD displayed excellent performance, a
striking difference in its predictions to the other measures is shown in
Fig. 6. The MCD predicted nodes exhibiting a broad range of degree
and betweenness values and resulted in three essential nodes (~10%)
being uniquely identified by theMCDmeasure (Fig. 6B). This suggests
that MCD and motif clustering more generally provide a com-
plementary approach that can suggest functionally important targets
missed by other methods.
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
DISCUSSION
Wehave explored theway inwhichmotifs can act as building blocks for
complex networks and attempted to better understand their connection
architecture across several real-world systems. Our analysis revealed
that aggregation of FFLs into clusters is significant. Detailed analysis
showed that these motifs can potentially become connected in a large
number of different ways, but only a few are in fact used within the real-
world networks. In some cases, just one or two types of clustering dom-
inate. This suggests that limited rules may underlie the ways that motifs
can be successfully pieced together to generate larger structures with
functionally useful dynamics. In addition, biases in the motif clustering
types were shown to capture key features of underlying evolutionary
processes, such as duplication and divergence, in addition to selective
pressures placed upon these processes. Motif clustering offers a glimpse
at functionally important structures and the evolutionary process by
which they arise. Furthermore, the important role that motif clustering
plays was illustrated in terms of the essential nodes within themetabolic
network of E. coli. The MCD measure was shown to predict essential
nodes with comparable performance to existing approaches while also
highlighting other nodes that were missed.

There has beenmuchdebate over the functional role of networkmo-
tifs in complex networks (2–7, 9–11, 14). Much of the difficulty in
answering this question stems from our often limited understanding
as to what constitutes a “useful” function in the context of the system
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being studied. For example, transcriptional networks clearly regulate
gene expression to allow for adaptation and survival of a cell, but a useful
function for a particular cell will depend on the dynamic environment
in which it lives, as well as the effect that each gene has on phenotype. In
most cases, neither of these aspects is fully known, making it difficult, if
not impossible, to resolve a motif’s complete functional role.

An alternative way of assessingwhether amotif has a useful function
is to see whether there is evolutionary selection for it. This can be done
by comparing the observed networks to those generated by a null
networkmodel. These nullmodels can be purely structural,maintaining
the statistics of a set of network features (51), or can be derived from
simulations of the system itself (52, 53). In this case, although the precise
function of the motif may not be known, deviations from null models
provide a strong indication of those structures important to the system’s
overall function. Motifs are generally found this way (2), but as
mentioned previously, studying the dynamics of these motifs in isola-
tion may not be relevant to their context within a larger network (14).
Our motif clustering method helps to alleviate this issue by extracting
common contexts (that is, motif clusters) that better capture the actual
connection structures that individual motifs experience. This will
support future detailed investigations into the dynamic properties such
structures exhibit.

The focus of this work has been on motif clustering across entire
networks. Although this has helped identify system-wide architectural
principles, many networks are composed of loosely connected commu-
nities that often perform distinct functional roles. An intriguing future
direction would be to apply these methods at the multiple resolutions
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
present within a network. This will enable differences in the motif
clustering rules to be captured and further refine our understanding
of how and why certain types of connection are favored over others.
MATERIALS AND METHODS
Motif clustering coefficient
The motif clustering coefficient Mc attempts to capture the overlap
between motifs in terms of the number of shared nodes between all
pairs of motif of interest within a network. To calculate the motif
clustering coefficient for a network G ¼ ðV; EÞ, we considered a set
of motif types M ¼ fM1;M2;…g, where each Mi ¼ ðVM

i ; EM
i Þ;∀i

defines a network that captures the motif structure. We also ensured
thatMi⊈Mj, ∀ i, j, where i≠ j such that nomotif is a subisomorphism
of any other. For each motif type,Mi ∈M, we searched for instances
(subisomorphisms) in G and, for each motif occurrence, added the
associated nodes for the motif from G to the set of found motifs F =
{ f1, f2, …, fn}, where fj ⊆ V;∀j. Therefore, F contains sets of nodes
from G where each set defines one of the motif types in M. This set
was calculated using the VF2 algorithm (54). The motif clustering co-
efficient is then given by

Mc ¼ S
T

ð1Þ

where S is the total number of shared nodes between all pairs of found
motif in F, and T is the total possible number of shared nodes had all
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pairs of thesemotifs been fully clustered (sharing themaximumpossible
number of nodes). These were calculated using

S ¼ ∑
n

i¼1
∑
n

j¼iþ1
j fi ∩ fjj ð2Þ

T ¼ ∑
n

i¼1
∑
n

j¼iþ1
½min ðj fij; j fjjÞ � 1� ð3Þ

where n is the number of motifs in the network, fi is the set of nodes
thatmake upmotif i, and |⋅ | denotes set cardinality. In the case where
only a single type ofmotif is considered (that is,M ¼ fMg), thenT ¼
n
2

� �ðjMj � 1Þ, where |M| is the number of nodes in motifM and n
2

� �

is the binomial coefficient specifying the number of ways of choosing
two elements from a set of size n without taking order into account.

For cases where M contains several motifs, there are two further
types of motif clustering that we can consider: homologous and
heterologous. These were obtained by partitioning the set of foundmo-
tifs (F) asF ¼ F1∪F2∪…∪FjMj, where each subset Fi = { fi1, fi2,…} con-
tained only those nodes that define motifs in the network G of typeMi.
Next, we generalized S and T to consider the number of shared nodes
between two specific types of motif

Sij ¼ ∑
jFij

a¼1
∑
jFjj

b¼aþ1
j fia ∩ fjbj ð4Þ

Tij ¼ ∑
jFij

a¼1
∑
jFjj

b¼aþ1
min ðjfiaj; j fjbjÞ � 1 ð5Þ

where Sij is the number of shared nodes between motifs of typeMi and
Mj and Tij is the total possible number of shared nodes between the sets
of motifsMi andMj. Then, we were able to consider the clustering be-
tweenmotifs of the same type anddefine homologousmotif clustering as

Mþ
c ¼ ∑

jMj
i¼1 Sii

∑jMj
j¼1 Tjj

ð6Þ

Conversely, by considering the clustering between different types of
motif, heterologous motif clustering can be defined as

M±
c ¼ ∑jMj�1

i¼1 ∑jMj
j¼iþ1Sij

∑jMj�1

p¼1 ∑jMj
q¼pþ1Tpq

ð7Þ

An example for a simple network can be found in text S2.
To calculate the statistical significance of a motif clustering co-

efficient, we used rejection-based sampling where random networks
were generatedmaintaining the same number of nodes, edges, andmo-
tifs as the original. This was performed by starting with an empty
network containing the same number of nodes as the original. Motifs
were then individually placed at random until the same number of mo-
tifs was present. Finally, any outstanding edgeswere randomly placed to
ensure that the same number of edges was also maintained. If at any
Gorochowski, Grierson, di Bernardo, Sci. Adv. 2018;4 : eaap9751 28 March 2018
point during this process the number of motifs or edges exceeded those
found in the original network, the randomized network was rejected
and the process was restarted. The motif clustering coefficient was
calculated for each random network, and a comparison was made to
the original network using a standard z score.

Motif clustering type distributions
To calculate the motif clustering type distribution for a particular set of
motif typesM ¼ fM1;M2;…g, we first generated a set of all possible
motif clustering types C ¼ fc1; c2;…g , where each member ci ¼
ðVc

i ; Ec
i Þ;∀i is a network. Specifically, C contains networks representing

all the unique ways that two motifs from M can become clustered
sharing at least one node in common. To do this, we enumerated over
all possible overlaps between all motifs inM, including the case where a
particular motif is clustered with itself (for example, if M contained a
single FFL motif, then the set of motif clustering types C would contain
all the networks shown in Fig. 2A).When generating this set, it is impor-
tant to ensure that all clustering types are unique by checking that any
newly generated candidates are not isomorphic to an existingmember
of C. This ensures that symmetries in a motif do not lead to multiple
clustering types that have the same network structure. Once the set C
of motif clustering types has been generated, we searched for all in-
stances of the motif types inMwithin the network of interestGusing
the same approach as for themotif clustering coefficient. For all pairs
of motif found, we extracted them from the original network and
compared the resultant subgraph to the set of motif clustering types
in C. Cases where motifs do not share any nodes are neglected. We
counted the occurrences of each motif clustering type and normal-
ized this by the sum total of all motif clustering type counts. As with
the motif clustering coefficient, this measure is easily adapted to ho-
mologous and heterologous cases by generating motif clustering
types C that only enumerate clustering between the same or different
types of motif in M, respectively.

Motif clustering diversity
The MCD of a node was calculated by extracting all motifs of interest
that contain the selected node as a member. We then considered all
pairs of these motifs and, for each, classified their type in C using the
same method as described for the motif clustering type distributions.
The MCD measure was then given by the number of different types
of motif clustering in C that the node is a member of (Fig. 5A).

Motif clustering analysis
To test for the significance of FFL motifs in the real-world data sets,
10,000 randomized networks were generated for comparison using
the method described by Wernicke (51), which maintains the number
of nodes, edges, and degree sequence. The EU email network and
Wikipedia vote networks were omitted because of their size and den-
sity, making sufficient sampling of randomized networks unfeasible.
Specifically, the number of edges in these networks made randomized
placement ofmotifs and edges without increasing the overall number of
motifs difficult, leading to a high rejection rate of candidate networks.
To test for motif clustering between FFLs, we again used 10,000 rando-
mized networks to assess the significance of themotif clustering, but this
time maintained the number of nodes, edges, and motif count.

Classifying essential nodes
We testedwhethermotif clustering allowed for the improved prediction
of essential nodes in the metabolic network of E. coli derived by Chang
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et al. (24) by combining information on essential genes gathered by
Gerdes et al. (50). The metabolic network consisted of nodes that re-
presented enzymes with an Enzyme Commission (EC) classification
number as a label. Therefore, to classify particular nodes as essential,
EC numbers were extracted for each essential gene in the study of
Gerdes et al. (50). This was performed using the UniProt representa-
tional state transfer web interface. Queries were executed for each es-
sential gene name in the “ECOLI” organism, and any associated EC
numbers were downloaded. In the vast majority of cases, there was a
one-to-one mapping from EC number to gene. However, some genes
were associated withmultiple EC number classifications (for example,
multifunctional enzymes, and some EC numbers were coded for by
multiple genes).

To ensure that our results were not biased by false positives (that
is, nodes with an EC number that is linked to multiple genes where
some were essential and others were not), we took a cautious ap-
proach and only considered nodes as essential if the associated EC
number was solely coded for by an essential gene (50). Any nodes
with an EC number that could be linked to multiple genes in the en-
tire E. coli genome were classified as nonessential. We found that
most EC numbers were unique to a single gene, with only 13 nodes
linked to multiple essential and nonessential genes. This resulted in
61 of the 560 nodes being classified as essential in the metabolic
network (table S5). It should be noted that the analysis performed
in this work was also carried out for an alternative classification that
required only a single linked gene to be essential for the node in the
metabolic network to also be classified as essential. This led to similar
results as presented here.

Computational tools
Calculation of motif clustering coefficients, analysis of motif clustering
type distributions, and extraction of subgraphs containingmotif clusters
were performed usingmctools version 1.0. This software is open-source
and freely available at https://github.com/BiocomputeLab/mctools.
 on A
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