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Abstract 

Scholar: Saravanan Suppiah 

Title: Impact of Electronic Flight Bag on Pilot Workload  
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Degree: Master of Science in Aeronautics 

Year: 2019 

The increase of automation in the aviation industry pose challenges to human 

performance. To attest this point, studies about aircraft accidents reveal that pilots’ 

response to automated systems are always not coherent. Research findings suggests that 

pilots’ interaction with automated systems in highly demanding tasks situations results in 

the increase in workload and if they are unable to resolve it in time, it will compromise 

flight safety. Therefore, in the interest to further explore the impact of automation on 

human factor constructs, the study aimed to investigate the impact of Electronic Flight 

Bag (EFB) on pilot workload. The study measured the workload experienced by pilots in 

a visual flight rule approach in expected and unexpected situations with the use of EFB 

and paper chart displays. The National Aeronautics and Space Administration -Task Load 

Index was used to measure pilot workload. The results showed a significant difference in 

pilot workload between expected and unexpected approach indicating the influence of 

pilot workload during highly demanding tasks. However, there was no significant 

difference in pilot workload between the use EFB and paper at approach. There was also 

no significant interaction between approach and display. It is suggested that future studies 

to increase the sample size and explore more demanding flight situations that allows 

further use of EFB functionalities. 
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Chapter I 

Introduction 

 The impact of automation on a human operator (i.e., pilot) has continuously 

influenced key human factor constructs such as mental workload and reduced situational 

awareness (Parasuraman, Sheridan & Wickens, 2008). Interestingly, this contradicts to 

the general opinion that automation facilitates the betterment of human performance 

which is to reduce workload and improve situational awareness (Endsely, 1996; 

Parasuraman et al., 2008). However, aircraft accident reports reveal the opposite.  

It indicates that there is a lack of interaction between pilot and the automated systems, 

especially during key phases in flight which require high complex tasks (i.e., landing, 

takeoff or deviation). These tasks can occur unexpectedly which can lead the pilot to 

respond to the situation with inadvertent inputs which can compromise flight safety 

(Endlsely, 1996; Parasuraman et al., 2008). Further studies on pilots working in 

automated environments describe that their ability to manage mental demands (i.e., 

attention, perception and memory) during flight is significantly reduced due to the non-

sequential flow of information from the systems. As a result, they struggle to comprehend 

the meaningfulness of the information and hence it leads to increased workload 

(Parasuraman et al., 2008).  

  The continuous use of automation in aviation is set to continue. Aircraft 

manufacturers continue to build aircrafts with highly automated capabilities (i.e., head up 

display with night vision and strong data link connectivity between ground and air). 

These technologies are not only available to commercial aircraft but are also increasingly 

adapted by pilots flying general aviation (GA) aircrafts (Chandra & Kendra, 2010). 
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Similarly, one such recent entrant to the modern aircraft cockpit is the Electronic Flight 

Bag (EFB) (Chandra, 2003). The inclusion of EFB in cockpits became popular among 

pilots as it offered an easy access to digitalized display of paper-based charts, checklist 

and other relevant aeronautical documents. This is in contrary to the past where pilots had 

to carry heavy suitcases filled with loads of paper-based aeronautical documents. They 

were not only heavy, but also took a considerable amount of space in the aircraft cockpit 

(Haddock & Beckman, 2015). Although, there are advantages in using EFB, it also raises 

significant level of safety risks which needs to be addressed. For example, according to 

the Aviation Safety Reporting System (ASRS), there are significant percentage of EFB 

related incidents reported by pilots that had significantly affected aircraft operations 

during complex task activities (Chandra & Kendra, 2010). Furthermore, the National 

Transport Safety Board (NTSB) has recorded that major aircraft accidents involving EFB 

has resulted in loss of life and costly damages to the aircraft (Chandra & Kendra, 2010). 

Thus, it could be said that even though EFB have a purposeful use for pilots, its impact 

on flight safety is still of a concern and its impact on human factor constructs such as 

workload needs to be further researched (Chandra & Yeh, 2006).  

Significance of the Study 

From the above introduction on automation it can be understood that it’s utility 

towards reducing pilot workload is debatable, and with the introduction of EFB, its 

impact on pilot workload must be researched. According to ASRS, pilots acknowledged 

that the zooming and panning for information in EFB during critical flight tasks has 

resulted in them deviating their attention away from key flight instruments during flight. 

This in turn has a significant impact on flight safety (Chandra & Kendra, 2010). As EFB 



3 

 

are becoming increasingly popular, their uses among commercial and GA pilots will 

continue to rise. Taking note that the impact of automation on human performance is 

crucial, the need to study the impact of EFB on pilot workload becomes necessary 

(Endlsely, 1996; Parasuraman et al., 2008). Therefore, this study investigates the impact 

of EFB on pilot workload.  

The study measured and statistical analyzed the perceived workload experienced 

by the pilot during approach (i.e., expected and unexpected approaches). It also showed 

whether the perceived workload experienced by the pilots was influenced by the visual 

formats of display (EFB and paper) charts used during the flight. From the aspect of 

automation and its influence on workload, findings from this study shed a greater insight 

about the influence of EFB on pilot workload. The study has also showed that the 

influence of demanding tasks during an approach can influence pilot workload. Finally, 

the study provided an overall conclusions and recommendations for future research on 

EFB and its impact on pilot workload.  

Statement of the Problem 

As technological innovations continue to evolve, the increase in automation in the 

aircraft cockpit is here to stay (Chandra & Kendra, 2010). In GA the use of electronic 

flight devices such as EFB by pilots to retrieve aeronautical information for flight 

operations pose a safety risk. For example, according to the ASRS reports by pilots there 

were 37 safety incidents caused by EFB (ASRS,2018). Furthermore, the NTSB reported 

that two major aircrafts accidents involving EFB had caused damage to the aircraft and 

loss of lives (Chandra & Kendra, 2010). In the year 2016, NTSB reports indicated that 

pilots from the GA category were involved in 213 fatal accidents. It is also indicated that 
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the rise of flight hours in GA have risen over the years. According to safety reports, 36% 

of aircraft fatalities occur mostly during final approach and landing (NTSB, 2019; 

Chandra & Kendra, 2010). These indicators bring attention to the problem on whether the 

accident rates in GA can be influenced by pilot workload, particularly with the use of 

EFB during complex flight tasks. 

 Purpose Statement 

  The purpose of this study is to measure pilot workload when flying an expected 

and unexpected approach using EFB and paper charts. Results from this study validated 

the argument whether the independent variables approach (expected and unexpected) and 

display (EFB and paper) have a significant impact on the dependent variable which is 

pilot workload.  

Research Hypothesis 

The following research hypothesis were tested in this study. 

H01: There will be no significance difference in pilot workload between expected and 

unexpected approach.  

H02: There will be no significance difference in pilot workload between the use of EFB 

and paper charts. 

H03: There will be no significant interaction between display (EFB and paper) and 

approach (expected and unexpected). 

Delimitations 

Since the time allocated for the research only spans within one academic semester 

the researcher can only access flight students with private license within the Embry 

Riddle Aeronautical University (ERAU). Furthermore, the flight environment simulated 
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can only be based on a GA light weight aircraft (i.e., Cessna 172 Skyhawk) as ERAU 

flight students use them for their flight training. Thus, the study cannot represent the 

whole pilot population in the aviation industry.  

 Limitations and Assumptions 

One of the limitations is the small sample size used in the study. Due to tight 

project schedule and the availability of participants the researcher had to work with a 

smaller sample size of 16 participants. Also, the Elite-P1 135 Basic Aviation Training 

Device (BATD) simulator in the Research in Transportation Systems (CERT) laboratory 

is not a high-fidelity simulator thus it cannot mimic an actual cockpit environment. It is 

also assumed that the individual flying skills and familiarity in using the simulator may 

not be the same for all the participants. Since ERAU student pilots are familiar with the 

EFB Foreflight software it was assumed that they can operate it.  

Definitions of Acronyms   

AC  Advisory Circular 

ANOVA  Analysis of Variance 

APLC  Airport Performance Laptop Computers 

ASRS  Aviation Safety Reporting System 

ATC  Air Traffic Controller 

CERT   Cognitive Engineering Research in Transportation Systems 

COTS  Commercially off-the-shelf 

EFB  Electronic Flight Bag 

ERAU   Embry Riddle Aeronautical University 

FAA  Federal Aviation Authority 
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GA  General Aviation 

IFR  Instrument Flight Rules 

IRB  Institutional Review Board 

NASA-TLX National Aeronautics and Space Administration -Task Load Index  

NTSB   National Transport Safety Board 

SME  Subject Matter Expertise  

VFR  Visual Flight Rules 
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Chapter II 

Review of the Relevant Literature 

The introduction of automation in aircrafts over the last two decades have 

provided a dynamic and reliable aircrafts. As the need for flying keeps increasing, the 

requirement for aircrafts to operate efficiently and yet safely in demanding flight 

environments has become necessary (Salas & Marino, 2010). Manufactures continue to 

find ways to automate flight instruments and equip the flight crew with up-to-date 

technologies aimed to facilitate the demands of aircraft operations. However, 

interestingly the increased automation has not reduced aircraft accidents (Chandra, 2003). 

 The gap in the interaction between the pilot and automation still exists and as a 

result human factor constructs such as mental workload, situational awareness and fatigue 

continue to influence human performance and still pose as hazards to flight safety 

(Harris, 2011). The following chapters will review the influence of automation on human 

performance particularly on pilot workload followed by the impact of Electronic Flight 

Bags (EFB).  

Influence of Automation on Pilot Workload 

One of the key advantages of EFB is its ability to relieve pilots from handling 

various paper-based charts and checklists while operating the aircraft (Babb, 2017 b). 

With EFB pilots have the advantage in viewing high-resolution sectional charts, approach 

charts, weather charts and various aeronautical documents which are essential for the 

operation of the flight. Furthermore, with the incorporation of global position systems 

(GPS) in EFB pilots can view moving airfield maps which indicate the pilots ‘own ship’ 

location. With these capabilities it can be said that EFB are well suited to reduce the 
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workload of the pilots (Babb, 2017b). However, it can also be argued that the supervision 

of EFB when flying could add to the existing pilot workload and may impact the overall 

workload experienced by the pilot, especially during critical phases of flight with extreme 

time pressures (i.e., unexpected deviation or weather conditions) (Babb, 2017b). 

According to (Salas & Marino, 2010; Archer, Keno & Kwon, 2012) studies about 

workload indicates that human operators experience newer hazards in an automated 

setting. Interestingly it is further explained that the expected work reduction from 

automation may transform to other means of added workload to the human operator in 

the future operations of the system. For example, one of the safety issues reported in the 

ASRS was that the pilots had problems in zooming and panning the contents in the EFB 

to a level that is legible (ASRS, 2018). The pilots were concerned about missing some of 

the key pieces of the information in the EFB which was necessary to navigate the flight 

safely (ASRS, 2018). This incident clearly shows that the troubleshooting attempts by 

pilots outside the perimeter of their primary tasks not only consumes their time but it also 

become an additional mental load to the existing workload (Archer et al., 2012). Thus, it 

can be said that the use of EFB during critical phase of flight can be detrimental to flight 

safety (i.e., during approaching or deviation) (Archer et al., 2012). 

Human Performance and Workload 

 

 One of the most discussed aspect of human performance is workload. According 

to (Harris, 2011) the increased workload experienced by the human operator can escalate 

to the increase in error rates and hence directly compromise safety. It also influences the 

minimization of productivity and increases the operators stress levels (Harris, 2011). This 

further reaffirms the point that relationship between workload and performance are 
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interrelated. For example, figure 1, illustrates a hypothetical relationship between human 

performance and workload (Harris, 2011, pp 45-46). The horizontal axis represents the 

incremental workload over a span of time while the vertical axis represents the operator’s 

performance levels (Harris, 2011). Phase A illustrates the initial stage of the mission 

where the operator’s performance is at the peak (Harris, 2011). The reason is because the 

operator can successfully manage the demands of the task, resulting high levels of 

performance (Harris, 2011).  

From a human factor perspective, it can be also said that the operators mental 

(cognitive) state has been raised (i.e., increased level of attention). The graph continues to 

illustrate the decline in human performance after some time with increase in workload 

(phase B). Phase B also serves the point that the ability for the operator to handle 

complex tasks is severely reduced (Harris, 2011). Finally, phase C indicates the complete 

exhaustion of the operator cognitive state in which his ability to handle the demands of 

the task are extremely reduced and thus resulting extreme workload. At this point the 

operator, would have experienced increased level of workload resulting low levels of 

work performance (Harris, 2011).  

The graph, also provides as well served comparison to describe the relationship 

between workload and human performance of a pilot (Harris, 2011). For example, phase 

A can be represented, as the initial phases of flight (i.e., during takeoff) in which the pilot 

experience a high state of alertness and can handle various task demands required to fly 

the aircraft safely (Harris, 2011). Phase, B represent a state where the pilot become 

mentally exhausted and have trouble in managing the task demands. This decline in 

human performance could occur in a subsequent period in flight after takeoff. Phase B 
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further asserts the point that the pilot’s initial mental and physical state can deteriorate 

over time and impact workload. For example, this can occur when pilot is exposed to 

unexpected deviations or system malfunction resulting increased task complexity and 

demand highest level of attention to rectify the situation (Harris, 2011). If the pilot is 

unable to cope with these demands in time the occurrence of phase C is inevitable. In this 

phase the pilot is likely to exhaust his mental and physical state, resulting an extreme 

decline in maintaining a high level of human performance with increasing workload 

which could eventually compromise the safety of the flight (Harris, 2011).  

 

 
 

Figure 1. Hypothetical relationship between workload and performance. Adapted from 

Human Performance on the Flight Deck (Harris, 2011).  

 

Electronic Flight Bag (EFB) 

Background. The name EFB took its roots from the traditional flight bags carried 

by pilots, which contained numerous numbers of paper-based flight checklist, 

aeronautical charts, weather charts and volumes of manuals (Ates, 2017). Flight bags do 

not only occupy cockpit space but it adds a considerable amount to the overall weight of 
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the aircraft especially lightweight aircrafts flown in GA where every gram of weight is a 

concern for flight performance (Schwartzentruber, 2017). These documents (i.e., 

navigational charts, manuals and advisories) are key resources for flight operations 

especially during the critical phase of flight, (i.e., during approach) (Babb, 2017a). The 

pilots need to access them quickly and view them while in flight without compromising 

flight safety (Babb, 2017a). In most situations, these charts are clipped onto the control 

yolks for easy visibility (Babb, 2017a).  

If these charts accidently fall on the cockpit floor, it can be difficult to retrieve 

them as the cockpit spaces are usually very small. They are also prone for wear and tear 

(Cahill & Donald, 2006). The earliest adopters of EFB were the FedEx pilots in the 1990s 

(Babb, 2017a). Their flight deck was equipped with laptop computers, referred to as 

Airport Performance Laptop Computers (APLCs) (Babb, 2017 b). The APLC can 

perform aircraft performance calculation, e.g. determining aircraft’s runway stopping 

distance or calculating the maximum takeoff weight of the aircraft (MTOW) (Babb, 2017 

b). The arrival of hand-held devices with touch screen capabilities encouraged aircraft 

manufacturers to collaborate with software developers specializing in flight management 

software such as Jeppesen, Foreflight and Garmin to develop solutions to migrate paper-

based forms to electronic copies which can be easily accessed by pilots using hand held 

devices (Ohme, 2014). Soon software developers were able to migrate the paper versions 

of aircraft documents and incorporate aircraft performance applications into an electronic 

platform which can be viewed in hand held tablets (Babb, 2017 b).  

The initial introduction of these tablets was known as commercially off-the-shelf 

(COTS) tablets sold by computer manufactures and software developers such Apple® 
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iPad and Microsoft® Surface Pro. Due to the reliable computing power, high resolution 

displays, affordable price and portability the tablets become attractive solution to the 

traditional flight bags (Ates, 2017; Schwartzentruber, 2017). 

Advantage. Over the years the utility of EFB and its use in the aircraft cockpit 

has been well received by pilots (Haddock & Beckman, 2015). According to Federal 

Aviation Administration (FAA) “EFB is any device, or combination of devices, actively 

displaying EFB application” (FAA, 2017, p. 2). One of the key advantages of using EFB 

is that it replaces the traditional use of paper based aeronautical documents to electronic 

versions (Haddock & Beckman, 2015). Pilots are now able to access and view real-time 

relevant aeronautical documents (i.e., sectional charts, weather charts or safety circulars 

and advisories) in high resolution using EFB. In addition, EFB can also be used to 

conduct and record aircraft performance assessments (i.e., calculation of aircraft 

maximum takes of weight) for pilots (Haddock & Beckman, 2015).  

Pilots can use the performance results to ensure there are within the acceptable 

limits for safe flying. Furthermore, this information can also be sent to the aircraft owner 

(i.e., airlines) via wireless communication (Haddock & Beckman, 2015). Another 

advantage of EFB is that its application software can be tailored around airline 

requirements. For example, airlines may want their pilots to fly air routes with ideal 

aircraft settings to yield maximum operational outputs (i.e., prescribed carbon emission 

limits on certain air routes) (Haddock & Beckman, 2015). In such circumstance EFB 

software applications can be designed around these parameters thus helping the aircrew 

to achieve the expected operational requirements set by airlines (Haddock & Beckman, 

2015). Furthermore, the default settings programmed into the EFB software application 
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can prevent the pilot from inputting incorrect values which could influence flight safety. 

When compared to the paper-based assessments which were more manual and 

cumbersome to use (Haddock & Beckman, 2015). 

The shift from paper to electronic copies allows pilots to use the EFB as a one stop 

access to manage all aircraft documents. EFB serves as an intermediate role between the 

pilot and the airlines by providing a transparency of aircraft operational records (i.e., pilot 

records on system issues in air and on ground). It provides an avenue for airlines to 

digitalize pilot task processes or validations which was traditional done in paper (i.e., go 

around checks, fuel loading documents) (Haddock & Beckman, 2015). In addition, this 

not only prevents manual errors from occurring but also prevents aircraft documents 

being lost. The aeronautical documents in electronic versions in EFB provides flight 

crews to perform flight management more efficiently than before and the reliance of 

paper is hugely reduced. Another key advantage of using EFB is that it offers high-speed 

internet connectivity for the pilot to send and receive timely feedback about the aircraft 

health and flight safety matters to the aircraft stockholders (i.e., airlines or maintenance 

contractors) (Ates, 2017; Chandra 2003).  

EFB standards and regulations. The utility of EFB also encounters some key 

standardization. For example, according to FAA Advisory Circular (AC) 120-76D, it 

states that COTS based tablets can be used as EFB (FAA, 2017). Interestingly, it also 

states that small noncommercial aircraft operations under Part-91 category do not need to 

obtain FAA approval to use COTS as an EFB (FAA, 2017). However, it mentions that 

the users need take note of FAA (AC) 120-76D in regards to EFB testing and 

documentation requirements. Whereas large commercial aircrafts operating under Part-
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121 and 135 will need to seek FAA approval for the use EFB (FAA, 2017). Based on the 

recent AC 120-76D circular, EFB are now recognized based on the type of application 

that run on them e.g. Type A and B. This is helps to identify EFB based on their 

operational roles in the flight deck, e.g. critical or non-critical functions (FAA, 2017). 

Another concern about EFB is the variance found in the aeronautical chart formats 

offered in them (Babb, 2017). For example, according to FAA, software manufacturers 

developing Jeppesen aeronautical charts for EFB do not have to comply with the chart 

formats approved by International Civil Organization (Babb, 2017). This creates a 

situation where pilots need to be familiar with two different types of charts whenever 

they are using them. This raises a situation if the need for pilots to transit between 

different EFB to utilize both chart types could introduce confusion and may impact flight 

safety (Babb, 2017).  

EFB safety concerns. Human factor considerations between the man-machine 

interfaces place an important role in flight safety (Salas & Maurino, 2010). Numerous 

safety accidents have shown that physical and cognitive limitation of the human operator 

need to be carefully addressed before placing them in an automated environment, e.g. 

workload, physical or mental stress and sleep deprivation (Parasuraman, et al., 2008). 

Similarly, the use of EFB in flight has also raised several safety concerns. For example, 

according to the safety report by the U.S Department of Transport, there were 37 flight 

safety incidents and/or accidents that occurred at the initial EFB implementation period 

between 1995 to 2006 (Chandra & Kendra, 2009). Some of these events include runway 

incursion, spatial deviation, incorrect weight and balance computation (Chandra & 

Kendra, 2009). One of the earliest EFB based aircraft accident occurred on July 31, 1997 
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when a Federal Express (FedEx) McDonnell Douglas (MD-11) aircraft crashed while 

landing during night at Newark International Airport in Newyark, New Jersey (Chandra 

& Kendra, 2009). A few years later in December 8, 2005, a Boeing 737-700 aircraft 

belonging to Southwest Airlines (SWA) arriving in the night from Baltimore to Chicago 

Midway International Airport in Chicago overshot the departure end of the runway 

causing it to strike through the airfield fences and crash onto an automobile on the 

roadway, killing a child passenger (Chandra & Kendra, 2009). The post investigation 

report from both accidents revealed that the aircrew misinterpreted the landing distance 

shown in the EFB (Chandra & Kendra, 2009). The accidents reiterate the point that the 

need to pay careful attention to human factor considerations involved between the man-

machine interaction in a highly automated environment (i.e., aircraft cockpit) must be 

addressed (Joslin, 2013).  

Automation Biasness 

 One of the reasons cited for skill degradation among pilots is due to their over 

reliance on automation (Casner, Geven, Decker, & Schooler, 2014). Automation bias is 

the use of automation as a heuristic substitute to attentively gather and process data 

(Parasuraman, et al., 2008). It also refers to two types of errors; omission and commission 

of errors (Parasuraman, et al., 2008). Omission of errors happens when the human 

operator fails to detect the inconsistencies in the automated systems e.g. the operator fails 

not notice that the EFB software fails to notify the user that the push notification is turned 

off (German & Donna, 2016).  

The commission of errors happens when an operator follows the instruction from 

the automated systems without confirming them against other accessible data, or 
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continues to follow the instructions regardless, receiving inconsistency data from other 

sources (German & Donna, 2016). For example, a pilot flying during dusk noticed that 

his EFB navigational chart linked to the internet display a mountainous terrain. However, 

the cockpit systems showed no irregularities to his flight path and the pilot continues to 

fly (Endsley, 1996; Dodd et al., 2014). If the pilots decide to verify his flight path again 

with the nearest air traffic controller (ATC), he could prevent a flight safety risk. If not, 

he would have commissioned for error voluntarily (Endsley, 1996). The above examples 

clearly show that automation bias occurs when human operators fail to develop a full and 

coherent understanding of the situation, due to the overreliance on automation and failure 

to monitor them appropriately.  

 Another factor that could influence automation bias is the social loafing attitude 

of human operators who regard themselves being less responsible, as the systems 

performance as expected to functions erroneously (Endsley, 1999). Complacency can 

also be another contributor to automation bias (German & Donna, 2016). This could 

occur during high workload periods where the operator may fail to adequately monitor 

the automated information due to diversion of attention to task that may result a loss in 

SA e.g. prioritizing certain tasks over another (German & Donna, 2016). 

Skill Degradation 

The notion that cockpit automation has significantly reduced pilots’ agility, 

nimbleness, skill, proficiency or mastery cannot be ignored (Casner et al., 2014). One of 

the key studies on pilot skill degradation was done by Mangelkock, Adam and Gainrer in 

1971(Casner et al., 2014). At the initial period of the experiment, the pilots were exposed 

to a good level of flying time, hereinafter they were given a four month break from all 
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flying activities. Upon flying after the break, the researchers found that even though the 

“hand-eye” coordination of the pilots was still intact, the cognitive skills such as 

procedural steps, ability to perform mental calculation and identifying unusual conditions 

was significantly reduced (Casner et al., 2014).  

The loss of manual flying skills due to automation can become a disadvantage 

during critical phase of flight if the aircrafts automated systems fail (Casner et al., 2014). 

The pilot must be able to reinitiate his though process in operating the aircraft manually. 

This not only will increase his workload but also his SA. If his ability to handle these 

situations is not present due to skill degradation it will likely to impact the safety of the 

flight (Casner et al., 2014).  

Impact of Visual Displays  

The impact to the human operator by automation could be further analyzed in 

terms of the human limitation such as perception, attention and memory (Salas & 

Mourino, 2010). In a "glass cockpit" setting, the human operator is surrounded by various 

instrument displays (Young, Fanjoy & Suckow, 2006). Each of these displays provide 

critical information that a pilot must monitor and process (Young et al., 2006). The visual 

displays can be regarded as the first level interface for the pilot to interpret the data 

shown in it (Salas & Mourino, 2010). In an automated environment, the ability to be in 

command of an operation depends on how the operator engages with the information 

visually presented based on the operator’s perception, attention and the memory displays 

(Young et al., 2006). 

Perception. Displays play a key role in human perception (Salas & Mourino, 

2010). It is vital for a human operator to clearly observe the information presented in the 



18 

 

display (German & Donna, 2016). If information is tightly spaced or inconsistent, the 

human operator will find it difficult to interpret the data. This can have a huge effect on 

the perceived information (Salas & Mourino, 2010). The visual stimulation to the 

operator through perceptual inputs such as auditory or tactile can motivate the operator's 

interactions with the display (German & Donna, 2016). Thus, it can be said the design of 

the display play a critical role on the operator’s perception of processing critical data 

(German & Donna, 2016). Similarly, it is important for EFB to provide coherent display 

of information to help the operator accurately interpret them (German & Donna, 2016). 

Attention. During flight, it is pivotal for the pilot to attend to various sources of 

data to execute his operations successfully (Salas & Mourino, 2010). Tasks requiring 

detailed attention should be displayed as key data while reducing irrelevant ones (Salas & 

Mourino, 2010). Since there are various displays in the cockpit, display sets that provide 

crucial data must attract the attention of the pilot so that it will be monitored closely 

(Endlsely, 2000). For example, EFB must provide features that attract the pilots sensory 

i.e. tactile or auditory to highlight critical information (Salas & Mourino, 2010). 

Memory. Generally, information presented in the flight deck instruments are 

integrated with various sources to provide a coherent idea on the status of the flight 

(Salas & Mourino, 2010). Random informations are sometimes received from the 

instruments that can exhaust the operators’ cognitive limits. The displayed data can be 

arranged to provide data in consistent manner to prevent mental exhaustion of the 

operators (Salas & Mourino, 2010). EFB should provide information in a manner not 

exhausting the operators mental state. This is essential during critical stages for flight 
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where operators must attend to various data from the cockpit displays at a single space of 

time (Salas & Mourino, 2010).  

From the above discussion, it can be understood that the impact of visual displays 

such as EFB has a direct impact on the pilot’s perception, attention and memory (German 

& Donna, 2016). Thus, this attests to the implication it has on the pilots SA and 

workload, which would be investigated in the following chapters (Salas & Mourino, 

2010; Endsley, 1999; Young et al., 2006). 

Measuring workload (NASA – TLX) 

 From the above discussion, it is understood that the pilot performance is 

drastically reduced if he is not able to handle the task demands (Harris, 2011). This 

brings forth the question on how workload can be measured to further understand its 

influence on human performance (Harris, 2011). To address this issue the National 

Aeronautics and Space Administration (NASA) in Ames Research Centre developed an 

assessment survey called the NASA Task Load Index (NASA-TLX). The NASA-TLX is 

a multifaceted rating survey that serve for subjective assessment to measure workload 

(Hart, Battiste & Lester, 1984).  

The NASA-TLX also provides an all-round workload score based on a weighted 

scale (NASA, 1986). The NASA-TLX consists of six levels of workload categories 

presented in a single page. Each workload category questions the participant about the 

level mental and physical demands exercised when conducting a task (i.e., physical 

demand, mental demand, temporal demands, performance, effort and frustration (NASA, 

1986). The following describes the six NASA-TLX workload factors. A further detailed 

descriptors of these factors can be found in Appendix C. 
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 Mental demand. Refers the level (i.e., high or low) cognitive activity exhibited 

by the participant to complete the task.  

 Physical demand. Refers the level of physical activity demonstrated during the 

task. It queries the participant on the level of strenuousness exercised to complete the 

task.  

Temporal demand. Refers to the level of rush for time that was exhibited by the 

participant to complete the task. 

Overall performance. Refers to how successful was the participant in 

completing the task.  

Effort. Refers to how hard was it to complete the task in a combined level of 

mental and physical demands. 

Frustration. Refers to how annoyed, stressed or hesitant was the participant in 

completing the task. 

From the above discussion it can be understood, that workload plays an important 

role in human performance (Fernandes & Braarud, 2015). The pilot’s workload is self-

evaluated and his work performance is limited to his mental, physical state, emotions and 

time limitations which are beyond the complexity and demands of the tasks required of 

him (Fernandes & Braarud, 2015).  

Similarly, it can be said that the workload of an individual can be easily 

influenced by the complexity of the task and the work environment thus affecting his 

work performance (Fernandes & Braarud, 2015). In such circumstances the use of 

NASA-TLX will help to understand the impact of workload on the human operator. 

Similarly, the NASA-TLX can be used as an assessment tool to measure the influence of 
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workload when using a pilot uses an EFB during highly complex tasks work performance 

(Fernandes & Braarud, 2015).  

Summary 

The influence of automation on pilot workload continues to rise and with the 

increase in adoption of EFB into aircraft cockpits introduces newer levels of threats to 

pilot performance. There is a concern whether pilots can keep up to the increasing mental 

demands when using EFB during demanding flight tasks. Even though, the utility of EFB 

is recognized, they have also equally influenced aircraft accidents and continue to have 

standardization issues which is yet to be completely resolved.  

The influence of automation has resulted pilot skill degradation and their 

overreliance to automation, which adds further to the increase in pilot workload. 

Furthermore, the influence of visual displays on the pilot’s cognitive state, need to be 

equally addressed as perceived information from the may not always be accurate.  

Finally, the need to relook the influence of EFB on pilot workload has become 

necessary but it also requires a standardized measurement of workload. This can be 

serviced by using the NASA-TLX. Measuring the pilot workload over the six categories 

of workload demands could provide a greater insight on the workload experienced by the 

pilot.  
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Chapter III 

Methodology 

Research Approach 

 The aim of this study is to determine the impact on pilot workload with the use of 

EFB and paper navigational charts during approach. In order to measure workload 

experienced by the pilot the NASA-TLX is used after each flight scenarios. Prior to the 

research study the permission to conduct the research was applied to the Institutional 

Review Board (IRB) at Embry-Riddle Aeronautical University and it was granted. The 

IRB approval is shown in Appendix A and the informed consent form in Appendix B. 

  Design. The study has two independent variable (approach, display) and one 

dependent variable (workload score). Each of the independent variables has two levels; 

the approach factor with levels (expected, unexpected) and the display factor with levels 

(EFB, paper). The experiment for the study was based on within-subjects 2 x 2 

(Approach [expected, unexpected] x Display [EFB, paper]) factorial design using 

Analysis of Variance (ANOVA). In the simulator, each participant flew four flight 

scenarios. In each of the flight scenarios the participant flew to a designated runway from 

a 3 nautical mile approach with an (a) EFB with expected approach, (b) EFB with 

unexpected approach, (c) paper with expected approach and (d) paper with unexpected 

approach. To control for order effect the researcher applied a partial counterbalancing 

technique using Latin square. This is a matrix design in which control the order of 

sequences of treatment scenarios received by the participants during the experiment. 

There was a total of 16 participants involved in the study. The statistics test used in this 

study was a within subjects two-way ANOVA with repeated measures. An alpha value of 
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5% was used to statistically analyze the workload score attained by each participant when 

exposed to the four flight scenarios. There were three statistical tests done to determine 

the main effects of the factors and interaction between them. The first statistical test 

determined the main effect for approach (expected and unexpected). The second test 

determined the main effect for display (EFB and paper) and the third test determined the 

interaction between approach and display.  

Procedures. Once the participants arrive at the CERTS laboratory they were 

greeted and briefed about the purpose of the study and the safety risks involved in the 

experiment. The participants then received the informed consent form to seek their 

approval before going ahead with their participation in the experiment. Once the 

participants have signed the informed consent form, they proceeded to the flight 

simulator. At the Elite-P1 135 BATD simulator the participants were briefed about the 

key flight controls that to be used to fly the aircraft (i.e., control stick, flaps, rudder and 

breaks). The key flight instruments observed by the pilot in the simulator during the flight 

was the airspeed indicator and altitude meter. 

 The researcher took the role of an air traffic controller to instruct the participant 

to fly the desired air routes for each of the four flight scenarios. Once the pilot was seated 

at the simulator, a pre-flight instruction for each flight scenarios was given as show in 

Appendix J. The instruction includes the call sign for the Cessna 172 Skyhawk aircraft as 

Riddle141, the destination airport code, the initial approach distance at the start of the 

flight, which was 3 nautical miles straight in to the runway and a flight safety message. 

The ATC and pilot communication for the expected and unexpected scenarios is shown 

in Appendix I. Once a participant is finished with a scenario, he or she proceeded to 



24 

 

complete the NASA-TLX for the workload experienced during that scenario. The NASA-

TLX and a copy of the six workload factors were provided to the participants as shown in 

Appendix C and D respectively. Once the NASA-TLX was completed, the participant 

moved towards completing the next scenario based on the order of approach scenarios 

shown in Table 1. In each scenarios the participant received an EFB or a paper 

navigational charts to fly the aircraft to a designated airport runway. All the four flight 

scenarios were based on the Visual Flight Rule (VFR) approach. To prevent testing 

effects or regression towards the mean, the order of the flight scenarios was randomized 

using Latin square technique. Table 1 below illustrate the first four order of the scenario 

received by the participant. This order is repeated till the 16th participant completes the 

experiment. 

 

Table 1 

Order of flight scenarios tested   

Participant Scenario 1 Scenario 2 Scenario 3 Scenario 4 

1 Expected 

Paper  

Unexpected 

Paper 

Expected  

EFB  

Unexpected 

EFB 

 

2 Unexpected 

Paper  

Unexpected 

EFB 

 

Expected 

Paper  

Expected 

EFB  

3 Unexpected 

EFB 

 

Expected  

EFB  

Unexpected 

Paper  

Expected 

Paper 

4 Expected  

EFB  

Expected 

Paper  

Unexpected 

EFB 

 

Unexpected 

Paper  
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Once the participant completed all the four scenarios the researcher thanked the 

participant the time and presented them with the Starbucks $10.00 gift card as a sign of 

appreciation.  

Expected scenario and flight path. In the expected scenario, the participant flew 

the aircraft to Front Range Airport (FTG) from a 3 nautical mile approach and landed on 

Runway 08. The participants initiated the scenario in the following manner. Once the 

participant has read the pre-flight instruction for the expected approach an EFB or a paper 

charts was provided depending on the order of scenario shown in Table 1. The researcher, 

then loaded the expected scenario in to the simulator. One the scenario is initiated on the 

screen; the researcher quickly took the role of the ATC to provide necessary navigational 

instructions to the participant to fly the aircraft.  

The first instruction from the ATC to the participant is to maintain 6500 feet from 

a 3 nautical mile approach to FTG and advice ATC when the airport is insight. Once the 

ATC received a call back from the participant confirming the airport is insight, the ATC 

gave clearance to land on runway 08. Once the aircraft was landed the scenario was 

completed. The participant then procced to fill up the NASA-TLX. The paper charts are 

shown in Appendix G and H. While Appendix E and F show for EFB.  

Unexpected scenario and flight path. In the unexpected scenario, after reading 

the pre-flight instructions the participant flew the aircraft to Front Range Airport (FTG) 

from a 3 nautical mile approach. While on approach to runway 8, the participant was 

instructed by ATC to take a diversion due to traffic on the runway and was instructed to 

land on the adjacent runway 35 instead. Once the participant has read the pre-flight 

instruction for the unexpected approach an EFB or a paper charts was provided based on 
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the order of scenario show in Table 1. The researcher, then loaded the unexpected 

scenario in to the simulator. Once the scenario initiated on the screen, the researcher 

quickly took the role of the ATC to provide the necessary navigational instructions to the 

participant to fly the aircraft. The first instruction from the ATC to the participant was to 

maintain 6500 feet from a 3 nautical mile approach to FTG and make straight in for 

runway 8 and advice when airport is in sight. Once the ATC received the call back from 

the participant that the airport is in sight, the clearance to land on the runway 8 was 

given.  

While on approach to runway 8, the ATC suddenly instructs the participant to 

divert the aircraft due to traffic on runway 8 and climb to 6500 feet. ATC then instruct 

the participant to fly right downwind and land on the runway 35 instead. Once the 

participant has landed on runway 35 the unexpected scenario was completed. The 

participant then proceeds to complete the NASA-TLX. The ATC communication and 

pre-flight instructions for expected and unexpected scenarios are shown in Appendix I 

and J respectively. 

NASA-TLX. In the NSA-TLX, the participants were presented with the six 

workload factors; mental demand, physical demand, temporal demand, overall 

performance, effort and frustration. A detailed description of the six workload factors was 

also given to them. After reading the description the participant marked the level of 

workload experienced for the scenario, they flew from a scale of 0 to 100 for each of the 

workload factors. The NASA-TLX and its description are shown in Appendix C and D. 
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Apparatus and Materials 

 The Elite-P1 135 BATD simulator was used to conduct the experiment. This is a 

low fidelity flight simulator with similar flight controls of Cessna 172 Skyhawk aircraft 

which is commonly flown by the pilot students in ERAU. Figure 2 shows the simulator 

setup for the study. For each flight scenarios the participant flew an expected or 

unexpected approach with an EFB or with paper charts. In the scenarios with paper the 

participant was given a hard copy of the VFR sectional chart of the airport and the 

runway map while for EFB scenarios the participant received an iPad with ForeFlight 

software. Foreflight is an EFB software that provides electronic versions of sectional 

charts and other relevant aeronautical charts for the pilot. Foreflight is also commonly 

used by student pilots in ERAU for their flight lessons. Appendix E, F, G and H show the 

EFB and paper versions of the navigational charts used by pilot for the expected and 

unexpected approaches in the simulator.  

 

 
Figure 2. Elite-P1 135 BATD simulator setting.  
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The virtual flight environment for the scenarios was delivered using X-Plane 11 

flight simulator software. It is developed by a virtual reality (VR) gaming company called 

Laminar Research. The X-Plane 11 is suggested as having a robust VR simulation 

capability, in par with similar professional flight simulator software in the industry (X 

Plane, 2019). Furthermore, X-Plane 11 offers the Cessna 172 Skyhawk cockpit 

instruments and environments suitable to fly the four flight scenarios to conduct the 

experiment. Figure 3, shows an example of the simulator setting with X- Plane 11 when 

in use for the experiment. 

 

 
Figure 3. Elite-P1 135 BATD simulator setting with X-Plane 11  

 

Population and Sample 

The study required 16 participants with a minimum attainment of private pilot 

license (PPL). The researcher recruited the participants from the pool student pilots and 
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instructors from ERAU at Daytona Beach. The source of communication for the 

recruitment was done via electronic mail and paper flyer. To select the appropriate 

participants the researcher used Google survey to develop a demographic questionnaire. 

The questionnaire included the participants name, gender, age, pilot license, flight hours 

attained. In addition, a flyer about the recruitment for the study was posted around ERAU 

campus. To expedite the recruitment the researcher also communicated with the ERAU 

flight instructor department to reach out to student pilots. As a token of appreciation, the 

participants who completed the experiment were given a $10.00 Starbucks gift card. 

Sources of Data and Collection Device 

The workload score for each flight scenario was collected using a paper copy of 

the NASA-TLX. A sample of the NASA-TLX is available in Appendix C. Once the data 

was collected it was recorded in the researcher’s laptop computer in Microsoft Excel.  

Instrument Reliability and Validity 

 The Elite-P1 135 BATD simulator was successfully used in previous capstone 

studies. However, to ascertain the reliability of the simulator and the X Plane 11 software 

for this study, the researcher consulted a flight instructor in ERAU as a subject matter 

expertise (SME). A trial experiment of the study was done using the simulator with the 

SME representing as the participant.  

The simulator functioned positively to all the experiment inputs and was verified 

by the SME. The workload scores for each of the four flight scenarios was then recorded 

and was analyzed with the SME.  
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Treatment of the Data 

  The signed informed consent forms of all the 16 participants and their completed 

NASA-TLX were kept in the personal folders which was only accessible to the 

researcher. The NASA-TLX include six workload factors which are mental demand, 

physical demand, temporal demand, overall performance, effort and frustration. Each of 

the scale in the NASA-TLX is shown as a 12-cm line which are divided into 20 equal 

intervals. The 21 vertical tick marks on each of the scale divides the scale from 0 to 100 

with an increment of 5.  

The participants marked the level of workload experienced from a scale of 0 to 

100 in increments for each of the workload factors experienced either with the use of 

EFB or paper charts during the expected and unexpected scenarios. The overall workload 

scores obtained was then recorded into the SPSS statistical software in the researcher 

computer to test the research hypothesis. To maintain confidentiality of the records and 

the of participants, the laptop was password protected and only accessible to the 

researcher. 
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Chapter IV 

Results 

Once the workload data was collected, they were organized based on their 

variables and entered in the SPSS statistical software to test the three-research 

hypothesis. A 2 x 2 within-subjects ANOVA with repeated measures was done in SPSS. 

The following summarize the results obtained from the study.  

Descriptive Statistics 

 Participant demographics. The study was conducted with N = 16 participants, 

out of which n = 3 were female and n = 13 were male. The average age of Male 

participants (M = 21.6, SD = 4.13) was higher than Female (M = 21.66, SD = 1.15). The 

number CPL were higher than PPL and 75% of the participants fall between 18-23 years 

of age. In terms of flight hours, 62.5% of the participants had 101-201 hours of flight 

experience. Table 2 summarizes the demographic profiles of the 16 participants in detail. 

 

Table 2 

Descriptive Statistics of Participant Demographics 

Variable Demographic Frequency Percentage (%) 

Gender Male 13 81.25 
 Female 3 18.75 

Age 18-23 12 75.0 

  24–29 2 12.5 

 Above 30 2 12.5 

License Private Pilot (PPL) 11 68.75 
 Commercial Pilot 

(CPL) 

5 31.25 

Flight hours Below 100hrs 2 12.5 
 101-201hrs 10 62.5 

 202-302hrs 2 12.5 

 Above 303hrs 2 12.5 

Total  n = 16 100 
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 Average workload for paper and EFB. Figure 4 bar chart illustrates that the 

average workload scores for EFB (M = 38.91, SD = 20.10) was higher than paper (M = 

37.62, SD = 21.08).  

 

 
Figure 4. Average workload scores for paper and EFB. 

 

 

 

Hypothesis Testing 

 

 First research hypothesis. The first research hypothesis tests for the main effect 

for approach. The null hypothesis is there will be no significance differences in pilot 

workload between expected and unexpected approach. With the alpha level set at .05, a 

within subject two-way factorial ANOVA showed a significant main effect for approach 

F(1, 15) = 28.22, p < .001, (ηP
2  = .653). Therefore, the null hypothesis was rejected. The 

average workload scores for unexpected approach (M = 47.41, SD = 21.21) was 

significantly higher than the workload scores for the expected approach (M = 29.11, SD = 

18.67). The effect size is large thus it can be concluded that 65.3% of the variability in 
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the pilot workload scores can be explained by the levels of approach (expected and 

unexpected) being tested. Figure 5 illustrates that the average workload for Expected 

approach was higher than Unexpected approach. 

 

 
Figure 5. Average workload scores for expected and unexpected approach. 

 

 

 

 Second research hypothesis. The second research hypothesis tests for the main 

effect for display. The null hypothesis is there will be no significance difference in pilot 

workload between the use of EFB and paper charts. With the alpha level set at .05, a 

within subject factorial ANOVA did not show a significant main effect for display F(1, 

15) =  .091, p > .05, (ηP
2 = .006). The average workload scores for EFB (M = 38.91, SD = 

20.10) was not significantly higher than the average workload scores for paper charts (M 

= 37.62, SD = 21.08). Therefore, the null hypothesis was retained. As the effect size is 

small, it can be concluded that only 0.6% of the variability in the workload scores can be 

explained by the levels of display (EFB and Paper) being tested. 
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 Third research hypothesis. The third research hypothesis tests for interaction 

between approach and display. The null hypothesis is there will be no significant 

interaction between the levels of display (EFB and paper charts) and the levels of 

approach (expected and unexpected). With the alpha level set at .05, the interaction 

between approach and display was not significant F(1, 15) =  81.72, p > .05, (ηP
2  = .029). 

Therefore, the null hypothesis was retained. The effect size is medium, only 29% of the 

variability in pilot workload scores can explain the interaction between the levels of 

approach and display.  

In summary, the results have shown that there is a significant main effect for 

approach. However, there is no significant main effect for display and no significant 

interaction between approach and display. The following chapter will further discuss the 

possible reasons behind the results. 
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Chapter V 

Discussion, Conclusion and Recommendation 

The following paragraph will discuss the results by giving a wider insight on the 

possible reasons behind them. The chapter will also provide an overall conclusion and 

suggest few key recommendations for future studies relating to this topic. 

Discussion 

Pilot workload effect on approach. This test is to determine whether there is a 

significant main effect for approach. The aim of the test is to statistically find whether the 

two levels of approach (expected approach and unexpected approach) have a significant 

impact on pilot workload. This is an important test for the workload study as the literature 

on pilot workload suggests that pilots are subjected to high workload during the approach 

phase in flight. The researcher was expecting to find a significant effect for approach. 

That is during the unexpected scenarios, the workload would be higher than in expected 

scenarios. The results from the study indicate that the main effect for approach was 

statistically significant. The results also showed that the participants on unexpected 

approach experienced higher workload compared to expected approach regardless 

whether they were using EFB or paper charts. This reiterates the point that the increase in 

pilot workload due to the increased task demands during approach persists. The following 

discusses some of the reasons for this result. 

Pilot experience. One key factor that could have contributed to this result is the 

number and level of experience of the participants involved in this study. For example, 

based on the demographics of student pilots involved in the study it is observed that the 

number of participants with private pilot license (PPL) was higher than the participants 
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with the commercial pilot license (CPL). This leads to suggest that less flight experience 

(i.e., flight hours) by participants holding PPL could have contributed to the higher level 

of workload measured for the unexpected approach. 

Unexpected scenario. Another factor for the result could have occurred due the 

nature of the task demands required to complete the unexpected approach. The 

unexpected task scenario involves participants to suddenly detour from their original 

approach from runway 8 to the adjacent runway 35. This require the participant to pull 

the aircraft up to 6500 feet to maintain altitude and re-look at the sectional charts and 

airport map for runway 35 while flying. Since this is a VFR flight, the participants must 

look at the simulator monitor and the flight charts to determine their position in air while 

looking for runway 35. Furthermore, these tasks were done while communicating with 

the ATC. Thus, it can be said that the cumulative task demands involved in the 

unexpected scenario could have influenced the pilots’ workload. 

  Pilot workload effect on display. This test was done to determine whether there 

is a significant main effect for display. This is to statistically determine whether the two 

levels of display (paper charts and EFB charts) have a significant impact on pilots’ 

workload. This is an important statistical test for this study as it decides whether the use 

of EFB as part of automation contributes to the influence to pilot workload. The 

researcher expected to find a significant main effect for display. However, the results 

indicate that the main effect for display was not significant. As shown in figure 2, even 

though the average workload obtained using EFB was higher than paper it was not 

significant. Thus, it suggests that neither the use of paper nor EFB charts have a 
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significant impact on pilot workload. The following will discuss some possible reasons 

for this. 

Sample size. One of the primary factors for the result could have been contributed 

by the reduced level of power in the study. The observed power for this test was .059. 

This means that based on the sample size of 16 participants there was only 0.59% chance 

of deducting a difference in pilot workload scores for display. This means that recruiting 

a larger sample size could have increase the power and hence it would have made the test 

significant. For this study, the only available participants were pilot students from ERAU. 

However, the response from the recruitments only garnered 16 students. Also, last minute 

drop outs from the study has also influenced the limited sample size.  

Regression towards the mean. The secondary factor that could have been a threat 

to the internal validity is by the regression towards the mean effect (Privitera, 2017). This 

could have occurred due to the participants improvement in flying a scenario in the 

second time to a level closer to the mean of the participants true ability. For example, if 

the participant flew an expected approach using EFB chart earlier, and in the next 

scenario he or she flew the same unexpected scenario with an EFB, the participant would 

have flown the second scenario using the EFB to his or her true potential level than 

before. This in return would have caused the participant’s ability to manage the 

demanding tasks in a level closer to their true ability.  

Testing effect. The third factor that could have been a threat to internal validity 

caused by the testing effect (Privitera, 2017). This is because during the study, the 

participants progressed from one scenario to another immediately after completing the 

NASA-TLX assessment. Thus, the retainment of knowledge from the previous scenario 
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could have been in existence with the participant even when they proceeded to the next 

scenario. This result to an improvement in their ability to manage the tasks better. For 

example, if the participant’s first attempt was to fly an unexpected scenario with paper 

charts and in the next scenario, he or she fly an unexpected scenario using EFB, the  

practice learned from the earlier scenario would have helped the participant to fly the 

second scenario better thus leading to an improvement in managing the demanding tasks 

involved in using the EFB.  

Demanding tasks. The fourth factor could be the lack of demanding tasks 

involved in using the EFB. It is possible that the tasks tied to the use of EFB was not 

demanding enough to expose the participants to a higher level of workload. For example, 

in this study both the expected and unexpected scenarios were based on VFR approaches 

in a clear day. Thus, it only requires the participant to use the FAA sectional charts and 

the airport map to locate the runway. This would have led the participants to only utilize 

EFB functions which were necessary for an VFR approach (i.e., FAA sectional charts and 

airport map). Thus, the extensive use of other aeronautical functions in the EFB was not 

utilized.  

Interaction between approach and display. This is to test whether the levels of 

display (EFB and paper charts) alter the levels of approach (expected and unexpected). 

The observed power for this test was .096. This means that based on the sample size of 16 

participants there was only 0.96% chance of deducting an interaction between approach 

and display. The result show that the interaction between approach and display was not 

significant. This suggests that the use of EFB or paper display did not significantly 

influence the workload experienced by the pilot when flying either an expected or 
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unexpected approach. As discussed earlier, the primary factor for this result continues to 

be the lack of statistical power in the study and the limited operational use of the EFB 

during the scenarios. Apart from the limited sample size and the factors discussed earlier 

the following could have also influenced the result. 

Familiarity with EFB software and iPad. The fifth factor could be that the 

participant’s familiarity with the EFB’s Foreflight software. The student pilot from 

ERAU are familiar with the Foreflight software and iPad used as an EFB. As such they 

would have found operating the EFB manageable even in highly demanding task 

situations. For example, during the flight scenarios the participants using the EFB were 

seen zooming at the sectional charts and maps with their fingers in one hand, while 

moving the aircraft yoke with the other hand. Interestingly, this behavior was reported as 

a safety risk by the pilots in the ASRS reports. It could be possible that the participant’s 

familiarly of the EFB Foreflight software and their ability to operate an iPad would have 

led them to a similar behavior when flying the scenarios at the laboratory.  

  Experimental realism. The third factor is the reduced level of experimental 

realism in the study. This refers to whether the simulated environment used in the study 

was realistic enough to trigger mental states of the participant, like when in the actual 

flight environment (Privitera, 2017). For example, the Elite-P1 135 BATD simulator is a 

low fidelity simulator. Unlike high fidelity simulators, it does not provide an enclosed 

environment of an aircraft cockpit with realistic flight instruments and communication 

devices. Furthermore, the absence of communication devices such as pilot headsets could 

have minimized the level of realism in communicating to the ATC. In overall, the 
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reduced realism in the simulator could have influenced the measured workload in the 

study.  

Project timeline. The first factor to consider is the limited timeline (16 weeks) 

that was available to complete the project. This includes the time taken to write the 

proposal to conduct the study and send to the IRB, making amendments to the proposal 

for final approval, recruitment of participants and scheduling them based on the 

availability of the simulator at the CERTS laboratory. These tasks eat into the existing 

timeline by four to six weeks. On the other hand, a larger time frame could provide the 

researcher more time to recruit a larger sample size to do the study or to do a pilot study 

first to detect any gaps in the experiment. 

Conclusion 

 In conclusion, one key finding in this study indicates that the increase in task 

demand during unexpected approach has a direct influence to pilot workload. It also 

further points out that the use of EFB does not significantly influence pilot workload. 

However, the study also shows that given any increase in the task demands during 

unexpected situations it may lead to significant rise in pilot workload. The study has also 

shown that the influence to pilot workload due to the difference in the visual layout of 

paper and EFB charts do not significantly influence pilot workload. From the study it can 

also be seen that the utility of NASA-TLX to measure pilot workload was successfully 

administered in a simulated environment. It’s ability to address workload experienced 

during expected and unexpected approach provides a deeper insight about how 

demanding tasks can influence pilot workload. The study suggests that even though the 

general literature about the influence of automation on workload exists, this study 
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demonstrates that its influence is still debatable. Finally, this study can serve as a base-

line for future studies on EFB and pilot workload. 

Recommendations 

Increase sample size. From study it can be understood that the need to increase 

the sample size will improve the statistical power of the study. One of the ways this can 

be done is using sample size from past studies as a guide or by performing power analysis 

calculations. These calculations can be done through power analysis software such as  

G Power® to determine the sample size (Erdfelder, Faul, Lang & Buchner,2007). This is 

done by choosing the type of statistical test to be performed and entering statistical 

parameters from past studies as guide (i.e., effect size, mean and standard deviation) to 

determine the sample size for the new study  

Future researchers can also consider to do the study in two phases. The first phase 

is a pilot study to determine gaps in the experiment design, variables and whether the 

results obtained are reliable. In the second phase they could make a better decision in 

either including or excluding the relevant variables which could influence the results. 

Category of pilots. Future studies can specifically recruit pilots with instrument 

rating. This would expand the level of flight environment used in the study and the 

further use of EFB functions. For example, pilots with Instrument Flight Rule (IFR) 

rating are familiar with instrument approach procedures which require them to interpret 

way points, altitude limits and holding patterns in various metrological conditions. This 

opens the opportunity for the researcher in include more scenarios with demanding task 

in the experiment.  
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 Increased level of demanding tasks. Future studies could also increase the level 

of tasks demands for unexpected task scenarios. This could include injecting sudden 

metrological variations in flight or changes to way points and flight holding pattern based 

on instrument approaches. Future studies can also consider the use of EFB during takeoff 

and straight level flight phases. For example, performing aircraft weight and balance 

calculation using EFB can be used in the scenario. 

Duration and scheduling. Finally, the duration for future study could be expand 

to include two semesters instead of one. This is because, more time could be spent in 

designing the experiment, preparing IRB proposal and administrating the recruitment 

process. Also, time taken for participants response to the recruitment must also be 

considered as their availability may not match with the availability of the simulator. 

Thus, as a contingency plan future researcher can consider having standby participants as 

a replacement to prevent attrition in the study.  

  Experimental realism and physiological measurements. Future researchers 

could also consider increasing the level of experimental realism in the study. This may 

include placing the participants in high fidelity simulators with enclosed cockpit 

environment with inflight motion. The study may also include scenarios with a co-pilot 

setting to match real life environment. Apart from workload measurements, the study can 

also extend to measure the physiological levels affected by the pilot during the use of 

EFB. For example, measurement of pilot heartrate, muscular tension and head down time 

with the use of EFB during expected and unexpected scenarios can be studied as well.  
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Appendix E 

Expected and Unexpected VFR Sectional chart on EFB 
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Appendix F 

Expected and Unexpected Airport Map on EFB 

 

  

 

 



56 

 

Appendix G 

Expected and Unexpected VFR Sectional chart on Paper
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Appendix H 

Expected and Unexpected Airport Map on Paper 
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Appendix I 

ATC and Pilot Communication  

Expected Script 

ATC: RIDDLE 141, MAINTAIN 6500 FEET ADVICE WHEN AIRPORT IN SIGHT. 

PILOT: TOWER, RIDDLE 141, MAINTAIN 6500 FEET, AIRPORT IN SIGHT. 

ATC: RIDDLE 141, YOU ARE CLEAR TO LAND RUNWAY EIGHT. 

Unexpected Script 

ATC: RIDDLE 141, MAINTAIN 6500 FEET.  

MAKE STRAIGHT IN FOR RUNWAY 8.  

ADVICE WHEN AIRPORT IN SIGHT. 

PILOT: TOWER, RIDDLE 141, MAINTAIN 6500 FEET, AIRPORT IN SIGHT. 

ATC: RIDDLE 141, CLEAR TO LAND RUNWAY 8. 

* (At 5800 feet the following instructions are made) 

ATC: RIDDLE 141, GO AROUND. TRAFFIC ON RUNWAY.  

CLIMB AND MAINTAIN 6500 FEET.  

ENTER RIGHT DOWNWIND FOR RUNWAY THREE FIVE.  

CLEAR TO LAND RUNWAY THREE FIVE.  
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Appendix J 

Pre-flight Instructions 

Expected Pre-flight Instructions 

 YOUR CALL SIGN IS RIDDLE 141. 

 

 YOU ARE ON APPROACH 3 NM AWAY FROM FTG.  

 

 YOU CAN ONLY ACCESS PAPER BASED AERONAUTICAL CHARTS. 

 

 YOU MUST FLY THE AIRCRAFT SAFELY AND LAND ON RUNWAY. 

 

  YOU ARE IN COMMUNICATION WITH NEARBY CONTROLLER. 

  

Unexpected Pre-flight Institutions 

 YOUR CALL SIGN IS RIDDLE 141. 

 

 YOU ARE ON APPROACH 3 NM AWAY FROM FTG.  

 

 YOU CAN ONLY ACCESS PAPER BASED AERONAUTICAL CHARTS. 

 

 YOU MUST FLY THE AIRCRAFT SAFELY AND LAND ON RUNWAY. 

 

 YOU ARE IN COMMUNICATION WITH NEARBY CONTROLLER. 
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