

A Framework for Selecting NoSQL Databases: a NetFlow

Use Case

by

Leon Albertus Rheeder

A Framework for Selecting NoSQL Databases: a NetFlow

Use Case

by

Leon Albertus Rheeder

Dissertation

submitted in fulfilment

of the requirements

for the degree

Master of Information Technology

in the

Faculty of Engineering, the Built Environment and

Information Technology

of the

Nelson Mandela University

Supervisor: Prof. Reinhardt A. Botha

March 2018

i

DECLARATION OF ORIGINALITY

I, Leon Albertus Rheeder, hereby declare that:

 The work in this dissertation is my own work.

 All sources used or referred to have been documented and recognised.

 This dissertation has not previously been submitted in full or partial fulfilment of the

requirements for an equivalent or higher qualification and any other recognised educational

institute.

Leon Albertus Rheeder

ii

ACKNOWLEDGEMENTS

I would like to thank the following individuals for their unconditional encouragement, support and

guidance:

Thank you to my Heavenly Father, for enabling me with the courage, strength and ability to undertake

and complete this study.

Thank you to my supervisor, Professor Reinhardt Botha, whose time, direction and support taught

me so much. I would also like to thank Professor Reinhardt Botha for his patience, enthusiasm and

vast knowledge for guiding me throughout this process. Thank you, Professor.

Thank you to my parents and girlfriend who have been my motivation and support system throughout

this entire process.

I would also like to thank the following benefactors for their financial assistance:

 The financial assistance of SANReN, CSIR towards this research is hereby acknowledged.

Opinions expressed, and conclusions arrived at, are those of the authors, and not

necessarily to be attributed to SANReN, CSIR. Thank you.

 The financial assistance of the Nelson Mandela University’s Post Graduate Research

Scholarship (PGRS) is also hereby acknowledged. Thank you.

iii

ABSTRACT

Making decisions regarding technology is difficult for IT practitioners, especially when they lack

formal guidance. Ad hoc decisions are prone to be influenced by biases. This research study

specifically considered decisions regarding NoSQL. The primary objective of this study was to

develop a framework that can assist IT practitioners with decisions regarding NoSQL technologies.

An investigation into typical decision-making problems encountered when having to make

technology-based decisions provided an understanding of the problem context. The application

context was explored through a literature study of the four NoSQL families.

This study produces a framework to assist IT practitioners in making decisions regarding technology.

The framework comprises two models. Firstly, a weighted decision model combines several

constructs, thereby providing a general method of making decisions. Secondly, a 6-step process

model that can be used to adapt the weighted decision-model to a specific type of technology and a

specific use case is proposed.

The feasibility and utility of the proposed framework are demonstrated by applying the framework

to a NetFlow use case. If NetFlow data is to be used for analytical decision-making, the data must be

stored long-term. NoSQL databases have increased in popularity, especially in decision-making

contexts. Therefore, NoSQL is a logical storage choice. However, which NoSQL family to use is not

self-evident. Therefore, the decision-maker may require assistance to make the right decision.

To assist with this decision, the framework was adapted to be used in the NoSQL context. A set of

criteria was developed to allow various NoSQL options to be uniformly compared. Furthermore, the

four NoSQL families were graded based on this set of criteria. After adaptation, experts provided

input regarding the requirements of the NetFlow use case. This resulted in the weighting of the

criteria for this specific use case. Finally, a weighted score was calculated for each family. For the

NetFlow use case, the model suggests that a document-based NoSQL database be used.

The framework ensures that all NoSQL technologies are systematically investigated, thereby

reducing the effect of biases. Thus, the problem identified in this study is addressed. The proposed

model can also serve as a foundation for future research.

TABLE OF CONTENTS

PART A - CONTEXT

CHAPTER 1: Introduction ... 1

1.1 Technology decision-making ... 1

1.2 Problem area .. 2

1.3 Problem statement ... 3

1.4 Research objectives and questions .. 3

1.5 Research approach ... 3

1.6 Research design and reporting .. 4

1.7 Conclusion .. 6

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY 7

2.1 Decision-making ... 7

2.2 Measurement ... 8

2.2.1 What to consider when measuring .. 9

2.2.2 Types of measures .. 10

2.3 Biases ... 12

2.4 Biases in technology decision-making .. 13

2.4.1 Status quo... 14

2.4.2 Anchoring ... 15

2.4.3 Sunk cost .. 16

2.4.4 Confirming evidence .. 16

2.4.5 Framing ... 17

2.4.6 Prudence .. 18

2.4.7 Recallability .. 18

2.4.8 Shooting from the hip .. 19

2.4.9 Failure to audit decision process .. 19

2.4.10 Halo effect .. 20

2.5 Four categories of biases ... 20

2.6 Decision-making techniques .. 21

2.7 Conclusion .. 22

CHAPTER 3: NoSQL .. 24

3.1 Storage technologies ... 24

TABLE OF CONTENTS

v

3.1.1 Relational databases .. 24

3.1.2 Limitations of relational databases .. 26

3.1.3 Non-relational databases ... 27

3.1.4 Overcoming limitations of relational databases .. 27

3.2 Classification of NoSQL databases ... 28

3.2.1 Key-value stores ... 28

3.2.2 Use case for Key-Value stores .. 28

3.2.3 Document-based stores ... 29

3.2.4 Use case for document-based stores ... 30

3.2.5 Graph stores ... 30

3.2.6 Use case for graph stores ... 30

3.2.7 Column-family stores ... 31

3.2.8 Use case for Column-family stores ... 31

3.3 Conclusion .. 32

PART B - FRAMEWORK

CHAPTER 4: CONCEPTUAL FRAMEWORK .. 35

4.1 Why is the framework necessary? ... 35

4.2 How will the framework help? .. 36

4.3 What does the framework encompass? ... 37

4.3.1 Constructs... 37

4.3.2 Model ... 38

4.3.3 Method ... 38

4.3.3.1 Investigate the technology (Step 1) .. 38

4.3.3.2 Identify the comparison criteria (Step 2) .. 39

4.3.3.3 Grade according to the criteria (Step 3) ... 39

4.3.3.4 Weight the criteria (Step 4) .. 40

4.3.3.5 Score the options (Step 5) .. 41

4.3.3.6 Recommend an option (Step 6) .. 41

4.4 Conclusion .. 42

CHAPTER 5: Criteria development .. 44

5.1 Why develop comparison criteria? .. 44

5.2 The CAP theorem .. 45

5.3 The fixed set of criteria ... 46

TABLE OF CONTENTS

vi

5.3.1 Consistency... 47

5.3.2 Availability .. 48

5.3.3 Partitioning ... 49

5.3.4 Read and write performance ... 51

5.3.5 Scalability .. 51

5.3.6 Conceptual data structure.. 53

5.3.7 Reliability .. 54

5.3.8 Learning curve .. 55

5.4 Conclusion .. 56

CHAPTER 6: Decision-making process ... 58

6.1 Grade according to the criteria (Step 3) ... 58

6.2 Weight the criteria (Step 4) ... 59

6.2.1 The importance of weights .. 60

6.2.2 Techniques used to determine the weights ... 61

6.3 Score the options (Step 5) ... 63

6.4 Conclusion .. 64

PART C - INSTANTIATION

CHAPTER 7: GRADING THE NoSQL families ... 67

7.1 Grading NoSQL families (Step 3) .. 67

7.2 Column-family stores (HBase) ... 68

7.2.1 Consistency... 69

7.2.2 Availability .. 71

7.2.3 Partitioning ... 72

7.2.4 Read and write performance ... 73

7.2.5 Scalability .. 76

7.2.6 Conceptual data structure.. 78

7.2.7 Reliability .. 78

7.2.8 Learning curve .. 79

7.3 Document-based stores (MongoDB) .. 81

7.3.1 Consistency... 82

7.3.2 Availability .. 83

7.3.3 Partitioning ... 84

TABLE OF CONTENTS

vii

7.3.4 Read and write performance ... 85

7.3.5 Scalability .. 89

7.3.6 Conceptual data structure.. 90

7.3.7 Reliability .. 91

7.3.8 Learning curve .. 92

7.4 Graph stores (Neo4j) ... 94

7.4.1 Consistency... 95

7.4.2 Availability .. 96

7.4.3 Partitioning ... 97

7.4.4 Read and write performance ... 98

7.4.5 Scalability .. 101

7.4.6 Conceptual data structure.. 102

7.4.7 Reliability .. 103

7.4.8 Learning curve .. 104

7.5 Key-value stores (Redis) ... 105

7.5.1 Consistency... 106

7.5.2 Availability .. 107

7.5.3 Partitioning ... 108

7.5.4 Read and write performance ... 109

7.5.5 Scalability .. 112

7.5.6 Conceptual data structure.. 113

7.5.7 Reliability .. 113

7.5.8 Learning curve .. 114

7.6 Conclusion ... 116

CHAPTER 8: NETFLOW USE CASE ... 118

8.1 Use case .. 118

8.1.1 NetFlow .. 118

8.1.2 The value of NetFlow ... 119

8.2 The instrument used to weight the criteria ... 120

8.3 Weight the criteria (Step 4) .. 121

8.4 Score the options (Step 5) .. 126

8.5 Recommend an option (Step 6) .. 126

8.6 Conclusion ... 128

TABLE OF CONTENTS

viii

PART D - EPILOGUE

CHAPTER 9: Conclusion ... 131

9.1 Overview of the study .. 131

9.2 Meeting the objectives .. 133

9.2.1 Enumerate typical decision-making problems ... 133

9.2.2 Identify a general model for decision-making ... 134

9.2.3 Create a process to tailor the approach to the NoSQL scenario 134

9.2.4 Create a framework.. 134

9.3 Reflections on the proposed framework ... 135

9.4 Future research.. 136

9.5 Final words .. 137

LIST OF TABLES

Table 2.1: Measurement scales retrieved from Nunnally and Bernstein (1994). 11

Table 2.2: Biases affecting technology decision-making. ... 14

Table 2.3: Bias categories adapted from Benson (2016). .. 21

Table 4.1: The weighted decision model. .. 38

Table 5.1: Studies for each criterion. ... 57

Table 6.1: Legend for grades assigned to the fixed set of criteria. .. 59

Table 6.2: Illustration of different weights based on use cases. .. 60

Table 6.3: The weighted decision model. .. 64

Table 7.1 Summary of choices. .. 68

Table 7.2: HBase data read average over four nodes (Du Toit, 2016) ... 74

Table 7.3: Read and write speeds of HBase (Khetrapal & Ganesh, 2006) 75

Table 7.4: Comparison between read and write performance (Naheman & Wei, 2013). 75

Table 7.5: Read or write optimisation of database technologies (Cooper et al., 2010). 76

Table 7.6: Comparison of read and write performance of different studies conducted. 76

Table 7.7: MongoDB read statistics (Du Toit, 2016). ... 86

Table 7.8: Results of the performance tests of Neo4j and MySQL (Batra & Tyagi, 2012). 100

Table 7.9: Results of Redis reading benchmark tests over four nodes (Du Toit, 2016). 109

Table 7.10: Summary of grades for each NoSQL family. .. 117

Table 8.1: NetFlow fields and their meanings (Sommer & Feldmann, 2002) 119

Table 8.2: Summary of respondents’ and final weights for the model. ... 125

Table 8.3: Final scores of the NoSQL families. ... 126

file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360377

LIST OF FIGURES

Figure 1.1: Mapping research objectives to March and Smith’s (1995) design science framework. 4

Figure 2.1: Process of rating biases in the area of technology. ... 14

Figure 3.1: Key-value store contents, adapted from Wellhausen (2012). 28

Figure 3.2: Relational data model versus the document-based data model (Couchbase, n.d.). 29

Figure 3.3: Graph NoSQL Database .. 31

Figure 3.4: Wide-Column Store NoSQL Database  (Sasaki, 2015). ... 32

Figure 4.1: Artefacts of a design science study (March & Smith, 1995). ... 37

Figure 4.2: General steps of the weighted decision model. .. 38

Figure 4.3: Overview of the framework. .. 42

Figure 6.1: Focus of this chapter. ... 58

Figure 7.1: Representation of how HBase’s data model works (George, 2011). 68

Figure 7.2: Master/Slave replication process (George, 2011). .. 70

Figure 7.3: The HBase architecture (Gao, Nachankar & Qiu, 2011). .. 72

Figure 7.4: HBase data inserts average over four nodes (Du Toit, 2016). 74

Figure 7.5: A representation of a document containing data (MongoDB, 2008). 81

Figure 7.6: Graphical representation of a replica set (Banker, 2011). ... 82

Figure 7.7: MongoDB data insert averages over four nodes (Du Toit, 2016). 85

Figure 7.8: Read and write performance of MongoDB (Győrödi et al., 2015a). 86

Figure 7.9: Graphical representation of the performance test results (Győrödi et al., 2015b). 87

Figure 7.10: Write and read speeds of MongoDB compared with Cassandra (Abramova &
Bernardino, 2013). ... 87

Figure 7.11: Reading performance of databases (Li & Manoharan, 2013). 88

Figure 7.12: Writing performance of databases (Li & Manoharan, 2013). 88

Figure 7.13: Graphical representation of a sharded client connection (Chodorow, 2013, p.233). . 89

Figure 7.14: Graph example within the Twitter context (Robinson, Webber & Eifrem, 2015). 94

Figure 7.15: A graphical representation of the Master/Slave replication architecture of Neo4j
(Montag, 2013). .. 96

file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360421
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360422
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360423
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360424
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360425
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360426
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360427
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360428
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360429
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360430
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360431
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360432
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360433
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360434
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360435
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360436
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360437
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360438
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360439
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360440
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360440
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360441
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360442
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360443
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360444
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360445
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360445

LIST OF FIGURES

xi

Figure 7.16: Workload results using a buffer size of 5000 records (Jouili & Vansteenberghe, 2013).
 .. 98

Figure 7.17: Workload results using a buffer size of 20 000 (Jouili & Vansteenberghe, 2013). 99

Figure 7.18: Reading and traversing the data entries (Jouili & Vansteenberghe, 2013). 99

Figure 7.19: Reading speeds of Neo4j (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). 100

Figure 7.20: Graphical representation of replication between the Master and Slave instances
(Neo4j, 2017). ... 101

Figure 7.21: Key-value store contents, adapted from Wellhausen (2012). 106

Figure 7.22: Write performance comparison (Abubakar, Adeyi & Auta, 2014). 110

Figure 7.23: Read performance comparison (Abubakar, Adeyi & Auta, 2014). 110

Figure 7.24: Write performance times (Abramova, Bernardino & Furtado, 2014). 111

Figure 7.25: Read performance times (Abramova, Bernardino & Furtado, 2014). 111

Figure 8.1: Example of the read performance criterion within the instrument. 121

Figure 9.1: Overview of framework. .. 131

file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360446
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360446
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360447
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360448
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360449
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360450
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360450
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360451
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360452
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360453
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360454
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360455
file:///C:/Users/Leon/Desktop/LeonRheeder_Dissertation_March_2018.docx%23_Toc508360457

PART A

CONTEXT

CHAPTER 1: INTRODUCTION

The Oxford English Dictionary (2017) defines a decision as “a conclusion or resolution reached after

consideration”. Individuals make decisions regarding all aspects of life and draw countless

conclusions in a variety of contexts. Decision-making is a core process of daily life (Nooraie, 2012).

Some decisions are made knowingly and others unknowingly (Kahneman & Tversky, 1984).

Decisions can be high-risk, for example deciding to go to war, or low-risk, for example deciding to

buy a loaf of bread (Kahneman & Tversky, 1984).

Some decisions are easy, while other decisions are difficult. Easy decisions do not require much

effort from the individual. Difficult decisions require more effort from the individual because they

require more information to be considered or because their outcomes are of higher importance

(Kahneman & Tversky, 1984). As a result, the chance of making a wrong decision increases. There

are two factors, namely decision-making biases and measurements, that can influence the decisions

that individuals make. Behavioural economists have argued that all decision-makers are subject to

biases. Analytical individuals could use measurements to inform decisions and fight these biases.

However, the decision-maker’s view on measurement would introduce further biases. If decision-

makers are not cognisant of how measurements and biases may influence them, this could lead to

incorrect decisions being made.

As mentioned before, decision-making is part of many aspects of life, ranging from mathematics and

statistics, through economic and political science, to sociology and psychology (Kahneman &

Tversky, 1984; Nooraie, 2012). In this research study, decision-making regarding technology is the

specific domain of interest.

1.1 Technology decision-making

Decision-making in general is a broad concept to consider and discuss. This study will focus

specifically on decision-making concerning technology. Making technology decisions requires an IT

practitioner to consider several aspects that could be influential. Examples of such aspects include

information overload (Speier, Valacich & Vessey, 1999), the lack of information regarding a

technology (Cowan, 1991; Desouza, Jha, Papagari & Ye, 2006), and the documented use cases of the

technology (Hoff, 2011). Information overload refers to the constantly expanding and growing

plethora of information regarding technologies that must be taken into consideration when making

technology decisions (O'Reilly, 1980). The volume of information can be too great to consider at

once, thereby increasing the difficulty of making the technology decision and increasing the chances

of making the wrong decision.

CHAPTER 1: INTRODUCTION

2

The lack of information regarding a technology refers to how unknown the information regarding a

specific technology is (Cowan, 1991). Relatively new technologies, such as NoSQL (Not Only SQL),

are not as common as relational databases. Therefore, individuals may not have much information

regarding the technology (Leavitt, 2010). The uncommon nature of and lack of information regarding

the technology increases the difficulty of making a technology decision.

Documented use cases of the technology refer to the common practices and requirements regarding

a specific technology (Kulak & Guiney, 2012). Known use cases are well documented, which

decreases the difficulty of making decisions (Jacobson, 2003). However, a use case is just a specific

case and individuals may not know how to apply or customize it to specific requirements, for example

the requirements to store NetFlow data within a NoSQL database. In this case, current use cases may

not be particularly helpful, because NetFlow data is not commonly associated with NoSQL. An IT

practitioner may not know how to decide which technology is best suited for this specific use case.

1.2 Problem area

The above-mentioned examples are based on real-world cases of decision-making. They illustrate

the real-world problem that decision-making is a difficult task to complete. However, decision-

making without a context is too broad and general to focus on. Therefore, this study uses a specific

context that represents technology decision-making concerning NoSQL.

When the term NoSQL first appeared in 1998, it referred to a relational database system that did not

employ SQL as a querying language (Strauch, Sites & Kriha, 2011; Strozzi, 2010). The term

reappeared in 2009 in a conference set up by Jon Oskarsson that focused on non-relational database

systems (Evans, 2009) and has increased in popularity ever since. NoSQL now refers to a type of

database management system that is non-relational (Naheman & Wei, 2013) and was created to

address certain limitations of relational databases. There are four categories of NoSQL databases:

key-value stores, column-family stores, graph stores, and document-based stores (Aniceto, Xavier,

Guimarães, Hondo, Holanda, Walter & Lifschitz, 2015).

The use cases for NoSQL databases are well documented. Key-value stores are well geared to handle

use cases that include quick retrievals or updates, such as managing user profiles or managing web

sessions (Moniruzzaman & Hossain, 2013). Column-family stores can store a variety of data types

and involve large volumes of data. A common use case for column-family stores is storing and

managing Facebook messages (Dimiduk, Khurana, Ryan & Stack, 2013). Graph stores focus on

linked and relationship-heavy data. Therefore, common use cases are fraud detection and social

networking (Hecht & Jablonski, 2011). Document-based stores involve large volumes of data.

Common use cases include content management and event logging (Magnusson, 2013).

CHAPTER 1: INTRODUCTION

3

Storing NetFlow data in a NoSQL database is an uncommon use case. Its uncommon nature may

lead to individuals not knowing how to handle this use case. If a use case is not well documented,

the IT practitioner is required to find more information and decide which NoSQL family to choose.

Therefore, the less common the knowledge regarding a technology is, the more wrong decisions are

likely to occur. This leads to the research problem for this study.

1.3 Problem statement

IT practitioners do not have a systematic way to select the NoSQL family for non-arbitrary use cases.

1.4 Research objectives and questions

The primary research objective of this study is to create a framework to help IT practitioners with

NoSQL decisions. To achieve this objective, three research sub-objectives need to be addressed.

Sub-objective 1 (SO1) : Enumerate typical decision-making problems when choosing between

technologies.

Sub-objective 2 (SO2) : Identify a general model of decision-making.

Sub-objective 3 (SO3) : Create a process to tailor the approach to the NoSQL scenario.

1.5 Research approach

The problem addressed by this research study suggests an artifact in the form of a decision model to

help IT practitioners with NoSQL decisions should be created. Therefore, the design of the study is

influenced by design science research. This study employs the design science research framework of

March and Smith (1995) with a focus on IT research. To facilitate the achievement of the study’s

goal, the research framework will provide direction for the research, discussion, and argumentation

within this study. The framework views research outputs on four levels of abstraction, namely,

constructs, models, methods, and instantiation.

The first research output, constructs, refers to “concepts form the vocabulary of a domain” (March

& Smith, 1995, p. 256). Constructs are the basic terms and concepts used to describe an area, a

situation, or a problem. The constructs can be formal or informal as long as they define the terms

used to describe and think about tasks (March & Smith, 1995). Examples of formal constructs in the

context of relational databases include rows, columns, and relationships. Examples of informal

constructs include agreement, dissatisfaction, and participation.

The second research output, the model, refers to “a set of propositions or statements expressing

relationships among constructs” (March & Smith, 1995, p.256). The model describes the

relationships between the constructs to represent the situation or problem. To be a useful

CHAPTER 1: INTRODUCTION

4

representation, a model needs to capture the structure of the situation through the constructs and their

relationships (March & Smith, 1995).

The third research output, the method, refers to “a set of steps (an algorithm or guideline) used to

perform a task” (March & Smith, 1995, p. 257). The method is essentially based on the fundamental

concepts (constructs) and the relationships between the concepts (model). The method takes various

inputs from the model to create steps to perform tasks (March & Smith, 1995).

The last research output, instantiation, refers to “the realization of an artifact in its environment”

(March & Smith, 1995, p. 258). Instantiations are used to provide a context for the operationalisation

of the constructs, models, and methods. They “demonstrate the feasibility and effectiveness of the

models and methods they contain” (March & Smith, 1995, p. 258). Thus, instantiation provides the

first level of evaluation by showing that it is indeed feasible to construct the artifact and that the

artifact is useful.

1.6 Research design and reporting

This study can be broken into four parts representing the four outputs of March and Smith’s (1995)

research framework. These can also be mapped to the objectives of this study. Figure 1.1 is a

graphical representation of the relationship between the framework of March and Smith (1995) and

this study’s sub-objectives.

The study places focus on the build research activity. Build refers to “the construction of the artifact,

demonstrating that such an artifact can be constructed” (March & Smith, 1995, p. 258). By focussing

Figure 1.1: Mapping research objectives to March and Smith’s (1995) design science framework.

CHAPTER 1: INTRODUCTION

5

on building an artefact, feasibility can be demonstrated (March & Smith, 1995). Therefore, each of

the four parts must be built to demonstrate the feasibility of the framework.

Part A deals with the context of this study. The main topics that need to be defined are decision-

making and the problems that influence decision-making within a technology context. These

problems include biases and the role of measurement. The technology context used within this study

is that of the NoSQL families. The context of this study is described in Chapters 1, 2 and 3 and

indicates the study’s problem situation.

Part B deals with the construction of the framework. The framework is made up of constructs, a

decision model, and a process model, and is discussed in Chapter 4. The constructs used in the study

are a list of choices, a fixed set of criteria, the weights of criteria, grades, score calculation, and

process steps. Firstly, the list of choices refers to the four NoSQL families. Secondly, the fixed set

of criteria refers to the criteria used to compare the families uniformly. Thirdly, the weights of criteria

refer to the importance of each of the criteria. Fourthly, the grades refer to the performance of each

NoSQL family pertaining to the criteria. Fifthly, score calculation refers to calculating the final score

of each NoSQL family. Lastly, the process steps refer to the steps followed to implement the

framework. Sub-objective 1 (SO1) is met through a literature survey that defines the constructs used

in this study.

The decision model within the framework deals with the relationships between the constructs. A

basic overview of the decision model is discussed in Chapter 4. Sub-objective 2 (SO2) is met through

a literature survey that identifies a framework and a mathematical expression to depict the framework

within this study.

The method used to accomplish the task of the framework consists of a 6-step process. Step 1 is to

investigate the technologies, and is presented in Chapter 3. Step 2 is to create a fixed set of criteria.

The criteria discussion influences only NoSQL and is presented in Chapter 5. Step 3 is to grade the

criteria in order to be able to compare the NoSQL technologies. Step 4 is to assign weight values to

the criteria. Step 5 is to score each of the NoSQL technologies, and Step 6 is to provide a

recommendation. Steps 3, 4, and 5 are discussed in Chapter 6, while Step 6 is discussed in Chapter

8. Sub-objective 3 (SO3) is met through argumentation and a literature survey that expands on the

constructs within this study to tailor its approach to the NoSQL scenario.

Essentially, all the objectives of the study are met in Parts A and B. However, questions regarding

the feasibility and usefulness the model may arise. Therefore, Part C demonstrates the feasibility and

usability of the model.

CHAPTER 1: INTRODUCTION

6

Part C deals with instantiation, which refers to the use case within the study. The artefact is placed

within a specific instance (use case) to verify and demonstrate its use. At the start of the verification,

the NoSQL technologies are graded to ensure a uniform comparison can be made. This is described

in Chapter 7. The specific instance (use case) for this study concerns NetFlow data, which has certain

requirements that need to be considered. These requirements are reflected in weights that are assigned

to the criteria in Chapter 8. Once the weights are assigned, the final score for each NoSQL technology

can be calculated. Thereafter, a recommendation can be provided. This is also discussed in Chapter

8. The instantiation of the artefact in the last part of the study will verify that the model can be

utilised.

Part D is the epilogue and contains only one chapter, Chapter 9, which deals with a reflection on

what was done and how the objectives of this study were met. Thereafter, limitations and future work

are mentioned to conclude this study.

All the above-mentioned points are brought together through argumentation to achieve the main

research objective of creating a framework to help IT practitioners with NoSQL decisions. To

indicate whether the objective was met, a NetFlow use case is employed to demonstrate the feasibility

and utility of the model.

1.7 Conclusion

Making the right decisions regarding technologies is important and difficult. As mentioned above,

there are a variety of elements that could influence such a decision, including information overload,

the lack of information regarding a technology, and the documented use cases of the technology.

These elements could all lead to the wrong decisions being made, which would affect the success of

a use case. An individual requires a process to follow to combat the effect of biases and measurements

and to ensure better decisions are made. To ensure better decision-making, a model is proposed

within this study that could help IT practitioners mitigate the effects of biases and measurements.

The next chapter will discuss the context of this study.

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

Chapter 1 argued that decision-making is a difficult process. This dissertation hinges on the problem

that IT practitioners do not have a systematic way to select a NoSQL family for a non-arbitrary use

case. This research aims to provide such a framework.

The goal of this chapter is to further elaborate on decision-making and the problems that might

influence decision-making. This chapter assists in providing context to the rest of the study. This

chapter focuses on decision-making and the effects of measurements and biases on decision-making.

2.1 Decision-making

Decision-making is regarded as a problem-solving activity (Kahneman & Tversky, 1979). The

activity is completed when a solution which is deemed as satisfactory or optimal is found. A large

part of making decisions is to analyse a set of alternative solutions. These alternatives may be seen

according to evaluation criteria, where an individual may rank the alternatives according to

“attractiveness” (Kahneman & Tversky, 1979). One alternative may be more attractive than another

alternative since it meets more criteria. Therefore, the end-goal of the problem-solving activity is to

select one of the alternatives to address the problem.

Every individual participates in decision-making on a daily basis, since all tasks require some form

of a decision to be made (Hammond, Keeney & Raiffa, 1998; Kahneman & Tversky, 1984).

Individuals face decisions from the moment they wake up in the morning until the moment they go

to sleep at night. These decisions vary in difficulty and importance. Examples of easy decisions

include deciding whether a door should be open or closed or in which direction an individual should

walk to reach a certain destination. Most easy decisions do not require a heavy thought process

(Hammond et al., 1998; Kahneman & Tversky, 1984).

Many day-to-day activities require an individual to make snap decisions (Hammond et al., 1998).

Driving a car requires many snap decisions, as there is little time available to consider and analyse

the options in detail. Examples of snap decisions include deciding whether to turn on the lights,

switch lanes, change gears, or apply the brakes when stopping is required. Decisions can also be

challenging and have a high level of importance connected to their outcomes (Kahneman & Tversky,

1984). Difficult decisions mostly require a cumbersome thought process, since it is important that

they lead to the desired outcomes. These types of decisions are made without advanced knowledge

of their consequences (Kahneman & Tversky, 1984). An example of a difficult decision is deciding

whether an investment is worthwhile or not. There is no certainty about the outcome of such a

decision.

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

8

Individuals have business goals and objectives that need to be achieved (Clemen & Gregory, 1995).

The decisions they make will influence the way in which individuals reach their goals and objectives

(Tversky & Kahneman, 1985). When making a decision, each alternative will have different

consequences (Kahneman & Tversky, 1979; Kahneman & Tversky, 1984; Tversky & Kahneman,

1985). The consequences of a decision can be advantageous or disadvantageous depending on the

situation (Clemen & Gregory, 1995). Therefore, it is important to make the right decisions.

Conflicting business goals can increase the difficulty of making a decision. For example, when

deciding whether to implement an expensive technology or an inexpensive technology, a tradeoff is

present in both alternatives (Clemen & Gregory, 1995). If the IT practitioner decides to implement

the expensive technology, more benefits can be gained from the technology, but there will be fewer

finances available for other IT projects. If the IT practitioner implements the inexpensive technology,

more finances will be available, but the technology will have fewer benefits.

Different levels of importance are connected to decisions and their outcomes (Kahneman & Tversky,

1979; Kahneman & Tversky, 1984). The more crucial the outcome of a decision, the harder the

decision becomes. For example, judging distance requires an individual to make use of heuristics,

which are small routines based on decisions (Hammond et al., 1998). The heuristic an individual uses

for judging distance is clarity times proximity (Hammond et al., 1998). Therefore, the heuristic allow

an individual to quickly judge the distance to an object. When an individual is faced with a difficult

decision, they can employ heuristics to make a quick decision to solve the problem.

Heuristics apply to technology decisions as well. Along with the importance of the decisions, the

amount of information to that needs to be considered also influences IT practioners when making

decisions. The more information needs to be considered, the more difficult the decision becomes and

the more likely it becomes that using the heuristic will lead to making the wrong decision. This shows

that there is a need for a framework that will help IT practitioners make better decisions.

The different levels of risk connected to decisions may also affect the way individuals make decisions

(Kahneman & Tversky, 1979; Kahneman & Tversky, 1984). The higher the risks associated with a

decision, the more difficult it becomes to make such a decision. If a decision is difficult and requires

a heavy thought process, an individual is more likely to experience problems. Two of the problems

that individuals can face are the influences of measurement and biases on decision-making.

2.2 Measurement

A measure refers to “a standard unit used to express size, amount, or degree” (Oxford English

Dictionary, 2017). Therefore, to measure means to “ascertain the size, amount, or degree of

(something) by using an instrument or device marked in standard units” (Oxford English Dictionary,

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

9

2017). Measuring values can heavily influence the decisions of IT practitioners. If the wrong values

are presented through measurement, then bad decisions can be made.

The process of measuring involves “rules for assigning numbers to objects to represent quantities of

attributes” (Nunnally, 1967 as cited by Churchill Jr, 1979). The definition of measurement provided

by Nunnally (1967) states that measurement involves measuring the attributes of objects, not the

objects themselves (Churchill Jr, 1979). However, the measurement definition does not specify the

rules through which measurement values are assigned (Churchill Jr, 1979). Measurement involves

two rules. The first is that symbols must be assigned to objects. The second is that objects must be

classified according to a specific attribute (Nunnally & Bernstein, 1994).

The term rules indicate the methods to be used. This needs to be explained in further detail. For a

measure to be standardised, the rules need to be clear and practical to apply. The rules should not

require great skill from the administrator and the results of the measurement should not depend on

the administrator. The use of the term attributes within the definition indicates that a measurement

focusses on the features of an object and not the object itself (Nunnally & Bernstein, 1994, p. 4).

When employing measurement, there are certain concepts that need to be considered.

2.2.1 What to consider when measuring

Making a measurement means determining the value of some quantifiable item (SASO, 2006).

Before measurement can occur, enough detail regarding the items to be measured, the method, and

the measurement procedure must be provided (SASO, 2006). There are various concepts to consider

when measuring values such as how values are aggregated, the precision, and accuracy of values.

Other concepts include uncertainty, the mean (average), the median, the mode, and outliers. These

concepts can influence the type of measure to be selected. Just consider mean and mode as an

example.

Specific measures are seldom useful. For example, the time it took for a process to complete may be

operationally useful, but in the context of making decisions provide much more meaning when the

times are aggregated in a specific manner. The average (mean) of the times could be an indication

of overall performance (Dean & Dixon, 1951; Gravetter & Wallnau, 2011). However, should there

be extreme cases or an uneven distribution, the average may not be a good indication anymore. and

other measures such as the mode, which is the middle value of the sorted sample (Gravetter &

Wallnau, 2011), may be more appropriate.

Also, to consider is the issue of precision versus accuracy. Accuracy refers to how well the

measurement represents the actual value, while precision speaks to the consistency achieved through

multiple measurements (Hubbard, 2011, p. 133). Accuracy and precision are not related. A wrongly

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

10

calibrated measurement instrument can consistently give the same inaccurate reading, this having

high precision and low accuracy. It is also important to consider to which degree accuracy is

important. Numbers may have a psychological effect on people. For example, giving a response rate

to a questionnaire as 71.62% while mathematical accurate and precise (at least to two decimal places)

when you have 53 of the 74 people responded it might provide an inflated sense of security in the

measurement. Similarly, highly precise values may be construed as accurate just because they are to

the 5th decimal.

The above examples show that there may be more to take note of when dealing with measures than

what is immediately apparent. Therefore, special attention must be placed on which type of measure

is used and for which purpose it is used. The following section discusses the types of measures.

2.2.2 Types of measures

There are two main categories of measures, namely nonmetric and metric measures. The nonmetric

category is concerned with differences in type or kind that indicate the presence or absence of

attributes in subjects (Hair, Black, Babin & Anderson, 2010). The metric category is concerned with

differences in degree regarding a specific attribute (Hair et al., 2010). Measures under the nonmetric

category are nominal and ordinal measures. Ratio and interval measures fall under the metric

category.

Nominal measures use numbers to identify and represent subjects or objects (Gravetter & Wallnau,

2011; Hair et al., 2010). Nominal measures are also known as categorical scales and can be used to

decide whether two objects are equivalent or not for categorising purposes (Nunnally & Bernstein,

1994). When there are only two options, for example male or female, one (male) is assigned the

number 1 and the other (female) is assigned the number 2. The numbers are used only to keep track

of the different categories (Nunnally & Bernstein, 1994) and do not refer to any mathematical

calculation to be done (Hair et al., 2010). Therefore, nominal data refers only to the category and not

to the quantity of an attribute (Hair et al., 2010; Nunnally & Bernstein, 1994). Categories may not

reflect any quantitative relationship, but they can lead to valuable insights concerning correlations

within and between the categories (Nunnally & Bernstein, 1994).

Ordinal measures involve a rule where respondents decide whether one subject is greater than or less

than the other subjects (Hair et al., 2010; Nunnally & Bernstein, 1994). The subjects can be arranged

in order with regards to how much of an attribute the subject possesses (Gravetter & Wallnau, 2011;

Hair et al., 2010; Olivier, 2009). Numerical values are assigned to the subjects but have no

mathematical meaning. Therefore, they represent the relative position in the order of subjects (Hair

et al., 2010). For example, when arranging the names of individuals according to their height from

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

11

tallest to shortest (Nunnally & Bernstein, 1994), the order of individuals does not explicitly indicate

the differences in height. Therefore, the types of analyses to be performed are limited, as no

arithmetic operations can be performed (Hair et al., 2010).

Ratio measures (Olivier, 2009, p. 83) require the respondent to choose from a provided list of ratios.

In ratio measures, there exists a true zero (0), which means nothing, rather than an arbitrary zero,

which means the middle point (Gravetter & Wallnau, 2011; Nunnally & Bernstein, 1994). Ratio

measures can permit all mathematical operations (Hair et al., 2010). An example of a device that uses

a ratio measure is a bathroom scale that is used to measure weight. Bathroom scales employ a ratio

measure with a true zero to indicate the weight of an individual. The weight values can also be seen

in terms of multiples. For example, 50 kilograms equals half the weight of 100 kilograms (Hair et

al., 2010).

Interval measures (Gravetter & Wallnau, 2011; Olivier, 2009, p. 83) resemble ratio measures but do

not have a true zero. Interval measures provide the user with the ability to perform any mathematical

operation using their values (Hair et al., 2010). Interval measures use constant units of measurement

to ensure that the difference between any two adjacent points is equal (Hair et al., 2010; Nunnally &

Bernstein, 1994). The range of values must have equal intervals between them and the number of

values used must have a neutral point. This type of measure is commonly combined with a Likert

scale. A Likert scale with a range of 1–5, 1–7, or 1–9 can be used, since these all contain a neutral

point. An example of using this type of measure is asking a respondent to indicate what the likelihood

of a storm occurring is.

Table 2.1: Measurement scales retrieved from Nunnally and Bernstein (1994).

The role of measurement in decision-making can influence the decisions an individual makes.

However, it is not the only problem that can lead to bad decisions being made. Decision-making can

also be negatively affected by biases.

Measure Basic operation Permissible
transformations

Permissible
statistics

Examples

Nominal = vs. 
(equality vs.
inequality)

Any one-to-one Numbers of cases,
mode

Telephone
numbers

Ordinal > vs. <
(greater than vs.
less than)

Monotonically
increasing

Median,
percentiles, order
statistics

Hardness of
minerals, class
rank

Ratio Equality of ratios Multiplicative
(similarity)
x = bx

Geometric mean Temperature
(Kelvin)

Interval Equality of
intervals or
differences

General linear
x = bx + a

Arithmetic mean,
variance, Pearson
correlation

Temperature
(Celsius),
conventional test
scores

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

12

2.3 Biases

Biases are difficult to define because they are context dependant. However, The Oxford English

Dictionary (2017) defines bias as “an inclination or prejudice for or against one person or group,

especially in a way considered to be unfair” meaning biases refer to prejudiced beliefs or viewpoints.

Biases lead to certain subjects being perceived as superior or inferior to other subjects. Therefore,

biases in decision-making refer to prejudices that support one decision above other decisions (Hahn

& Harris, 2014). A specific outcome is seen as superior to the other possible outcomes of a decision.

Thus, if an individual is a victim of a decision-making bias, the alternatives not supported by the bias

may not even be considered.

Individuals that are faced with tough decisions tend to employ heuristics (Hahn & Harris, 2014).

Heuristics are shortcuts or small routines that individuals can use to make quick judgement calls

based on the decision or task at hand (Hahn & Harris, 2014; Hammond et al., 1998). Heuristics help

individuals in everyday life. They allow us to make quick judgement calls, be effective, and not waste

time (Hahn & Harris, 2014). For example, individuals with heart problems can make use of a

heuristic and quickly decide to drink heart medication to prevent having a heart attack.

Heuristics are commonly employed when making complex decisions (Hammond et al., 1998).

However, heuristics are not fail-proof and can have a considerable influence on decisions made by

individuals. The more complex a decision, the more an individual relies on heuristics to make

judgement calls that may occasionally be wrong (Hahn & Harris, 2014). If an individual does not

have enough information gathered to effectively employ a heuristic, a biased decision may be made.

Therefore, heuristics can introduce biases to individuals making difficult and crucial decisions (Hahn

& Harris, 2014; Hammond et al., 1998; Kahneman, 2000).

As mentioned before, making a decision is a planned process that results in a commitment to a

proposition (Gold & Shadlen, 2007). When individuals have crucial decisions to make, they typically

try to gather as much information as possible. The task of gathering information may be easy or

difficult, since individuals may or may not have access to appropriate information. Decisions based

on inadequate information cause uncertainty about decisions and their outcomes (Clemen & Gregory,

1995). Thus, uncertainty depends on the state of the knowledge an individual possesses (Clemen &

Gregory, 1995). If an individual has sufficient information to know what the outcomes of decisions

will be, the individual is certain (Clemen & Gregory, 1995; Hammond et al., 1998). If an individual

does not have sufficient information to predict the outcomes of a decision, the individual is uncertain.

Uncertainty has a drastic influence on the decisions individuals make. Uncertainty and heuristics

introduce biases when complex and difficult decisions must be made (Clemen & Gregory, 1995;

Hahn & Harris, 2014).

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

13

The example of a judge or jury deciding on a verdict in court illustrates the importance of certainty

when making decisions. The judge or jury must gather and investigate all the evidence and identify

all possible alternative interpretations thereof before making a decision. They must have certainty

about the facts before a verdict can be reached. If there is uncertainty, a wrong and biased decision

could be made.

The higher the risks associated with a decision, the more susceptible an individual becomes to biases

in decision-making. Multiple biases regarding decision-making have been identified in research

(Appendix A). These biases can add to one another and increase the number of flaws in the decision-

making process. Biases have been identified in several research areas, such as the financial and

behavioural sciences. However, not much research has been done in the area of technology and how

biases affect technology decision-making.

2.4 Biases in technology decision-making

There is a large body of literature on biases in decision-making. Appendix A presents some of the

research into this topic and lists some biases. Research has been done mainly in areas such as

behavioural decision-making, behavioural economics, and managerial decision-making. Behavioural

decision-making investigates the choices made by individuals and why these choices were made.

Behavioural economics involves psychological insight into the behaviour of humans where

economic and financial decision-making are concerned. Managerial decision-making investigates

the decisions of top-level management within an organisation. There is sufficient information

regarding each bias and how it affects individuals’ decision-making. There are several real-life

examples of how each bias affects individuals’ day-to-day lives, work lives, and financial decision-

making. However, research done on how these biases affect IT staff within the technology

environment is not common. Thus, for this study, each bias was investigated within a technology

context to make an objective decision regarding if and how each bias affects technology decision-

making.

Each bias was investigated through literature to achieve an understanding of the bias and what it

entails. A definition of each bias was found, and sufficient information was gathered to identify the

areas of research in which each bias is generally investigated. Once the research areas were identified,

scenarios were formed to illustrate the effects of each bias on decision-making. The researcher then

created a technology scenario for each bias to objectively evaluate its effects on technology decision-

making. Each bias was assigned a rating out of five stars (*) based on the effect it has on technology

decision-making. The rating refers to the applicability of each bias to the technology decision-making

context. Figure 2.1 is a graphical representation of the process followed to assign a rating to each

bias.

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

14

After careful investigation and consideration, the researcher identified the biases listed in Table 2.2

as the most relevant to the technology environment. The biases with an applicability rating of five

stars (*) are discussed next to illustrate their applicability to the technology environment. Refer to

Appendix A for a full list of the ratings applied to the investigated biases.

Table 2.2: Biases affecting technology decision-making.

2.4.1 Status quo

The status quo bias refers to a bias individuals have regarding the current state of a situation or

business decision. The status quo phenomenon has been investigated thoroughly in the areas of

economics (Kahneman, Knetsch & Thaler, 1991), managerial business decision-making (Bazerman

& Moore, 2008), business decision-making (Dobelli, 2013), and daily decision-making (Hammond

et al., 1998). The following paragraph gives an example of status quo phenomenon in daily life.

Bias Meaning

Status quo Preferring the current status of a situation and disregarding alternatives
Anchoring Assuming the first available information is correct and disregarding the

alternatives
Sunk cost Decisions are made to justify past decisions, even when those past

decisions are not valid anymore
Confirming evidence Seeking only information that agrees with established views and

disregarding alternatives
Framing Overemphasising the wrong aspects of a problem
Prudence Making overcautious decisions based on perceived low risk and

disregarding risky alternatives
Recallability Past experiences heavily influence decisions and current information is

disregarded
Shooting from the hip Making decisions without a systematic decision process
Failure to audit decision process Not questioning or investigating which decision process to follow
Halo effect Decisions are based on a single attractive aspect, while the rest of the

information is disregarded

Figure 2.1: Process of rating biases in the area of technology.

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

15

An individual receives the wine list of a restaurant (Dobelli, 2013) and needs to choose a wine to

order. There are a wide variety of wines to choose from. However, the individual is immediately

biased and chooses the house wine. Upon consecutive visits to the restaurant, the individual selects

the house wine each time. Therefore, the individual is biased towards a single recommended wine.

This is an example of the effects of the status quo bias on daily decision-making.

The status quo bias is also relevant to technology decision-making. Individuals in a technology

context can also support the current state of affairs and have a bias against the alternatives because

they require too much effort. For example, a certain NoSQL database is set up. Switching to an

alternative database would involve effort. Therefore, decision-makers affected by the status quo bias

will choose to continue using the current NoSQL database. Such decision-makers could potentially

reject other NoSQL databases that are better suited for their use cases, because they already have a

NoSQL database set up and setting up a new NoSQL database would require too much effort. This

shows that individuals in a technology context can also be negatively affected by the status quo bias

when making decisions.

2.4.2 Anchoring

The anchoring bias leads to situations where business decisions are based on the first piece of

information gathered. The anchoring phenomenon has been investigated in the fields of business

decision-making (Dobelli, 2013), daily decision-making (Hammond et al., 1998; LeBoeuf & Shafir,

2006), and heuristics (Tversky & Kahneman, 1974). The research regarding anchoring investigates

the effect this specific bias has on the behaviour and decisions of individuals. The following

paragraph provides an example of the anchoring bias in daily life.

For example, a marketer attempting to project the number of sales for the coming year (Hammond

et al., 1998) may begin by investigating the sales volumes of previous years. The marketer is

susceptible to the anchoring bias and the number of sales made in previous years could become an

anchor. The marketer will still adjust the previous numbers according to other factors. However, too

much weight can be assigned to the past numbers and too little weight to the other factors. Thus, the

anchoring bias can influence the decisions of the marketer.

The anchoring bias is also relevant to technology decision-making. Technology decisions can also

be made based on the first piece of information gathered, while other factors are ignored. For

example, individuals may decide to use the first NoSQL database they hear of, even if it does not fit

their use case. In this case, it is the influence of anchoring bias that leads to the decision to implement

a specific NoSQL technology without considering the alternatives.

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

16

2.4.3 Sunk cost

The sunk cost bias leads to current business decisions being made to justify past business decisions,

even when these past decisions are not valid anymore. The sunk cost phenomenon has been explored

and described in the areas of economics (Kahneman et al., 1991; Thaler, 1980), business decision-

making (Dobelli, 2013), and daily decision-making (Hammond et al., 1998). The sunk cost bias has

been thoroughly investigated in the contexts of human behaviour and financial decision-making.

An example of a financial decision that can be affected by the sunk cost bias is deciding to make an

investment. Decisions regarding financial investments can be a difficult to make due to the financial

risks involved. For example, an individual chooses to invest R100,000 in a specific company by

buying shares in that company. The share value drops, and the individual’s investment is now worth

R60,000. The individual needs to decide whether to sell or keep the shares. In such a situation, the

individual can be influenced by the sunk cost bias and decide to keep the shares in the hope that they

will increase in value and avert financial loss. Owing to the influence of the sunk cost bias, the

individual will not consider the alternative of selling the shares and reinvesting the money in other

companies.

The sunk cost bias is also relevant to technology decision-making. The sunk cost bias can lead to

additional money being spent on technology that is not relevant anymore. Management may refuse

to implement a new technology due to the costs of implementing the current technology. For

example, IT staff have spent time, money, and effort implementing a certain NoSQL database.

However, this database does not provide the needed levels of support and performance for a specific

use case. There are alternative technologies available, but owing to the sunk cost bias, these are not

considered for the use case. Thus, the financial burden of maintaining the inappropriate technology

is not averted.

2.4.4 Confirming evidence

The confirming evidence bias leads individuals to look for information that endorses or supports their

current views and knowledge. The confirming evidence phenomenon has been investigated in the

fields of business decision-making (Dobelli, 2013), daily decision-making (Brenner, Koehler &

Tversky, 1996; Hammond et al., 1998), important and risky decision-making (Kahneman & Tversky,

1979), and intuitive judgement (Morewedge & Kahneman, 2010).

In day-to-day decision-making, the confirming evidence bias can be a prevalent factor in many

decisions. For example, an individual must decide whether to expand a house by adding another

room. Currently, building materials are available at a competitive price. However, the individual is

experiencing doubts about the cost of the expansion. The neighbours expanded their house six

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

17

months ago, when building materials were expensive. The individual decides to get the neighbours’

opinion regarding such an expansion, and the neighbours explain that their expansion was expensive.

The individual is now influenced by the confirming evidence bias. Since the individual already had

doubts about the cost, the confirming evidence leads to a decision not to expand because an expansion

would be too expensive.

The confirming evidence bias can also be found in technology decision-making when individuals

assume that the information collected is correct and accept that information without considering the

alternative. Individuals look for reasons to accept the information they already have without question

and do not consider opposing information. They look for confirming information that is in agreement

with their pre-existing knowledge. For example, an individual who must choose a NoSQL product

to employ asks the opinion of another individual. If the second individual’s opinion confirms the

knowledge or viewpoint of the first individual, the confirming evidence bias will influence the

decision. Alternative opinions will be ignored, which could lead to the incorrect NoSQL database

being chosen. Therefore, a bad decision may be made because of the influence of the confirming

evidence bias.

2.4.5 Framing

The framing of a question or problem can influence the way a decision is made. The framing

phenomenon has been investigated in the areas of business decision-making (Dobelli, 2013), daily

decision-making (Hammond et al., 1998; Tversky & Kahneman, 1985), and judgement formation

(Strack, Martin & Schwarz, 1988). The framing bias can have an influence on various everyday

decisions, including purchasing decisions. For example, two types of meat are found in a grocery

store. They are described as being 99% fat-free and containing 1% fat, respectively (Dobelli, 2013).

Individuals may perceive the one type of meat (99% fat-free) to be healthier than the other type of

meat (1% fat). However, there is no difference in their fat contents, as they both contain the same

percentage of fat. The only difference lies in the framing of the information. Thus, individuals may

be influenced by the framing bias when choosing between these two types of meat.

The framing bias can heavily influence technology decision-making. If emphasis is placed on the

wrong aspect of a problem or question, an incorrect solution could be found. The framing bias can

influence the success or failure of a project. For example, overemphasising the relationships between

data, even though there is no heavily linked data present, may lead individuals to decide on a

technology that can accommodate heavily linked data rather than one that fulfils the other

requirements. Thus, individuals can be affected by the framing bias when selecting a technology. If

a problem is framed incorrectly with the bulk of the focus placed on the wrong part of the problem,

better alternatives can be ignored.

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

18

2.4.6 Prudence

The prudence bias causes individuals to be overcautious when high-stakes decisions need to be made.

The prudence phenomenon has been investigated in the areas of business decision-making (Dobelli,

2013) and daily decision-making (Hammond et al., 1998). The research investigates the effect of the

prudence bias on individuals’ behaviour and decision-making. Individuals faced with the task of

making difficult decisions want to be certain of what the outcomes of their decisions will be.

Individuals perceive certain decisions as low-risk. However, the outcomes of these decisions can

actually be more harmful than those of high-risk decisions. An example of the prudence bias in

business decision-making follows.

For example, when market-planners for an automotive manufacturer must make a forecast regarding

the number of sales for the following year, they slant their forecast numbers in favour of producing

additional automobiles to be sure that there will be enough. The market-planners’ decision-making

is influenced by the prudence bias. They make the safe, low-risk choice. However, this results in the

number of cars produced far exceeding the number of sales predicted, which leads to unnecessary

financial losses.

The prudence bias can also be found in technology decision-making. Individuals influenced by the

prudence bias can cause a project to fail by making the wrong decisions. Individuals want to be safe

by making choices that are perceived as low-risk. Therefore, they do not consider high-risk

alternatives that may better fit their use case. For example, a business’s employees investigate

another business’s NoSQL technology implementations and choose to implement the same NoSQL

database without considering alternatives. However, they do not get the same results as the other

business, as their businesses’ requirements differ. Their decision was based on the prudence bias and

not on what technology would best suit their particular business.

2.4.7 Recallability

The recallability bias causes past events or dramatic occurrences to influence an individual’s

decision-making. The recallability phenomenon has been investigated in the areas of economics

(Kahneman, Wakker & Sarin, 1997), business decision-making (Dobelli, 2013), and daily decision-

making (Hammond et al., 1998). Memories and experiences greatly influence the decisions

individuals make. For example, when individuals see a train wreck on the news, the memory of the

accident will influence their future decisions regarding whether to travel via train or car to reach a

destination. Decisions based on past events are often incorrect.

Recallability is also relevant to technology decision-making and can influence the success of project

decisions. An IT practitioner could recall a specific experience with a certain NoSQL database

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

19

whenever faced with NoSQL technologies. This could cause the individual to make biased decisions

where NoSQL technologies are concerned. If the recalled experience was negative, the individual

may not consider implementing that NoSQL technology, even if it best fits the problem. If the

recalled experience was positive, the individual may choose to implement that NoSQL technology,

even if it does not solve the problem. Thus, biased decisions can lead to technologies that are not

appropriate for the specific use case being implemented.

2.4.8 Shooting from the hip

Shooting from the hip is a decision-making bias that prevents individuals from following a systematic

decision-making process to make decisions and solve problems. The shooting from the hip

phenomenon has been investigated in business decision-making (Russo, Schoemaker & Russo,

1989). This bias can negatively influence decision-making. For example, a mechanic disassembling

an engine needs to keep track of where each screw was removed from. An experienced mechanic

may feel that they have enough experience disassembling engines to not have to take note of the

exact position of each screw. Such a mechanic is influenced by the shooting from the hip bias. The

bias results in the decision not to follow the process of noting all facts and relevant information. The

mechanic may attempt to rebuild the engine and fail, since some screws do not fit or are placed in

the wrong holes. Thus, decisions influenced by the shooting from the hip bias can have negative

outcomes.

Shooting from the hip is a bias that is relevant to technology decision-making. Individuals perceive

themselves as capable enough not to have to follow a decision-making process. Decision-making

processes assist individuals by gathering enough information to base decisions on. If individuals do

not follow a process, they can make mistakes or miss key facts, which can lead to bad decisions being

made. Individuals confident in their knowledge about certain technologies may be faced with a

NoSQL problem. If the individuals believe that they can decide on a solution without investigating

all alternatives, they can easily make incorrect decisions.

2.4.9 Failure to audit decision process

Failing to audit a decision process means not questioning or investigating the decision process. If

individuals do not follow a decision process, they become vulnerable to many decision biases. If they

do follow a decision process, they are still vulnerable to the failure to audit decision process bias.

The phenomenon of failing to audit decision processes has been investigated in the field of business

decision-making (Russo et al., 1989). It is important to follow a specific process when making

decisions.

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

20

For example, to build a car from the ground up requires an individual to follow a decision process

with specific steps. If the steps are mixed up, the car parts will not fit together correctly. An individual

that does not question their decision process is susceptible to the influence of the failure to audit

decision process bias. This means that even though an individual is following a decision process, it

may not be the right decision process to solve the problem.

The goal of a decision process is to assist an individual in understanding the problem, the various

decisions that can be made, and how to implement those decisions. It is crucial to consider the failure

to audit decision process bias in technology decision-making. If an individual follows the incorrect

decision process, the individual may make bad decisions. When following a decision process to

choose a NoSQL technology, the use case problem needs to be understood first. Thereafter, the

choices of NoSQL storage technologies should be identified. Finally, the implementation process of

the chosen NoSQL technology must be understood. If an individual does not follow the correct

process, the problem can be misunderstood, and the wrong technology chosen.

2.4.10 Halo effect

The halo effect refers to the way one specific aspect of an item can affect how individuals perceive

the item as a whole. The halo effect phenomenon has been researched in the field of business

decision-making (Dobelli, 2013). An example of the halo effect can be found in marketing campaigns

that advertise products using celebrities. For example, Roger Federer, a professional tennis player,

appears in an advertisement for a coffee machine (Dobelli, 2013). Some individual viewing this

advertisement may feel the need to purchase that specific coffee machine because their favourite

tennis player is endorsing it. Their decision to purchase the coffee machine is based on a single

element – the famous tennis player who is endorsing it – and other factors, such as the reliability and

usability of the coffee machine, are ignored. Thus, they are experiencing the halo effect.

The halo effect bias is also relevant to technology decision-making. If a NoSQL technology has a

certain property that is appealing or unappealing to individuals, they may make biased decisions

based on a personal feeling regarding the technology. If the feeling is positive, they may choose this

technology over others, even if it is not the best choice. If the feeling is negative, they may not

consider choosing the technology, even if it is the best solution to the problem. Thus, the decision is

based on a single element and the alternatives are not investigated.

2.5 Four categories of biases

The previous sections showed that there are a wide variety of biases that can affect decision-making.

Benson (2016) grouped these biases into four main categories according to the overarching problem

faced by each group. The four categories are too much information, not enough meaning, act fast,

and memory effects (Benson, 2016). Each kind of problem occurs for a reason. Too much information

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

21

problems occur when an individual is overwhelmed by the amount of information that needs to be

considered. Not enough meaning problems occur when the information that has to be considered has

no context or meaning. Act fast problems occur when individuals react too fast and ignore crucial

pieces of information. Memory effects problems occur when the human memory cannot keep up with

the volume of information.

Table 2.3: Bias categories adapted from Benson (2016).

 Categories Biases

1 Too much information Anchoring
Confirming evidence
Framing

2 Not enough meaning Failure to audit decision process
Halo effect

3 Act fast Status quo
Sunk cost
Prudence
Shooting from the hip

4 Memory effects Recallability

To overcome these categories of biases, certain methods are required. To counter the first category

of biases, a method is required to provide only presently relevant information. This will ensure that

less information needs to be considered. To counter the second category of biases, a method is

required to provide only contextual information. This will ensure that the information has meaning.

To overcome the third category of biases, a method is required to force individuals to follow steps to

reach a conclusion. This will ensure that the individual does not react too fast. To overcome the last

category of biases, a method is required to encourage individuals to investigate specific information

before reaching a conclusion. This will ensure that the human memory is not overloaded with

information. Mitigating the effects these four categories of biases have on decision-making can lead

to better decisions and outcomes.

2.6 Decision-making techniques

As stated above, there are numerous decisions with varying degrees of difficulty. The more difficult

a decision is, the more thought is required to make the decision. To assist with making difficult

decisions, one can use decision-making frameworks (Rokach & Maimon, 2005). One example of a

often used decision framework is that of a decision tree. The goal of a decision framework is to

manipulate the alternatives to assist in making the optimal decision. A framework provides a

structured format to think about a decision and all its alternatives.

Decision-making frameworks are able to assist individuals by bringing structure to the decision-

making process (Newton, 2016). There exists a wide variety of frameworks which an individual can

choose from to assist in making decisions. Example frameworks are the Kepner-Tregoe Matrix,

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

22

Decision Matrix Analysis, The Analytic Hierarchy Process, Pareto Analysis, The Futures Wheel, and

Force Field Analysis (Newton, 2016).

To illustrate the point of decision frameworks, consider two examples. Fisrt, the Kepner-Tregoe

Matrix as the framework of choice. This framework employs four steps which an individual can

follow from the start to the end of the decision process (Lumsdaine & Lumsdaine, 1994). The first

step is ‘situational analysis’ where the top-level view of the decision to be made is gained (Newton,

2016; Scheubrein & Zionts, 2006). The second step is ‘problem analysis’ where the problem is

investigated to identify the root cause of the problem (Newton, 2016; Scheubrein & Zionts, 2006).

The third step is ‘decision analysis’ where the alternatives are investigated and evaluated to find the

solution to the problem (Newton, 2016; Scheubrein & Zionts, 2006). The last step is ‘potential

problem analysis’ where the selected solution is analysed to identify additional problems that could

occur from making such a decision (Newton, 2016; Scheubrein & Zionts, 2006). If an individual

follows the steps of the framework, then he/she are enabled to make a good decision.

Second, consider decision trees. A decision tree represents a decision and its consequences, that is

the subsequent decsions that must be made. The tree consists of a node, also known as the root, which

has no incoming edges (Magee, 1964; Rokach & Maimon, 2005). The root can be viewed as the main

issue or problem. All subsequent nodes, known as ‘leaves’ or decision nodes, have outgoing edges

which are known as test nodes. Each of the decision nodes can be seen as subsequent decisions to be

made as a result of the root problem. Each decision node splits the instance into two or more sub-

instances according to the input and test of a function (Rokach & Maimon, 2005). As a result, a

decision tree can be employed to map out a decision and its alternatives to assist with making

decisions (Magee, 1964).

As a result of the above mentioned, the need for frameworks in decision-making is clear as they can

improve the quality of decisions individuals make.

2.7 Conclusion

In this chapter, it was established that decision-making is a daily task that all individuals partake in

and that decision-making can be easy or difficult. It was also established that measurements and

biases can negatively affect decision-making and cause individuals to make bad decisions. There are

a wide variety of measurements and biases. The effects of these measurements and biases need to be

mitigated to ensure better decision-making.

This chapter elaborated on the context of this study to indicate the need for a model to assist IT

practitioners with technology decisions. Since IT practitioners do not have a systematic way to decide

between NoSQL families, a need for a way to make such decisions without being affected by the

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY

23

problems of measurement and biases exists. However, before such a model can be created, NoSQL

must first be understood. Therefore, the next chapter will investigate NoSQL technologies.

CHAPTER 3: NOSQL

The second chapter focused on explaining how difficult decision-making is and that it is a daily task.

It also established that measurements and biases can negatively influence decisions and increase the

difficulty of decision-making. Therefore, there is a need to mitigate the effects of biases and

measurement on technology decisions.

The technology context for this study is found in NoSQL (Not only SQL). Therefore, the chapter

starts by investigating data storage technologies in general. Thereafter, a comparison is made

between relational and non-relational (NoSQL) storage technologies. The data model behind NoSQL

storage technology is an important aspect that needs to be considered. There are four types of data

models used by NoSQL technologies that need to be investigated. Decision-making regarding

NoSQL is further complicated by this.

3.1 Storage technologies

A database is a technology used for storing data. Data can originate from various sources and have

different formats. Numerous types of data storage technologies, such as hierarchical databases,

network databases, relational databases, and database management systems (DBMS), have been

developed (Naheman & Wei, 2013). Currently, the two terms that are generally used to differentiate

between types of database technologies are relational and non-relational databases.

The creation of relational databases has been key to the development of storage technologies

(Naheman & Wei, 2013). However, the development of technology and the internet contributed to

the creation of large volumes of semi- and unstructured data. Relational databases struggle to store

such data. Storage technologies should not struggle to accommodate semi- and unstructured data

(Naheman & Wei, 2013). Continuous growth in technology means that data storage technologies

also need to evolve to keep up with the ever-growing requirements to accommodate different types

of data (Leavitt, 2010). These new requirements are based on the data model, the data storage, and

the distributed architecture (Naheman & Wei, 2013). Firstly, the database refers to the physical

storage of data. Secondly, the database systems refer to the management software to manage the

database, and thirdly, the database model refers to the representation of data and how it is stored.

3.1.1 Relational databases

A relational database is a set of tables containing data that is fitted into predefined categories (Leavitt,

2010). The data have relations to one another, hence the name relational database (Han, Cai &

Cercone, 1993). Each table in the relational database contains one or more categories of structured

and organised data that is stored in rows and columns (Han, Cai & Cercone, 1993). The relational

data structure allows information from different tables to be linked (Padhy et al., 2011). The table

CHAPTER 3: NOSQL

25

should also have a key, which is used to uniquely identify the data and to create links between the

tables (Padhy et al., 2011).

The relational model also employs a procedure called normalisation. Normalisation is a set of

procedures used to remove redundant values and improve data integrity (Chapple, 2018; Coronel &

Morris, 2016). In doing so, normalisation prevents data manipulation irregularities and loss of data

integrity. A large advantage to database normalisation is that data is logically stored, and less space

is consumed (Chapple, 2018). The way to conduct normalisation is through the processes called

‘normal forms’ which has five forms namely, 1NF to 5NF (Coronel & Morris, 2016). Each of these

forms can be seen as increased levels of normalisation. After 1NF, each subsequent form must meet

the requirements of the previous form with additional requirements (Chapple, 2018).

Some benefits of normalisation include better overall database organisation, reducing the volume of

redundant data, higher consistency, and possible better database security (Stephens, Plew & Jones,

2009). However, there is one major drawback to normalisation, namely reduced database

performance. The reason is because more resources are required to react to a query since the data

must be located, joined from multiple tables, and then processed to provide an answer to the query

(Coronel & Morris, 2016; Stephens, Plew & Jones, 2009). Therefore, database normalisation has an

impact on the transactions within the relational database.

Most relational database systems are based on transactions to ensure the integrity of the data.

Transactions ensure the atomicity, consistency, isolation, and durability (ACID) of data management

(Moniruzzaman & Hossain, 2013). Atomicity refers to the ability of the database management system

to follow an ‘all or nothing’ approach to transactions (Yu, 2009). Therefore, if a part of the transaction

fails, then the whole transaction fails. Consistency refers to the degree of consistency of the database

after a transaction is completed or failed (Medjahed, Ouzzani & Elmagarmid, 2009; Yu, 2009).

Therefore, the focus would be on the state of the data and whether it is in a consistent state before

and after the transaction occurs. Isolation means that the data used in the transaction cannot be

accessed by other processes during the transaction (Medjahed et al., 2009; Yu, 2009). Durability

refers to the guarantee that transactions will persist even if system failures occur (Medjahed et al.,

2009; Yu, 2009). Therefore, the transaction will not be affected by system failure.

As a result of the above, ACID aims to provide assurance and guarantee the reliability of database

transactions (Moniruzzaman & Hossain, 2013). ACID works well with structured data such as

banking transactions. However, when faced with unstructured data, it may struggle to provide

guarantees on the reliability of the data.

CHAPTER 3: NOSQL

26

Therefore, relational databases operate best when handling structured data and struggle to

accommodate semi- or unstructured data (Leavitt, 2010; Zhang, 2011). Another solution was found

to accommodate the drawbacks of the relational data model which is a non-relational technology

known as NoSQL (Naheman & Wei, 2013). There are certain limitations and drawbacks to the

relational data model when it is faced with storing semi- or unstructured data. The limitations need

to be highlighted and understood to indicate why non-relational (NoSQL) databases are a better

solution when storing or working with semi- or unstructured data.

3.1.2 Limitations of relational databases

Scaling, complexity, large feature set, and slow reading and writing performance are some of the

limitations of relational databases when working with semi- and unstructured data (Han, Haihong,

Le & Du, 2011; Jatana et al., 2012; Leavitt, 2010). These include scaling, complexity, large feature

set, and slow reading and writing performance.

Scaling refers to increasing the database size. There are two methods of scaling a database can

employ, namely vertical and horizontal scaling. Vertical scaling involves increasing the storage and

processing capacity, which can become a costly venture. Horizontal scaling means storing the same

table across multiple servers (Han et al., 2011; Jatana et al., 2012; Leavitt, 2010). Therefore, when

storing large volumes of semi- and unstructured data, it would be better to use horizontal scaling, as

this could be a cheap method (Jatana et al., 2012; Leavitt, 2010). However, horizontal scaling can be

expensive also.

Complexity refers to the ease of working with the data structure. Relational databases work with a

fixed structure (Leavitt, 2010). Therefore, if the data does not fit into the structure, conversion and

change of the data must occur.

Relational databases can also offer a large set of features, which can complicate the work to be done

(Leavitt, 2010). These additional features also add to the total cost of the relational database (Jatana

et al., 2012). Thus, the database system could turn out to be very costly due to having additional

features that may not even be needed.

Slow reading and writing performance may be found when relational databases are used to work

with semi- and unstructured data (Han et al., 2011; Leavitt, 2010) which indicates that relational

databases cannot handle the semi- or unstructured data.

Non-relational databases were created to overcome the limitations of relational databases. Therefore,

non-relational databases are focussed on working with or storing semi- and unstructured data. The

development of non-relational data storage technologies has led to the creation of NoSQL.

CHAPTER 3: NOSQL

27

3.1.3 Non-relational databases

Non-relational databases refer to a data model that differs from relational systems in that data is

stored without an explicit structure (Padhy et al., 2011). Non-relational databases do not use tables

as a data structure to store data in. Other aspects that differentiate non-relational databases from

relational systems are, firstly, that non-relational systems do not just use SQL as their query language.

Secondly, non-relational databases do not guarantee ACID properties. Thirdly, they do not employ

join operations, and lastly, they can scale horizontally (Jatana, Puri, Ahuja, Kathuria & Gosain,

2012). Non-relational databases are commonly linked with NoSQL because NoSQL is non-relational

in nature (Naheman & Wei, 2013).

3.1.4 Overcoming limitations of relational databases

As stated before, relational databases struggle to accommodate semi- or unstructured data. Therefore,

NoSQL databases were created to overcome such limitations. The first identified limitation was

scaling where relational databases use vertical scaling to scale the data. However, with the increase

of datasets and the increasing use of semi- or unstructured data, makes it difficult and expensive to

scale with relational databases (Kuhlenkamp, Klems & Röss, 2014). As a result, NoSQL employs

horizontal scaling to counter the limitations of vertical scaling by exponentially increasing the

capacity and performance to accommodate the size and type of data (Moniruzzaman & Hossain,

2013). However, horizontal scaling can be more expensive to implement than vertical scaling.

The second limitation identified is complexity. Relational databases have a focus on working with

structured data which means the complexity is low since the data fits into the structure with ease

(Moniruzzaman & Hossain, 2013). However, if semi- or unstructured data are stored within a

relational database, then the complexity is high since the data must be manipulated and changed to

fit the fixed data structured (Abadi, 2009). NoSQL places fewer constraints on the structure of the

data to be stored (Győrödi, Győrödi & Sotoc, 2015a). Therefore, NoSQL allows the storage of several

data structures without the need to manipulate the data structures to meet certain requirements.

The third limitation identified is slow reading and writing performance (Naheman & Wei, 2013).

Relational databases provide excellent performance when dealing with structured data. However,

when semi- or unstructured data is stored, then the performance of the relational database will slow

considerably down (Han et al., 2011; Naheman & Wei, 2013). Therefore, NoSQL overcomes this

limitation since it can provide high reading and writing performance when working with semi- or

unstructured data (Hecht & Jablonski, 2011).

CHAPTER 3: NOSQL

28

3.2 Classification of NoSQL databases

There are four families of NoSQL databases, namely key-value stores, column-family stores, graph

stores, and document-based stores (Aniceto et al., 2015). The following section describes and

provides a general use case for each family of NoSQL.

3.2.1 Key-value stores

Key-value stores are database management systems that store keys (identifiers) and values associated

with the keys inside a hash table (Moniruzzaman & Hossain, 2013). The values can vary from simple

text to complex lists. Data searching is done against the keys and looks for exact matches. Figure 3.1

is a graphical representation of a key-value store.

Key-value stores contain data that is being stored in a key to value pair (Aniceto et al., 2015; Padhy

et al., 2011). The values stored are indexed for retrieval by unique keys (Aniceto et al., 2015; Padhy

et al., 2011). Values are stored independently from each other and the application logic handles the

relationships between the data (Aniceto et al., 2015). Key-value stores can handle structured and

unstructured data (Padhy et al., 2011). They are simplistic and ideally used when highly-scalable

databases that can retrieve and store large volumes of records quickly are required (Moniruzzaman

& Hossain, 2013).

3.2.2 Use case for Key-Value stores

Key-value databases may be an appropriate solution for applications with one kind of object where

queries are based on one attribute (Cattell, 2011). Key-value databases are best suited for use cases

such as managing user profiles within a large financial business which requires a scalable and high-

performance database (Moniruzzaman & Hossain, 2013). Amazon is making use of a NoSQL

database called Dynamo. It is a key-value store that is readily available and is used in their shopping

cart feature (DeCandia et al., 2007). Implementing a key-value store provides Amazon with a

scalable and available distributed data store for their online business.

Figure 3.1: Key-value store contents, adapted from Wellhausen (2012).

CHAPTER 3: NOSQL

29

Another example of a key-value product is Riak. A couple of uses for Riak (Nayak, Poriya & Poojary,

2013) include firstly, managing personal information on social media websites. Secondly, to manage

profiles for Massively Multiplayer Online Role-Playing Games (MMORPGs). Thirdly, manage

factory and information control systems and lastly, to collect Point of Sales (POS) or checkout data.

Other products belonging to the key-value family are Voldemort (used by LinkedIn), Redis, and

Berkeley DB.

3.2.3 Document-based stores

Document-based stores utilise the same concept as key-value stores (Aniceto et al., 2015).

Documents refer to collections of attributes where each attribute can have multiple values assigned

to it (Aniceto et al., 2015; Padhy et al., 2011). One can add any number of records of any length to

any document in the store (Padhy et al., 2011). Each document in the store contains an ID key that

uniquely identifies that specific document (Aniceto et al., 2015). The documents are encoded in a

data exchange format such as JSON (JavaScript Option Notation) which are commonly stored in

document-based stores. Examples of document-based stores include MongoDB and CouchDB

(Padhy et al., 2011).

The ID keys that explicitly identify each specific document must be unique (Hecht & Jablonski,

2011). The values inside a document store can be queried, which means that complex data structures

can be handled with ease. Document stores do not have any schema restrictions and adding new

attributes to a store is easy (Hecht & Jablonski, 2011). A user can also do multi-attribute searches

from a variety of key-value pairs. Document stores are convenient for data integration and schema

migration tasks.

Figure 3.2: Relational data model versus the document-based data model (Couchbase, n.d.).

CHAPTER 3: NOSQL

30

3.2.4 Use case for document-based stores

Document-based stores are good for managing and storing enormous size collections of documents,

such as collections of text documents, emails, and XML documents, as well as semi- and unstructured

data (Moniruzzaman & Hossain, 2013). Document-based stores can be used by content management

systems, blogging platforms, and applications for electronic commerce as well as for web analysis

and real-time analysis. However, document-based stores may not be an appropriate solution for

websites with complex transactions or queries that dynamically change the calculation structure

(Hwang, Lee, Lee & Park, 2015). The document data model can facilitate website creation, since the

data model supports unstructured data by default while not requiring costly and time-consuming

migrations between systems (Hwang et al., 2015). An in-practice example of a document store in use

is traffic department records that contain two categories of objects (vehicles and drivers) and can do

a lookup of objects on multiple fields (driver’s name, owned vehicle, birth date, license number).

An important element to consider is the level of concurrency a task requires when employing

document-based databases. If “eventually consistent” can work with the use case, then document-

based stores may work well (Cattell, 2011). An example of this idea being applied to daily life can

also be found in traffic department records. The traffic department may not need to know if a driver

of a specific license number received a traffic violation within the last minute. However, the records

will be updated eventually

3.2.5 Graph stores

Graph stores are excellent at handling and managing heavily linked data. Graphs represent the data

schema for this database type. In cases where relationship-heavy data is stored, graph data models

are better suited to handle the data than other kind of data model (Hecht & Jablonski, 2011). Graph

stores consist of three elements, namely nodes, the relationships between nodes, and the values

attached to the relationships and the nodes (Aniceto et al., 2015). Graph stores are the only NoSQL

database type that focuses on the relationships between the data (Moniruzzaman & Hossain, 2013).

Graph stores also visually represent the data, which is more human-friendly.

Graph stores can be used by location-based services and recommendation systems. They can also be

used for knowledge representation and to solve pathfinding problems in navigation systems (Hecht

& Jablonski, 2011). The use cases, for example pathfinding problems, employ complex relationships.

3.2.6 Use case for graph stores

Graph databases are more useful when the relationships between the data are more important than

the data itself (Moniruzzaman & Hossain, 2013). Graph stores are optimised for traversing

relationships. The best use cases for graph stores are when dealing with heavily linked data, location-

CHAPTER 3: NOSQL

31

based services, and recommendation services (Hwang et al., 2015). Graph stores do not provide the

best solution for modifying entity updates (Hwang et al., 2015). However, graph stores can be used

as a mechanism for graph-based queries, such as computing the shortest path between two nodes

inside a cluster. Another possible use is pattern detection through forensic investigation

(Moniruzzaman & Hossain, 2013). Examples of graph databases include Neo4j, InfoGrid, GraphDB,

and InfiniteGraph.

3.2.7 Column-family stores

Column-family stores define the structure in which the data is stored as a set of columns (Aniceto et

al., 2015). Column-family stores contain an extendable column of related data. They can also be

referred to as super columns or column-family structures (Padhy et al., 2011; Aniceto et al., 2015).

Columns refer to the data schema of the column-family databases. Examples of products that fall

under the column-family category are Cassandra, HBase, and Google’s BigTable (Padhy et al.,

2011).

Column-family databases can be used for distributed data storage. They can also be used for large-

scale, batch-oriented data processing, such as converting, sorting, and parsing data (Moniruzzaman

& Hossain, 2013). An example of this is the conversion of numbers between binary and hexadecimal

values. Statisticians or programmers can do predictive and exploratory analytics on the data stored

in column-family databases (Moniruzzaman & Hossain, 2013).

3.2.8 Use case for Column-family stores

Column-family store use cases focus on multiple kinds of objects and do lookups based on any field

(Cattell, 2011). Column-family stores aim to provide higher throughput and concurrency (Cattell,

2011). However, their complexity of use is higher than that of other NoSQL families (Cattell, 2011).

Column-family stores are suitable for distributed data storage, large-scale data processing, and

exploratory and predictive analytics (Moniruzzaman & Hossain, 2013). Column-family stores can

Figure 3.3: Graph NoSQL Database

CHAPTER 3: NOSQL

32

be used firstly, by content management systems to store all data regarding the contents. Secondly,

blogging-platform services to store and enable blogging of events. Thirdly, visitor countering

services to keep track of visitors and lastly, for event logging to capture and store the occurrence of

specific events (Hwang et al., 2015).

Using this type of store for blogging would allow blog entries to be stored alongside tags, categories,

links, and trackbacks in different columns (Hwang et al., 2015). Furthermore, when storing customer

information for an online transaction web application, the data must be partitioned vertically and

horizontally. This type of database allows customers to be clustered by country and can store data

that rarely changes in a different place than data that is changes regularly. This could also be achieved

by using document-stores. However, it is more easily achieved by using column-family databases

(Cattell, 2011). Examples of products belonging to the column-family of NoSQL technology are

HBase and Hypertable.

3.3 Conclusion

Non-relational storage technologies, which can also be referred to as NoSQL technologies, overcome

the limitations of relational storage technologies. This chapter provided background information

relating to NoSQL technologies. There are four families within NoSQL and there are advantages and

disadvantages to employing each of them. Within each family, there are a variety of products that

can be selected and used. When faced with a use case that relational technology cannot accommodate,

decisions must be made regarding which NoSQL family to use. The data storage model is a crucial

aspect to consider when deciding between NoSQL families and products. A decision must be made

regarding the best data model and technology option for the use case. Therefore, it is important to

Figure 3.4: Wide-Column Store NoSQL Database (Sasaki, 2015).

CHAPTER 3: NOSQL

33

have a decision model that removes as much ambiguity and provides as much structure as possible

to combat the influence of measurements and biases.

Individuals need to do their best to be aware of biases and to prevent these biases from influencing

the decisions made. Therefore, the following chapter will investigate and discuss the decision

framework that can be used to aid in the decision process.

PART B

FRAMEWORK

CHAPTER 4: CONCEPTUAL FRAMEWORK

The previous chapters have established that decisions regarding NoSQL families are difficult and

can be affected by biases and measurements. IT practitioners lack a systematic process to follow

when making these types of decisions. Therefore, a need for a process that will enable better decision-

making by reducing the effects of biases and measurements exists.

Chapter 4 provides a conceptual framework that aims to minimise the effect of decision biases. The

conceptual framework comprises three parts: constructs, a weighted decision model that is formed

by combining the constructs, and a process model that explains how to tailor the decision model to

specific scenarios.

The chapter starts by motivating the need for the proposed framework and explaining how it would

help. Thereafter the chapter develops the three parts of the framework. Firstly, the constructs are

identified. Secondly, the weighted decision model is specified. Lastly, the process model is defined.

4.1 Why is the framework necessary?

During the day, many decisions with varying levels of complexity and importance need to be made.

The level of complexity a decision can influence individuals’ decision-making (Kahneman &

Tversky, 1979; Kahneman & Tversky, 1984). When faced with difficult and complex situations,

individuals may employ heuristics to make quick judgements (section 2.1) (Hammond et al., 1998).

However, heuristics are not always fail-proof and can lead to wrong decisions being made.

IT practitioners are constantly faced with technology-based decisions with varying levels of

complexity. An important decision they need to make is which NoSQL family to use when doing a

project where NoSQL is used as the storage technology. This decision is not made in an impromptu

manner and can be influenced by several biases. Therefore, it is important for IT practitioners to be

aware of these biases when making decisions regarding NoSQL. An IT practitioner can counter

several decision-making biases by understanding the unique strengths and weaknesses of each

NoSQL family.

There are four NoSQL families and numerous products within each of these families (Edlich, 2011).

Each family has a data model that is used to stored data. Several products employ the data models of

specific NoSQL families. The data models handle stored data in different ways and each data model

has its own unique strengths and weaknesses. The unique strengths and weaknesses of each NoSQL

family need to be understood before an informed decision can be made regarding which of them to

use.

CHAPTER 4: CONCEPTUAL FRAMEWORK

36

To make an informed decision regarding which family and product to use, IT practitioners need to

consider large volumes of information. A framework that aims to mitigate the effects of biases and

measurements on decision-making needs to be created. There are two situations that require the

assistance of such a framework.

The first situation presents itself when a decision must be made regarding which of the four NoSQL

families is best suited for a specific use case. If uncertainty regarding this choice exists, the IT

practitioner can employ the framework to counter decision-making biases and make an informed

decision.

The second situation presents itself when a decision must be made between NoSQL products. Once

a NoSQL family has been chosen, the IT practitioner must decide on a specific product to use for the

same use case. The same decision-making biases apply to decisions regarding NoSQL products as to

those regarding NoSQL families. Therefore, the IT practitioner can employ the same framework to

better decide between NoSQL products.

These are the two most prominent situations the framework will assist IT practitioners with.

However, the framework can assist them in other ways too. Current documented use cases cater for

the different data types that may be stored within NoSQL technologies. They do not however cater

for uncommon types of data stored in NoSQL technologies. Therefore, the proposed framework

caters for more than just the type of data to be stored. In addition, the framework also makes the IT

practitioner more aware of biases. The framework will result in a better decision-making regarding

NoSQL technologies. Therefore, there is a need for the proposed framework.

4.2 How will the framework help?

The proposed framework can assist IT practitioners in making technology-based decisions. It

contributes in multiple ways:

 A set of fixed criteria allows uniform comparison.

 A list of options ensures that all relevant options are considered.

 Weights ensure that criteria are considered to the degree that they matter in the use case.

 Grading ensures that all options are carefully considered.

 A decision model suggests a choice based on the calculation of a final score.

 A process model caters for adaptation to specific technologies.

Through the ways mentioned above, the framework aims to assist IT practitioners in making better

decisions regarding technology. The proposed framework encompasses several artefacts, which are

discussed in the following section.

CHAPTER 4: CONCEPTUAL FRAMEWORK

37

4.3 What does the framework encompass?

The framework comprises multiple artefacts that aid in the decision process. These artefacts map

well to the four levels of artefacts proposed by March and Smith (1995). Figure 4.1 graphically

depicts the four levels of artefacts. The first level refers to constructs and the second level refers to a

model, which is defined as the relationships between constructs. In the proposed framework, the

decision model links various constructs (criteria, weights, grades, options) through the calculation of

a final score. The third level of March and Smith’s (1995) artefacts refers to a method, which is a set

of steps followed to perform a task. In the proposed framework, a 6-step process to adapt the decision

model to specific technologies is presented.

The proposed framework can be used by the IT practitioner to assist with decisions in specific use

cases. This use of the model represents the fourth level of March and Smith’s (1995) artefacts, namely

instantiation.

The following sections discuss the artefacts the proposed framework is comprised of in more detail.

4.3.1 Constructs

There are six constructs found within this framework: the list of choices, the fixed set of criteria, the

weights of criteria, the grades, the score calculation, and the sequence of steps.

The first construct in the decision model is the list of choices to decide between. To ensure a uniform

comparison, it is important to create a fixed set of criteria, which is the second construct within the

decision model. The different criteria are not of equal importance and therefore must be weighted.

The weights of criteria is the third construct within the model. Each choice will receive a grade for

each of the criteria, which is the fourth construct in the model. A weighted average can be used to do

a score calculation, which is the fifth construct in the model. The last construct in the model is the

sequence of steps followed to apply the framework.

Figure 4.1: Artefacts of a design science study (March & Smith, 1995).

CHAPTER 4: CONCEPTUAL FRAMEWORK

38

4.3.2 Model

Table 4.1 represents the weighted decision model with all the constructs inside. The list of choices

(families F1 to Fm) will be graded (R11 to Rnm) according to the fixed set of criteria (C1 to Cn). The

fixed set of criteria will be assigned weight values (Wi to Wn) that reflect the use case requirements.

The decision model will calculate a weighted score (Score(Fk)= ∑ 𝑊𝑖. 𝑅𝑖𝑘
𝑛
𝑖=1) for each of the

families, which can assist in decision-making. To implement this model, a specific method in the

form of a process model is required.

Table 4.1: The weighted decision model.

𝑆𝑐𝑜𝑟𝑒(𝐹𝑘) = ∑ 𝑊𝑖. 𝑅𝑖𝑘

𝑛

𝑖=1

4.3.3 Method

Figure 4.2 is a visual representation of the process model found within the framework. The process

model provides a 6-step process to implement the framework. Following these steps can also assist

with NoSQL product recommendations.

4.3.3.1 Investigate the technology (Step 1)

Since this model will always be used to make decisions within a technology context, it is important

to gain an understanding of the relevant technology and the choices that must be made regarding the

technology. In the context of this study, this means investigating NoSQL technologies and families.

Refer to Chapter 3 for more information on NoSQL families.

Criteria Weight F1 F2 … Fk … Fm

C1 W1 R11 R12 … R1k … R1m

…

Ci Wi Ri1 Ri2 … Rik … Rim

…

Cn Wn Rn1 Rn2 … Rnk … Rnm

Figure 4.2: General steps of the weighted decision model.

CHAPTER 4: CONCEPTUAL FRAMEWORK

39

The technology focus of this study lies within the NoSQL technology area. Each of the NoSQL

families represents a different data model with unique strengths and weaknesses.

4.3.3.2 Identify the comparison criteria (Step 2)

In Step 1, a good understanding of what the technology involves is gained. In Step 2, this knowledge

is used to create a fixed set of criteria that are important to the specific technology. The development

of the fixed set of criteria for NoSQL technologies is discussed in Chapter 5. The fixed set of criteria

enables the NoSQL families and products to be uniformly compared.

The fixed set of criteria will ensure that only relevant information is used to compare NoSQL families

with one another. Therefore, no unnecessary information can influence the decision-making process.

This counters the not enough meaning category of biases. A fixed set of criteria will encourage

investigation, which will counter the memory effects category of biases. Individuals will not need to

rely on past experiences to compare the NoSQL families but will be able to base their decisions on

investigated information. The criteria can also be adapted to a specified context (NoSQL), which

ensures contextual information is used to compare the families. This will counter the not enough

meaning category of biases.

4.3.3.3 Grade according to the criteria (Step 3)

Each option must be graded based on the extent to which it fulfills each of the criteria. This will

ensure that the decision-maker considers all possible options and thereby remove some bias. In the

context of this study, the options will be graded according to nine criteria. These criteria will be

developed in Chapter 5, and grading will be discussed in Chapters 6 and 7. Chapter 6 will provide

information pertaining to the application of the process model to a NoSQL technology context.

Chapter 7 will apply the process model grading system in the context of instantiation meaning the

performance of the four families will be graded.

Once the fixed set of criteria has been identified, grading can commence. Each NoSQL family is

graded using the fixed set of criteria. The grades represent the performance level of a specific NoSQL

family for each of the criteria. Examining all the grades of a NoSQL family can show its unique

strengths and weaknesses. High precision values would not heavily influence the performance levels

of the families. Within the context of this study, there is no need for a decimal value to depict the

performance levels of the families since the decimal values may not change the meaning of the

performance level. Therefore, high accuracy values are used to depict the performance level of each

family.

CHAPTER 4: CONCEPTUAL FRAMEWORK

40

Grading the families by using the criteria will ensure that IT practitioners investigate the NoSQL

families by following systematic steps to provide values for all of the criteria. This counters the act

fast and memory effects categories of biases.

Depending on the use case, certain criteria will be more important than others. Weighting the criteria

will show the different levels of importance of the different criteria in the context of the specific use

case.

4.3.3.4 Weight the criteria (Step 4)

Step 4 entails weighting the criteria to indicate the level of importance of each criterion within the

context of a specific use case. Since each use case has specific requirements, the criteria are not all

of equal importance. Therefore, it is crucial to allow IT practitioners to input weights into the model.

In the context of this study, the weighting of criteria is done within the context of a NetFlow use case

and is discussed in Chapters 6 and 8. Chapter 6 will provide information relating to the application

of the process model in the context of the use case. Chapter 8 will apply the process model weighting

system in the context of the NetFlow use case (instantiation).

A tool that will enable an IT practitioner to assign weights to the different criteria is required. A fixed

amount of points is provided to the IT practitioner to assign to the various criteria. The tool is an

essential element of the weighting process, as it prevents the IT practitioner from assigning equal

weights to all the criteria. Therefore, the IT practitioner is forced to consider which of the criteria are

more important and which are less important. Ensuring that proper weights are assigned to the criteria

will increase the quality of the recommendation from the model.

The average of values measurement can influence the final weight values assigned to the criteria. An

average of the weighted values received from respondents is used to derive a common weight value

for each criterion. However, the derived value may not represent all the respondents’ specific weight

values. Therefore, the wrong requirements may be used to base decisions on. The weights of the

criteria must represent the level of importance of each criterion within the specific use case. High

precision values would not change the meaning of the final weights for each criterion. A decimal

number would not change the meaning of the weight. Therefore, high accuracy values are adequate

for the weight values within the model.

The model will provide weighted criteria by using relevant information to determine the importance

value of each criterion within the use case. Using only relevant information will counter the too much

information category of biases, because no unnecessary information will be able to influence the

weightings of the criteria. Weighting criteria also forces the IT practitioner to investigate only

contextual information regarding the importance level of each criterion. This counters the not enough

CHAPTER 4: CONCEPTUAL FRAMEWORK

41

meaning and memory effects categories of biases. Focus is also placed on the importance level of

each criterion. This forces the individual to investigate the importance of each criterion to ensure the

specific use case requirements are represented.

4.3.3.5 Score the options (Step 5)

Once Step 4 has been completed, the options can be scored. The final score for each family is derived

from a combination of the weights (Step 4) and grades (Step 3) of its criteria. The grades are used to

indicate the unique strengths and weaknesses of each family, while the weight values represent the

importance of each criterion within the context of the use case. Scoring the options is discussed in

Chapters 6 and 8. Chapter 6 provides information relating to the process model, while Chapter 8

focuses on how the weights are applied during instantiation. In the context of this study, the weights

represent the importance of the criteria within a NetFlow use case.

The accuracy and precision of values influence the scoring of the NoSQL families. When scoring,

only high accuracy values are used meaning high precision values would not influence the meaning

of the final score. Therefore, high accuracy values can be used to determine the final score of each

option.

A calculation is used to determine the score for each criterion. A criterion’s score is a combination

of its weight and grade. Once all the criteria have been scored, the NoSQL families’ final scores can

be calculated. All the criterion scores of a NoSQL family are added together to obtain its final score.

The final score is an indication of the appropriateness of the family for the particular use case. This

calculation process is followed to obtain the final score of each of the NoSQL families. The final

score of each family will be different, as each family has its own unique strengths and weaknesses.

The next step is to make recommendations based on the final scores the NoSQL families.

4.3.3.6 Recommend an option (Step 6)

The last step of the framework is to provide a recommendation based on the final scores of the

options. Completing Step 5 provides the final scores, which should differ from one another. The

highest score indicates which option is most appropriate for the use case. The recommendation are

based on a mathematical formula, however the recommendation is not perfect. Therefore, the

recommendation reduces uncertainty but does not remove uncertainty.

In the context of this study, the NoSQL families are scored to find the one most appropriate to be

used in the NetFlow use case. The final scores represent the ability of each NoSQL family to fulfil

the specific NetFlow use case requirements. The higher the final score, the more a specific NoSQL

family meets the requirements of the use case. In Step 6, the final scores of the NoSQL families are

CHAPTER 4: CONCEPTUAL FRAMEWORK

42

displayed and a recommendation is made based on them. The family with the highest final score will

perform the best within the context of the specific use case.

Figure 4.3 provides a graphical overview of the artefacts comprising the proposed framework. The

weighetd decision model combines several constructs which include the list of options, the

comparison criteria, the importance weightings, the performance grades, the final scores for each

option and the 6-step process which can adapt the framework to specific technologies.

4.4 Conclusion

In previous chapters, it was established that there is a need for a framework that can help IT

practitioners make better decisions regarding technology. Therefore, this chapter proposed a

framework that can assist with technology-based decisions.

Figure 4.3 provides a graphical overview of the artefacts that make up the proposed framework. The

weighted decision model combines several constructs, including the list of options, the comparison

criteria, the importance weightings, the performance grades, the final scores for each option, and the

6-step process that can be used to adapt the framework to specific technologies.

In Chapters 5 and 6, the weighted decision model within the proposed framework will be modified

to enable it to be applied to the context of NoSQL technologies. The adjustments that will allow it to

be used in a specific technology context rather than a general technology context will be made by

using the 6-step process discussed in this chapter. Chapter 5 will investigate the development of the

comparison criteria to ensure that a uniform comparison of the NoSQL families can be made. Chapter

6 will discuss how to implement various steps in the process model within the context of NoSQL

technologies.

Figure 4.3: Overview of the framework.

CHAPTER 4: CONCEPTUAL FRAMEWORK

43

The next part of this study uses the proposed framework within a specific use case to demonstrate

the feasibility and utility of the framework. This is indicated by the top layer of Figure 4.3. The

framework is employed within a NetFlow use case context to assist IT practitioners in deciding which

NoSQL family is most approproiate for storing Netflow data. The next chapter will develop a set of

criteria that can be used to compare NoSQL families.

CHAPTER 5: CRITERIA DEVELOPMENT

In previous chapters, it was made clear that making decisions regarding NoSQL families is difficult.

This motivated the need for a framework that IT practitioners can use to make better decisions

regarding technologies. In response to this need, Chapter 4 proposed a framework to help counter

the problems that can influence technology decision-making. The framework comprises several

constructs that work together within a decision model. It also proposes a 6-step process to adapt the

decision model for specific technologies to assist in decision-making regarding a specific technology.

Chapters 5 and 6 set out to customise the decision model to the context of this research study. This

will enable it to be used to decide between NoSQL technologies. Step 1, investigating the technology,

was completed in Chapter 3 of this dissertation. Chapter 5 focusses on Step 2, which is identifying

comparison criteria. To assist IT practitioners in choosing between NoSQL families, a fixed set of

criteria will be used to uniformly compare the families.

The chapter starts off by explaining the need for comparison criteria and provides an example of

existing comparison criteria. Thereafter, additional criteria are added to the existing criteria to create

to the full set of comparison criteria that will enable the NoSQL families to be uniformly compared.

5.1 Why develop comparison criteria?

Chapter 3 identified the four existing NoSQL families, each of which uses a specific data model. The

families all have unique strengths and weaknesses that need to be compared so that an informed

decision regarding which family to select for a specific use case can be made. Therefore, a uniform

comparison must be made between the four families.

The criteria are based on certain aspects of NoSQL databases that can be used to uniformly compare

the families. The aim of the criteria is to enable the framework to indicate the unique strengths and

weaknesses of each family. The criteria will also assist in combatting some of the bias categories

(section 2.5) by ensuring the IT practitioner considers all possible alternatives for the use case.

An example of a method that can be used to compare NoSQL families is the CAP theorem. The CAP

theorem states that a NoSQL family can only contain two of the three CAP properties. The three

CAP properties are consistency, availability, and partitioning (Brewer, 2000). The CAP theorem is

an example of a fixed set of criteria in the comparison of NoSQL databases (Brewer, 2000, 2012).

In the following sections, the CAP theorem is investigated and expanded on using additional criteria

to enable a better uniform comparison of the NoSQL families.

CHAPTER 5: CRITERIA DEVELOPMENT

45

5.2 The CAP theorem

As stated in section 3.1.1, most relational database systems are based on transactions to ensure the

atomicity, consistency, isolation, and durability (ACID) of data management (Moniruzzaman &

Hossain, 2013). However, storing large volumes of semi- and unstructured data may cause ACID-

compliant relational databases to struggle. Therefore, to overcome the shortcomings of ACID,

Brewer (2000) proposed the CAP theorem.

The CAP theorem describes a NoSQL database in terms of consistency, availability, and partition

tolerance (Brewer, 2000, 2012). Firstly, high consistency refers to the ability of the system to always

provide clients with the most up-to-date data (Brewer, 2012). Secondly, high availability refers to

the ability of a system to ensure successful reads and writes most of the time (Brewer, 2000, 2012).

High availability may also refer to the expectation that each operation will terminate successfully

(Pokorny, 2013). Thirdly, high partition tolerance refers to the ability of a system to accept read and

write requests even if network partitions are unavailable (Brewer, 2012; Pokorny, 2013). The three

properties (CAP) should be balanced against one another when considering a database management

system.

A NoSQL database can only possess two of the three desirable CAP properties (Brewer, 2000, 2012).

Table 5.1 lists several NoSQL products and their corresponding CAP properties. There are a wide

variety of products with different combinations of the CAP properties. This implies that there may

be no single solution to all problems. Instead, there are many products which can be used to solve a

variety of problems. The possible combinations of the CAP properties are AP (Availability-

Partition), CP (Consistency-Partition), and AC (Availability-Consistency).

Table 5.1: Tabular format of CAP properties for popular NoSQL databases (Hu, Wen, Chua, & Li, 2014).

Data model Technology CAP option

Key-value Dynamo AP
 Voldemort AP
 Redis AP
Column-family BigTable CP
 Cassandra AP
 HBase CP
 Hypertable AP
Document-based SimpleDB AP
 MongoDB AP
 CouchDB AP
Graph PNUTS AP

Figure 5.1 also indicates the CAP combinations and some of the products associated with each

combination. The products indicated are only examples and not a complete list. The AP combination

of properties means that full consistency is not a goal of the system. Higher availability and partition

tolerance (AP) is the aim of most NoSQL systems (Moniruzzaman & Hossain, 2013). The CP

CHAPTER 5: CRITERIA DEVELOPMENT

46

combination of properties means that high availability is not important to the system (Han et al.,

2011). The AC combination of properties means that high partition tolerance is not a priority (Han

et al., 2011). If high consistency is not part of the combination of properties of a NoSQL system, the

system becomes basically available, soft-state, and eventually consistent (BASE) (Hecht &

Jablonski, 2011; Sharma & Dave, 2012). Therefore, systems that has do not have a focus on providing

high consistency will provide availability and partition tolerance. The NoSQL system may restrict

the data model to enable better partitioning (Moniruzzaman & Hossain, 2013).

Figure 5.1: CAP theorem combined with NoSQL database products (Piplani, 2010).

The four NoSQL families have varying levels of abilities. A comparison must be made to help IT

practitioners decide between the families. The CAP criteria provide a platform that can be used to

compare the NoSQL families. However, this places the focus on only three criteria, while other

factors are ignored. The CAP criteria are centred around the state of the data in storage. However,

CAP does not consider how the data is processed to be stored later. Additional criteria will be able

to provide a more holistic view that can be used to enable a better comparison between the NoSQL

families. Therefore, additional criteria need to be identified to ensure a holistic and uniform

comparison.

5.3 The fixed set of criteria

Throughout the literature review process, certain prominent criteria were identified by investigating

data storage technologies. These criteria can be used to provide IT practitioners with a more informed

and less biased view of the NoSQL families. Using a fixed set of criteria will ensure that the families

are uniformly compared with one another. This will assist in mitigating the problems identified in

Chapter 2. The identified criteria comprise of the CAP theorem (consistency, availability, and

CHAPTER 5: CRITERIA DEVELOPMENT

47

partitioning) as well as some additional criteria. The additional criteria are read and write

performance, scalability, conceptual data structure, reliability, and learning curve.

These criteria represent certain abilities and aspects of database technologies. The identified criteria

cover the overall abilities of the NoSQL families. An explanation and justification of each criterion

follows.

5.3.1 Consistency

Completing a write operation will insert a record into a database. If the database system has high

consistency, all readers will immediately see the most up-to-date information (Brewer, 2000, 2012;

Strauch et al., 2011). Therefore, consistency refers to the extent to which the system is in a consistent

state after operations such as reading and writing have occurred (Chen, Mao & Liu, 2014). The level

of consistency in a database system depends on the requirements of the use case. There are several

levels of consistency, including strong, weak, and eventual consistency (Gilbert & Lynch, 2012;

Vogels, 2009).

Strong consistency refers to a level of consistency at which any client accessing the data after an

update to the data set will immediately see the most up-to-date version of the data (Lourenço, Cabral,

Carreiro, Vieira & Bernardino, 2015b; Moniruzzaman & Hossain, 2013; Pokorny, 2013; Vogels,

2009). Weak consistency refers to a level of consistency at which accessing the data subsequent to

an update does not guarantee that the most up-to-date version will be displayed. Certain conditions

need to be met before the up-to-date data can be returned (Pokorny, 2013; Vogels, 2009). Eventual

consistency is closely related to weak consistency. Eventual consistency means that the current data

will become the most up-to-date data if no new updates are made to the dataset (Lourenço et al.,

2015b; Vogels, 2009). The eventual consistency model has several variations, such as causal, read-

your-writes, session, monotonic read, and monotonic write consistency, that can be used depending

on the use case requirements (Vogels, 2009). The use case influences the level of consistency

required to provide a specific service. An advantage of having weak consistency is that availability

and scalability levels increase within the system (Brewer, 2012).

According to the ACID model, relational databases support full consistency most of the time

(Pokorny, 2013). Strong consistency can affect database performance, as the data needs to be kept

up to date constantly. Complex application logic is employed to detect and resolve any

inconsistencies to constantly provide up-to-date information. However, the complex logic affects the

database performance, as more time needs to be spent on consistency (Pokorny, 2013). If semi- or

unstructured data is stored in a relational database, the performance will degrade.

CHAPTER 5: CRITERIA DEVELOPMENT

48

The CAP theorem allows NoSQL databases to employ either strong or eventual consistency,

depending on the grouping of CAP properties (Brewer, 2000, 2012). According to the CAP theorem,

NoSQL databases can provide high performance and strong consistency (Han et al., 2011). The

groupings of CAP properties influence the abilities of the database system. The possible grouping of

properties for consistency are CP and AC (Brewer, 2000, 2012). These groupings mean that the

NoSQL databases have flexible data models that can accommodate different needs. Relational

databases provide full ACID support and focus on storing structured data. Storing semi- and

unstructured data in a relational database can lead to much slower performance, as time is wasted on

transactions.

Depending on the use case, there may or may not be a need for strong consistency. If the use case

works with semi- or unstructured data, non-relational databases should be considered. High

consistency is a requirement when working with transactional data, such as banking data. The data

must always be up to date. However, high consistency may not be a requirement when working with

decision-making data. An example of decision-making data is network monitoring data such as

NetFlow data. NetFlow is an instrument used in the Cisco IOS software to monitor and characterise

network operation (Cisco, 2012). NetFlow captures data between two hosts for a period of time. A

set of old NetFlow data can be used to base decisions on, because the data does not have to be updated

anymore. A set of NetFlow data for a past time period can be used to make decisions regarding the

network, therefore it does not have to be updated.

5.3.2 Availability

Availability refers to the percentage of time a system operates correctly and is deemed as running

(Domaschka, Hauser & Erb, 2014; Microsoft, 2005; Orend, 2010). Availability can also mean that

continuous operation occurs even if a fault is present (Chen et al., 2014; Strauch et al., 2011). In other

words, availability refers to the uninterrupted operation of the service (Gilbert & Lynch, 2012; Han

et al., 2011). Availability is a guarantee that clients will receive at least one copy of the data even if

nodes are down (Moniruzzaman & Hossain, 2013; Pokorny, 2013). An example of availability is a

server that has a 95% uptime, meaning 5% of the total running time the server was offline. However,

availability does not reflect the frequency of the interruptions that occurred during the 5% downtime.

NoSQL database systems can provide availability more easily than SQL database systems, because

NoSQL favours availability over consistency (Lourenço, Abramova, Vieira, Cabral & Bernardino,

2015a). There is a trade-off between the consistency and availability properties of the CAP theorem.

If high availability is present in a system, it will have lower levels of consistency. Some NoSQL

products allow the trade-off to be managed by adjusting the levels of consistency and availability.

CHAPTER 5: CRITERIA DEVELOPMENT

49

An example of a database that allows the management of the tradeoffs is Dynamo (DeCandia et al.,

2007).

Nelubin and Engber (2013) conducted a study that tested NoSQL products and their failover

characteristics. The database technologies tested were Aerospike, Cassandra, Couchbase, and

MongoDB. The results of the study showed that Aerospike and Cassandra had the shortest downtime,

while MongoDB had the least favourable downtime (Nelubin & Engber, 2013). Therefore, different

NoSQL technologies provide varying levels of availability to solve different problems.

High availability is a requirement for systems that aim to spend a high percentage of time operating

correctly. For example, an online instant messaging service requires the database system to be

available at all times to ensure all messaging operations occur. However, high availability may not

be a requirement in instances where the database will not lose value if the system goes down.

5.3.3 Partitioning

Partition tolerance refers to a system’s ability to continue functioning even if some network partitions

are unavailable (Pokorny, 2013; Strauch et al., 2011). It is the ability of a database system to cope

with the addition or removal of nodes (Brewer, 2000, 2012; Moniruzzaman & Hossain, 2013) and

must be considered in situations where partitioning is present. If the volume of data exceeds the

capacity of a database, partitioning the data must be considered (Domaschka et al., 2014; Strauch et

al., 2011).

A partition tolerant database system will forward read and write requests to available nodes instead

of offline nodes (Gilbert & Lynch, 2012; Han et al., 2011). Once an offline node comes online, the

node will receive its requests that were intended for it (Pokorny, 2013). The database system must

ensure that the write operations finish only if the nodes have replicated their stored data onto other

nodes.

Partitioning the database across other clusters is a solution to capacity and performance problems

(Moniruzzaman & Hossain, 2013). Relational databases scale vertically to address these problems.

Scaling vertically refers to upgrading hardware (Hecht & Jablonski, 2011). However, upgrading the

hardware of a server can be expensive and does not result in a linear increase of performance within

relational databases.

NoSQL databases scale horizontally to overcome capacity and performance limitations. Scaling

horizontally means employing multiple machines to exponentially increase the capacity and

performance of the database system (Hecht & Jablonski, 2011). NoSQL families differ in the way

they partition data across multiple machines (Hecht & Jablonski, 2011). Some of the NoSQL families

CHAPTER 5: CRITERIA DEVELOPMENT

50

have a type of key-oriented data model (Hecht & Jablonski, 2011) where the key is used to store,

identify and sort data (Abramova, Bernardino & Furtado, 2014). When partitioning data within a

NoSQL system, two key-based strategies are employed to distribute data sets.

The first partitioning strategy is range-based partitioning, which entails distributing data sets

according to the range of their keys (Hecht & Jablonski, 2011). Splitting a key set into blocks allows

a routing server to assign these blocks to various nodes in the cluster (Chen et al., 2014). Each node

handles the performance and storage of its assigned block of keys (Sharma & Dave, 2012). Queries

searching for a specific key are first sent to the routing server and then assigned to the appropriate

node to allow efficient handling of queries (Hecht & Jablonski, 2011). Therefore, an advantage of

this method is that the routing server handles the partition block allocations and load balancing (Chen

et al., 2014). However, a disadvantage is that the availability of the entire cluster is dependent on the

single routing server (Hecht & Jablonski, 2011). This means that a single point of failure exists. To

counter this disadvantage, the routing server is often replicated to other machines.

The second partitioning strategy is consistent hashing, which allows for higher availability (Hecht &

Jablonski, 2011; Karger et al., 1999). This strategy employs a shared nothing architecture with no

single point of failure. A shared nothing architecture refers to a distributed-computing architecture

where each node in the cluster is independent from other nodes (Stonebraker, 1986). Therefore, none

of the nodes share resources such as memory and storage capacity (Stonebraker, 1986) Hash

functions distribute the keys randomly and allow for quick calculation of a key's address within the

cluster (Hecht & Jablonski, 2011). Consistent hashing does not require a load balancer as range-

based partitioning does. However, the addition or removal of nodes may have a negative impact on

the performance of the system. The performance may be negatively influenced, because the keys are

randomly distributed throughout the cluster and the addresses of the keys need to be re-calculated

with the addition or removal of nodes (Hecht & Jablonski, 2011).

A highly partition tolerant system will continue to function without being affected by the addition or

removal of nodes. High partition tolerance is required in situations that need a high fault tolerance,

such as LinkedIn accounts. The users need to be able to access their LinkedIn accounts to make be

in contact at all times and not miss opportunities. However, low partition tolerance can be utilised in

situations where no data needs to be partitioned. If there are no other nodes in the server, partition

tolerance will not be a critical requirement.

The CAP criteria have now been thouroughly investigated. The following sections will discuss

additional criteria that represent some other features and aspects of the NoSQL families. They have

been included to enable a more holistic comparison between the families.

CHAPTER 5: CRITERIA DEVELOPMENT

51

5.3.4 Read and write performance

Read and write performance refers to the performance output of a database and the time it takes to

complete a function. The read and write requests are sent to the database to complete a function or a

request from a client. The client expects that the database to respond quickly without any noticeable

delay (Hecht & Jablonski, 2011).

NoSQL databases may be the solution to performance demands when storing and working with semi-

and unstructured data. NoSQL database performance can be optimised for both reads and writes

(Lourenço et al., 2015a). The read/write optimisation depends on the tools used for the retrieval,

storage, and organisation of data. Write optimisation means that a higher level of performance is

experienced with write functions than with read functions. However, several NoSQL databases are

in-memory stores meaning they can be optimised for read or write performance (Lourenço et al.,

2015a). A database’s performance may differ considerably depending on its optimisation. Some

cases may require more reading performance than writing performance or vice versa. Therefore,

within the model, reading and writing performance are included as two separate criteria.

5.3.5 Scalability

Scalability refers to a system's ability to deal with increasing workloads (Orend, 2010). Scalability

of a database represents the performance change that occurs with the addition or removal of nodes.

The addition of improved hardware or nodes impacts the performance and capacity levels of a

database system (Kuhlenkamp et al., 2014). In a scalable system, the performance and capacity

increase is proportional to the amount of hardware added (Agrawal, El Abbadi, Das & Elmore, 2011).

There are two methods according to which systems can be scaled when hardware resources are added.

The first method is to scale vertically or follow the scale-up approach. To scale up means to add

resources to a single node inside a system (Agrawal et al., 2011; Kuhlenkamp et al., 2014). Adding

improved processors to a single server and increasing the storage capacity of a single server are

examples of scaling vertically (Agrawal et al., 2011). Scaling vertically improves the performance

of a single node.

The second method is to scale horizontally or follow the scale-out approach (Microsoft, 2005;

Moniruzzaman & Hossain, 2013). Adding more nodes to the system leads to horizontal scaling. The

performance and capacity of the system scale linearly with the number of servers (Pokorny, 2013).

Thus, the addition of new servers to the system leads to an increase in capacity and performance

proportional to the number of servers.

CHAPTER 5: CRITERIA DEVELOPMENT

52

Relational and non-relational databases scale their performance and storage capacities differently.

Relational database management systems use a scale-up method and scale vertically (Microsoft,

2005; Padhy et al., 2011). The scale-up method entails upgrading the performance and capacity of

the server through hardware upgrades. Upgrading the performance and capacity of the server

increases the performance of the relational database system (Naheman & Wei, 2013). Therefore, one

of the most popular methods of scaling a relational database is running the database on a more

powerful server (Leavitt, 2010; Padhy et al., 2011).

The greatest drawback to scaling up is the financial burden that must be carried in exchange for

increased performance. Scaling up does not guarantee that the increase in performance and capacity

will be proportional to the amount of hardware employed (Agrawal et al., 2011). The scale-up method

has limitations. The data must be distributed across multiple servers and relational databases may not

function well with data partitioning (Leavitt, 2010). Thus, the performance gain may not be as great,

while the cost of the scale-up method will increase by a large margin.

Non-relational (NoSQL) databases can improve performance and capacity levels through horizontal

scaling (Moniruzzaman & Hossain, 2013). Scaling horizontally means evenly distributing the

workload among the nodes in a cluster. This scaling method provides performance levels that are

proportional to the number of servers employed (Naheman & Wei, 2013). Horizontal scaling can

assist in providing superior performance and adequate levels of storage with which to address the

requirements of unstructured data. Consequently, scalability may be a crucial requirement when

dealing with large volumes of unstructured and heterogeneous data (Lourenço et al., 2015a).

There exist drawbacks to scaling out. Horizontal scaling also has performance drawbacks since the

type of deployment will impact the performance (Audette, 2011). For example, a scaled-up website

will provide better performance than the scaled-out website when accessing a local database rather

than over the internet. The scaled-out system will provide better capacity while having a higher

latency when reacting to requests (Audette, 2011). Additionally, scaling out allows the addition of

more nodes to the cluster to increase the processing and storage capacity. The addition can lead to

higher initial and operational costs when compared to scaling up as there are more servers running

(Audette, 2011). Employing horizontal scaling can lead to much higher financial costs if powerful

servers are used within the cluster. Therefore, cost can be a major drawback to horizontal scaling

too.

A highly scalable database can increase its performance and capacity levels to accommodate an

increase in workload. The particular instance determines which method of scalability is employed.

There are two methods (vertical and horizontal scaling) that can be used to achieve high scalability

CHAPTER 5: CRITERIA DEVELOPMENT

53

within databases. If data needs to be scaled to various other nodes in the cluster, horizontal scaling

is best the approach to use. NoSQL databases commonly employ horizontal scaling to achieve the

best performance and capacity levels possible. If the data does not need to be scaled to other nodes,

vertical scaling may be the best approach to use. Relational databases commonly employ the vertical

scaling method.

5.3.6 Conceptual data structure

A substantial amount of data is created daily. Businesses run constantly, and individuals have free

reign over content creation (Naheman & Wei, 2013). The data takes several forms, for example text,

images, audio, and video (Gandomi & Haider, 2015). There are three types of data, namely

structured, semi-structured, and unstructured data. Structured data refers to data that is organised

using a pre-defined structure (Gandomi & Haider, 2015). There are many restrictions placed on the

structure of the data. Semi-structured data refers to data that is similar to structured data but has fewer

restrictions placed on its structure (Chen et al., 2014; Gandomi & Haider, 2015). The data structure

can change to a certain degree. Unstructured data refers to data with no pre-defined structure (Chen

et al., 2014). This type of data does not conform to any of the restrictions placed on it by the data

model (Gandomi & Haider, 2015). Thus, it is schema-free data. These three data types must be stored

in appropriate databases.

There are two main types of database systems, namely relational and non-relational database systems.

Relational database systems store data in a structured format (Moniruzzaman & Hossain, 2013).

Unstructured or semi-structured data can be stored in a relational database only if it has been

transformed into a structured format. Storing unstructured or semi-structured data in a relational

database may cause performance penalties (Abadi, 2009). Non-relational database systems can store

semi-structured and unstructured data without transforming the data (Chen et al., 2014). Therefore,

no performance penalties will occur.

There is little to no restriction placed on the non-relational data model (Chen et al., 2014). NoSQL

database systems are non-relational. As mentioned in Chapter 3, there are four NoSQL families and

each family represents a specific data model that can store unstructured and semi-structured data.

However, each data model is also equipped to store specific types of data.

Key-value stores are well suited for quick retrieval of values, such as user profile data or online

shopping cart data (Moniruzzaman & Hossain, 2013). Graph stores are well suited for data that is

heavily linked and relationship heavy (Moniruzzaman & Hossain, 2013). An example of such data

is routing data that can be used for online maps as well as by location-based services and

recommendation services (Hwang et al., 2015). Document-based stores are well suited for large

CHAPTER 5: CRITERIA DEVELOPMENT

54

volumes of semi- or unstructured data (Moniruzzaman & Hossain, 2013). Examples of such data can

be found in content management systems and applications for e-commerce. Column-family stores

are well suited for heavily distributed data storage and large-scale data processing (Moniruzzaman

& Hossain, 2013). Examples of data stored in column-family stores include online transaction data,

user profile data, and content management system data (Hwang et al., 2015). All the data types

mentioned above are semi-structured or unstructured in nature. These types of data have elements

that can change structure and need to be stored in databases that can handle this.

Thus, data structure influences which NoSQL database system is chosen. Certain data types must be

stored within a specific database system that employs a specific data model. If the data structure is

the overriding factor in the decision, the criteria can be used to decide between products of the same

conceptual data model.

5.3.7 Reliability

As stated above, availability represents the percentage of time a system is up and running. However,

there is no indication of the frequency of incidents occurring which is where reliability is found.

Reliability is an indication of how often an incident occurs (Domaschka et al., 2014). Therefore, high

reliability is an indication of the database system’s ability to operate without frequent failures

occurring (Domaschka et al., 2014). The reliability criterion can influence the operation time of a

database. If the database is highly reliable, the database will perform its function with a low

probability of frequent failures occurring. Storing sensitive business data would require a highly

reliable database system. If a database experiences frequent faults, it may stop functioning, which

can result in value being lost. Thus, the level of reliability represents the level of tolerance against

failures. A system is more reliable if it is fault tolerant (Microsoft, 2005). Therefore, fault tolerance

refers to the ability of a database system to continue operating if a part of the system fails (Microsoft,

2005).

Relational databases may currently be the dominating force in databases due to their ACID properties

(Lourenço et al., 2015a). ACID properties indicate that the reliability level of a relational database is

high (Leavitt, 2010). NoSQL databases do not provide the degree of reliability that relational

databases do, as NoSQL is not ACID compliant. If an IT practitioner wants NoSQL to be ACID

compliant, additional programming is needed.

However, NoSQL databases can also have high levels of reliability. If NoSQL databases aim to be

highly reliable, then two questions regarding their operation need to be answered (Domaschka et al.,

2014). The first question is: How does the database resolve concurrent writes to the same item?

(Domaschka et al., 2014; Lourenço et al., 2015b). The second question is: What level of consistency

CHAPTER 5: CRITERIA DEVELOPMENT

55

is observed by clients? (Domaschka et al., 2014; Lourenço et al., 2015b). These questions represent

how reliability is provided within a NoSQL database system. Consequently, the answers to these

questions represent the level of reliability within a NoSQL database system. Therefore, IT

practitioners should investigate NoSQL technologies that can answer both these questions well in

order to find highly reliable NoSQL databases (Lourenço et al., 2015b).

A highly reliable database allows continuous functioning without failures for an extended period of

time. Online shopping websites requires highly reliable databases because transactional data needs

to be committed immediately and requires the database system to be functioning properly. Decision-

making analyses of data may not require highly reliable databases because failures would not affect

their value. Therefore, the level of reliability needed depends on the specific instance.

5.3.8 Learning curve

The learning curve refers to the time and effort needed to set up a database technology. This time

spans from installation to the point where information has been captured. The learning curve can also

be a good indication of the complexity of a specific database. If the learning curve is high, certain

factors need to be considered. Firstly, there will be many prerequisites to attend to before setting up.

Secondly, setting up the database will be complicated and time-consuming. Lastly, it will take time

to learn the database commands and become fluent in its operation.

The above-mentioned factors are some of the reasons the learning curve of a database is important.

The time needed to set up a database may indicate its level of complexity. Therefore, setting up a

database should be done as quickly as possible in a way that will allow the database to remain stable.

The database is the storage medium for the data and should be able to start capturing and storing data

as quickly as possible. If it takes a long time to set up the database to start capturing data, then it is

an indication of a large learning curve.

As stated above, the learning curve of a database is a good indication of the complexity level of

setting up and using the database. This criterion is hard to measure, as all use cases are not the same.

Currently, most database guides, research papers, and database books available are about relational

databases. Relational databases are still the dominant technology in the data storage area, which is

why they are focused on in study materials. However, since unstructured data is also on the rise,

more research on other technologies should be done.

Non-relational (NoSQL) databases are currently very prevalent. Therefore, various books and guides

about them are available. These books and guides can teach individuals about NoSQL in general as

well as how to set up specific NoSQL products. The amount of research into non-relational data

CHAPTER 5: CRITERIA DEVELOPMENT

56

storage technologies is on the rise. Numerous websites have product documentation to assist

individuals in setting up and using NoSQL databases.

The learning curve may have an impact on the selection of database systems. The lower the learning

curve, the easier it will be to employ and use a database system. The higher the learning curve, the

more complex and time-consuming it will be to employ a database system. The learning curve may

be an indication of the potential value to be gained from a database system. A high learning curve

may indicate the level of functioning the database system can achieve. Therefore, depending on the

needs of the instance, either a high or a low learning curve can be selected.

5.4 Conclusion

In previous chapters, it was established that a fixed set of criteria is needed to uniformly compare the

NoSQL technologies with one another. This chapter set out to identify and explain the criteria that

will be used to compare the NoSQL families. The identified criteria are consistency, availability,

partitioning, read and write performance, scalability, conceptual data structure, reliability, and

learning curve.

The goal of the fixed set of criteria is to uniformly compare the families to assist IT practitioners in

deciding between them. The above criteria represent certain capabilities and aspects of NoSQL

families that IT practitioners must consider. Table 5.2 lists the criteria and the research studies that

informed their adoption.

This chapter completed Step 2 (identify the comparison criteria) of the 6-step process model that is

being used to adapt the decision model to the context of NoSQL databases. The following chapter

performs Step 3 (grade according to the criteria), Step 4 (weight the criteria), and Step 5 (score the

options) of the 6-step process model to further customise the decision model to be used to make

choices regarding NoSQL databases.

CHAPTER 5: CRITERIA DEVELOPMENT

57

Ta
b

le
 5

.1
: S

tu
d

ie
s

fo
r

ea
ch

 c
ri

te
ri

o
n

.

C
ri

te
ri

a
C

ri
te

ri
a

d
ef

in
it

io
n

P

ri
m

ar
y

so
u

rc
es

C
o

n
si

st
en

cy

A
b

ili
ty

 t
o

 r
et

ri
ev

e
th

e
m

o
st

 u
p

-t
o

-d
at

e
in

fo
rm

at
io

n
.

B
re

w
e

r,
 2

0
0

0
, 2

0
1

2
; C

h
en

, M
ao

 &
 L

iu
, 2

0
1

4
; D

o
m

as
ch

ka
,

H
au

se
r

&
 E

rb
, 2

0
1

4
; G

ilb
er

t
&

 L
yn

ch
, 2

0
1

2
; H

an
, H

ai
h

o
n

g,
 L

e
&

D

u
, 2

0
1

1
; L

ea
vi

tt
, 2

0
1

0
; L

o
u

re
n

ço
, C

ab
ra

l,
C

ar
re

ir
o

, V
ie

ir
a

&

B
er

n
ar

d
in

o
, 2

0
1

5
b

; M
o

n
ir

u
zz

am
an

 &
 H

o
ss

ai
n

, 2
0

1
3

; P
o

ko
rn

y,

2
0

1
3

; S
tr

au
ch

, S
it

e
s

&
 K

ri
h

a,
 2

0
1

1

A
va

ila
b

ili
ty

P

er
ce

n
ta

ge
 o

f
ti

m
e

th
e

sy
st

em
 is

 o
p

er
at

in
g

co
rr

ec
tl

y.

B
re

w
e

r,
 2

0
0

0
, 2

0
1

2
; C

h
en

, M
ao

 &
 L

iu
, 2

0
1

4
; D

eC
an

d
ia

 e
t

al
.,

2
0

0
7

; D
o

m
as

ch
ka

, H
au

se
r

&
 E

rb
, 2

0
1

4
; G

ilb
er

t
&

 L
yn

ch
, 2

0
1

2
;

H
an

, H
ai

h
o

n
g,

 L
e

&
 D

u
, 2

0
11

; L
o

u
re

n
ço

, A
b

ra
m

o
va

, V
ie

ir
a,

C

ab
ra

l &
 B

er
n

ar
d

in
o

, 2
0

1
5

a;
 M

ic
ro

so
ft

, 2
0

0
5

; M
o

n
ir

u
zz

am
an

 &

H
o

ss
ai

n
, 2

0
1

3
; N

el
u

b
in

 &
En

gb
er

, 2
0

1
3

; P
o

ko
rn

y,
 2

0
1

3
; O

re
n

d
,

2
0

1
0

; S
tr

au
ch

, S
it

e
s

&
 K

ri
h

a,
 2

0
1

1

P
ar

ti
ti

o
n

in
g

A
b

ili
ty

 t
o

 c
o

p
e

w
it

h
 t

h
e

ad
d

it
io

n
 o

r
re

m
o

va
l o

f
n

o
d

es
 in

 a

cl
u

st
e

r.

B
re

w
e

r,
 2

0
0

0
, 2

0
1

2
; C

h
en

, M
ao

 &
 L

iu
, 2

0
1

4
; D

o
m

as
ch

ka
,

H
au

se
r

&
 E

rb
, 2

0
1

4
; G

ilb
er

t
&

 L
yn

ch
, 2

0
1

2
; H

an
, H

ai
h

o
n

g,
 L

e
&

D

u
, 2

0
1

1
; H

ec
h

t
&

 J
ab

lo
n

sk
i,

2
0

1
1

; K
ar

ge
r

et
 a

l.,
 1

9
9

9
;

M
o

n
ir

u
zz

am
an

 &
 H

o
ss

ai
n

, 2
0

1
3

; O
re

n
d

, 2
0

1
0

; P
o

ko
rn

y,
 2

0
1

3
;

Sh
ar

m
a

&
 D

av
e,

 2
0

1
2

; S
tr

au
ch

, S
it

es
 &

 K
ri

h
a,

 2
0

1
1

R

ea
d

 a
n

d
 w

ri
te

p

er
fo

rm
an

ce

Ti
m

e
n

ee
d

ed
 t

o
 c

o
m

p
le

te
 a

 r
ea

d
 q

u
er

y
fr

o
m

 a
 d

at
ab

as
e.

Ti

m
e

to
 n

ee
d

ed
 c

o
m

p
le

te
 a

 w
ri

te
 f

u
n

ct
io

n
 t

o
 a

 d
at

ab
as

e
.

G
yő

rö
d

i e
t

al
.,

2
0

1
5

a;
 G

yő
rö

d
i e

t
al

.,
 2

0
1

5
b

; H
an

, H
ai

h
o

n
g,

 L
e

&

D
u

, 2
0

1
1

; H
ec

h
t

&
 J

ab
lo

n
sk

i,
2

0
1

1
; L

o
u

re
n

ço
, A

b
ra

m
o

va
, V

ie
ir

a,

C
ab

ra
l &

 B
er

n
ar

d
in

o
, 2

0
1

5
a;

 N
ah

em
an

 &
 W

ei
, 2

0
1

3

Sc
al

ab
ili

ty

A
b

ili
ty

 t
o

 d
ea

l w
it

h
 in

cr
ea

si
n

g
w

o
rk

lo
ad

s.

A
gr

aw
al

 e
t

al
.,

 2
0

1
1

; K
u

h
le

n
ka

m
p

, K
le

m
s

&
 R

ö
ss

, 2
0

1
4

; L
ea

vi
tt

,
2

0
1

0
; L

o
u

re
n

ço
, A

b
ra

m
o

va
, V

ie
ir

a,
 C

ab
ra

l &
 B

er
n

ar
d

in
o

, 2
0

1
5

a;

M
ic

ro
so

ft
, 2

0
0

5
; M

o
n

ir
u

zz
am

an
 &

 H
o

ss
ai

n
, 2

0
1

3
; N

ah
em

an
 &

W

e
i,

2
0

1
3

; O
re

n
d

, 2
0

1
0

; P
o

ko
rn

y,
 2

0
1

3

C
o

n
ce

p
tu

al
 D

at
a

St
ru

ct
u

re

Th
e

d
at

a
st

ru
ct

u
re

 in
fl

u
en

ce
s

th
e

te
ch

n
o

lo
gy

 u
se

d
.

A
b

ad
i,

2
0

0
9

; C
h

en
, M

ao
 &

 L
iu

, 2
0

1
4

; G
an

d
o

m
i &

 H
ai

d
er

, 2
0

1
5

;
H

w
an

g,
 L

ee
, L

ee
 &

 P
ar

k,
 2

0
1

5
;

M
o

n
ir

u
zz

am
an

 &
 H

o
ss

ai
n

, 2
0

1
3

;
N

ah
em

an
 &

 W
ei

, 2
0

1
3

R

el
ia

b
ili

ty

Le
ve

l o
f

fa
u

lt
 t

o
le

ra
n

ce
.

D
o

m
as

ch
ka

, H
au

se
r

&
 E

rb
, 2

0
1

4
; L

ea
vi

tt
, 2

0
1

0
; L

o
u

re
n

ço
,

A
b

ra
m

o
va

, V
ie

ir
a,

 C
ab

ra
l &

 B
e

rn
ar

d
in

o
, 2

0
1

5
a;

 M
ic

ro
so

ft
, 2

0
0

5

Le
ar

n
in

g
cu

rv
e

Ti
m

e
an

d
 e

ff
o

rt
 n

ee
d

ed
 t

o
 l

ea
rn

 h
o

w
 t

o
 u

se
 a

n
d

 s
et

 u
p

 t
h

e
d

at
ab

as
e

an
d

 t
h

e
co

m
p

le
xi

ty
 le

ve
l o

f
se

tt
in

g
u

p
 a

n
d

 u
si

n
g

th
e

d
at

ab
as

e.

CHAPTER 6: DECISION-MAKING PROCESS

Chapter 4 proposed a framework to assist with decisions regarding technologies. The framework

presented a weighted decision-making model aimed at technology-based decisions in general.

However, a 6-step process model can be used by IT practitioners to adapt the weighted decision

model for use in the context of a specific technology.

The research problem deals with decisions regarding NoSQL databases. Step 1, investigating the

technology, has been completed as part of the background study and identified NoSQL as the

technological context. Chapter 5 was dedicated to developing a set of criteria that can be used to

uniformly compare NoSQL families.

Chapter 6 provides a more detailed account of Steps 3 to 5 of the 6-step process model. The focus of

Chapter 6 is indicated in Figure 6.1 by the shaded area. The following sections consider each of the

steps in turn.

6.1 Grade according to the criteria (Step 3)

In Step 2, a fixed set of criteria that will be used to uniformly compare the technologies was

identified. The uniform comparison aims to provide the IT practitioner with a holistic view of the

options being compared. Such a holistic view assists with better decision-making. A specific

approach is followed when grading the criteria to ensure appropriate grades are assigned and

justified.

Step 3 is to assign grades to the criteria in the context of the specific technological options being

investigated. Investigating each criterion will show the unique strengths and weaknesses of each

technology option. Therefore, the assigned grade must represent the performance level of each

Figure 6.1: Focus of this chapter.

CHAPTER 6: DECISION-MAKING PROCESS

59

technology option. The result of completing this step is having an appropriate grade assigned to each

criterion.

The model proposes that grades ranging from 0 to 10 be assigned. Each grade has a different meaning

to indicate a specific level of performance. Table 6.1 contains the suggested grades with their

associated meanings.

Table 6.1: Legend for grades assigned to the fixed set of criteria.

The grades can ensure a holistic view of the strengths and weaknesses of each technology. A

combination of performance tests, document analyses, and other data collection methods leads to a

grade out of 10. However, this study will rely on existing literature to assign grades when the

framework is instantiated in Chapters 7 and 8. The next important aspect of the model to be discussed

is the weight values.

6.2 Weight the criteria (Step 4)

Use cases represent real-world scenarios that IT practitioners work with. They have different

requirements that IT practitioners must accommodate. Therefore, IT practitioners must be able to

enter such information into the framework.

In Step 4, an IT practitioner enters weights that represent the importance level of each criterion as

derived from a real-world use case. Each use case has unique requirements that must be represented

in the decision-making model.

The criteria have varying levels of importance in a use case. If one criterion is more important than

another, the weights must indicate this. The weights will influence the calculation of the final scores

and thus also influence the recommendation. The advantage of assigning weights is that the relative

importance of each criterion is considered and represented in the model.

Grade Meaning of grade

0 Criterion does not exist within the current technology.
1 Weakest performance. Many other more viable solutions available.
2 Weaker performance. May need another solution to increase performance.
3 Weak performance. May not be the best solution for this criterion.
4 Less than average performance. Can be improved upon.
5 Average performance. Much room for improvement.
6 Above average performance. Many improvements available.
7 Good performance. Alternative improvements available.
8 Very good performance. Few improvements available.
9 Great performance. Little room for improvement.

10 Most up-to-date/best solution is implemented. Cannot be improved upon, as it is currently the
best solution available.

CHAPTER 6: DECISION-MAKING PROCESS

60

6.2.1 The importance of weights

Table 6.2 provides an example of how the criteria weights for two use cases could differ. The values

in this example were not empirically determined and are purely illustrative in nature.

The example illustrates that a use case based on SANReN (Use Case 1) and a use case based on an

online shopping cart (Use Case 2) would assign different weights to the same criteria. Use Case 1 is

a business related. SANReN (South African National Research Network) is capturing semi-

structured Netflow data for future data analytics. This use case places focus on data analytics, writing

and storing enormous amounts of semi-structured data, high scalability, high partition tolerance,

eventual consistency, and some availability of the data. These properties are essential to the success

of the use case.

Use Case 2 is an online shopping cart for an online retail store. The online retail store can serve tens

of thousands of customers each day from thousands of servers, and each customer has their own cart.

The goal is to provide customers with uninterrupted, highly available, scalable, reliable, and

consistent access to the website while storing large amounts of semi- and unstructured data.

Table 6.2: Illustration of different weights based on use cases.

Criteria Use Case 1 Use Case 2

Consistency 5 9

Availability 4 7

Partitioning 8 3

Read performance 3 5

Write performance 8 4

Scalability 7 7

Conceptual data structure 7 5

Reliability 6 8

Learning curve 2 2

The two use cases have different goals. Where Use Case 1 focuses on data analytics to provide value,

Use Case 2 aims to provide uninterrupted access to a service. Therefore, the use cases’ requirements

also differ. This is why the weights of the criteria are different. The use case requirements determine

the weights of the criteria. For Use Case 1, the read/write performance, partition tolerance, and

scalability criteria are more important than consistency and availability, as the use case only requires

eventual consistency and some availability. Therefore, higher weights will be assigned to the

scalability, partition tolerance, and write performance criteria and lower weighting will be assigned

to the consistency, availability, and conceptual data structure criteria.

In comparison, Use Case 2 requires high consistency, high availability, high scalability, high

reliability, and good performance to provide clients with uninterrupted access to their data and

CHAPTER 6: DECISION-MAKING PROCESS

61

shopping carts. For Use Case 2, higher weights will be assigned to the consistency, availability,

scalability, reliability, and conceptual data structure criteria. The requirements of the use case

determine the weights, as some criteria are more crucial to the success of a project than others. The

weights for the same criteria for these use cases will not be the same because the one use case requires

these criteria more than the other.

In a business environment, IT practitioners should have adequate knowledge of the requirements of

their use cases. The decision-maker compares the requirements of the use case to the criteria to

identify the most important criteria for the success of the use case. The more important a criterion is

to the success of the use case, the higher a weighting is assigned to that criterion. Of the criteria, the

most important should be weighted the highest and the least important the lowest.

The following section deals with different techniques that can be used to determine the weights of

the criteria.

6.2.2 Techniques used to determine the weights

There are several methods IT practitioners can use to obtain appropriate weight values to input into

the model. Some of these methods are interviews, focus groups, and questionnaires. These methods

will be discussed individually in the following section. How each method can be used by IT

practitioners to enter appropriate weight values into the model will also be discussed.

Interviews refer to verbal interactions with other individuals (Kvale, 2008). Questions are posed and

need to be answered by the respondents to provide information on topics. The goal of an interview

is to construct knowledge from the interaction between the interviewer and the interviewee (Kvale,

2008). The interview may allow the interviewer to gain insight into the problem from the

interviewee’s perspective and thereby gain in-depth information regarding the problem. There are

three different categories of interviews. The three categories are structured, unstructured, and semi-

structured interviews (Qu & Dumay, 2011).

In the context of this study, structured interviews can be used to gather the weights of the criteria.

The interviews must be conducted with experts that have extensive knowledge regarding the specific

use case and its requirements. Before an interview can start, background information must be

provided to the interviewee. The purpose of the interview must be disclosed as an investigation into

the importance of the criteria in a specific context. The IT practitioner will ask the experts technical

questions regarding the criteria and their importance to a specific use case. During an interview,

special attention must be paid to the observed behaviour of the expert. The expert may indicate

excitement or concern when asked a technical question. This can be an indication of the importance

level of the criterion in question. The responses of the experts can be compared to indicate agreement

CHAPTER 6: DECISION-MAKING PROCESS

62

or disagreement, which can influence the weighting assigned to each of the criteria for a specific use

case. The expert’s justification of an answer may also be an indication of the appropriate weight

value to be assigned to a criterion.

Interviews may be able to provide an indication of which criteria are the most important by obtaining

the opinions of numerous experts. The experts’ answers and behavioural reactions to the questions

can be used to derive weight values that will indicate which criteria are more important and which

are less important.

Focus groups refer to groups of individuals discussing a topic (Morgan, 1996; Stewart &

Shamdasani, 2014). Focus groups (Morgan, 1996; Stewart & Shamdasani, 2014, pp. 7-8) are versatile

because groups of individuals can discuss any topic and share ideas regarding any problem (Morgan,

1996; Stewart & Shamdasani, 2014). Interactions between individuals in such an environment may

stimulate creative thinking regarding a topic. Focus groups are used in marketing research to address

concerns regarding the design and service of products (Goldman & McDonald, 1987). In marketing

research, the focus group can be used to obtain clients’ perceptions of pricing, brands, and retail

environments as well as their level of satisfaction with a product (Stewart & Shamdasani, 2014, pp.

7-8). Focus groups are user-friendly and can be analysed quickly (Stewart & Shamdasani, 2014). A

focus group will lead to individuals supporting, contradicting, and extending the opinions of others

and thereby provide new insights into a topic or problem (Stewart & Shamdasani, 2014, pp. 7-8).

Without employing a focus group, such information might not be gained.

In the context of this study, a focus group can be used to derive the weight values of the criteria. A

group of experts with knowledge regarding the specific use case must be gathered to discuss the

importance of each criterion. The goal of the focus group is to have the experts interact with one

another and determine the importance of each of the criteria. The experts will be able to express their

opinions regarding the most important and least important criteria for the specific use case. The

opinions of the experts may be the same. If so, the appropriate weight values can be derived easily.

However, their opinions may also differ. If so, disagreements can be further discussed until a

conclusion regarding the importance of the criteria is reached. The behavioural reactions of the

experts can indicate agreement or disagreement. This can also be an indication of the importance of

the criteria. Therefore, appropriate weight values can be assigned to the criteria by using a discussion

group.

The value of a focus group lies in its ability to enable the IT practitioner to assign an agreed-on

weight value to represent the importance of each criterion. The focus group enables in-depth

discussions about the importance of the criteria to take place between experts. Therefore, the weight

CHAPTER 6: DECISION-MAKING PROCESS

63

values are derived from more than one opinion. If there is contention between the experts, in-depth

discussions can result in the final weight value to be assigned. The opinions and reactions of the

experts are assessable and can indicate the appropriate weight value for each criterion. Therefore, the

IT practitioner can assign appropriate weight values to the criteria for a specific use case by using

focus groups.

Questionnaires refer to questions posed to an individual to gain insight and retrieve unknown

information regarding a topic (Gillham, 2011; Olivier, 2009). A questionnaire can have open-ended

and close-ended questions (Gillham, 2011). Two types of instruments that can be used to ask close-

ended questions are Likert scales and LPC scales (Olivier, 2009, p. 83). Likert scales can be used to

measure the degree to which a statement applies to the respondent. When using a Likert scale, there

must be a neutral point in the values. An LPC scale is comparable to a Likert scale. However, the

respondent must provide a numerical value to indicate their preference to one of two alternatives.

Open-ended questions are not feasible for the purpose of the questionnaire in this study. In the context

of this study, a close-ended questionnaire with LPC-like scales can enable experts to provide the

appropriate weight value for each criterion. The LPC-like scales consist of the values 1 to 10. The

value 1 represents the lowest weight value, and the value 10 represents the highest weight value that

can be assigned. A total of 50 marks can be distributed between the criteria to indicate their various

importance levels for the use case. Therefore, all criteria cannot have the same level of importance.

The limit forces the experts to apply their minds to indicate the most appropriate importance level

for each of the criteria. Thus, the limit may increase the quality of the recommendation in Step 6 of

the framework.

What gives value to the questionnaire is that the experts are able to assign the weight values

themselves. Therefore, the most appropriate weight values can be assigned to each criterion for the

specific use case based on the experts’ opinions. The responses of the experts can be compared with

one another to indicate agreement and disagreement regarding the importance of each criterion.

Outliers can be ignored to ensure a majority view. Thus, an appropriate weight value can be assigned

to each criterion based on the majority opinion of numerous experts.

6.3 Score the options (Step 5)

The decision model compares different technologies with one another by grading each technology

using a fixed set of criteria. The fixed set of criteria will ensure that a uniform comparison of the

technologies can be made.

Table 6.3 depicts the decision model. The first column represents the set of n criteria (C1 to Cn). The

criteria represent the abilities of the technologies. Each criterion will have a weight assigned to it

CHAPTER 6: DECISION-MAKING PROCESS

64

based on the needs of the use case. The weights of the criteria are presented in the second column of

Table 6.3 by W1 to Wn. The different technologies (F1 to Fm) will each be graded according to the

criteria. Technology k (Fk) for criterion i (Ci) is assigned a grade (Rik). The final score of a technology

Fk (Score(Fk)) is equal to the sum of the weighted grades of all the criteria for that specific technology

Fk.

The goal of the decision model is to assist an IT practitioner in making an informed decision. The

decision model does so by comparing the criteria. The grades reflect the strengths and weaknesses

of each technology. A justification of each grade shows the reasoning behind assigning that grade to

a specific criterion. Weights assigned to the criteria recognise that not all criteria are equal, but that

they must be considered in the context of a specific use case.

The decision model does not remove uncertainty completely. However, it aims to remove a degree

of uncertainty and give direction to the decision process while combatting technology decision-

making biases.

Table 6.3: The weighted decision model.

𝑆𝑐𝑜𝑟𝑒(𝐹𝑘) = ∑ 𝑊𝑖. 𝑅𝑖𝑘

𝑛

𝑖=1

6.4 Conclusion

This chapter discussed Steps 3, 4, and 5 of the 6-step process proposed in the framework. These steps

were grading the options according to the criteria (Step 3), weighting the criteria (Step 4), and scoring

the options (Step 5). Each of these steps plays a critical role in the framework, which is used to make

a recommendation.

Firstly, the grading of criteria aims to reflect the unique strengths and weaknesses of the NoSQL

technologies. Secondly, the weights assigned to the criteria represent the requirements of the use

case. These requirements are obtained through a questionnaire that IT practitioners must complete.

The fixed set of criteria enables a uniform comparison of the technologies to be made. Lastly, the

final scoring uses a method that combines the grades and weights of the criteria to derive a final score

for each technology. The final score is used to make a recommendation regarding which technology

to choose.

Criteria Weight F1 F2 … Fk … Fm

C1 W1 R11 R12 … R1k … R1m

…

Ci Wi Ri1 Ri2 … Rik … Rim

…

Cn Wn Rn1 Rn2 … Rnk … Rnm

CHAPTER 6: DECISION-MAKING PROCESS

65

The last part of March and Smith’s (1995) design science framework is instantiation. During

instantiation, the model is placed within a specific instance to demonstrate its utility and feasibility.

The next chapter discusses the instantiation of the model to demonstrate its use within the context of

a specific use case.

PART C

INSTANTIATION

CHAPTER 7: GRADING THE NOSQL FAMILIES

Chapters 4 to 6 proposed a framework that can assist IT practitioners in making better decisions

regarding technology. The framework included a 6-step process that can assist IT practitioners in

adapting the framework to specific technologies. Chapters 7 and 8 will demonstrate the feasibility

and utility of the proposed framework.

In Part B, the framework was proposed and adapted to assist with decisions regarding NoSQL

technologies. Chapter 7 rates each of the four NoSQL families in terms of the criteria developed in

Chapter 5. Using a fixed set of criteria ensures that a uniform comparison of the families can be

made. Therefore, it is possible to have a holistic view of the technologies. Chapter 8 will weight the

various criteria within the context of a specific use case concerning NetFlow data.

This chapter starts by discussing the grading step in the context of the case study. A product

representative of each family is identified to be graded. Thereafter, each of the four families,

represented by their respective products, is assigned performance grades for the criteria. Each family

is investigated and graded individually to ensure a holistic view of their unique strengths and

weaknesses.

7.1 Grading NoSQL families (Step 3)

Each use case has unique requirements that must be met for the project to be a success. Some

requirements are more important for the success of the project than others. The use case used to

demonstrate the use of the framework is found in the NoSQL environment. To make a decision

regarding NoSQL, the four NoSQL families need to be compared to depict their unique strengths

and weaknesses.

Grading takes place only once per type of comparison. In the context of this research study, grading

will take place once in the context of NoSQL. Thereafter, the grades can be used for many use cases

that deal with the selection of an appropriate NoSQL family. Grading can also be done once for a

specific set of NoSQL products. Thereafter, the model can be used for many use cases that require a

selection to be made from the same set of products. The utility of the framework is thus not limited

to one specific use case.

The fixed set of criteria (Chapter 5) allows the families to be uniformly compared while combatting

certain decision-making biases. Each family has a popular database product that can be used to

represent it (DB-Engines, n.d.; ITBusinessEdge, n.d.; Mayo, 2016). The column-family stores are

represented by HBase. MongoDB represents the document-based stores. Neo4j represents the graph

stores, and the key-value stores are represented by Redis. Each of these database products are well

CHAPTER 7: GRADING THE NOSQL FAMILIES

68

researched and were created by large organisations that will ensure that the development of the

database technologies continues (HBase, 2007; MongoDB, 2008; Neo4j, 2017; Redis, 2017). They

are well-developed, popular databases that are used in many organisations and have proven to be

good benchmarks throughout the NoSQL environment (DB-Engines, n.d.; ITBusinessEdge, n.d.;

Mayo, 2016). As a result, the four most popular database products are used to represent each of the

NoSQL families. Table 7.1 gives a summary of the databases that represent the various families.

Table 7.1 Summary of choices.
Family Represented by

Column-family stores HBase
Document-based stores MongoDB
Graph stores Neo4j
Key-value stores Redis

The following sections aim to explain each of the NoSQL families and assign grades to the criteria.

A grade out of 10 will be assigned to each criterion for each of the NoSQL families. To motivate

why these grades were assigned, the investigations into the families will be discussed. Column-

family stores are discussed first. This is followed by discussions on the investigations into document-

based stores and graph stores. Key-value stores are the last to be discussed.

7.2 Column-family stores (HBase)

HBase is an open source NoSQL database implementation based on Google’s Bigtable data store

(Cattell, 2011). HBase employs the column-family data model, which stores data in rows and

columns (Naheman & Wei, 2013). A row, identified by a unique row key, can consist of multiple

columns (George, 2011). Rows and columns belong to a specific table and many tables can exist.

Each column contains a different version of the data and a different value is assigned to each cell

inside the column (George, 2011). For example, a column that contains the home address of a user

is created. The user later changes home address, and a new entry is made for that user. The old data

is kept, and the new data is entered and linked to the same user. HBase adds a timestamp to keep

track of these different versions of data. Each column value and timestamp combination is referred

to as a cell (George, 2011). Figure 7.1 is a graphical representation of the data model in HBase.

Figure 7.1: Representation of how HBase’s data model works (George, 2011).

CHAPTER 7: GRADING THE NOSQL FAMILIES

69

Column families consist of groups of columns that are stored in the same file, known as an HFile,

which is defined when the table is created (Dimiduk, Khurana, Ryan & Stack, 2013). There is no

limit on the number of columns in a family or on the length of a stored value (George, 2011). The

column-family data model stores data as a multidimensional sorted map and is accessed through a

row key, column key, and a timestamp (George, 2011). To retrieve data, a client requires the family

name, table name, row key, column key, and timestamp (Du Toit, 2016).

The investigation of the criteria for each NoSQL family starts with the consistency criterion.

7.2.1 Consistency

A write operation from a client to a database will insert or update records in the dataset. If another

client reads the database contents and it is displayed the updated record immediately, then the

consistency of the database is high (Brewer, 2000, 2012).

A study done by Hecht and Jablonski (2011) compared the four NoSQL families by investigating

certain capabilities of these databases. Their study indicates that HBase can provide high consistency

(Hecht & Jablonski, 2011) and is supported by the work of Dimiduk, Khurana, Ryan and Stack

(2013), which also indicates that HBase can provide high consistency. High consistency means that

clients can see the most up-to-date information immediately once it is written to the database. HBase

operates in a multi-node cluster environment instead of a single machine. Therefore, HBase employs

data replication to provide data consistency.

Replication refers to copying data between multiple HBase deployments. A log, known as the HLog,

is created to keep track of the replications (George, 2011). Keeping track of the replications can

ensure that consistency is provided with less effort. An HBase cluster can consist of several

RegionServers with multiple regions, which refer to adjacent ranges of rows that are stored together

(HBase, 2007). Each RegionServer can participate in the replication process to copy its data to other

RegionServers. HBase employs Master/Slave replication to replicate the data between the different

RegionServers (George, 2011).

The Master/Slave replication technique enables the data to be spread across nodes in clusters. There

are two distinct roles that are assigned to the nodes in a cluster, known as a Master role and a Slave

role (Gu, Wang, Shen, Ji & Wang, 2015). Only one Master role can be assigned at a time, while the

rest of the nodes are assigned Slave roles (Gu, Wang, Shen, Ji & Wang, 2015). A Master node can

replicate its dataset to any number of Slave nodes (George, 2011). Figure 7.2 shows an example of

the Master/Slave process.

CHAPTER 7: GRADING THE NOSQL FAMILIES

70

HBase replication is done asynchronously, which means the data is written to the Master node and

eventually to the Slave nodes (George, 2011). This refers to eventual consistency.

The basis of HBase replication is the HLogs from each RegionServer. These HLogs must be stored

in a file system, such as the Hadoop file system, to ensure that replication to Slave clusters can occur

(George, 2011). The RegionServer reads from the oldest log file to assist with the replication process.

Therefore, the Master node will attempt to balance the stream of replication on Slave clusters by

relying on randomisation (George, 2011).

Master/Slave replication is not without faults. If write operations are implemented on the Master

node, the Slave nodes will forward the synchronise data command asynchronously to the Master

node to update the Slave nodes’ data (Gu, Wang, Shen, Ji & Wang, 2015). Read operations

implemented on the Master node provides high consistency. However, read operations on Slaves

provide only eventual consistency. Master/Slave replication does not provide automatic failover.

Therefore, if the Master goes down, an election among the Slaves must occur to select a new Master

node (George, 2011). The elected Slave must restart to change its role, which means there may be

downtime. Also, if the number of write requests exceeds the capacity of the server, bottlenecks in

performance can occur (Tauro, Aravindh & Shreeharsha, 2012).

As a result, HBase scores a grade of 7 for consistency of data. The rating of 7 justifies the use of

Master/Slave in HBase to ensure consistency of the datasets. High consistency can be configured

through Master/Slave in HBase to ensure data is consistent across the nodes. However, the drawback

to this method is that when a Master node experiences a fault, a new Master node must be elected,

and the election process may lead to downtime. Master/Slave replication can be used to provide high

Figure 7.2: Master/Slave replication process (George, 2011).

CHAPTER 7: GRADING THE NOSQL FAMILIES

71

consistency if implemented correctly. There are alternative options, such as sharding and the dynamo

model, that can provide full consistency most or all the time. These options attempt to address the

issues regarding the Master/Slave replication model for consistency of data.

7.2.2 Availability

Availability refers to the percentage of time that a system is operating correctly (Orend, 2010). A

highly available database system aims to be available for client queries as long as possible before

experiencing a fault.

Per the CAP theorem (Brewer, 2000, 2012), the combination of attributes for HBase is CP, which

implies that there is a focus on providing data consistency and partition tolerance, while a degree of

availability is sacrificed (Brewer, 2000, 2012; Cai, Huang, Chen & Zheng, 2013). Availability within

HBase also refers to the ability of the system to handle node failures within the cluster (Dimiduk et

al., 2013).

The HBase cluster consists of many nodes. Each node is referred to as a RegionServer. Each

RegionServer has several regions that consist of adjacent ranges of rows stored together. Each

RegionServer can serve multiple regions, while each region can only be served by one RegionServer

(George, 2011). Therefore, HBase provides availability through the combination of Master/Slave

replication and the RegionServers.

Master/Slave replication replicates the data to different RegionServers within the HBase cluster,

thereby assisting the system in providing availability (Dimiduk et al., 2013; George, 2011). A

RegionServer has access to the data of other RegionServers (Dimiduk et al., 2013; George, 2011). If

a RegionServer experiences a failure, the data it was serving must be attended to by another

RegionServer to ensure availability of service to a client. Therefore, HBase can still be available by

enabling other RegionServers to attend to the faulty region of data (Dimiduk et al., 2013; George,

2011).

A drawback to this method is that when too many RegionServers are down, performance bottlenecks

will occur, because the current RegionServers cannot attend to all regions. Another drawback is if

the Master server or ZooKeeper is separated from the cluster, the Slave servers cannot function on

their own (Figure 7.3) (Dimiduk et al., 2013; George, 2011). A solution to these drawbacks is

defensive deployment schemes that can ensure higher availability (Dimiduk et al., 2013).

CHAPTER 7: GRADING THE NOSQL FAMILIES

72

The type and amount of failures that HBase can handle is an indication of how strong its availability

is. Lourenço et al. (2015a) investigated the availability guarantees of HBase and other database

systems. Their research graded the database systems according to the level of performance the

systems can provide. HBase, received a rating of “-” for the availability performance, implying that

it may not provide the best levels of availability. Cai, Huang, Chen and Zheng (2013) agree that this

database loses some availability, as its focus is on data consistency and partition tolerance. As a

result, HBase receives a grade of 5 for the availability criterion.

A grade of 5 means that column-family stores is not be the strongest NoSQL family in terms of

availability guarantees. However, they can be set up to provide higher availability through defensive

deployments at the expense of other performance areas. A way to achieve higher availability is to

configure more backup Master servers, which can mitigate the downtime of the election process.

7.2.3 Partitioning

Large volumes of data and a large number of read or write requests can lead to the capacity of a

server being exceeded. Therefore, partitioning data to other servers may need to be considered. The

data models of NoSQL databases are mostly key-oriented, meaning that partitioning is based on keys

(Hecht & Jablonski, 2011).

There are two strategies that can be followed when implementing partitioning. The first strategy is

to distribute datasets by the range of their keys. This is known as range-based partitioning (Hecht &

Jablonski, 2011). A routing server is responsible for splitting the keysets into blocks, which are

allocated to different nodes (Hecht & Jablonski, 2011). Once the allocation of blocks is completed,

each node is responsible for request handling and storage of its specific keys (Hecht & Jablonski,

2011). To search for a specific key, the client should retrieve the partition table from the routing

Figure 7.3: The HBase architecture (Gao, Nachankar & Qiu, 2011).

CHAPTER 7: GRADING THE NOSQL FAMILIES

73

server. A strength of range-based partitioning is that it can efficiently handle range queries, as it is

highly probable that neighbouring keys are stored on the same server (Hecht & Jablonski, 2011).

However, a weakness of this strategy is that the availability of the entire cluster depends on the fault

tolerance of the routing server (Cai, Huang, Chen & Zheng, 2013).

The second strategy is consistent hashing, which provides a simpler cluster layout to counter the

weaknesses of range-based partitioning by having no single point of failure (Hecht & Jablonski,

2011; Karger et al., 1999; Hecht & Jablonski, 2011). Keys are distributed using hash functions. Each

server is responsible for a hash region. Therefore, the address of a key can be calculated quickly

(Dimiduk et al., 2013; Hecht & Jablonski, 2011). The addition or removal of nodes affects a small

portion of the entire cluster. However, the architecture and random distribution of keys lead to

performance drawbacks, such as more processing time being spent on the calculation of the address

of keys. (Hecht & Jablonski, 2011).

HBase implements range-based partitioning to partition its data and provide good performance

(Nishimura, Das, Agrawal & El Abbadi, 2011). An increase in range query performance can occur

if columns of the same family are stored on the same server (Hecht & Jablonski, 2011). The column-

family data model can be partitioned efficiently, meaning these databases are more than adequate for

large datasets (Hecht & Jablonski, 2011).

Hecht and Jablonski (2011) gave HBase a positive rating for range-based partitioning and a negative

rating for consistent hashing. Their ratings mean that this database provides good performance with

its range-based queries as a result of storing neighbouring keys next to one another. The database

also hides the information that there are partitions present from the client application. Therefore,

queries are less complex to perform (Dimiduk et al., 2013).

Given the above information, partitioning and partition tolerance within column-family stores

receive a grade of 7. The grade of 7 means that HBase can provide good levels of partition tolerance

while performing well where partitioning is concerned. However, the range-based partitioning

strategy has its drawbacks. As stated above, the range-based partitioning strategy can provide good

range query performance. However, the availability of HBase depends on the single routing server,

which means there is a single point of failure that could result in downtime.

7.2.4 Read and write performance

A part of Du Toit’s (2016) study evaluated the reading and writing capabilities of different NoSQL

databases. The author inserted different amounts of records and recorded the time in milliseconds

that the database took to execute the operations.

CHAPTER 7: GRADING THE NOSQL FAMILIES

74

Du Toit (2016) executed a bulk write operation with various amounts of records within HBase. The

author’s research found that the average time used to insert a record within HBase increased as the

amount of records increased (Du Toit, 2016). At 100 records, the time per record was 2.5

milliseconds, whereas at 20 000 records, the average time was 7.6 milliseconds per record (Du Toit,

2016). Du Toit (2016) found that the addition of data nodes leads to improvements in data writing

performance. At 10 000 and 20 000 records, the addition of a fourth node led to an increase in

performance greater than that of the other three nodes. This can be seen in Figure 7.4 (Du Toit, 2016).

Du Toit (2016) also tested the reading performance of HBase. The author executed read queries while

recording the time needed to complete the queries. HBase reads single records in an average time of

3.7 milliseconds. Reading records in batches led to faster reading times ranging from 1.8 milliseconds

(100 records) to 2.2 milliseconds (2500 records) (Du Toit, 2016). The author found that sets larger

than 4000 records caused communication timeouts between the nodes (Du Toit, 2016). Therefore, to

do a bulk retrieve query, a client has to create a list of get objects, which adds more processing time

(Du Toit, 2016). His research could only produce results for read queries of up to 2500 records. Table

7.2 is a consolidated list of the reading performance for HBase within Du Toit’s (2016) study.

Table 7.2: HBase data read average over four nodes (Du Toit, 2016)

Records 1 100 1000 2500

Duration in ms (average) 3.7 189.8 1614.8 5574.1
Latency per record in ms 3.7 1.898 1.6148 2.22964
Records per second 270.27 526.87 619.272 448.503

Write operations could handle considerably more records read operations. The considerable

difference in performance between writing and reading may indicate that HBase is write optimised.

Figure 7.4: HBase data inserts average over four nodes (Du Toit, 2016).

CHAPTER 7: GRADING THE NOSQL FAMILIES

75

Lourenço et al. (2015a) compared NoSQL databases using a set of criteria by assigning a rating to

represent the performance of the databases within each criterion. Lourenço et al. (2015a) compared

the read and write performances of NoSQL databases, including HBase. In their rating system, HBase

received a “+” for write performance and a “-” for read performance. These ratings imply that HBase

is more oriented towards write performance than read performance.

A study done by Khetrapal and Ganesh (2006) examined HBase’s read and write performance. The

tests included sequential and random read and write operations. The results (Table 7.3) showed that

the sequential reads achieved a rate of 310 reads per second. The sequential writes achieved a rate of

1600 writes per second. The random reads achieved a rate of 290 reads per second, while the random

writes achieved a rate of 1550 writes per second (Khetrapal & Ganesh, 2006). There is a large gap

between the performance levels of reading and writing for HBase. Therefore, the results of the studies

done by Khetrapal and Ganesh (2006), Du Toit (2016), and Lourenço et al. (2015a) agree that HBase

is write optimised.

Table 7.3: Read and write speeds of HBase (Khetrapal & Ganesh, 2006)

Operation Rate

Sequential reads 310 reads per second
Sequential writes 1600 writes per second
Random reads 290 reads per second
Random writes 1550 writes per second

Naheman and Wei (2013) attempted to inspect the relation of read and write performance to the

number of column families in HBase. Their results show that HBase supports multiple column

families that can store large volumes of different types of data (Naheman & Wei, 2013). Their study

indicates that write performance is superior to read performance. This can be seen in Table 7.4. There

is a significant difference in performance values when a higher number of records is reached, and

the writing throughput is much higher than the reading throughput. Therefore, their study results

suggest that HBase is write optimised and agrees with the previously mentioned studies.

Table 7.4: Comparison between read and write performance (Naheman & Wei, 2013).

 1 Region server 8 Region servers

Experiment 1 10 100 500 1000 1 10 100 500 1000
Writes/sec 15 159 330 427 Timeout 3 35 160 384 Timeout
Reads/sec 10 93 142 128 Timeout 112 129 121 128 Timeout

A study done by Cooper et al. (2010) investigated the performance of some databases, including

HBase. The authors performed several experiments, including reading and writing to the database.

Their experiment results (Table 7.5) showed that the write performance of HBase is superior to its

CHAPTER 7: GRADING THE NOSQL FAMILIES

76

read performance (Cooper et al., 2010). There is a noticeable difference between these two abilities

of HBase, which implies that it is better able to handle write operations than read operations.

Table 7.5: Read or write optimisation of database technologies (Cooper et al., 2010).

System Read or write optimisation

PNUTS Read
Bigtable Write
HBase Write
Cassandra Write
Sharded MySQL Read

Literature provides sufficient evidence that HBase is optimised for write operations. There is a

significant gap between its performance levels when writing and reading, which was identified in

several studies above (Cooper et al., 2010; Du Toit, 2016; Khetrapal & Ganesh, 2006; Lourenço et

al., 2015a; Naheman & Wei, 2013). These results may imply that HBase is a good option to consider

for use cases that require high writing performance and average reading performance.

By taking all the above-mentioned points are into account, a grade of 8 is assigned to column-family

stores for write performance and a grade of 4 is assigned for read performance. These ratings mean

that this NoSQL family can provide very good writing performance and below-average reading

performance. If a use case is write heavy and moderate on reads, then HBase may be an appropriate

choice. Table 7.6 summarises the conclusions of the studies mentioned above.

Table 7.6: Comparison of read and write performance of different studies conducted.

Study Read performance Write performance Optimisation (read or write)

Lourenço et al. (2015a) Weak Strong Write
Khetrapal & Ganesh (2006) Weak Strong Write
Naheman & Wei (2013) Weak Strong Write
Cooper et al. (2010) Weak Strong Write
Du Toit (2016) Weak Strong Write

7.2.5 Scalability

Scalability refers to the system's ability to deal with increasing workloads (Orend, 2010). Column-

family stores provide high scalability through partitioning data across multiple servers by splitting

rows and columns (Cattell, 2011). Splitting rows and columns is done through sharding primary keys.

Each database node in the cluster will store a shard and the range of data connected to that shard

(Cattell, 2011).

A region is the basic unit of scalability in HBase (George, 2011; Dimiduk et al., 2013). In situations

where a region’s size is too large, the system will split the region into two or more regions to

accommodate the size (George, 2011). Regions can also merge if they are small in size to reduce the

CHAPTER 7: GRADING THE NOSQL FAMILIES

77

storage space and number of regions used (George, 2011; Dimiduk et al., 2013). When creating a

table, there is only one region for that table. Once data is added to the table, a monitor checks if the

table’s size exceeds a configured maximum size. If the maximum size is exceeded, the region is split

in two at the middle key, creating roughly two halves (George, 2011).

Each region is attended to by one RegionServer, which can serve many regions at any time. The

splitting and serving of regions may be seen as autosharding (George, 2011). Autosharding regions

enables rapid fault recovery if a server goes down. The regions can also be moved between the servers

to assist with the load balancing of servers (George, 2011). Splitting the regions is fast because the

split regions read from the original storage files (George, 2011, pp. 21-22).

HBase updates data on an atomic per row basis, which means that when applying an update to a row,

that row is locked for the update period (George, 2011). The other clients that read or write to the

same row will read a consistent last update or wait until they can update that row. That row cannot

receive other updates until the current update is applied, meaning that if multiple clients try to update

the same row at the same time, contention may occur (George, 2011, p. 75).

To deploy a fully distributed cluster for HBase, the Hadoop Distributed File System (HDFS) is

required. The HDFS is the default file system for a distributed HBase cluster, since it has features

that HBase requires to be deployed in a distributed environment. The HDFS has built-in fault

tolerance, scalability, and replication to work with HBase and store data reliably (George, 2011, p.

54).

Lourenço et al. (2015a, 2015b) rated some capabilities of different NoSQL families that are

represented by their respective databases. In their rating system, HBase received a “+” rating for

scalability. A “+” rating is assigned if a database is geared for that specific property (Lourenço et al.,

2015a, 2015b). Therefore, such a rating means that HBase is optimised for scalability.

A grade of 7 represents the scalability performance within column-family stores. Autosharding

enables HBase to achieve high scalability, since the regions in HBase allow fast recovery of function

if a server goes down. Autosharding also enables load balancing to balance the performance load of

servers. The dataset can be split via the rows or the columns. Both row and column partitions can be

used at the same time in the same table. Therefore, there are various ways to achieve high scalability,

meaning high scalability is possible within column-family stores.

Another reason for assigning a grade of 7 is that scalability must be accompanied by a distributed

file system. An example of such a file system is the HDFS. The HDFS enables HBase to achieve

high scalability. However, the HDFS must be installed and set up. A problem with the scalability of

CHAPTER 7: GRADING THE NOSQL FAMILIES

78

HBase is found when multiple clients update the same row or column at the same time, which leads

to contention between the different clients. However, the reading clients will always see a consistent

last update. Therefore, a grade of 7 is assigned as a result of the additional effort needed to enable

high levels of scalability within the column-family databases.

7.2.6 Conceptual data structure

Several sources, such as online user-generated content and businesses that run all day, have led to

the creation of large volumes of structured, unstructured, and semi-structured data (Dimiduk et al.,

2013). HBase is a schema-less store that does not have a predefined structure (Dimiduk et al., 2013).

Consequently, it does not support a full relational data model. The data model supports dynamic

control over the data layout and format (George, 2011). Therefore, HBase can store and work with

large volumes of semi- and unstructured data.

HBase is commonly employed in use cases that deal with large volumes of data (Hecht & Jablonski,

2011). This database can store any data type that can be converted into a byte of arrays (HBase,

2007). Stored data could consist of strings, images, numbers, and any other objects that can be

converted (George, 2011). However, it is not geared to handle transactional data. If a use case

employs heavily linked data, such as transactional data, HBase may not be the best solution to the

problem. A popular use case for this type of database is storing Facebook messages (Aiyer et al.,

2012). Facebook messages contain several types of data, including images, videos, and text. Other

use cases include real-time analytics, monitoring systems, and search indexing (Aiyer et al., 2012).

Additionally, HBase employs a storage technology known as HDFS to assist with the storage of the

data.

The Hadoop Distributed File System (HDFS) provides highly scalable and reliable storage for data.

Implementing the HDFS allows IT practitioners to control various aspects of the data, such as the

data structure, so that semi- or unstructured data formats can be stored. Thus, HBase combined with

HDFS allows the storage of semi- or unstructured data formats (George, 2011).

Ultimately, HBase can be used to store and work with large volumes of records coming from several

sources (Dimiduk et al., 2013). The flexible schema of HBase allows the data to evolve over time.

Therefore, a grade of 8 reflects the ability of column-family stores to work with large volumes of

semi- or unstructured data.

7.2.7 Reliability

In a business environment, reliability is a key feature that can influence the operation of a business.

Reliability in a database sense can refer to a system’s ability to operate without failures for a certain

amount of time (Domaschka, Hauser & Erb, 2014).

CHAPTER 7: GRADING THE NOSQL FAMILIES

79

HBase employs the HDFS as storage mechanism and assumes that two properties of the HDFS will

assist in providing reliability to the clients. The first property is single namespace, which refers to

the single file system HBase uses to store data. It is assumed that all RegionServers across the entire

cluster have access to the file system. The file system provides a single namespace, which the

RegionServers must use to access the data. If data is visible or written by one RegionServer, all other

RegionServers have access to that data. Therefore, HBase can make reliability guarantees to the

entire cluster. If a RegionServer experiences a fault and goes down, the other RegionServers can

access the data and serve the regions under the failed RegionServer (Dimiduk et al., 2013, p.79).

The second property is reliability and failure resistance, which refers to the assumption that the data

in the underlying storage system will be accessible even after a failure occurs. If a RegionServer

experiences a failure, the other RegionServers must be able to fulfil the role of the failed

RegionServer. The assumption is that a failed RegionServer would not lead to downtime or data loss.

A way downtime or data loss can be mitigated is through the HDFS replicating the data to other

nodes and keeping copies of the data (Dimiduk et al., 2013, p.81). Therefore, column-family stores

can guarantee certain levels of reliability.

The combination of column-family stores and the HDFS allows high reliability to be implemented.

A grade of 7 is provided to HBase for reliability, since high reliability can be implemented within

column-family stores. The underlying storage system of HBase is the HDFS. The HDFS allow an

entire cluster to have access to the entire dataset in storage. A RegionServer should be able to access

other RegionServers' data to serve their regions. It is assumed that the other RegionServers will serve

a failed RegionServer’s regions. Therefore, a grade of 7 is assigned to column-family stores, as no

downtime or data loss should occur. However, downtime or data loss is still possible.

7.2.8 Learning curve

The learning curve criterion refers to the time and effort needed for and complexity level of setting

up and learning how to use a database that meets specific requirements. This criterion is hard to

measure, since not all use cases are the same. Thus, the focus is placed on the volume of information

that can be utilised. The information that will be investigated includes documentation data, books,

and tutorials. These information sources can be used to teach IT practitioners about the column-

family stores.

HBase in Action (Dimiduk et al., 2013) contains 329 pages that give the reader an overview of how

this database works and what technologies it employs. HBase in Action (Dimiduk et al., 2013) starts

by discussing the fundamentals of column-family stores and HBase. Thereafter, it describes how to

install a single instance of HBase. HBase in Action teaches the reader how to start a fresh installation

CHAPTER 7: GRADING THE NOSQL FAMILIES

80

of the database by providing tutorials and examples of code. The book introduces the reader to a

variety of terms that refer to technologies and meeting the requirements of a use case. The book

moves past a single instance setup of HBase to investigate HBase in a distributed environment and

determine what the requirements of such an environment are. The book also begins to explain more

advanced usage of HBase, such as table designs, and extensions of HBase. HBase in Action also has

example applications to help teach the reader how to efficiently employ HBase to facilitate their use

case.

The HBase Administration Cookbook (Jiang, 2012) teaches the reader how to set up HBase through

tutorials and commands. This book has 315 pages that cover the most basic to the most advanced

usage and setup of HBase. The HBase Administration Cookbook contains many code examples with

explanations to teach the reader how to set up HBase. The book focusses on the administration of

HBase clusters and how to tweak HBase to meet the requirements of the reader. This book caters to

more experienced readers who want to learn about the advanced usage and setups of HBase.

The HBase website is where an individual can find all relevant documentation regarding HBase. A

download link can be used to get the files necessary to install HBase. On the website

(https://hbase.apache.org), up-to-date information regarding the latest release of HBase as well as all

HBase documentation can be found. On YouTube (www.youtube.com), there are several tutorials

for beginners and advanced users. Below is a list of popular books that can be used to teach users

about column-family stores and HBase. These books can teach users the most basic terms and

concepts as well as the most advanced usage of HBase and column-family stores.

 George, L. (2011). HBase: The Definitive Guide: Random Access to Your Planet-Size

Data. Sebastopol, CA: O'Reilly Media, Incorporated.

 Jiang, Y. (2012). HBase Administration Cookbook: master HBase configuration and

administration for optimum database performance. Birmingham, UK: Packt Publishing.

 Redmond, E., Wilson, J. R., & Carter, J. (2012). Seven databases in seven weeks: a guide

to modern databases and the NoSQL movement. Dallas, TX: Pragmatic Bookshelf.

 Dimiduk, N., Khurana, A., Ryan, M. H., & Stack, M. (2013). HBase in action. Shelter

Island, NY: Manning Publications Company.

 Shriparv, S. (2014). Learning HBase: learn the fundamentals of HBase administration and

development with the help of real-time scenarios. Birmingham, UK: Packt Publishing Ltd.

 Garg, N. (2014). HBase essentials: a practical guide to realizing the seamless potential of

storing and managing high-volume, high-velocity data quickly and painlessly with HBase.

Birmingham, UK: Packt Publishing.

 Kerzner, M., & Maniyam, S. (2014). HBase Design Patterns. Packt Publishing Ltd.

 Vohra, D. (2016). Apache HBase Primer. Berkeley, CA: Apress.

Performing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as

on Google Scholar returned the following number of results. The keyword used for the search was

“HBase”.

 Web of Science: 55 results

CHAPTER 7: GRADING THE NOSQL FAMILIES

81

 IEEE Xplore: 275 results

 ScienceDirect: 570 results

 Google Scholar: 24 200 results

A wide variety of materials can be used to teach IT practitioners about column-family stores. These

materials include books with tutorials, video tutorials, and courses on HBase. The material is readily

available, and HBase’s documentation is available on their website. The amount of documentation

is always expanding as new information is added to the current body of knowledge. Considering the

number of search results and the volume of learning materials available, column-family stores score

a grade of 8 for the learning curve criteria. The rating of 8 means that individuals can download

information, install the database, and teach themselves how to use it easily with the help of online

tutorials and books. There are also tutorials and books that specifically show individuals how to set

up HBase for and use advanced techniques. The results of the search in the databases show that

research is being done to improve HBase, as most of the results were relevant research.

7.3 Document-based stores (MongoDB)

Document-based stores store key to value pairs in files known as documents. Within a document, the

key for each value must be unique (Hecht & Jablonski, 2011). The documents in a database are

grouped into collections (Abramova & Bernardino, 2013). Each document within the collection has

a special ID key to identify that specific document. The ID key must be unique within the collection

so that documents can be identified individually. Each value in a document is open for queries (Hecht

& Jablonski, 2011). Complex data structures can be handled more conveniently because document-

based stores allow several data types to be stored in a single document (Hecht & Jablonski, 2011).

Document-based stores are developer-friendly, as they support multiple data types by being schema-

free and do not place any restrictions on storing data (Hecht & Jablonski, 2011).

MongoDB provides a document querying mechanism that groups documents into collections

(Abramova & Bernardino, 2013; Cattell, 2011). In MongoDB, the unique ID of each document in a

collection can be specified. For instance, a unique ID can be the combination of a timestamp and the

ID of a document. Figure 7.5 is a graphical representation of a document with values.

Figure 7.5: A representation of a document containing data (MongoDB, 2008).

CHAPTER 7: GRADING THE NOSQL FAMILIES

82

7.3.1 Consistency

MongoDB provides consistency through replication of the stored data. Replication is a way of storing

identical copies of the data on numerous servers to keep the data safe from faults (Banker, 2011;

Chodorow, 2013). In this database, replication is set up through replica sets, which are groups of

servers that consist of one primary and multiple secondaries (Banker, 2011; Chodorow, 2013;

MongoDB, 2008). Figure 7.6 graphically depicts a replica set.

The primary server accepts all the client requests, while the secondaries store copies of the primary’s

data. If a primary server experiences a fault, the secondary servers may elect a new primary server

from the secondaries (Banker, 2011; Chodorow, 2013; MongoDB, 2008). Replication enables the

client to access the full set of data even if the primary server fails, because full consistent copies of

the data can be found on the secondaries. If the data on one server is damaged or corrupt, a new copy

can be made from another server in the set (Banker, 2011, p. 10, 157; Chodorow, 2013, p. 169).

MongoDB can support strong consistency with multiple levels of consistency control (Chodorow,

2013; Hecht & Jablonski, 2011). The levels of consistency produce the configuration in which

consistent data is displayed (Chodorow, 2013). A client might want to see only their own writes or

request the most up-to-date data. To facilitate a high level of consistency, the server creates a que of

requests for each connection (Chodorow, 2013), which represents the order in which the requests are

performed. Any new requests will be placed at the back of the que (Chodorow, 2013), thereby

enabling the connection to have a consistent view of the data.

There is a drawback to this method of consistency that caused by each connection having its own

que of requests (Chodorow, 2013). If two simultaneous connections are made and one performs an

insert and the other performs a read, the read operation may not be provided with the latest inserted

document. Therefore, the client is presented with out-of-date data (Chodorow, 2013; Orend, 2010).

Another problem that may occur is that when read requests are sent to a secondary server, the

secondary may read old data (Chodorow, 2013). A solution to this problem is to forward all read

requests to the primary server in the set.

Figure 7.6: Graphical representation of a replica set (Banker, 2011).

CHAPTER 7: GRADING THE NOSQL FAMILIES

83

Abramova and Bernardino (2013) indicate that MongoDB can provide good consistency using

Master/Slave-like replication through the replica sets. According to their study (Brewer, 2012),

MongoDB possesses the CP combination of the CAP theorem properties, which refers to consistency

and partition tolerance. Therefore, strong consistency is achievable with this database.

Document-based stores score a grade of 7 for consistency. A grade of 7 means that high consistency

can be achieved. However, there are some drawbacks to the method of consistency that MongoDB

employs. The replica sets work in a manner comparable to Master/Slave replication. Therefore,

downtime is possible when an election occurs. However, replica sets attempt to mitigate these

drawbacks by immediately electing a new primary. Another potential problem with replica sets is

that multiple concurrent connections can lead to inconsistent and out-of-date data being read.

7.3.2 Availability

Availability refers to the percentage of time a system is operating correctly (Orend, 2010). As

described above, replica sets are used to provide strong consistency. However, replication and replica

sets also influence availability.

In MongoDB, a replica set is set up to assist with fault tolerance (Banker, 2011; Chodorow, 2013).

High availability is achieved using automatic failover within the replica sets (MongoDB, 2008).

Automatic failover refers to a process during which an election occurs among the secondary servers

(Banker, 2011; Chodorow, 2013). Automatic failover occurs when a primary server experiences a

fault and goes down. The failover process means that a secondary server must be elected become the

new primary (MongoDB, 2008). An improved version of the replication process is present from

version 3.2 of MongoDB. The improved versions reduce the failover time and can detect if there are

multiple primary servers in the set (MongoDB, 2008).

If replication is implemented, the client should be able to access the data even after a server goes

down. All the servers in the set have access to the other servers’ data. Thus, the client can still access

the data even after a primary server goes down (Chodorow, 2013, p. 169).

Lourenço et al. (2015a) assigned a rating of “-” for availability to MongoDB, which means that this

database may not be the best database to provide availability. A drawback of replica sets is that

rollbacks can occur (MongoDB, 2008). A rollback reverts write operations on failed primary servers

after a failover process occurs (MongoDB, 2008). Rollbacks occur when failed primary servers that

have come online again re-join the replica set. However, rollbacks do not always occur after a

failover. Rollbacks only occur when the primary server contained write requests that the secondary

servers had not yet replicated when the primary stepped down (MongoDB, 2008). Rollbacks occur

to maintain consistency between the new secondary server and the other servers (MongoDB, 2008).

CHAPTER 7: GRADING THE NOSQL FAMILIES

84

Each rollback cannot roll back more than 300 megabytes of data. Therefore, manual recovery is

required for rollbacks of more than 300 megabytes (MongoDB, 2008).

MongoDB provides an adequate availability process with automatic failover. The process has limits

and resembles the Master/Slave replication method but has fewer drawbacks. However, data can be

lost if rollbacks occur on more than 300 megabytes of data. This will require manual recovery to

retrieve the data. The failover process can provide good levels of availability, but it is not the best

option. Therefore, document-based stores receive a grade of 5 for availability.

7.3.3 Partitioning

Abramova and Bernardino (2013) compared the performance of MongoDB and Cassandra. In their

study, it is shown that MongoDB is of the CP type, which means that partitioning is a focus within

this database.

There are two strategies that can be followed when implementing partitioning (section 5.3.4). The

first strategy is to distribute datasets by the range of their keys. This is known as range-based

partitioning (Hecht & Jablonski, 2011). The second strategy is consistent hashing (Hecht &

Jablonski, 2011).

The documents in MongoDB are partitioned by the range of their keys (range-based partitioning)

(Banker, 2011; Hecht & Jablonski, 2011). Hecht and Jablonski (2011) investigated the partitioning

performance of NoSQL databases as part of their study. MongoDB received a positive rating (+) for

range-based partitioning and a negative rating (-) for consistent hashing. These ratings mean that it

performs range-based queries well. This is because neighbouring keys are stored next to one another.

High partition tolerance in this database is achieved through the range-based partitioning strategy

known as sharding (Banker, 2011). Sharding splits data across numerous servers. This is done by

storing subsets of data on other servers in a cluster (Chodorow, 2013). Sharding can be implemented

in two ways, namely manual sharding and autosharding (Banker, 2011; Chodorow, 2013). Manual

sharding occurs when an application connects to several independent databases. The client

application manages the storing of data on different servers as well as the queries to retrieve data.

The manual sharding approach can work well. However this approach can struggle with the addition

or removal of nodes within a cluster (Banker, 2011; Chodorow, 2013, p. 231).

Autosharding attempts to automate sharding by simplifying the administration process (Chodorow,

2013). MongoDB employs autosharding and allows the client application to communicate with the

whole cluster as opposed to one server. Autosharding allows the addition or removal of nodes, while

balancing the data across the servers (Banker, 2011; Chodorow, 2013, p. 231)

CHAPTER 7: GRADING THE NOSQL FAMILIES

85

MongoDB uses autosharding, which is the superior option for providing partition tolerance. Setting

up autosharding is a troublesome process, and extensive knowledge is required to set up all

components correctly. Setting up MongoDB with autosharding is difficult and complex. However,

setting up this database with autosharding allows better communication with the whole cluster by

balancing the data across the entire system. Autosharding makes the addition and removal of nodes

easier. Therefore, achieving high partition tolerance is also made easier.

As a result of the above-mentioned points, MongoDB receives a grade of 7 for partitioning and

partition tolerance. MongoDB employs the range-based partitioning strategy to store neighbouring

documents on the same node. This leads to better performance with queries. Autosharding allows

easy addition and removal of nodes. However, extensive knowledge is required to set it up properly.

7.3.4 Read and write performance

Du Toit (2016) performed bulk inserts of various amounts of records (ranging from 100 to 20 000)

into MongoDB. Du Toit’s (2016) research indicated that the time MongoDB took to insert a record

remained constant even if the dataset size increased. Figure 7.7 shows the performance results of

MongoDB’s bulk insert test (Du Toit, 2016). Du Toit (2016) noted that MongoDB took an average

of 2.5 to 3.5 milliseconds to insert a single record. The addition of other nodes did not decrease the

insertion time (Du Toit, 2016). At 20 000 records, there was a spike in the insertion time for one of

the nodes. According to the author, this increase occurred because MongoDB optimised itself based

on the client application and what the application was doing (Du Toit, 2016).

Du Toit (2016) performed data read tests on MongoDB with various amounts of records ranging from

1 to 50 000 records. The data write tests could only accept up to 20 000 records compared to the

50 000 that were accepted by the read tests (Du Toit, 2016). This indicates that MongoDB can

perform read operations better than write operations. Completing the 100-record job took 2.1

milliseconds, whereas it took 2.35 milliseconds for 10 000 records (Du Toit, 2016). MongoDB allows

Figure 7.7: MongoDB data insert averages over four nodes (Du Toit, 2016).

CHAPTER 7: GRADING THE NOSQL FAMILIES

86

result sets of 20 000 records to be returned by default (Du Toit, 2016). A result set of 20 000 records

took an average of 3.8 seconds per record to complete. His research also shows that MongoDB reads

a document set of 50 000 records in 179 seconds, compared to the 251 seconds it takes to insert them.

Therefore, his research indicates that MongoDB is optimised for reading purposes (Du Toit, 2016).

During the investigation of MongoDB’s read performance in Du Toit’s (2016) research, the retrieval

of a single record took 17.6 milliseconds on average. His research indicates that the average retrieval

time for single records was higher than the average retrieval time for records that were part of larger

read requests (Du Toit, 2016). His research also shows that the size of the result set impacted the

performance (Du Toit, 2016). According to his research, the best performance was recorded when

retrieving a 1000 records. A speed of 2.414 milliseconds per record was achieved (Table 7.7) (Du

Toit, 2016). MongoDB was able to return the larger result set without using batches.

Table 7.7: MongoDB read statistics (Du Toit, 2016).

Records 1 100 1 000 2 500 5 000 10 000 20 000 50 000

Duration in ms
(average)

17.6 314.8 2 414

6 089.2 12 610.9 25 378 56 114.8 176 203

Latency per record
in ms

17.6 3.148 2.414 2.43568 2.52218 2.5378 2.80574 3.52406

Records per second 56.8182 317.662 414.25 410.563 396.482 394.042 356.412 283.764

Lourenço et al. (2015a) made a comparison of NoSQL databases using a set of properties. The

authors assigned ratings to these properties to indicate the performance level of each database. In

their rating system, MongoDB received a rating of “-” for write performance and “++” for reading

performance (Lourenço et al., 2015a). A rating of “++” indicates that MongoDB is very focused on

reading performance. This implies that MongoDB is read optimised.

Győrödi et al. (2015a) compared the performance of MongoDB and MSSQL. In their study, they

proved that there are major differences between these two types of databases (NoSQL vs. SQL). The

authors indicated that MongoDB took less time to read 50 000 records than to write 50 000 records.

Figure 7.8 is a graphical representation of the results for the read and write tests.

Figure 7.8: Read and write performance of MongoDB (Győrödi et al., 2015a).

CHAPTER 7: GRADING THE NOSQL FAMILIES

87

Győrödi et al. (2015b) also compared MongoDB with MySQL. Experiment tests were done to

compare these two databases with each other (Győrödi et al., 2015b). The first test was to write to

the databases. The authors inserted 10 000 records into MongoDB (Győrödi et al., 2015b). MongoDB

took 0.29 seconds to complete the write operation (Győrödi et al., 2015b). The second test was to

read from the database. MongoDB took 0.0052 seconds to complete the read operation (Győrödi et

al., 2015b). The reading test results show that this database has fast reading performance. Comparing

the writing time (0.29 seconds) with the reading time (0.0052 seconds) indicates a significant gap in

performance levels. Therefore, the results imply that MongoDB is read optimised. Figure 7.9 shows

a graphical representation of the results for its reading and writing performance tests.

Abramova and Bernardino (2013) compared MongoDB and Cassandra. Their study shows that

MongoDB can provide good reading and writing performance. The amounts of records used in their

tests were 100 000, 280 000, and 700 000 (Abramova & Bernardino, 2013). A comparison of the

read and write results indicates the superiority of read performance over write performance as was

the case throughout all the performance tests. At the 700 000-record test, MongoDB completed the

read operation in 35 seconds, while the write operation took 282 seconds. These results support the

previously mentioned studies that indicated the read optimisation of MongoDB. Figure 7.10 indicates

the results of the write and read performance tests.

Figure 7.9: Graphical representation of the performance test results (Győrödi et al., 2015b).

Figure 7.10: Write and read speeds of MongoDB compared with Cassandra (Abramova & Bernardino, 2013).

CHAPTER 7: GRADING THE NOSQL FAMILIES

88

Li and Manoharan (2013) proved that MongoDB is exceptional with reads and average with writes.

The authors tested the read and write performance of MongoDB against several other NoSQL

products. MongoDB was one of the best databases in each of their experiment. Figure 7.11 compares

the reading performance of the several database products. The time took to complete the operations

was measured in milliseconds. The number of operations refers to the number of times a specific

operation is executed and ranged from 10 to 100 000 (Li & Manoharan, 2013). The results of the

performance tests show that MongoDB had the second fastest read performance of the databases that

were tested.

Figure 7.12 shows the write performance of the several databases. A comparison of the reading and

writing performance results for MongoDB indicates a difference in performance levels. At 100 000

operations, reading took 10201 milliseconds, while writing took 23354 milliseconds. The writing

performance test took more than double the time of the reading performance test. Therefore, the

results indicate that reading performance is far superior to writing performance and that MongoDB

is read optimised.

Considering the results of all the above-mentioned studies, it may be concluded MongoDB is read

optimised (Abramova & Bernardino, 2013; Du Toit, 2016; Győrödi et al., 2015a; Győrödi et al.,

2015b; Li & Manoharan, 2013; Lourenço et al., 2015a). Read optimisation means that the reading

performance is better than the writing performance. Thus, a grade of 9 is assigned for reading

performance and a grade of 5 for writing performance. These ratings reflect the gap between reading

and writing performance within MongoDB. MongoDB can accommodate a high read request use case

Figure 7.11: Reading performance of databases (Li & Manoharan, 2013).

Figure 7.12: Writing performance of databases (Li & Manoharan, 2013).

CHAPTER 7: GRADING THE NOSQL FAMILIES

89

with a moderate number of writes. If the use case is write heavy, then MongoDB might not be a

suitable choice for optimal performance.

7.3.5 Scalability

Partitioning data across multiple servers is the way document-based databases provide scalability

(Cattell, 2011). MongoDB allows scaling of data across multiple servers in a distributed environment

by employing automatic sharding (Banker, 2011; Chodorow, 2013; MongoDB, 2008). Replication

in MongoDB is used for redundancy purposes and not for scalability reasons. However, a

Master/Slave-like replication model is used (Du Toit, 2016).

In MongoDB, a mongod instance allows data to shard across several database nodes in a cluster

(MongoDB, 2008). Mongod stands for mongo daemon. The mongod instance is responsible for

storing the subset of the collection’s data (Figure 7.13) (Chodorow, 2013; MongoDB, 2008). Config

servers are also a requirement for storing the metadata of the clusters (MongoDB, 2008). The config

server can be found in a mongod instance (MongoDB, 2008). The queries from clients are directed

to the appropriate shard on a mongod instance via the mongos routing service (Chodorow, 2013;

MongoDB, 2008). MongoDB instances on each node start as soon as the config and routing servers

are running. Thereafter, they are added to the cluster through the routing service (MongoDB, 2008).

Du Toit’s (2016) research found that data in MongoDB is not sharded automatically. To shard data,

an index key must be specified (MongoDB, 2008). He also found that performance increases can be

noticed when adding nodes to the cluster (Du Toit, 2016). If autosharding is set up within MongoDB,

it will manage the distribution of data across the nodes as well as facilitate the addition of nodes to

the cluster (Banker, 2011). The document data model allows documents in MongoDB to be divided

between the different nodes in the cluster (Chodorow, 2013). In the rating system of Lourenço et al.

(2015a), MongoDB received a rating of “-” for scalability, implying that MongoDB might not the

best choice to facilitate high scalability.

Figure 7.13: Graphical representation of a sharded client connection (Chodorow, 2013, p.233).

CHAPTER 7: GRADING THE NOSQL FAMILIES

90

As a result of the aforementioned points, a grade of 6 is assigned to document-based stores for

scalability. A grade of 6 means that document-based stores may not provide the best levels of

scalability. However, document-based stores can provide adequate levels of scalability across the

cluster. MongoDB employs sharding to facilitate its scalability, which is difficult to set up in the

correct manner. There are plenty of components to be set up that require extensive knowledge

pertaining to the functioning of sharding. Sharding is not done automatically when MongoDB is set

up. However, good scalability can be achieved through autosharding. Autosharding makes the

scalability process much easier if it is set up correctly to handle the distribution of data across the

nodes automatically. Autosharding also manages the queries sent to the nodes. Therefore, clients are

not aware that they are communicating with other nodes. The above reasons are why a grade of 6 is

assigned to document-based stores.

7.3.6 Conceptual data structure

Document-based stores can store semi- and unstructured data (Banker, 2011; Chodorow, 2011). This

family employs a flexible data model with no predefined schema (Banker, 2011; Chodorow, 2013;

Orend, 2010). A document-based store, such as MongoDB, groups documents into collections

(Banker, 2011). A document refers to the basic unit of data for MongoDB. A document contains a

key and the value(s) associated with that key. Collections store documents with a similar data

structure (Banker, 2011). Multiple data structures can be stored within a single collection. A single

instance of MongoDB can have multiple separate databases, each with their own collections inside.

(Chodorow, 2013, p. 7).

There are advantages to employing a schemaless data model. Firstly, it is easier to make changes to

the dataset (Banker, 2011). Secondly, it is easier to add or remove fields (Chodorow, 2013). Lastly,

the schemaless model allows the representation of several data types within a single document

(Banker, 2011). Use cases for document-based stores are typically involve storing enormous-size

collections of documents (Moniruzzaman & Hossain, 2013). Use cases include high volume data

feeds, operational intelligence, behavioural profiling, content management, and metadata storage

(Magnusson, 2013). Some data types stored within documents include text, emails, XML, and semi-

structured data (Moniruzzaman & Hossain, 2013). Document-based stores are geared to work with

semi-structured data (Kaur & Rani, 2013). However, they are not geared to deal with relationship-

heavy data.

Thus, document-based stores receive a grade of 7 for the conceptual data structure criterion. A grade

of 7 represents the ability of document-based stores to work with semi- and unstructured data. The

database provides a schemaless storage model for the data, which means that various data structures

can be stored together. The schemaless model enables changes to the data to be made easily without

CHAPTER 7: GRADING THE NOSQL FAMILIES

91

affecting the database. The use cases indicate some of the different data types, each with their own

structure, that can be stored within this family. However, it is not well suited for relationship-heavy

data, such as transactional data.

7.3.7 Reliability

As stated previously, the reliability of a system refers to its ability to operate without faults that

reduce the operation quality (refer to section 5.3.7). Within MongoDB, replication can provide

reliability to the system through replica sets (Banker, 2011; Plugge, Hows, Membrey, & Hawkins,

2015). A replica set consist of a primary node and two or more secondary nodes (Banker, 2011;

Plugge et al., 2015). Replica sets combat faults through fault tolerance (Banker, 2011; Chodorow,

2013) and employ automatic failover to mitigate the effects of downtime and data loss. Automatic

failover can also provide fault tolerance and high reliability (MongoDB, 2008).

If a primary server goes down, an election takes place to select a new primary server. Once the

election process is completed, the elected secondary immediately becomes the new primary server

and handles all the requests from clients. If replication is implemented and a primary server goes

down, the data should still be accessible. All the servers in the set have access to the other servers’

data. Therefore, the client has access to the data even if a primary server experiences a fault. If the

data on one server is corrupt, a new copy can be made from the other servers in the set. (Chodorow,

2013, p. 169; Plugge et al., 2015). Thus, replication in MongoDB increases the reliability of the

overall database deployment (Banker, 2011).

Another feature that can aid in increasing the reliability of the overall database system is RAID

setups. RAID is software that allows one to handle multiple disks as if they were a single disk

(Chodorow, 2013). A RAID array is a set of disks that implement RAID software. There are

numerous levels of RAID and each level has distinctive features. The levels are RAID0, RAID1,

RAID5, and RAID10. RAID10 is the best option for reliability, because the data is striped and

mirrored. The level chosen for a specific use case depends on how reliable the database needs to be

for that use case (Chodorow, 2013, pp. 369-370).

A grade of 7 is assigned for this criterion because document-based stores can provide high reliability.

However, there are some drawbacks to the methods MongoDB employs to provide reliability. The

replica sets allow reliability to be high, because the primary server is replaced as soon as it goes

down. Replica sets improve this process by instantly electing a new primary server. However, data

loss can still occur due to rollbacks. Another drawback is that these features (RAID and replica sets)

need to be set up before reliability can be achieved. MongoDB does not have these features set up

CHAPTER 7: GRADING THE NOSQL FAMILIES

92

automatically. A grade of 7 indicates that high levels of reliability can be achieved with document-

based stores. However, this requires some effort.

7.3.8 Learning curve

The learning curve criterion refers to the time and effort needed to set up and learn how to use a

database that meets specific requirements. This criterion is hard to measure, as not all use cases are

the same. Therefore, the focus of this criterion is on the available knowledge regarding document-

based stores. The investigated information includes books, tutorials, and official documentation.

These sources of information can provide IT practitioners with all the relevant knowledge needed to

employ document-based stores.

MongoDB in Action (Banker, 2011) contains 287 pages that aim to provide the reader with a holistic

view of document-based stores and MongoDB. The book starts by explaining basic terms and

concepts related to document-based stores and MongoDB. The book examines the techniques that

MongoDB implements, for example the sharding technique. The book also assists the reader in

setting up MongoDB in a basic single node environment through code examples. MongoDB in Action

shows the reader how to manage and troubleshoot the database if faults occur. This book focusses

on beginners who want to get started with MongoDB.

MongoDB: The Definitive Guide is a book written by Chodorow (2013) that helps readers with basic

and advanced usage of MongoDB. This book has 409 pages that cover many aspects of the MongoDB

database system. The book informs the reader about many relevant terms and technologies that

MongoDB employs. Detailed instructions on how to set up and use MongoDB in a basic environment

are provided. Advanced techniques, such as sharding and replication, are discussed in detail. It also

explains how MongoDB employs these techniques to achieve a goal. Basic setups of the advanced

techniques are described to the reader. Administration of the MongoDB server is covered in a large

section of this book, which helps the reader with several relevant administration tasks. This book is

appropriate for beginners as well as advanced users of MongoDB.

A book focused on advanced usage of MongoDB is the MongoDB Cookbook written by Nayak

(2014). This book starts by explaining how to set up MongoDB through the use of code examples.

The book covers single node setups as well as multi-node distributed setups. The book also covers

advanced management of the database and dataset. Furthermore, it assists the reader in implementing

and deploying MongoDB with Hadoop and other open source tools to accomplish tasks. This book

is focusses on advanced usage of MongoDB and how to manipulate the database to accomplish tasks

for a specific use case.

CHAPTER 7: GRADING THE NOSQL FAMILIES

93

The MongoDB website (https://www.mongodb.com) is where a wide variety of resources, including

all documentation concerning MongoDB, can be obtained. Research papers on MongoDB can also

be retrieved from the website. A download link on the website allows clients to download and install

MongoDB. There are also numerous tutorials for beginners and advanced users on YouTube

(www.youtube.com). Below is a list of popular books about document-based stores and MongoDB.

These books can teach users about MongoDB and how it functions. The books also explain how to

set up a basic MongoDB instance and discuss advanced usage of MongoDB. The books can train

users to become well informed about the commands used in MongoDB.

 Chodorow, K. (2013). MongoDB: the definitive guide. Sebastopol, CA: O'Reilly Media,

Incorporated.

 Banker, K. (2011). MongoDB in action. Shelter Island, NY. Manning Publications

Company.

 Plugge, E., Hows, D., Membrey, P., & Hawkins, T. (2015). The Definitive Guide to

MongoDB: A complete guide to dealing with Big Data using MongoDB. California:

Apress.

 Chodorow, K. (2011). Scaling MongoDB. Sebastopol, CA: O'Reilly Media, Incorporated.

 Copeland, R. (2013). MongoDB Applied Design Patterns. Sebastopol, CA: O'Reilly Media,

Incorporated.

 Francia, S. (2012). MongoDB and PHP: Document-Oriented Data for Web Developers.

Sebastopol, CA: O'Reilly Media, Incorporated.

 Chodorow, K. (2011). 50 tips and tricks for MongoDB developers. Sebastopol, CA:

O'Reilly Media, Incorporated.

 Marchioni, F. (2015). MongoDB for Java Developers: design, build, and deliver efficient

Java applications using the most advanced NoSQL database. Birmingham, UK: Packt

Publishing.

 Nayak, A. (2014). MongoDB cookbook: over 80 practical recipes to design, deploy, and

administer MongoDB. Birmingham, UK: Packt Publishing.

 Hows, D., Membrey, P., & Plugge, E. (2014). MongoDB basics. Berkeley, CA: Apress.

 Nayak, A. (2013). Instant mongodb. Birmingham, UK: Packt Publishing.

 Edward, S. G., & Sabharwal, N. (2015). Practical MongoDB: architecting, developing,

and administering MongoDB. New Delhi: Apress.

 Hoberman, S. (2014). Data modeling for MongoDB: building well-designed and

supportable MongoDB databases. Basking Ridge, NJ: Technics Pub.

 França, W. D. R. (2015). MongoDB data modeling. Birmingham, UK: Packt Publishing.

 Mehrabani, A. (2014). MongoDB high availability design and implement a highly

available server using the latest features of MongoDB. Birmingham, UK: Packt

Publishing.

 Holmes, S. (2015). Getting MEAN: with Mongo, Express, Angular, and Node. Shelter

Island, NY: Manning.

 Vohra, D. (2015). Pro MongoDB development. Apress.

Doing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as on

Google Scholar returned the following number of results. The keyword used for the search was

“MongoDB”.

 Web of Science: 44 results

 IEEE Xplore: 164 results

CHAPTER 7: GRADING THE NOSQL FAMILIES

94

 ScienceDirect: 353 results

 Google Scholar: 18 100 results

Document-based stores have a variety of teaching materials readily available on the internet. Out of

all the families, document-based stores have the most teaching documentation available. MongoDB

has an organisational website (https://www.mongodb.com) on which the documentation for the

database can be found. A download link is available to download the necessary program to install

MongoDB. There are also book and video tutorials on how to set up and use MongoDB in different

situations. The books about MongoDB can teach an individual the fundamentals of document-based

stores as well as MongoDB. The teaching materials cater for beginners and advanced users of

MongoDB. Document-based stores are assigned a grade of 9 due to the amount of available teaching

materials for MongoDB. A grade of 9 means that individuals can easily teach themselves how to set

up, use, and accommodate their use case through MongoDB. The database search results also indicate

that research is being done to improve document-based stores and MongoDB.

7.4 Graph stores (Neo4j)

A graph, in formal terms, is a group of vertices, properties, and edges (Kemper, 2015). A graph can

also be seen as a set of nodes and the relationships that connect them. When a node is created, it

receives properties as well as any edges that are used (Kemper, 2015). Nodes represent the different

entities in the graph, while relationships show their relation to one another. The structure of a graph

allows different scenarios to be modelled. A graphical example of a graph is seen in Figure 7.14

(Robinson, Webber & Eifrem, 2015, p. 1).

Figure 7.14 represents a small group of individuals and the relationships they have with one another.

It represents a small network of Twitter users and not the entire Twitter network. Each node

represents a specific user. Users are connected to one another through their relationships (Robinson,

Webber & Eifrem, 2015, p. 2). The graph provides a holistic view of the stored data through a

graphical representation that makes it easier to understand. Neo4j is graph database that allows

developers to provide good performance where queries over large and complex datasets are

concerned (Goel, 2015).

Figure 7.14: Graph example within the Twitter context (Robinson, Webber & Eifrem, 2015).

CHAPTER 7: GRADING THE NOSQL FAMILIES

95

7.4.1 Consistency

Completing a write operation will insert a record into a database. If the database has high consistency,

all readers will view the most up-to-date information (Brewer, 2012; Strauch, Sites & Kriha, 2011).

Thus, consistency refers to the extent to which the system is in a consistent state after operations

occur. Neo4j provides eventual consistency (Hecht & Jablonski, 2011), meaning that if no new

updates to a record are made, all reads show the latest updated record. Neo4j employs Master/Slave

replication to facilitate consistency throughout its clusters.

The typical Master/Slave replication setups require all write requests to operate through the Master,

while read requests go to the Slaves (Vukotic et al., 2015). However, Neo4j does not employ the

typical Master/Slave replication model. Therefore, any Master/Slave node can handle both reads and

writes (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). Writing to a Slave does have some

drawbacks. To ensure its data is consistent, the Slave must synchronise with the Master through a

coordination protocol before it can return to the client (Robinson, Webber & Eifrem, 2015). This

process creates extra network traffic and causes the Slave nodes to be slower than the Master nodes.

Master and Slave nodes handle write requests differently (Vukotic et al., 2015). Reasons to write to

a Slave include that it can provide durability guarantees and enable clients to read their own writes

(Robinson, Webber & Eifrem, 2015). It is recommended that writes be made only on the Master and

then replicated to the Slaves (Robinson, Webber & Eifrem, 2015).

Updates to records are applied to the Master node first. If this is successful, then the updates are

applied to the Slaves. A Slave must be up to date to ensure overall consistency of data between the

Master and Slave nodes. If the Slave is up to date, then write requests can be performed. This means

that Neo4j will make sure that all Slaves are up to date before local writes can occur (Vukotic et al.,

2015, p. 238). This process can be seen as eventual consistency.

A grade of 6 is assigned to Neo4j for its ability to provide eventual consistency. A grade of 6 means

that above-average consistency performance can be achieved. However, the consistency is not

without faults. Neo4j provides full consistency in single instances but eventual consistency in a

distributed environment. The Master/Slave replication method has its own drawbacks, such as

downtime. Master/Slave replication assists in providing consistency of data. A Master node will

always be present to handle the read and write requests. Neo4j also allows reading and writing to

both Master and Slave nodes. However, writing to a Slave node leads to slower performance. The

data on the nodes is eventually consistent, which means that clients will eventually read the most up-

to-date information.

CHAPTER 7: GRADING THE NOSQL FAMILIES

96

7.4.2 Availability

Availability refers to a system’s resistance to faults that may occur and its ability to provide

continuous operation (Han, Haihong, Le & Du, 2011; Orend, 2010; Strauch, Sites & Kriha, 2011).

An example of a fault occurring is a node in a cluster going down. Availability in Neo4j is achieved

through a component known as Neo4j HA (high availability). The HA component allows the database

to run in a clustered setup. This enables the distribution of the database across multiple machines. A

Master/Slave replication architecture is employed to provide fault tolerance and resistance to failures

(Montag, 2013; Vukotic et al., 2015). Figure 7.15 is a graphical depiction of the Master/Slave

replication used to provide fault tolerance.

Using a Master/Slave replication architecture allows Neo4j to counter hardware failures as well as

handle large volumes of read requests (Vukotic et al., 2015). Each Neo4j instance contains two parts,

namely the database and the cluster management component (Montag, 2013). The cluster

management component is synchronised with all the instances in the database to keep track of

instances that join and leave the cluster (Montag, 2013). Therefore, if the database experiences a

fault, such as a hardware failure or a network outage, the cluster management component will detect

the failure and mark the database as having temporarily failed (Montag, 2013; Neo4j, 2017). The

database will update itself with the rest of the cluster when it comes back online (Neo4j, 2017).

The cluster management component works with the Master/Slave replication method. Within the

cluster, it is expected that a single Master will always be present along with any number of Slaves

(Vukotic et al., 2015). If a Master goes down, the cluster management component will ensure that a

Slave is elected as the new Master (Montag, 2013; Neo4j, 2017). The new Master begins to function

after a quorum is reached. This means that more than half of the cluster members must be active

(Neo4j, 2017). The new Master will broadcast its availability to all the members of the cluster (Neo4j,

2017). Typically, the election of a new Master will occur within a few seconds. However, no new

writes can be accepted during the election time (Neo4j, 2017).

Figure 7.15: A graphical representation of the Master/Slave replication architecture of Neo4j (Montag, 2013).

CHAPTER 7: GRADING THE NOSQL FAMILIES

97

An advantage of Master/Slave replication is the ability to write through both Master and Slave nodes

(Montag, 2013). Although the write performance of Slave nodes is not the best, clients can still write

to the database. Therefore, Neo4j can provide availability to the clients.

A grade of 9 is assigned to Neo4j for its availability property. The Master/Slave replication

architecture enables very high uptime. However, there are drawbacks to employing the Master/Slave

replication architecture. The election of a new Master can lead to downtime or data loss, since the

election process prohibits clients from writing to the database. The load balancer assists with the

election process and combats the drawbacks to a certain degree. The load balancer enables Neo4j to

have an automatic election whenever a Master node goes down. Therefore, Neo4j is geared to provide

high availability to the cluster. The HA component supports resilience and fault tolerance to ensure

the availability of the database.

7.4.3 Partitioning

Partition tolerance refers to the ability of a system to continue to function even if there are faulty

network partitions (Strauch et al., 2011). In data partitioning situations, partition tolerance plays a

vital role in ensuring continuous operation.

Queries are executed the quickest when the graph dataset is stored in main memory (Robinson,

Webber & Eifrem, 2015). However, the size of main memory becomes a problem when the graph

dataset is too large to store in main memory. Partitioning plays a vital role, as other technologies

partition their data to solve this problem (Robinson, Webber & Eifrem, 2015).

A graph dataset is difficult to divide among several partitions, because partitions may influence the

data and the relationships between the entities (Hecht & Jablonski, 2011). Thus, a problem is faced

when partitioning a graph dataset. On the hand, partitions provide better performance and fault

tolerance. On the other hand, a heavily linked graph dataset should not be distributed, because

traversals and lookups would cause performance penalties (Hecht & Jablonski, 2011) due to the

additional heavy network load.

As mentioned above, partitioning a graph dataset is not an easy task. Cache sharding can solve the

problem to a certain degree (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). In a Neo4j

cluster with the HA component, each HA instance expects to have access to the full set of data. Cache

sharding is a routing-based technique that routes requests to a certain database instance within the

Neo4j HA cluster (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). Cache sharding routes

requests to the specific database instance that can best satisfy them (Robinson, Webber & Eifrem,

2015; Vukotic et al., 2015). Therefore, it assists in increasing the performance of requests over a

distributed environment.

CHAPTER 7: GRADING THE NOSQL FAMILIES

98

Partitioning a graph dataset is a challenging task to accomplish, because the graph can rapidly mutate

and grow in size and relationships. The node relationships play a significant role in creating the value

that a graph database provides. Partitioning a large graph dataset across multiple nodes can incur

performance penalties and decrease the value of the dataset. Thus, partition tolerance is assigned a

grade of 4 for graph stores. Partitioning a large graph dataset is not recommended, because a large

number of relationships can lead to complex queries. However, cache sharding is a technique that

can be used to assist in partitioning data in graph databases.

7.4.4 Read and write performance

Jouili and Vansteenberghe (2013) developed a benchmark that can be used to test the performance

levels of graph databases by running simulations of real graph workloads. Their tool was used to test

Neo4j’s write performance. Jouili and Vansteenberghe (2013) also investigated the effect a bigger

buffer size has on the writing performance of graph databases. The buffer size refers to the number

of records inserted before the records are stored on a disk (Jouili & Vansteenberghe, 2013). They

found that the larger the buffer size, the better the performance of Neo4j.

The writing performance results (Figure 7.16) indicate that Neo4j achieved the best write

performance results in the performance tests until the 2.5 million-record entry. Thereafter, Neo4j’s

time increased drastically from 33.10 seconds to 297.87 seconds (Jouili & Vansteenberghe, 2013),

which was the second slowest time.

Next, the authors investigated the effect of increasing the buffer size on the write performance (Figure

7.17). The buffer size increased from 5000 to 20 000. Neo4j completed the 3 million-record workload

in a time of 143.57 seconds, compared to its previous time of 297.87 seconds (Jouili &

Vansteenberghe, 2013). The performance results may imply that Neo4j provides good linear write

performance up to a certain point. However, after that point is reached, the performance decreases

and is not linear anymore. 17Workload results using a buffer size of 20 000 (Jouili & Vansteenberghe, 2013).

18Workload results using a buffer size of 20 000 (Jouili & Vansteenberghe, 2013).

Figure 7.16: Workload results using a buffer size of 5000 records (Jouili & Vansteenberghe, 2013).

CHAPTER 7: GRADING THE NOSQL FAMILIES

99

The read test results of Neo4j indicate good reading performance. It was the top database in the set

of databases. As shown with the Figure 7.18, Neo4j had the best results while also having the least

variance in results (Jouili & Vansteenberghe, 2013). The results of this study found that Neo4j is a

top contender with good performance for both reading and writing jobs. Based on these results, it

can be concluded that the reading performance of Neo4j is better than its writing performance. This

indicates read optimisation.

The authors of Neo4j in Action (Vukotic, Watt, Abedrabbo, Fox, & Partner, 2015) compared Neo4j

with a relational database. Their goal was to investigate the difference in performance levels. The

test environment was that of a social network with various levels of friends. Each level represented

a certain depth of friends, for example friends-of-friends-of-friends (Vukotic et al., 2015). The results

indicate that Depth Level 2 of the test did not yield considerably different levels of performance from

the relational database and Neo4j. However, a significant difference in reading performance can be

Figure 7.17: Workload results using a buffer size of 20 000 (Jouili & Vansteenberghe, 2013).

Figure 7.18: Reading and traversing the data entries (Jouili & Vansteenberghe, 2013).

CHAPTER 7: GRADING THE NOSQL FAMILIES

100

seen at Depth Level 3 (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). The reading

performance of Neo4j does not increase in large intervals as the depth level increases. Instead, it

increases linearly with the depth level (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015).

Figure 7.19 is a summary of the results.

Batra and Tyagi (2012) compared Neo4j with MySQL. Their goal was to investigate the performance

differences between relational and non-relational data stores. Their test had various levels in which

the database had to search for results. The execution times of the read requests are tabulated in Table

7.8. The results indicate that Neo4j completed the queries in less time than MySQL (Batra & Tyagi,

2012). To complete the largest query, Neo4j took 21 seconds, while MySQL took 620.56 seconds.

This result is a good indication that Neo4j is formidable at reading results at multiple depth levels.

Table 7.8: Results of the performance tests of Neo4j and MySQL (Batra & Tyagi, 2012).

No_of_objects MySQL:S0 Neo4j:S0 MySQL:S1 Neo4j:S1 MySQL:S2 Neo4j:S2

100 19.56 8 33 12.65 111.334 19.57

500 281.38 10 333.96 17 620.56 21

The results of these studies indicate that Neo4j can provide good read and adequate write

performance, because Neo4j is read optimised. Its superior read performance becomes especially

noticeable when working with larger datasets with more depth levels. The studies of Jouili and

Vansteenberghe (2013), Robinson, Webber and Eifrem (2015), Vukotic et al. (2015), and Batra and

Tyagi (2012) indicate that Neo4j’s read performance is superior, especially with heavily linked data.

If a use case is very relationship driven or employs linked data, graph databases can be used for the

use case. A grade of 7 for reads and grade of 5 for writes are assigned to Neo4j. This reflects the

performance levels achieved for read and write requests in graph databases.

Figure 7.19: Reading speeds of Neo4j (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015).

CHAPTER 7: GRADING THE NOSQL FAMILIES

101

7.4.5 Scalability

Scalability refers to the system's ability to deal with increasing workloads (Orend, 2010). The Neo4j

HA component allows the database to run in a clustered setup, meaning the database is distributed

across several machines. This enables Neo4j to scale (Vukotic et al., 2015). A Neo4j cluster consists

of one Master node and zero or more Slave nodes that all have full copies of the data (Neo4j, 2017).

Figure 7.20 is a graphical representation of the replication process to scale the data among the cluster

nodes. Neo4j employs Master/Master replication and all nodes can accept read and write requests

(Hecht & Jablonski, 2011; Neo4j, 2017).

Unlike the normal Master/Slave replication model, Neo4j can accept read and write requests through

both Masters and Slaves (Vukotic et al., 2015). However, write requests are handled differently when

received by a Slave than by a Master. A write request through a Master will be completed under

normal conditions and the Master will update the dataset. A write request through a Slave will require

a Master to be available to update the dataset (Vukotic et al., 2015). If a Master is down, an election

process takes place during which a new Master is elected. This, along with the HA component, assists

with the scalability of the cluster, because it ensures that a Master is always available.

Write operations are done through the Master, whereas read operations can be done locally on each

Slave (Montag, 2013). This means that the read capacity of a cluster with the HA component will

increase proportionally with the amount of running servers (Montag, 2013). If a cluster with five

instances is serving five hundred read requests per second, the addition of a sixth instance would

increase its capacity to six hundred read requests per second. Thus, the scalability performance level

is also influenced by the number of running servers (Montag, 2013).

Robinson, Webber and Eifrem (2015, p. 169) state that a future goal is to be able to fully partition a

graph database across multiple machines without interference from the client’s application

(Robinson, Webber & Eifrem, 2015). A benefit of this would be that read and write access could be

Figure 7.20: Graphical representation of replication between the Master and Slave instances (Neo4j, 2017).

CHAPTER 7: GRADING THE NOSQL FAMILIES

102

scaled horizontally (Robinson, Webber & Eifrem, 2015). The authors state that graph databases

currently struggle to scale a graph dataset horizontally (Robinson, Webber & Eifrem, 2015). If a

graph dataset is scaled horizontally, unpredictable query times may occur, because graph traversals

could go across multiple machines (Robinson, Webber & Eifrem, 2015).

The information above leads to a grade of 5 being assigned to the graph stores’ ability to scale. While

it is possible to scale these datasets, performance will be unpredictable. The Neo4j HA component

assists with replication and the performance of these replicas. A Master/Master replication method

is employed and both Masters and Slaves can accept read and write requests. However, this method

has the usual Master/Slave drawbacks. Focus is placed on the relationships between data. Therefore,

if the graph dataset is partitioned among different servers, the performance could be unreliable due

to traversals across the various nodes. Graph stores do not have a solution to both facilitate scalability

and provide superior performance. However, replication can be seen as a method of providing

scalability, because the different servers contain full copies of the graph data. Therefore, Neo4j is

assigned a grade of 5 for scalability.

7.4.6 Conceptual data structure

Relationship-heavy data may be difficult to store in databases that do not focus on the relationships

between the data. Graph stores place a focus on the relationships between data, while the other

NoSQL families do not (Hecht & Jablonski, 2011). Examples of relationship-heavy data include

social media data, transactional data, geospatial data, and linked data (Hecht & Jablonski, 2011).

Social media data, for example data from Facebook or Twitter, is a good example of relationship-

heavy data. A user can have friends and friends of friends (Robinson, Webber & Eifrem, 2015). The

depth levels of relationships with friends and followers can become vast (Hecht & Jablonski, 2011).

Graph stores, such as Neo4j, can handle these depth levels easily, while also providing high

performance for queries (Robinson, Webber & Eifrem, 2015).

Robinson, Webber and Eifrem (2015) list some use cases in their book about Neo4j. The use cases

depict how various data types can be utilised with graph stores to provide value (Robinson, Webber

& Eifrem, 2015, p. 106). A business can employ social media data within a graph store to gain a

competitive advantage. Recommendations regarding the next best product to sell can be made by

investigating the relationship strengths between products. Graph stores can analyse geospatial data

to determine the route or distance between two regions (Hecht & Jablonski, 2011). Graph stores can

store network and data centre management data. A graph store can graphically depict the network

performance to assist with troubleshooting. Graph stores can give insight into network deployment

for future recommendations. The use cases above employ data with unique structures. Graph stores,

CHAPTER 7: GRADING THE NOSQL FAMILIES

103

such as Neo4j, can store and work with such semi- and unstructured data and place focus on the

relationships between the data.

Consequently, graph stores receive a grade of 9 for the conceptual data structure criterion. This

represents the performance and ability of graph stores. Graph stores are the only NoSQL family that

can provide superior performance when working with relationship-heavy data. Graph stores can store

and work with semi- and unstructured data types. However, focus is placed on the relationships

between datasets. The use cases mentioned some of the different data types that can be stored within

graph stores. Graph stores may be the correct storage medium for a use case that employs

relationship-heavy data.

7.4.7 Reliability

Reliability refers to the system’s ability to operate without failures for a certain amount of time

(Domaschka, Hauser & Erb, 2014). If a database is reliable, it may perform its function without any

failure. Reliability in Neo4j is enabled by the HA component, which employs a Master/Slave

replication model.

In a cluster with the HA component, the entire graph dataset is replicated to each instance in the

cluster (Montag, 2013). The advantage of replication is that the data is safe even if a server fails. The

disadvantage of replication is that it is resource intensive. The entire graph dataset needs to be able

to fit into the capacity of every instance (Montag, 2013). The current version of Neo4j has no

limitation on the number of nodes per instance it can store. Each Neo4j instance can store more than

34 billion nodes (Neo4j, 2017). Therefore, replication can be completed more easily, and better data

reliability can be provided.

The Neo4j HA component requires a quorum to be present in the cluster to serve write requests

(Neo4j, 2017; Montag, 2013). A quorum is reached when more than half of the nodes in the cluster

are active. This allows elections to take place when a Master goes down so that write requests can be

made (Neo4j, 2017). This is the method Neo4j uses to continue operating even after a failure occurs.

A grade of 8 is assigned to the reliability criterion for graph stores. A grade of 8 reflects the level of

reliability that can be achieved within graph stores. Graph stores have certain drawbacks, such as

Master/Slave elections and quorum requirements. Elections can result in data loss and down time. If

a quorum is not present for an election in the Neo4j cluster, the cluster will degrade to read-only

operation. This mode of operation allows only read requests to be completed until a quorum is

established. Nevertheless, Neo4j is operational and allows requests to be made. The dataset is

replicated to all the servers, which ensures the data is safe and reliable. Thus, graph stores can provide

superior reliability.

CHAPTER 7: GRADING THE NOSQL FAMILIES

104

7.4.8 Learning curve

Learning curve refers to the complexity level of a database as well as the time and effort needed to

set it up and to learn how to use it. The focus of this criterion is on the available knowledge regarding

graph stores and Neo4j.

Neo4j in Action by Vukotic et al. (2015) is a book for beginners who want to learn more about graph

stores and Neo4j. Neo4j in Action contains 281 pages that explain graph stores and Neo4j in detail.

The book starts by making a case for Neo4j. The book explains what Neo4j is and indicates how

Neo4j and graph stores compare to other NoSQL stores. The book continues by explaining relevant

terms and technologies used by Neo4j. Lastly, the book describes how Neo4j functions in a

production environment. Neo4j in Action is aimed at novice IT practitioners.

The Neo4j Cookbook by Goel (2015) has 205 pages that focus on how to use Neo4j. The book

explains single node setups as well as advanced setups with numerous technologies. Each example

in the book is accompanied by code to assist the reader in learning to use and set up Neo4j. This book

contains industry examples to illustrate how graph stores function in a contemporary technology

context. The book covers advanced setups of Neo4j in distributed environments. It also investigates

the scaling of Neo4j and graph stores. Lastly, the book explains how to do maintenance and

administration for a Neo4j database. The Neo4j Cookbook (Goel, 2015) focusses on advanced usage

of Neo4j and how Neo4j can fulfil various needs.

The Neo4j website (https://neo4j.com) contains a wide variety of resources. All the Neo4j

documentation data of can be found on the website. Research papers on Neo4j can also be obtained

from the website. On the website, a download link for Neo4j allows clients to download and install

Neo4j. There are also numerous tutorials for beginners and advanced users on YouTube

(www.youtube.com). Below is a list of popular books about Neo4j. The books can be used to train

users to take advantage of graph stores and Neo4j.

 Van Bruggen, R. (2014). Learning Neo4j: run blazing fast queries on complex graph

datasets with the power of the Neo4j graph database. Birmingham, UK: Packt Publishing.

 Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., & Partner, J. (2015). Neo4j in Action.

Shelter Island, NY: Manning Publications Company.

 Gupta, S. (2015). Neo4j essentials. Birmingham, UK: Packt Publishing Limited.

 Robinson, I., Webber, J., & Eifrem, E. (2015). Graph databases: new opportunities for

connected data (2nd ed.). Sebastopol, CA: O'Reilly Media, Incorporated.

 Goel, A. (2015). Neo4j Cookbook: harness the power of Neo4j to perform complex data

analysis over the course of 75 easy-to-follow recipes. Birmingham, UK: Packt Publishing

Ltd.

 Raj, S. (2015). Neo4j high performance design, build, and administer scalable graph

database systems for your applications using Neo4j. Birmingham, UK: Packt Publishing.

CHAPTER 7: GRADING THE NOSQL FAMILIES

105

 Redmond, E., Wilson, J. R., & Carter, J. (2012). Seven databases in seven weeks: a guide

to modern databases and the NoSQL movement. Dallas, TX: Pragmatic Bookshelf.

 Lal, M. (2015). Neo4j graph data modeling: design efficient and flexible databases by

optimizing the power of Neo4j. Birmingham, UK: Packt Publishing Limited.

 Jordan, G. (2014). Practical Neo4j. Berkeley, CA: Apress.

 Kemper, C. (2015). Beginning Neo4j. Berkeley, CA: Apress.

 Webber, J., & Robinson, I. (2016). A programmatic introduction to Neo4j. Harlow:

Addison-Wesley.

Performing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as

on Google Scholar returned the following number of results. The keyword used for the search was

“neo4j”.

 Web of Science: 22 results

 IEEE Xplore: 36 results

 ScienceDirect: 107 results

 Google Scholar: 5030 results

As can be seen above, there are a several books available about graph databases, such as Neo4j. Some

of the most popular books have been listed above. Graph databases focus on relationship-heavy data.

This may require a different mentality when attempting to learn about a new graph database

technology. The books range in content from the fundamentals of graph stores to experienced and

advanced usage of Neo4j. There are many tutorials online that an individual follow to learn how to

use Neo4j. Neo4j has a website (https://neo4j.com) that individuals can visit to download the software

and read the latest documentation about Neo4j and graph databases. Graph stores are assigned a grade

of 8 for the amount teaching materials available.

A grade of 8 means that individuals can teach themselves how to use graph stores, such as Neo4j.

Books and tutorials on the subject are readily available. Beginners might struggle with graph

databases, as they require individuals to think more about relationships. However, the amount of

documentation available is still sufficient. According to the search results, not as much research is

being done into graph databases as into the previous two NoSQL families. However, research is

continually being done to improve graph stores, such as Neo4j.

7.5 Key-value stores (Redis)

The key-value data model stores data against a specific key. The data is stored as uninterpreted byte

arrays, and the key is used to store, find, and sort the data (Abramova, Bernardino & Furtado, 2014;

Hecht & Jablonski, 2011). The data is independently stored, which means that relationships between

the data must be handled by the application logic (Hecht & Jablonski, 2011). The simple data

structure of key-value stores enables schema-free storage. Any type of value can be added during

runtime without affecting the availability of the database (Hecht & Jablonski, 2011). Key-value

CHAPTER 7: GRADING THE NOSQL FAMILIES

106

stores prioritise scalability over consistency (Strauch, Sites & Kriha, 2011). Therefore, key-value

stores may be able to address the need for access to distributed data.

Redis is an implementation of key-value databases. Redis stores data as values against keys. The keys

are used to uniquely identify the data stored in Redis. Redis can provide fast access to the data because

data is stored in main memory. Redis is schema-free and does not place any restrictions on the data

it stores. The client application logic is required to process the value of and relationships between

the data (Seguin, 2012, p. 7). Figure 7.21 shows key-value pairs that consist of different data values

stored against their respective keys.

7.5.1 Consistency

High consistency is achieved when clients always read the most up-to-date information (Pokorny,

2013). If high consistency is not supported, the most up-to-date information is not displayed. In time,

the out-of-date information will be updated and the newest information displayed. This process is

known as eventual or weak consistency (Pokorny, 2013). Redis employs eventual consistency due to

the Master/Slave replication model (Hecht & Jablonski, 2011).

Redis uses a Master/Slave model to replicate data onto different nodes in an asynchronous manner,

which means that the data is not replicated immediately (Das, 2015). The Master node will write all

the data and then replicate the dataset to the Slaves. Therefore, the data on the Master and the Slave

nodes is eventually consistent. An advantage of eventual consistency is increased performance. If

high consistency is employed, any update or write to a Master must be replicated to the Slaves

immediately. A large number of Slave nodes means that a large amount of resources will be used to

update the data to all the Slaves (Das, 2015, p. 107).

The Master/Slave model also has drawbacks. An election process occurs when a Master node

experiences a fault. When a new Master is elected, the Slave nodes must reconfigure to view the new

Master. Redis employs a technology known as Redis Sentinel that aims to automate the

reconfiguration of Slave nodes, which used to be a manual process (Da Silva & Tavares, 2015). Redis

Sentinel aims to combat the drawbacks of the Master/Slave model by automatically promoting a

Slave to the role of Master (Da Silva & Tavares, 2015). Redis Sentinel does not replicate data.

Figure 7.21: Key-value store contents, adapted from Wellhausen (2012).

CHAPTER 7: GRADING THE NOSQL FAMILIES

107

However, it ensures that the Master and Slave nodes are operational to provide consistency to the

data (Da Silva & Tavares, 2015, p. 171).

Redis employs eventual consistency, which means that the Master dataset is not immediately

replicated to the Slaves. The Slave nodes contain old copies of the data until an update operation

occurs. The drawbacks of the Master/Slave model are mitigated through Redis Sentinel. The election

process is automated to ensure a new Master is elected and the Slaves are reconfigured to view the

new Master node. Therefore, key-value stores can provide adequate levels of consistency. A grade

of 6 represents the level of consistency of data within key-value stores. A combination of eventual

consistency and the Master/Slave model enables above-average levels of consistency to be achieved.

Redis can provide asynchronous consistency of data with reliable performance benefits. Thus, if a

use case does not require synchronous consistency of data, Redis can be employed to provide

eventual consistency.

7.5.2 Availability

The percentage of time a system is functioning correctly is an indication of its availability (Orend,

2010). Availability also refers to continuous operation after a fault occurs (Han, Haihong, Le & Du,

2011; Strauch, Sites & Kriha, 2011). Redis employs the Master/Slave replication model to provide

availability and fault tolerance (Das, 2015). This replication model allows the Master to replicate the

dataset to the connected Slaves (Carlson, 2013). The updated Slaves make it possible for the clients

to retrieve the full dataset by ensuring the data is available.

The availability of Redis depends on the availability techniques of the Master and Slave nodes. The

availability technique used by Slaves differs from the Master’s technique. There are numerous Slave

nodes that can be used to counter a failure. The available Slave nodes will accommodate the failed

Slave’s requests to ensure that clients can access the dataset (Das, 2015). The technique employed

by the Master node is more difficult because there is only one Master at a time (Das, 2015; Da Silva

& Tavares, 2015). If the Master node fails, write requests will not execute until a new Master node

is running (Das, 2015). This means that data loss can occur, because only read requests can be

completed. A technology known as Redis Sentinel can be used to combat data loss (Das, 2015, p.

265). Redis Sentinel performs the election process automatically and configures all the Slaves to

point to the new Master node (Da Silva & Tavares, 2015). Therefore, Redis Sentinel attempts to

combat the downtime and data loss that can occur if a Master node fails (Da Silva & Tavares, 2015,

p. 171).

Redis can provide high availability through the Master/Slave replication model and Redis Sentinel.

The data is always safe, because each node contains a copy of the entire dataset. However, a

CHAPTER 7: GRADING THE NOSQL FAMILIES

108

drawback of this replication method is experienced when a Master node fails, because write requests

may not be executed without the presence of a Master node. Therefore, to prevent data loss, it is

important that a Master node always be present. Redis Sentinel is the solution to the data loss

problem. It automatically elects a new Master from among the Slaves to ensure that write requests

can continue. High availability can be achieved with key-value stores. Therefore, a grade of 8 is

assigned to the availability criterion. This reflects the level of availability key-value stores can

provide if they are set up correctly.

7.5.3 Partitioning

There are limits to the capacity and performance of database servers. Exceeding these limits requires

the database to be partitioned across multiple database clusters. NoSQL families’ methods of

distributing data to multiple machines differ (Hecht & Jablonski, 2011). The majority of the NoSQL

families have a key-oriented data model. There are two methods that can be used to partition data.

The first method is range-based partitioning, and the second method is consistent hashing (Redis,

2017).

The range-based partitioning strategy distributes a dataset by using the range of the dataset’s keys

(Hecht & Jablonski, 2011). The keyset is split into blocks and each block is stored on a different

node (Chen, Mao & Liu, 2014). For example, users with an ID of 0 to 10 000 are stored on instance

R0, and users with an ID of 10 001 to 20 000 are stored on instance R1 (Redis, 2017). Range-based

partitioning allows efficient handling of queries, as the keys and their associated data are stored on

the same node (Hecht & Jablonski, 2011). A disadvantage of this method is the table required to

manage the mappings of ranges to instances (Redis, 2017). The table must be constantly updated to

keep track of stored records. If the table were to fail, the queries could be sent to the wrong instances,

which could cause downtime. Therefore, a single point of failure exists within the range-based

method.

The consistent hashing method allows for higher availability (Hecht & Jablonski, 2011; Karger et

al., 1999). This strategy employs a shared nothing architecture (Stonebraker, 1986) and does not have

a single point of failure. The keys are distributed through hash functions to allow quick calculation

of a key’s address within the cluster (Hecht & Jablonski, 2011). Consistent hashing does not require

a table to keep track of the data locations. However, since the keys are distributed at random

throughout the cluster, this strategy may cause performance penalties on queries due to the high

network load (Hecht & Jablonski, 2011). Hecht and Jablonski (2011) gave Redis a positive rating for

consistent hashing and a negative rating for range-based partitioning. These ratings indicate that

Redis should employ consistent hashing and not range based partitioning.

CHAPTER 7: GRADING THE NOSQL FAMILIES

109

Key-value stores receive a grade of 6 for the partitioning criterion. The two methods of partitioning

each have their own advantages and disadvantages. Range-based partitioning has a single point of

failure but provides superior performance. Consistent hashing does not have a single point of failure.

However, performance penalties may occur since a tracking table is absent. Therefore, it is possible

to provide above-average performance through partitioning data in Redis. The advantages and

disadvantages of the two methods must be investigated before implementing partitioning in Redis.

7.5.4 Read and write performance

In a study done by Du Toit (2016), the reading and writing capabilities of different NoSQL databases

were evaluated. Workloads of various sizes were implemented and the time until completion was

recorded. Du Toit (2016) performed bulk inserts of various amounts of records into several NoSQL

databases. Du Toit (2016) found that Redis does not allow batch loading from a client application.

The batch loading of data had to be done through a text file and a batch load program (Du Toit,

2016). Owing to this, Du Toit (2016) stated that its performance could not be tested by the benchmark

tool. Du Toit (2016) added the total dataset as a single record through the benchmark tool and found

the writing speed to be 51 records per second and 19.56 milliseconds per record (Du Toit, 2016).

The reading performance of Redis indicates that result sets of up to 20 000 records were possible (Du

Toit, 2016). Redis could read a single record in an average time of 9.3 milliseconds (Du Toit, 2016).

However, Table 7.9 indicates that a single record took longer than any batch reading query (Du Toit,

2016). The fastest time recorded was 3.26 milliseconds per record for a batch read job of a 1000

records (Du Toit, 2016). The read performance of Redis remained relatively consistent up to 20 000

records where there was a slight increase to 4.4 milliseconds (Du Toit, 2016). At its fastest, Redis

could read 300 records per second when reading between 1000 and 5000 records in total (Du Toit,

2016). Its slowest performance of 227 records per second was recorded at 20 000 records (Du Toit,

2016). Du Toit’s (2016) research indicates that Redis can provide superior read performance,

especially during batch queries. Table 7.9 depicts the results of Du Toit’s (2016) reading benchmark

tests for Redis.

Table 7.9: Results of Redis reading benchmark tests over four nodes (Du Toit, 2016).

Records 1 100 1000 2500 5000 10000 20000

Duration in
ms (average)

9.3 382.9 3258.9 8188.5 16644.9 34176.4 88079.1

Latency per
record in ms

9.3 3.829 3.2589 3.2754 3.32898 3.41764 4.40396

Records per
second

107.527 261.165 306.852 305.306 300.392 292.6 227.069

CHAPTER 7: GRADING THE NOSQL FAMILIES

110

Abubakar, Adeyi and Auta (2014) compared the performance of MongoDB, Redis, OrientDB, and

ElasticSearch. Figure 7.22 indicates that Redis outperformed the other NoSQL databases in the write

benchmark test (Abubakar, Adeyi & Auta, 2014). Redis completed the write operation in the smallest

amount of time (Abubakar, Adeyi & Auta, 2014). Redis provides superior write performance because

the dataset is stored within main memory (Seguin, 2012).

Figure 7.23 indicates that Redis was the second best in the read benchmark test (Abubakar, Adeyi &

Auta, 2014). Thus, according to the findings of this study, Redis provides superior read and decent

write performance (Abubakar, Adeyi & Auta, 2014). This study’s findings indicate that the read

performance of Redis is superior to its write performance and thus agree with Du Toit’s (2016)

findings.

Abramova, Bernardino and Furtado (2014) evaluated the performance capabilities of several NoSQL

databases. The evaluation compared three of the four NoSQL families by comparing several NoSQL

databases. The NoSQL databases represented their respective families. The aim of the evaluation

Figure 7.23: Read performance comparison (Abubakar, Adeyi & Auta, 2014).

Figure 7.22: Write performance comparison (Abubakar, Adeyi & Auta, 2014).

CHAPTER 7: GRADING THE NOSQL FAMILIES

111

was to understand the effect of the data model on the performance of each family (Abramova,

Bernardino & Furtado, 2014).

Figure 7.24 indicates the performance of each database in the write test. Redis was the fith fastest

database to complete the operation (Abramova, Bernardino & Furtado, 2014). It took Redis 5 minutes

and 17 seconds to write 600 000 records (Abramova, Bernardino & Furtado, 2014). The authors

noted that Redis could not insert 600 000 records at once (Abramova, Bernardino & Furtado, 2014).

Two write operations were used to write 600 000 records. The sum of the operation times was 5

minutes and 17 seconds (Abramova, Bernardino & Furtado, 2014).

Figure 7.25 indicates the performance of each database in the read test. Redis completed the test

within 0.49 seconds, which was the second fastest time (Abramova, Bernardino & Furtado, 2014).

The results of these tests show that the read performance of key-value stores is far superior to their

write performance. Key-value stores use main memory to store data, which may be an indication of

why their read performance is fast (Seguin, 2012).

Key-value stores can provide fast read and write performance, because data is stored in main

memory, which makes it quickly accessible. Most of the performance studies above indicate that

key-value stores provide superior reading and proficient writing performance. Therefore, grades of

7 and 6 are assigned to reading and writing performance, respectively. The grade of 7 means that

Figure 7.25: Read performance times (Abramova, Bernardino & Furtado, 2014).

Figure 7.24: Write performance times (Abramova, Bernardino & Furtado, 2014).

CHAPTER 7: GRADING THE NOSQL FAMILIES

112

good reading performance is achievable within key-value stores, while the grade of 6 means that

writing performance is above average. However, there are drawbacks to consider. The first drawback

is that key-value stores use volatile memory to store datasets, which means that data loss can occur

if power is lost. Another drawback is the capacity of main memory. The entire dataset is stored in

main memory. Therefore, the size of the dataset is limited by the capacity of main memory. Large

datasets may lead to a higher cost to accommodate the size of the dataset. Key-value stores are

suitable for high-performance computing that employs moderately sized datasets.

7.5.5 Scalability

Scalability refers to the system’s ability to handle increasing workloads (Orend, 2010). Redis

achieves high scalability through replication and clustering (Redis, 2017). Replication of data is

achieved through the Master/Slave model. Writes performed on the Master node are replicated to the

Slave nodes (Redis, 2017). Thus, the Slave nodes have an exact copy of the Master node’s data.

Therefore, clients can query both the Master and Slave nodes (Carlson, 2013). The benefit of this

replication model is that the data can be scaled to various nodes within the cluster. If failures were to

occur, the data would be safe because exact copies can be found on all nodes (Da Silva & Tavares,

2015). The Master/Slave model does have drawbacks, such as downtime. However, Redis Sentinel

aims to combat the drawbacks of the Master/Salve model (Da Silva & Tavares, 2015, p. 171).

Redis clustering is the second approach used to provide high scalability (Redis, 2017). Redis

clustering is a method of automatically sharding the dataset across several nodes (Redis, 2017). Hash

slots are employed to allow the addition or removal of nodes without the occurrence of downtime.

Asynchronous replication exists between the nodes in the Redis cluster, meaning the Slave nodes are

not updated immediately (Redis, 2017). The Master/Slave replication model ensures that data can be

scaled. The drawback of the clustering method is that new nodes do not store data immediately. The

cluster needs to be re-sharded to configure and add blocks to the new node (Redis, 2017). In doing

so, data can be split across numerous Redis instances to provide high scalability.

The abovementioned leads to a grade of 7 being assigned to the scalability criterion. The grade of 7

reflects the high level of performance that key-value stores can provide where scaling is concerned.

Redis employs two approaches to provide high scalability. The Master/Slave replication model

replicates the dataset between the nodes. There are drawbacks to employing the Master/Slave model.

However, Redis Sentinel automates the election process to mitigate these drawbacks. Redis

clustering provides the ability to shard the dataset across numerous cluster nodes. This method allows

new nodes to be added without downtime. However, if a new node is added, the cluster must be re-

sharded to allocate blocks to store the data, meaning downtime could occur.

CHAPTER 7: GRADING THE NOSQL FAMILIES

113

7.5.6 Conceptual data structure

Semi- and unstructured data can originate from various sources with different structures. Therefore,

the storage technology must be able to handle the heterogeneous nature of the data. Redis is

completely schema-free and allows the insertion of data during runtime (Hecht & Jablonski, 2011).

Key-value stores are useful in use cases that deal with key-based attributes (Hecht & Jablonski,

2011). Common use cases include the management of user profiles, the management of sessions, and

the retrieval of product names (Moniruzzaman & Hossain, 2013). Redis can support a rich set of data

types that includes strings, hashes, lists, sets, and sorted sets (Redis, 2017). These five data types

allow a range of problems to be solved (Carlson, 2013).

Some companies that use Redis include companies such as Twitter, Pinterest, Snapchat and Flickr

among others (Redis, 2017). Redis can provide high performance while dealing with a rich set of

data types. An example of a Redis use case is within the Twitter context where Redis is used to create

an individual’s timeline (Iravani, 2015). The timeline consists of tweets indexed by their id which

allows Redis to chain the tweets together, regardless of the data type (Hecht & Jablonski, 2011;

Iravani, 2015). As a result, Twitter employs Redis as it meets the performance and data structure

requirements of its use case. Other companies such as Pinterest and GitHub have different data type

requirements than that of Twitter (Shon, 2014). However, each of the companies employ Redis since

it can accommodate their data type requirements. Therefore, key-value stores can accommodate

various data type requirements.

Consequently, key-value stores receive a grade of 7 for the conceptual data structure criterion. This

family is able to store and work with semi- and unstructured data. Key-value stores, such as Redis,

can accommodate numerous data types. Therefore, they can be used to solve numerous problems.

7.5.7 Reliability

If the reliability of a database system is high, then the database system is less likely to fail

(Domaschka, Hauser & Erb, 2014). A method of combatting weak reliability in key-value stores is

persisting data to disk (Redis, 2017). Within Redis, there are two methods of persistence, known as

snapshotting and append only file (AOF), which can be used separately, together, or not at all

depending on the situation (Carlson, 2013; Redis, 2017). The choice between these methods depends

on the data stored and the application implemented (Carlson, 2013). One of the primary reasons to

use these methods is to provide high reliability of data. Key-value stores use main memory to store

the data. Main memory is volatile, which means the data can be lost. Therefore, main memory data

is persisted to disk to ensure the reliability of data (Carlson, 2013; Redis, 2017).

CHAPTER 7: GRADING THE NOSQL FAMILIES

114

Snapshotting is a persistence method that writes the current data to a disk at specific intervals

(Carlson, 2013). Snapshotting is appropriate when working with datasets less than a few gigabytes

in size (Carlson, 2013; Redis, 2017). Snapshotting is a method used to persist data to disk (Carlson,

2013). As the dataset size increases, the time needed to persist the data increases. There are two

drawbacks to implementing snapshotting. The first drawback is that a large dataset leads to less

memory being available. Therefore, snapshotting will take more time to complete (Carlson, 2013).

The performance of Redis can degrade heavily if snapshotting is slow to complete (Carlson, 2013).

The second drawback is data loss. If a crash occurs, all the data modified since the last snapshot is

lost (Carlson, 2013; Redis, 2017).

Append only file (AOF) is the second method used to provide high reliability. AOF enables Redis to

store more up-to-date data (Carlson, 2013). The AOF log tracks all changes that occur in the dataset.

Thus, the dataset can be recovered from the AOF log if faults occur (Carlson, 2013). The

configuration of AOF can meet various needs, such as persisting data to disk every second. Such a

configuration means that only one second of data will be lost if a failure occurs. A drawback to AOF

is that increased storage capacity is used. AOF can also be slower than snapshotting the dataset

(Redis, 2017).

A grade of 7 is assigned to key-value stores for the reliability criterion, because they employ different

methods to ensure data reliability. Key-value stores can provide superior reliability through each

method. Each method has its own drawbacks and advantages. However, the choice of method

depends on the circumstances and the applications used.

7.5.8 Learning curve

The time and effort needed to set up and learn how to use a database as well as the database’s

complexity level are represented by the learning curve criterion. Redis in Action (Carlson, 2013) is a

book that teaches the reader about Redis and key-value stores. The book contains 293 pages that

introduce the reader to Redis. Many relevant terms associated with Redis and key-value stores are

explained. The book also explains the data types that Redis can work with as well as how several

problems can be solved through Redis. The last part of the book explains how Redis can scale within

a distributed environment. This book is aimed at novice readers who want to get started with Redis.

Redis Essentials (Da Silva & Tavares, 2015) is a book of 197 pages that aims to teach readers how

to use Redis in a business environment. The topics covered include the installation of Redis and how

to implement the Redis cluster and Redis Sentinel technologies. The book includes some example

code to assist the reader in understanding the techniques being implemented. The book is aimed at

both beginners and advanced readers who want to employ Redis.

CHAPTER 7: GRADING THE NOSQL FAMILIES

115

The Redis website (https://redis.io) supplies a wide variety of resources, including the most up-to-

date Redis documentation. A full set of commands for Redis is available on the website. A download

link for Redis is available for clients to download and install the database. There are also numerous

tutorials for beginners and advanced users on YouTube (www.youtube.com). Numerous other

learning materials can be found on the internet. These materials include research materials, tutorial,

and books. Some popular books about Redis and key-value stores are listed below. These books

provide the reader with the fundamentals of key-value stores. They can be used to teach users the

most basic concepts and most advanced usage of Redis.

 Carlson, J. L. (2013). Redis in Action. Shelter Island: Manning.

 Macedo, T., & Oliveira, F. (2014). Redis Cookbook. Beijing; Köln; Sebastopol, Calif.:

O'Reilly.

 Dayvson, D. S., & Tavares, H. L. (2015). Redis Essentials. Packt Publishing.

 Das, V. (2015). Learning Redis. Packt Publishing.

 Redmond, E., Wilson, J. R., & Carter, J. (2012). Seven databases in seven weeks: a guide

to modern databases and the NoSQL movement. Dallas, TX: Pragmatic Bookshelf.

 Nelson, J. (2016). Mastering redis. Packt Publishing Limited.

 Chinnachamy, A. (2013). Instant redis optimization how-to. Packt Publishing Limited.

 Palmer, M. (2013). Instant redis persistence. Packt Publishing Limited.

 Sanfilippo, S., & Noordhuis, P. (2011). Redis: The Definitive Guide Data Modeling,

Caching, and Messaging. Oreilly & Associates Inc.

 Chinnachamy, A. (2014). Redis applied design patterns: use Redis' features to enhance

your software development through a wide range of practical design patterns.

Birmingham: Packt Publishing.

Performing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as

on Google Scholar returned the following number of results. The keyword used for the search was

“redis”.

 Web of Science: 21 results

 IEEE Xplore: 47 results

 ScienceDirect: 0 results

 Google Scholar: 105 000 results

However, the content received was not always in line with the keyword. For example, a change in

search term from “redis” to “redis database” delivered only 13 500 results on Google Scholar.

There are various materials available that can be used to teach IT practitioners about key-value stores,

such as Redis. The teaching materials consist of book tutorials, video tutorials, and courses about

key-value stores. The material is readily available and Redis’s documentation is available on their

website (https://redis.io). The documentation is always expanding as new information is constantly

added to the current body of knowledge.

CHAPTER 7: GRADING THE NOSQL FAMILIES

116

Considering the number of search results and the amount of teaching materials available, key-value

stores are assigned a grade of 7. The grade of 7 means that an individual can download information,

install the database, and teach themselves through online tutorials and books. There are also more

advanced tutorials and books available that show individuals how to set up and use Redis to solve

problems. The results of the search performed on the databases show that some research is being

done in this area, but not as much as with the previous NoSQL database families.

7.6 Conclusion

Each NoSQL family has its own benefits. However, there are also disadvantages to using each of the

families, which means that there is no single technology that can fulfil all possible requirements.

Table 7.10 provides a summary of the grading done in this chapter.

This chapter set out to grade the four NoSQL families on their performance by using a fixed set of

criteria. The four NoSQL families each have unique strengths and weaknesses. For example, graph

stores excel at using relationship heavy data to solve problems. Document-stores allow a multitude

of data types to be stored together in a single document. Key-value stores provide the most consistent

performance but have a storage limitation. Column-family stores provide proficient writing and

consistency performance when working with heterogeneous data. There is no single solution for all

use cases. However, each NoSQL family can be a better choice for a specific use case than the other

families, as the capabilities of the families differ.

This chapter performed Step 3 (grade according to the criteria) of the 6-step process model. It graded

the performance of each family by using a fixed set of criteria. The next chapter will apply the

framework to a specific use case and provide a recommendation regarding which NoSQL family to

choose. Chapter 8 will perform Step 4 (weight the criteria), Step 5 (score the options), and Step 6

(recommend an option) of the 6-step process model. The goal of the next chapter is to continue to

demonstrate the feasibility and utility of the framework in a real-world use case by completing Steps

4 to 6 of the process model within the context of storing NetFlow data in a NoSQL database.

CHAPTER 7: GRADING THE NOSQL FAMILIES

117

Table 7.10: Summary of grades for each NoSQL family.

Criterion Column-family Document-based Graph Key-value

Consistency (7) Master/Slave
replication provides
good consistency.

(7) Replica sets
replication provides
good consistency.

(6) Master/Slave
replication provides
eventual consistency.

(6) Master/Slave
replication
provides eventual
consistency.

Availability (5) Master/Slave
combined with
RegionServers
provides average
availability.

(5) Replica sets and
fault tolerance.
Rollbacks can cause
data loss.

(9) Master/Slave and
cluster management
provide excellent
availability.

(8) Redis Sentinel
and Master/Slave
provide very good
availability.

Partitioning (7) Range-based
partitioning provides
good performance.

(7) Range-based
partitioning and
autosharding provide
good performance.

(4) Difficult to
partition. Can be
partitioned through
cache sharding.

(6) Consistent
hashing provides
low performance
and better fault
tolerance.

Read
performance

(4) Weak read
performance.

(9) Excellent read
performance.

(7) Good read
performance.

(7) Good read
performance.

Write
performance

(8) Strong write
performance.

(5) Average write
performance.

(5) Average write
performance.

(6) Above-average
write
performance.

Scalability (7) HDFS and
autosharding
provide high
scalability.

(6) Autosharding and
Master/Slave provide
decent scaling but
are difficult to set up.

(5) Difficult to scale.
Master/Slave
replicates full copies
to all nodes.

(7) Master/Slave
and Redis Sentinel
provide good
scalability.

Conceptual
data
structure

(8) HDFS and flexible
schema. No heavily
linked data.

(7) Schemaless.
Documents and
collections.

(9) Heavily linked
data. Can also store
different types of
data.

(7) Can store
several types of
data.

Reliability (7) HDFS provides
high reliability.

(7) Replica sets and
automatic failover
provide high
reliability.

(8) Neo4j HA
component provides
good reliability.

(7) Snapshotting
and append only
file provide good
reliability.

Learning
curve

(8) Easy to learn.
Many learning
materials available.
Not too difficult to
implement.

(9) Easy to learn.
Many learning
materials available.
Not difficult to
implement.

(8) Easy to learn.
Many learning
materials available.
Not too difficult to
implement.

(7) Not too difficult
to learn. Some
learning materials
available.

CHAPTER 8: NETFLOW USE CASE

In this dissertation, a framework that can be used to assist IT practitioners in making decisions

regarding NoSQL technologies is proposed. The proposed framework presents a weighted decision

model that can be tailored to assist with specific technological use cases by following a 6-step

process. The previous chapter adapted the weighted decision model by grading the four NoSQL

families using a fixed set of criteria for NoSQL technologies. The current chapter will further

demonstrate the feasibility and utility of the framework in a real-world use case and complete the

adaption process.

The next step (Step 4) of the 6-step process model is to allocate weights to the criteria. The

requirements of the use case determine what weight is allocated to each criterion. Input regarding the

relative importance of each criterion is obtained from IT practitioners who are familiar with the

requirements of the use case. The goal is to indicate which of the criteria are important for the success

of the use case. After the weights are assigned, calculations can be performed to compute the final

score for each family (Step 5), which can then be used to make a recommendation (Step 6).

The use case context for this study is NetFlow. This chapter starts by explaining the NetFlow use

case. Thereafter, the requirements of the use case that will affect the weight values assigned to the

criteria are investigated. The instrument used to gather the weight values is described and the final

scores of the NoSQL families are discussed. Lastly, the recommendation provided by the framework

is discussed and an explanation of why that specific recommendation was made is given.

8.1 Use case

Most networks have some sort of network monitoring or reporting tool in place. Network monitoring

tools are used to gain an understanding of a network’s operation. NetFlow is a popular protocol that

can be used to report on a network’s operation or identify irregularities if normal functioning is not

occurring (Cisco, 2012). In the use case focused on in this study, IT practitioners must decide which

NoSQL family to use to store captured NetFlow data for decision-making purposes.

Normal operational use of NetFlow will continue. However, storing the data in a NoSQL database

will allow it to be used for additional purposes, such as trend analysis, security analysis, and decision

support. It is essential to obtain weight values to indicate which criteria are important for this use

case.

8.1.1 NetFlow

There are a variety of factors that can influence the amount and type of traffic that is generated inside

a network (Sommer & Feldmann, 2002). Examples of such factors include a change in users’

CHAPTER 8: NETFLOW USE CASE

119

behaviour on the network, the installation of new technologies or hardware, and the time of the day

(Sommer & Feldmann, 2002). In order to make sense of the increase in and type of traffic on the

network, the IT practitioner needs to have a clear understanding of what is occurring inside the

network. Network measurement systems can provide aggregated information for each pair of IP

addresses or port numbers (Sperotto et al., 2010). To gain an understanding of the network and its

performance, the information regarding communications inside the network needs to be inspected.

NetFlow is a tool that can be used to aggregate such information.

According to Cisco (2012), NetFlow is an instrument in Cisco IOS software that can be used to

characterise the operation of the network. NetFlow data is network traffic data between two hosts.

NetFlow data consists of NetFlow records. Each record contains information, such as IP addresses,

port numbers, traffic protocol types, and the volume of traffic being sent across the network (Table

8.1) (Lakkaraju, Yurcik, & Lee, 2004). A prominent characteristic of NetFlow data is the rate at

which the data is generated (Zhou, Petrovic, Eskridge & Carvhalo, 2014). An organisation with a

major internet backbone can generate large volumes of NetFlow data at a high velocity. For example,

routers of a university can generate large amounts of NetFlow data (Zhou et al., 2014).

 Table 8.1: NetFlow fields and their meanings (Sommer & Feldmann, 2002)

Capturing NetFlow data requires large amounts of storage space. The next section describes how

NetFlow can add value to organisations.

8.1.2 The value of NetFlow

Storing NetFlow data without using it wastes resources. There are numerous ways through which

NetFlow can add value to an organisation, such as intrusion detection, network monitoring,

bandwidth estimation, and predicting future data requirements. This data can also be used to

determine more in-depth information, such as the relationships between NetFlow data from several

locations, future network requirements, and the cybersecurity state of the network, as well as to gain

knowledge of the network. NetFlow data can be used to detect network intrusions (Sperotto et al.,

2010), to estimate bandwidth for a network (Schmidt, Sperotto, Sadre & Pras, 2012), and for

Name Description

Srcaddr Source address
Dstaddr Destination address
Input Input interface
Output Output interface
dPkts Number of packets
dOctets Number of octets
First Start of NetFlow
Last End of NetFlow
Srcport Source port
Dstport Destination port
Tcp_flags TCP flags
tos IP type of service

CHAPTER 8: NETFLOW USE CASE

120

visualising the data to solve problems (Minarik & Dymacek, 2008). Therefore, there are a variety of

ways NetFlow can add value to an orginisation. However, the organisation may be required to be

store the NetFlow data in a NoSQL technology. If so, a decision will have to be made regarding

which NoSQL family to use to store the NetFlow data. An instrument will enable the IT practitioners

to assign weights to criteria, which will assist with the decision-making process.

8.2 The instrument used to weight the criteria

In Chapter 6, three methods that can be used to capture the criteria weights from experts were

investigated (section 6.2.2). These methods were interviews, focus groups, and questionnnaires.

Interviews offer the ability to examine experts’ behaviour and answers to technical questions.

However, the researcher did not have physical access to experts. Therefore, interviews were not

feasible.

Focus groups enable a group of experts to voice their opinions and discuss the weight values in the

context of a use case. However, since the researcher did not have access to co-located experts, a focus

group could not be conducted.

For this study, a close-ended questionnaire with LPC-like scales is used. This enables the

practitioners to enter specific weight values for each of the criteria. As stated before, the weights

represent the level of importance of each criterion for the NetFlow use case. The questionnaire

displays each criterion along with a short definition, which could assist the IT practitioner in

assigning the correct weight. Refer to Appendix B for the instrument used in this study.

The method used has two rules for assigning weights. The first rule is that each criterion can be

assigned a weight of 1 to 10. A scale of 1 to 10 is used to allow the IT practitioners to assign a value

that is representative of the importance level of each criterion. Also, the scale can help prevent some

decision-making biases from influencing the decision.

The second rule is that a maximum of 50 marks can be assigned per questionnaire. Placing a limit

on a number of marks combats the effects of certain decision-making biases. Allowing a maximum

of 50 marks to be distributed prevents individuals from assigning the same weight value to each of

the criteria. It forces the IT practitioners to apply their minds to the task. Thus, this limit ensures that

the recommendation provided is of a high quality.

Once the weights are assigned, the instrument determines whether more than 50 marks were assigned

in total. If more than 50 marks were assigned, an error message is shown to indicate that the rules

CHAPTER 8: NETFLOW USE CASE

121

were not followed. Thereafter, the instrument closes and records the answer. However, less than 50

marks may be assigned if it is of the IT expert’s opinion.

Figure 8.1 is an example of the instrument that allows IT practitioners to assign weight values. Each

criterion is represented on the left side as shown in Figure 8.1. Along with each of the criteria, a short

definition is provided to assist IT practitioners in understanding the goal of each criterion. Both the

minimum and maximum value that can be assigned are displayed to remind the IT practitioner of the

rules. The IT practitioner is asked to assign the appropriate weight value to each of the criteria.

Figure 8.1: Example of the read performance criterion within the instrument.

The weighting instrument was distributed to expert IT practitioners who were asked to determine the

importance of each criterion for the NetFlow use case. The identified weight values for the NetFlow

use case will be inserted into the framework, which will recommend which NoSQL family to use.

8.3 Weight the criteria (Step 4)

The instrument that was developed to enable IT practitioners to insert weights was given to SANReN

network engineers. The instrument requested that the IT practitioners indicate the importance of each

criterion with regards to the NetFlow use case.

Additional proof that technology decisions are difficult to make was provided when the SANReN

engineers were asked to complete the questionnaire. Some SANReN engineers felt that they did not

have the required expertise to complete the questionnaire. This supports the claim that technology

decisions are difficult to make.

Since such a decision is difficult, more than one opinion is necessary to derive an appropriate set of

weight values. Therefore, a single opinion regarding the requirements of a use case is not a reliable

source of information. More than one individual should complete the questionnaire from which the

criteria weightings are derived. Since some SANReN engineers felt they did not have the required

expertise, the questionnaire had to be distributed to other IT experts. Therefore, the questionnaire

was distributed to NfSen and NFDUMP communities, whose members also have various levels of

expertise in dealing with NetFlow data.

A total of six responses were received. However, only three responses were selected to be used. The

final weightings for the NetFlow use case were derived from a comparison of these responses. Out

of the six respondents, three respondents did not follow the rules of the questionnaire. One of the

CHAPTER 8: NETFLOW USE CASE

122

respondents assigned 15 marks to one criterion, therefore the respondent did not follow the rules.

Two respondents did not apply their minds to the task. They assigned many of the criteria a weight

value of 10 and no values to others. This means that these two respondents did not carefully consider

the importance of each criterion in the context of the use case to assign an appropriate weight value.

The three remaining responses were deemed proper responses and used to determine the weights of

the criteria. A high weight value indicates that it is important to achieve high performance within the

specific criterion and a low weight value indicates that it is not important to have high performance

within the specific criterion. The following sections will discuss each criterion by comparing the

weight values assigned to it by the respondents.

Consistency

For the consistency criterion, the first respondent provided a weight value of 3, indicating that high

consistency is not very important for the use case. The second respondent assigned a weight value of

6 to the criterion, which means that high consistency is of moderate importance to the use case. The

third respondent assigned consistency a weight value of 8, indicating that high consistency is very

important to the use case.

Two of the three weight values are relatively close to each other and indicate that consistency is

important for the use case. However, the first respondent’s weighting indicates otherwise. Owing to

the large gap between the values, the average of the values may not properly represent the responses

of the first and third respondents (section 2.2.1).

However, two of the respondents indicated that consistency is important. Therefore, the final weight

assigned to consistency is 6, which represents the moderate importance of high consistency within

the NetFlow use case. A weight of 6 means that the NoSQL family should provide above-average

levels of performance where consistency is concerned.

Availability

Respondents 1 and 2 assigned a weight value of 5 to the availability criterion, while Respondent 3

assigned a weight value of 7. A weight value of 5 indicates that high availability is of average

importance for the use case. However, a weight value of 7 indicates that high availability is very

important for the use case. These values are relatively close to one another. Therefore, an average

value can be used to represent the importance of the availability criterion. The final weight assigned

is 6, which indicates that high availability is moderately important for the use case. Therefore, the

NoSQL family should be able to provide above-average levels of performance where availability is

concerned.

CHAPTER 8: NETFLOW USE CASE

123

Partitioning

The first respondent assigned a weight value of 4 to the partitioning criterion. The second respondent

assigned a weight value of 5, and the third respondent assigned a weight value of 7. A weight value

of 4 indicates that a high level of performance is not very important where partitioning is concerned.

A weight value of 5 indicates that it is of average importance, while a weight value of 7 indicates a

high importance level.

There is a significant gap between the highest value of 7 and the lowest value of 4. Therefore, the

average of the values would not be able to accurately represent the three respondents’ opinions.

However, two of the three respondents (Respondent 1 and 2) assigned weight values that are close

to each other. This may be a better indication of the importance of the partitioning criterion for the

use case. The final weight assigned to the partitioning criterion is 5. This indicates that it is of average

importance to the use case. The NoSQL family should be able to provide average performance where

partitioning and partition tolerance are concerned.

Read and write performance

The read and write criteria are weighted as two separate criteria. The read criterion will be

investigated first. Respondent 1 assigned a weight value of 9 to the read criterion, indicating that this

criterion is extremely important for the use case. Respondent 2 assigned a value of 8, indicating that

this criterion is very important for the use case. Respondent 3 assigned a weight of 10, indicating that

this criterion is vital for the use case. These grades are close to one another and are all very high

grades. Therefore, it can be assumed that the reading performance of the NoSQL family should be

very high to be able to fulfil the reading requirements of the NetFlow use case.

Respondent 1 assigned a weight value of 7 to the write criterion, which indicates that fast writing

speeds must be achievable. However, Respondents 2 and 3 indicated that average writing speeds are

adequate for the NetFlow use case by each assigning a weight of 5.

As the weight values assigned to both criteria are close to one another, their averages can be

calculated to obtain final weight values to represent the read and write requirements of the use case.

A final weight value of 9 is assigned to the reading criterion, and a final weight value of 6 is assigned

to the writing criterion. The weight value of 9 means that high reading performance is extremely

important, while the weight value of 6 means that high writing performance is only moderately

important.

CHAPTER 8: NETFLOW USE CASE

124

Scalability

Respondent 1 assigned a weight of 7 to the scalability criterion, which indicates that high scalability

is very important for the NetFlow use case. Respondent 2 indicated that high scalability is moderately

important by assigning value of 6, while Respondent 3 indicated that it is of average importance by

assigning a value of 5. The highest value of 7 and the lowest value of 5 are relatively close to each

other. Therefore, the average of the three responses can be used to indicate the importance of high

scalability to the NetFlow use case. The final weight of 6 indicates that it is moderately important to

provide high scalability within the NetFlow use case. Therefore, the NoSQL family should be able

to provide above-average levels of performance where scalability is concerned.

Conceptual data structure

For the conceptual data structure criterion, the first respondent provided a weight value of 6,

indicating that it is of moderate importance for the use case. Respondent 2 assigned a weight value

of 7 to the criterion, indicating that it is very important for the use case. Respondent 3 provided a

weight value of 1, indicating that the conceptual data structure criterion is of very low importance

for the NetFlow use case.

The weight value of Respondent 3 contradicts the values of Respondents 1 and 2. This implies that

there are contradicting opinions regarding the importance of the conceptual data structure criterion

within the NetFlow use case. As there is a large gap between the values, the average of the three

responses will not represent the view of Respondent 3. Therefore, the average of the three responses

will not be used.

A final weight value of 4 is assigned to the conceptual data structure criterion. The value of 4 better

represents the importance of this criterion within the NetFlow use case. All four of the NoSQL

families can accommodate semi-structured data. This means that the NetFlow data can be stored and

used with ease. Therefore, the weight value of 4 represents the less important nature of this criterion

for this specific use case.

Reliability

For the reliability criterion, the first respondent provided a weight value of 3, indicating that high

reliability is of low importance. The second and third respondents each assigned a weight value of 5

to the criterion, which means that high reliability is of average importance to the use case.

The highest and lowest value are close to each other. Therefore, an average value can be used to

represent the importance of the availability criterion. The final weight assigned is 4, which indicates

CHAPTER 8: NETFLOW USE CASE

125

that high availability is not very important for the NetFlow use case. Therefore, the database does

not have to provide high levels of reliability.

Learning curve

For the learning curve criterion, the first respondent provided a weight value of 6, indicating that the

learning curve criterion is moderately important for the NetFlow use case. The second respondent

provided a weight value of 3, which means that the learning curve is of low importance for the use

case. The third respondent agreed by assigning a weight value of 2, also indicating that the learning

curve is of low importance for the use case.

There is a large gap between the highest and lowest value, which implies that there are different

opinions regarding the importance of this criterion. Two of the three weight values are close to each

other and indicate that the learning curve is not very important for the use case. However, the first

respondent’s weighting indicates otherwise. Owing to the gap between the values, the average of the

values may not properly represent the first and third respondents’ responses.

However, because two of the three respondents indicated that the learning curve is not very

important, it can be assumed that the learning curve does not heavily affect the use case. Therefore,

the final weight assigned to the criterion is 4. This indicates that the learning curve is not very

important within the NetFlow use case.

Table 8.2 is a summary of the weights provided by the three respondents. It also indicates the final

weights used to represent the use case requirements. The requirements need to be inserted into the

model before it can provide the recommendation.

Table 8.2: Summary of respondents’ and final weights for the model.

Criteria Respondent 1 Respondent 2 Respondent 3 Final weight

Consistency 3 6 8 6

Availability 5 5 7 6

Partitioning 4 5 7 5

Read 9 8 10 9

Write 7 5 5 6

Scalability 7 6 5 6

Conceptual data structure 6 7 1 4

Reliability 3 5 5 4

Learning curve 6 3 2 4

CHAPTER 8: NETFLOW USE CASE

126

8.4 Score the options (Step 5)

The final weights derived from the instrument can now be entered into the model to calculate the

final score of each NoSQL family. The final scores are derived from the mathematical calculation

represented below.

𝑆𝑐𝑜𝑟𝑒(𝐹𝑘) = ∑ 𝑊𝑖. 𝑅𝑖𝑘

𝑛

𝑖=1

This calculation will provide each family with a final score. The higher the score, the more the family

meets the use case requirements. Table 8.3 is a representation of the model and the final scores

calculated for the families.

Table 8.3: Final scores of the NoSQL families.

Criteria Weight Column-family Document-based Graph Key-value

Consistency 6 7 7 6 6

Availability 6 5 5 9 8

Partitioning 5 7 7 4 6

Read 9 4 9 7 7

Write 6 8 5 5 6

Scalability 6 7 6 5 7

Conceptual data structure 4 8 7 9 7

Reliability 4 7 7 8 7

Learning curve 4 8 9 8 7

Final score 325 341 333 339

The final score for column-family stores is 325. Document-based stores scored 341, while graph

stores scored 333, and key-value stores scored 339. The highest score belongs to document-based

stores, followed by key-value and graph stores, while column-family stores scored the lowest.

8.5 Recommend an option (Step 6)

The use case requires above-average levels of consistency. Document-based stores can provide high

levels of consistency through their replica sets which replicate data. Therefore, they fulfil the use

case’s requirement regarding consistency. Column-family stores provide good consistency through

Master/Slave replication, while key-value and graph stores provide eventual consistency.

The use case requires the database system to be moderately available at all times. Document-based

stores can provide average availability through replica sets. Therefore, the family will perform

adequately even though its performance regarding availability is slightly under what is required. As

a result, document-based stores can satisfy the availability requirement of the use case. However,

graph stores provide excellent availability through Master/Slave replication, while key-value stores

CHAPTER 8: NETFLOW USE CASE

127

provide good availability through Master/Slave replication. This implies that graph and key-value

stores can better satisfy the use case’s availability requirement. Column-family stores provide only

average availability through Master/Slave replication, therefore it can also meet the availability

requirement.

The use case requires average performance where partitioning and partition tolerance are concerned.

Document-based stores can provide high partitioning performance and be highly partition tolerant

through range-based partitioning and autosharding. Therefore, they meet the use case’s requirement

regarding partitioning. Column-family stores employ range-based partitioning, and key-value stores

employ consistent hashing, which means that these families can also fulfil the partitioning

requirement of the use case. However, graph stores do not perform sufficiently where the partitioning

criterion is concerned, since graph data is difficult to partition.

The most important requirement for the NetFlow use case is high reading performance. Document-

based stores provide excellent reading performance. Therefore, they fulfil the most important

requirement for the NetFlow use case. Column-family stores provide weak reading performance,

while graph stores and key-value stores provide good reading performance. Therefore, they do not

adequately meet the requirement of high reading performance.

The use case requires above-average writing performance. Document-based stores provide average

writing performance, which could still satisfy the writing performance requirement. Document-based

stores will perform adequately but not the best for the writing criterion. However, column-family

and key-value stores are better equipped to provide the writing performance required by the use case.

Graph stores also provide average writing performance, meaning it could also satisfy the writing

requirement of the use case.

The use case requires above-average levels of performance where scalability is concerned.

Document-based stores can provide above-average scaling through autosharding and Master/Slave

replication. Therefore, they meet the requirement of the use case. Column-family stores employ the

Hadoop Distributed File System (HDFS) with autosharding to provide good scalability performance.

Key-value stores can provide good scalability performance through Master/Slave replication.

Therefore, column-family and key-value stores could better satisfy the requirement of the use case.

However, graph stores do not provide good scalability performance, because it is difficult to scale

graph datasets. Therefore, graph stores do not meet the scalability requirement.

NetFlow is semi-structured data. The storage medium for the use case is required to be able to work

with such data. All NoSQL families are able to meet the data structure requirement of the NetFlow

CHAPTER 8: NETFLOW USE CASE

128

use case. Therefore, the conceptual data structure has an average level of importance within the use

case.

The NetFlow use case does not require high levels of reliability. Document-based stores provide

good reliability through Replica Sets and automatic failover. Therefore, they meet the use case’s

reliability requirement. Column-family stores use the HDFS (Hadoop distributed file system) to

provide high reliability, while graph stores use the HA component to provide very good reliability.

Key-value stores use snapshotting and the append-only file (AOF) methods to provide good

reliability. Therefore all NoSQL families can provide the required reliability performance levels for

the use case.

The learning curve is not very important for the NetFlow use case. Therefore, all of the NoSQL

families are able to fulfil the learning curve requirement. There are many teaching materials available

about all of the NoSQL families.

As can be seen in Table 8.3, the document-based family provides the best performance for the

NetFlow use case. The document-based family fulfils the majority of its requirements, which were

provided by the experts. Therefore, the recommendation from the model is to employ document-

based stores within the NetFlow use case. Key-value stores receive an honourable mention, as their

performance levels are close to those of document-based stores. Therefore, key-value stores could

also be used within the NetFlow use case. However, a drawback to using key-value stores is that

main memory is employed to store the dataset. This means that the size of the store’s memory limits

the size of the data set. NetFlow use cases can comprise of very large data sets to be stored. Therefore,

the key-value store’s memory may not be able to accommodate the size aspect connected to the

NetFlow use case.

8.6 Conclusion

This chapter served as an instantiation to demonstrate the feasibility and utility of the framework.

The decision framework was tailored to the NetFlow use case and used to recommend which NoSQL

family to choose when storing NetFlow data in a NoSQL database. IT practitioners indicated the

importance level of each criterion in terms of the use case through a data collection instrument. This

made it clear that the criteria have various degrees of importance in the context of the NetFlow use

case.

The weight values assigned to the criteria are representative of the use case requirements. This

increased the quality of the recommendation provided by the framework. Once the weight values

were inserted into the framework, the final scores could be calculated, and a recommendation could

be made.

CHAPTER 8: NETFLOW USE CASE

129

The recommendation was to use the document-based NoSQL family to store the NetFlow data.

According to the framework, the document-based family is the best fit in terms of the requirements

of the use case. The framework assisted the IT practitioner in making a more informed decision

regarding which NoSQL family to choose. This demonstrated the utility value of the proposed

framework.

PART D

EPILOGUE

CHAPTER 9: CONCLUSION

Decision-making is a difficult task and there are problems, such as biases and measurements, that

can influence the outcomes of decisions. Therefore, there is a need for a framework that IT

practitioners can employ to make better decisions. This study set out to provide a framework that can

help IT practitioners make better decisions regarding NoSQL families.

The focus of this chapter is to revisit each sub-objective to indicate how the primary research

objective was met. Each chapter within this study will be examined and explained as it pertains to

the research objectives of this study.

9.1 Overview of the study

Decision-making is a core process of daily life (Nooraie, 2012). It was introduced in Chapter 1 as a

major focus of this study. Chapter 1 introduced the problem area for this study as technology

decision-making. The problem statement for this study was: IT practitioners do not have a systematic

way to select a NoSQL family for non-arbitrary use cases. The problem statement indicated that IT

practitioners struggle to make decisions regarding NoSQL technologies.

Design science influences this study. Therefore, the framework of March and Smith (1995) was

employed to provide structure to the research. The study was broken into four parts. Part A focussed

on context and discussed decision-making, biases, and NoSQL. Part B discussed the proposed

framework, which consists of constructs, a decision model, and a process model in the form of the

6-steps. Part C focussed on instantiation in the context of a NetFlow use case. Part D is an epilogue,

which is provided in the current chapter. These parts map well to the research framework of March

and Smith (1995) as can be seen in Figure 9.1.

Figure 9.1: Overview of framework.

CHAPTER 9: CONCLUSION

132

Chapter 2 introduced the context of the study and investigated decision-making and biases. The

investigation showed that biases can negatively impact decisions. There are a wide variety of biases

that can be classified using four categories that represent the overarching problems found in the

biases. The biases focussed on in this study were grouped accordingly.

Chapter 3 added to the background of this study by investigating NoSQL storage technologies. This

represented Step 1 of the 6-step process model. The focus of Chapter 3’s investigation was NoSQL

and the different NoSQL technologies. It was found that NoSQL has four families and many products

associated with each family.

Chapter 4’s goal was to provide an overview of the proposed framework. Chapter 4 discussed the

need for a framework as well as how it should assist IT practitioners. Thereafter, a framework

comprised of constructs, a weighted decision model, and a process model was proposed.

The decision-model combines all the constructs (options, criteria, grades, weights) through a final

score and depicts their relationships with one another. The list of technologies is graded according

to a fixed set of criteria to ensure all the options are properly investigated. Thereafter, the criteria are

assigned weight values that represent the importance of each criterion within a use case context. The

model calculates weighted final scores for the technologies to help the IT practitioner make an

informed decision.

A specific method in the form of a process model is used to implement the decision model. The

process model has 6 steps that IT practitioners can follow systematically to implement the

framework. Each of the 6 steps plays an integral part in technology decision-making by mitigating

the effects of measurements and biases. The 6-step process can also be used to adapt the framework

to other contexts.

Chapter 5 focused on Step 2 of the 6-step process model, which is to identify comparison criteria.

Therefore, the goal of Chapter 5 was to identify a fixed set of criteria that can be used to uniformly

compare the NoSQL families. Nine criteria were identified, including the CAP criteria. A fixed set

of criteria enables the IT practitioner to compare the NoSQL families uniformly.

Chapter 6 focused on explaining Steps 3, 4, and 5 of the 6-step process model. Chapter 6 started by

explaining how to grade the options using the fixed set of criteria to ensure that all the options are

properly investigated. Thereafter, the weights of the criteria were discussed. The weight values

represent the importance of each criterion within a specific context. Lastly, the final weighted scores

of the options were investigated and the calculation of the final scores through the mathematical

formula was explained.

CHAPTER 9: CONCLUSION

133

The above-mentioned chapters showed that the proposed framework can assist with technology

decision-making. However, its feasibility and utility could still be questioned. Therefore, the

framework was instantiated. Instantiation refers to placing an artefact within a specific instance to

verify and demonstrate its use. The demonstration started in Chapter 7. The NoSQL families were

graded according to the fixed set of criteria. This ensured that a uniform comparison of the NoSQL

families, which would indicate their unique strengths and weaknesses, could be made.

Chapter 8 focused on the weighting of criteria within the NetFlow use case context to indicate the

importance of each criterion for the use case. Once weights were assigned to the criteria, the final

weighted score of each family could be calculated, which led to a recommendation of which

technology to choose. The framework recommended the document-based family for the NetFlow use

case, as it best fulfils the requirements. This recommendation was discussed and justified within the

chapter. Chapter 8 also represented the final step of the 6-step process model.

9.2 Meeting the objectives

This section will look at how the objectives of this study were met.

The problem statement indicated the need for a systematic approach that IT practitioners can follow

to make better decisions. Therefore, the primary research objective of this study was to create a

framework to help IT practitioners with NoSQL decisions. To develop such a framework, various

sub-objectives had to be met. The researcher first needed to understand decision-making and the

problems that can influence decision-making. These problems also indicate why decision-making

can be a difficult task. The study focused on technology decision-making and the researcher aimed

to list typical problems that IT practitioners are faced with when making technology decisions.

Thereafter, the researcher needed to identify a general model that can assist with decision-making

and counter these problems. The model also needs the ability to adapt to specific scenarios.

To achieve the primary objective of developing a framework, three research sub-objectives needed

to be addressed.

9.2.1 Enumerate typical decision-making problems

Sub-objective 1 (SO1) was to enumerate typical decision-making problems IT practitioners face

when choosing between technologies.

The first sub-objective (SO1) was achieved in Chapters 2 and 3 (Part A) through a literature survey

on decision-making, biases, and NoSQL. The problems and their effects on decision-making were

investigated within the context of this study.

CHAPTER 9: CONCLUSION

134

9.2.2 Identify a general model for decision-making

Sub-objective 2 (SO2) was to identify a general model for decision-making.

Sub-objective 2 (SO2) was accomplished through a literature survey done to find an appropriate

framework as well as a mathematical expression with which to depict the framework. The framework

was proposed and discussed in Chapter 4 (Part B).

9.2.3 Create a process to tailor the approach to the NoSQL scenario

Sub-objective 3 (SO3) was to create a process to tailor the approach to the NoSQL scenario. The

context of this study was technology decision-making. It focussed specifically on decisions regarding

NoSQL technologies. Therefore, a process to adapt the framework to the NoSQL scenario was

proposed.

Sub-objective 3 (SO3) was partially met through a literature survey done to expand on the constructs

within this study and a 6-step process model for adapting the framework to specific scenarios that

was proposed through argumentation. This was discussed in Chapter 4.

Chapters 5 and 6 (Part B) also addressed the third sub-objective (SO3) through a literature survey

and argumentation. The specific steps within the process model were discussed to indicate how to

adapt the approach to the NoSQL scenario.

9.2.4 Create a framework

The researcher investigated decision-making and identified the problems faced when making

decisions in Chapter 2. Since decision-making in general is a broad subject, a narrower context was

found in technology decision-making and NoSQL, which were investigated in Chapter 3. Therefore,

the first sub-objective was met. Next, the researcher needed to identify a model for making decisions.

A framework to assist IT practitioners in making decisions regarding technology was proposed in

Chapter 4. Therefore, the second sub-objective was met. A process model that can be used to adapt

the framework to a specific NoSQL scenario was also proposed. The framework was discussed in

detail in Chapters 5 and 6. Therefore, the third sub-objective was met.

As all three the sub-objectives were met, the main objective of this study, to create a framework to

help IT practitioners with NoSQL decisions, was also met. However, the feasibility and utility of the

framework could still be questioned. Therefore, instantiation was used to demonstrate the feasibility

and utility of the framework within an instance. A NetFlow use case was used to demonstrate the

utility of the framework in Chapters 7 and 8 (Part C). The framework provided the researcher with a

recommendation of which NoSQL family to employ for the specific use case. Thus, the feasibility

CHAPTER 9: CONCLUSION

135

and utility of the framework were demonstrated. This indicated that the primary objective of this

study was sufficiently met.

9.3 Reflections on the proposed framework

This section will reflect on the proposed framework and its shortcomings.

In order to compare the NoSQL families, four very popular database products, one from each of the

families, were used to represent the performance characteristics of the families. The researcher

generalised the information of specific products to the NoSQL families, because non-generalised

information may not exist. For example, the document-based family was represented by the

MongoDB product. Therefore, the information used to compare the families can be seen as a

shortcoming of the study. However, IT practitioners would also have to use generalised information

to represent the families.

Since this is a Master’s study, time was a restriction. The grading process especially was very time-

consuming. The time spent grading the NoSQL families placed a limitation on this study. With more

time, a more comprehensive evaluation could have been done, which may have led to a better

recommendation. However, IT practitioners in the industry will not be able to spend large amounts

of time finding and evaluating all relevant information either.

As a result of time constraints, only one instance was used to demonstrate the feasibility and utility

of the framework. With more time, additional scenarios could have been used to demonstrate the

effect of the framework on other specific instances.

One of the more difficult tasks of the proposed framework was assigning performance grades to the

families according to the criteria. The grades that could be assigned ranged from 1 to 10. However,

when grading was completed, no family received a grade close to either 1 or 10. Thus, it could be

argued that the grading method used a smaller scale (4 to 9) to indicate the performance values of

the NoSQL families.

The weighting of criteria was another difficult process. Many of the weights that were provided by

the experts were close in value. Therefore, the majority of the weights did not contradict one another.

This indicates that assigning weight values is not an easy task for experts to perform. The weight

values may assist the IT practitioner in overcoming some of the decision-making biases. However,

they may also support other biases. For example, a false sense of accuracy may be created when a

decision is based on a calculation involving the weight values.

The conceptual data structure criterion captures two aspects pertaining to the general use of the data.

The first is how the data looks after conversion, and the second is how the data can be used in general.

CHAPTER 9: CONCLUSION

136

However, the criterion may not place enough focus on the use of the data in specific contexts, which

could also influence the recommendation of the framework. Therefore, some of the criteria may not

be granular enough to assign an appropriate weight value to accommodate the actual use of the data.

The recommendation of the framework is not perfect. In the NetFlow use case, the four families

received relatively close final scores. The scores of two families were very close to each other,

indicating these families could provide comparable levels of performance within the use case. While

the recommendation from the framework may reduce uncertainty, it does not remove uncertainty

completely. As the weights and gradings came from a smaller range than anticipated, uncertainty

may not have been reduced enough for the recommendation to be trusted fully. Thus, the

recommendation could result in a deeper investigation.

9.4 Future research

Future studies could investigate the rest of the design science framework of March and Smith (1995)

within the context of this framework. This study only focused on the build research activity. However

there are three other activities, namely evaluate, theorise, and justify, that could also be investigated.

To evaluate means to determine if any progress has been made towards the goal of the artefact (March

& Smith, 1995). To theorise means to develop theories regarding the framework. After the theories

are created, they also need to be justified (March & Smith, 1995). As a result of their goals, theorise

and justify do not provide value in the context of this study.

In terms of the NoSQL technology, this study had a focus on the four NoSQL families and the choice

between them. However, a future research project could take the framework a step further and assist

in the selection of a specific product within one of the families. Once a family is chosen, the next

choice is to select a product since there are many products deriving from each family.

In terms of evaluation, a future research project could be performing a more comprehensive

evaluation of the assignment of performance grades. Currently, each family’s performance grades

were assigned based on literature and argumentation. However, a more refined grade value could be

provided if actual performance tests were done. The use case could also be changed to evaluate the

effectiveness of the framework within other contexts.

Another future research project could be investigating the weighting process and the meaning of the

weight values in more granular detail. This could assist IT practitioners in assigning weight values

that indicate the importance of the criteria more easily. The fixed set of criteria should also be

investigated further to account for various situations, as this could increase the quality of the

recommendation.

CHAPTER 9: CONCLUSION

137

Creating an application that will enable the framework to be used in industry without time constraints

could also be a future research project. The application would aim to automate the framework to

provide quick recommendations to the IT practitioners. The application would have a specific

technology focus, namely the NoSQL focus found within this study. Therefore, the application would

represent the framework used to assist IT practitioners with decisions regarding the NoSQL families.

The goal of the research would be to measure the effectiveness of the framework in industry and

determine whether IT practitioners would employ it. To enable such an application to be created, a

more in-depth evaluation of the NoSQL families would have to be performed to determine a

standardised set of performance figures for each family.

Since there are copious amounts of information about the NoSQL families and products available,

another future research project could be creating a more consolidated piece of information pertaining

to the NoSQL families, their levels of performance, their limitations and drawbacks, and common

and uncommon use cases. The goal of such a research project would be to measure the effectiveness

of this information in helping IT practitioners make better decisions regarding NoSQL technologies.

9.5 Final words

It was determined that decision-making is a difficult task to accomplish. Making decisions regarding

technologies, such as NoSQL databases, is even more difficult, as there are large volumes of

information to consider. Furthermore, biases and measurements can influence the IT practitioner and

lead to incorrect decisions being made. Therefore, the problem statement of this study was: IT

practitioners do not have a systematic way to select a NoSQL family for non-arbitrary use cases.

This study aimed to develop an artefact that can assist IT practitioners with decisions regarding the

NoSQL families. To accomplish this goal, it proposed a framework that can mitigate the effects of

biases and measurements while assisting IT practitioners in making more informed technology

decisions.

This chapter reported the success of this research study. Each of the research sub-objectives was

aligned with a part of the study, meaning that each sub-objective was met successfully. The primary

research objective was also met by developing a framework that can assist IT practitioners in making

better decisions regarding NoSQL technologies and thereby decrease the difficulty of making certain

technology-based decisions.

BIBLIOGRAPHY

Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities. IEEE Data

Engineering Bulletin, 32(1), 3-12.

Abramova, V., & Bernardino, J. (2013). NoSQL databases: MongoDB vs Cassandra.

In Proceedings of the International C* Conference on Computer Science and Software

Engineering (pp. 14-22). ACM.

Abramova, V., Bernardino, J., & Furtado, P. (2014). Experimental evaluation of NoSQL

databases. International Journal of Database Management Systems, 6(3), 1-16.

Abubakar, Y., Adeyi, T. S., & Auta, I. G. (2014). Performance evaluation of NoSQL systems using

YCSB in a resource austere environment. International Journal of Applied Information

Systems, 7(8), 23-27.

Agrawal, D., El Abbadi, A., Das, S., & Elmore, A. J. (2011). Database scalability, elasticity, and

autonomy in the cloud. In International Conference on Database Systems for Advanced

Applications (pp. 2-15). Springer Berlin Heidelberg.

Aiyer, A. S., Bautin, M., Chen, G. J., Damania, P., Khemani, P., Muthukkaruppan, K., ... &

Vaidya, M. (2012). Storage infrastructure behind Facebook messages: Using HBase at

scale. IEEE Data Engineering Bulletin, 35(2), 4-13.

Aniceto, R., Xavier, R., Guimarães, V., Hondo, F., Holanda, M., Walter, M. E., & Lifschitz, S.

(2015). Evaluating the Cassandra NoSQL database approach for genomic data persistency.

International Journal of Genomics, 2015. http://doi.org/10.1155/2015/502795

Audette, J. (2011). Overview - Scaling Out vs Scaling Up. Retrieved from

https://www.mojoportal.com/overview-scaling-out-vs-scaling-up

Banker, K. (2011). MongoDB in action. Shelter Island, NY. Manning Publications Company.

Batra, S., & Tyagi, C. (2012). Comparative analysis of relational and graph

databases. International Journal of Soft Computing and Engineering (IJSCE), 2(2), 509-

512.

Bazerman, M.H. and Moore, D.A. (2008), Judgment in Managerial Decision Making (7th ed.). New

York: Wiley.

http://doi.org/10.1155/2015/502795

BIBLIOGRAPHY

139

Benson, B. (2016). Cognitive bias cheat sheet – Better Humans. Retrieved from

https://betterhumans.coach.me/cognitive-bias-cheat-sheet-55a472476b18

Brenner, L. A., Koehler, D. J., & Tversky, A. (1996). On the evaluation of one-sided

evidence. Journal of Behavioral Decision Making, 9(1), 59-70.

Brewer, E. A. (2000). Towards robust distributed systems. In Symposium on Principles of

Distributed Computing (PODC), 7.

Brewer, E. A. (2012). CAP twelve years later: How the rules have changed. IEEE Computer, 45(2),

23-29.

Cai, L., Huang, S., Chen, L., & Zheng, Y. (2013). Performance analysis and testing of HBase based

on its architecture. In 12th International Conference on Computer and Information Science

(ICIS), 2013 IEEE/ACIS (pp. 353-358). IEEE.

Carlson, J. L. (2013). Redis in Action. Shelter Island, NY: Manning Publications Company.

Cattell, R. (2011). Scalable SQL and NoSQL data stores. ACM Special Interest Group on

Management of Data (SIGMOD) Record, 39(4), 12-27.

Chapple, M. (2018). The Basics of Normalizing a Database. Retrieved from

https://www.thoughtco.com/database-normalization-basics-1019735

Chen, M., Mao, S., & Liu, Y. (2014). Big data: a survey. Mobile Networks and Applications, 19(2),

171-209.

Chodorow, K. (2013). MongoDB: the definitive guide. Sebastopol, CA: O'Reilly Media,

Incorporated.

Churchill Jr, G. A. (1979). A paradigm for developing better measures of marketing

constructs. Journal of Marketing Research (JMR), 64-73.

Cisco. (2012). Introduction to Cisco IOS NetFlow - A Technical Overview. Retrieved from

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-

netflow/prod_white_paper0900aecd80406232.html

Clemen, R. T., & Gregory, R. (1995). Creative decision making: A handbook for active decision

makers. Eugene, OR: Decision Science Research Institute.

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html

BIBLIOGRAPHY

140

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud

Computing (pp. 143-154). ACM.

Coronel, C., & Morris, S. (2016). Database systems: Design, implementation, and

management (12th edition [student edition].). Stamford, Conn.: Cengage Learning.

Couchbase. (n.d.). Comparing document-oriented and relational data. Retrieved from

https://developer.couchbase.com/documentation/server/3.x/developer/dev-guide-

3.0/compare-docs-vs-relational.html

Cowan, R. (1991). Tortoises and hares: choice among technologies of unknown merit. The

Economic Journal, 101(407), 801-814.

Da Silva, M. D., & Tavares, H. L. (2015). Redis Essentials. Birmingham, UK: Packt Publishing

Ltd.

Das, V. (2015). Learning Redis. Birmingham, UK: Packt Publishing Ltd.

DB-Engines. (n.d.). DB-Engines Ranking. Retrieved from https://db-engines.com/en/ranking

Dean, R. B., & Dixon, W. J. (1951). Simplified statistics for small numbers of

observations. Analytical Chemistry, 23(4), 636-638.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., ... & Vogels,

W. (2007). Dynamo: amazon's highly available key-value store. ACM Special Interest

Group on Operating Systems (SIGOPS) Review, 41(6), 205-220.

Desouza, K., Jha, S., Papagari, S., & Ye, C. (2006). Choosing between technology

solutions. Engineering Management Journal, 16(1), 42-45.

Dimiduk, N., Khurana, A., Ryan, M. H., & Stack, M. (2013). HBase in action. Shelter Island, NY:

Manning Publications Company.

Dobelli, R. (2013). The art of thinking clearly: better thinking, better decisions. Hachette, UK:

Sceptre Publishers.

Domaschka, J., Hauser, C. B., & Erb, B. (2014). Reliability and availability properties of

distributed database systems. In 2014 IEEE 18th International Enterprise Distributed

Object Computing Conference (EDOC), (pp. 226-233). IEEE.

BIBLIOGRAPHY

141

Du Toit, P. (2016). An evaluation of non-relational database management systems as suitable

storage for user generated text-based content in a distributed environment, University of

South Africa, Pretoria, http://hdl.handle.net/10500/21613

Edlich, S. (2011). List of NoSQL databases [currently >225]. Retrieved from http://nosql-

database.org/

Evans, E. (2009, May 12). NoSQL 2009 - Blog-post of 2009-05-12. Retrieved January 13, 2017,

from http://blog.sym-link.com/2009/05/12/nosql_2009.html

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and

analytics. International Journal of Information Management, 35(2), 137-144.

Gao, X., Nachankar, V., & Qiu, J. (2011). Experimenting lucene index on HBase in an HPC

environment. In Proceedings of the First Annual Workshop on High Performance

Computing Meets Databases (pp. 25-28). ACM.

George, L. (2011). HBase: The Definitive Guide: Random Access to Your Planet-Size Data.

Sebastopol, CA: O'Reilly Media, Incorporated.

Gilbert, S., & Lynch, N. A. (2012). Perspectives on the Cap theorem. Computer, 45(2), (pp. 30-36).

Gillham, B. (2011). Developing a questionnaire (2nd ed.). New York, NY: Continuum International

Publishing Group.

Goel, A. (2015). Neo4j Cookbook: harness the power of Neo4j to perform complex data analysis

over the course of 75 easy-to-follow recipes. Birmingham, UK: Packt Publishing Ltd.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of

Neuroscience, 30, 535-574.

Goldman, A. E., & McDonald, S. S. (1987). The group depth interview: Principles and practice.

Englewood Cliffs, NJ: Prentice-Hall.

Gravetter, F. J., & Wallnau, L. B. (2011). Essentials of Statistics for the Behavioral Sciences (7th

ed.). Belmont, CA: Wadsworth Cengage.

Gu, Y., Wang, X., Shen, S., Ji, S., & Wang, J. (2015). Analysis of data replication mechanism in

NoSQL database MongoDB. In 2015 IEEE International Conference on Consumer

Electronics-Taiwan (ICCE-TW), (pp. 66-67). IEEE.

BIBLIOGRAPHY

142

Guo, H., Wang, L., Chen, F., & Liang, D. (2014). Scientific big data and digital earth. Chinese

Science Bulletin, 59(35), 5066-5073.

Győrödi, C., Győrödi, R., & Sotoc, R. (2015a). A comparative study of relational and non-

relational database models in a web- based application. International Journal of Advanced

Computer Science and Applications (IJACSA), 6(11), 78–83.

http://doi.org/10.14569/IJACSA.2015.061111

Győrödi, C., Győrödi, R., Pecherle, G., & Olah, A. (2015b). A comparative study: MongoDB vs.

MySQL. In 2015 13th International Conference on Engineering of Modern Electric

Systems (EMES), (pp. 1-6). IEEE.

Hahn, U., & Harris, A. J. L. (2014). What does it mean to be biased: motivated reasoning

and rationality. Psychology of Learning and Motivation - Advances in Research

and Theory (1st ed., Vol. 61). Elsevier Incorporated. http://doi.org/10.1016/B978-

0-12-800283-4.00002-2

Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2010). Multivariate data analysis: A

global perspective. (7th ed.). Upper Saddle River, NJ: Pearson Education.

Hammond, J. S., Keeney, R. L., & Raiffa, H. (1998). The hidden traps in decision making. Harvard

Business Review, 76(5), 47-58.

Han, J., Cai, Y., & Cercone, N. (1993). Data-driven discovery of quantitative rules in relational

databases. IEEE Transactions on Knowledge and Data Engineering, 5(1), 29-40.

Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on NoSQL database. In 2011 6th

International Conference on Pervasive computing and applications (ICPCA), (pp. 363-

366). IEEE.

HBase. (2007). Apache HBase – Apache HBase™. Retrieved from https://hbase.apache.org/

Hecht, R., & Jablonski, S. (2011). NoSQL evaluation: A use case oriented survey. In 2011

International Conference on Cloud and Service Computing (CSC). (pp. 336-341). IEEE.

Hoff, T. (2011, June 20). 35 Use cases for choosing your next NoSQL database - high scalability -.

Retrieved February 9, 2017, from http://highscalability.com/blog/2011/6/20/35-use-cases-

for-choosing-your-next-nosql-database.html

BIBLIOGRAPHY

143

Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: A

technology tutorial. IEEE Access, 2, 652–687.

http://doi.org/10.1109/ACCESS.2014.2332453

Hubbard, D. W. (2011). How to measure anything workbook: finding the value of intangibles in

business. Hoboken, NJ: John Wiley & Sons.

Hwang, J. S., Lee, S., Lee, Y., & Park, S. (2015). A selection method of database system in bigdata

environment: a case study from smart education service in Korea. International

Journal of Advances in Soft Computing and its Applications (IJASCA), 7(1), 9-21.

Iravani, M. (2015). How Twitter Uses Redis To Scale - 105TB RAM, 39MM QPS, 10,000

Instances s. Retrieved from https://www.linkedin.com/pulse/how-twitter-uses-redis-scale-

105tb-ram-39mm-qps-10000-iravani

ITBusinessEdge. (n.d.). Top five NoSQL databases and when to use them. Retrieved from

http://www.itbusinessedge.com/slideshows/top-five-nosql-databases-and-when-to-use-

them-07.html

Jacobson, I. (2003). Use cases and aspects-working seamlessly together. Journal of Object

Technology, 2(4), 7-28.

Jatana, N., Puri, S., Ahuja, M., Kathuria, I., & Gosain, D. (2012). A survey and comparison of

relational and non-relational database. International Journal of Engineering Research &

Technology, 1(6).

Jiang, Y. (2012). HBase Administration Cookbook: master HBase configuration and

administration for optimum database performance. Birmingham, UK: Packt Publishing.

Jouili, S., & Vansteenberghe, V. (2013). An empirical comparison of graph databases. In 2013

International Conference on Social Computing (SocialCom), (pp. 708-715). IEEE.

Kahneman, D. (2000). A psychological point of view: Violations of rational rules as a diagnostic of

mental processes. Behavioral and Brain Sciences, 23(5), 681-683.

Kahneman, D., & Tversky, A. (1979). Prospect Theory: an analysis of decision under risk.

Econometrica, 47(2), 263–292. https://doi.org/10.2307/1914185

Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4),

341-350.

BIBLIOGRAPHY

144

Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss

aversion, and status quo bias. The Journal of Economic Perspectives, 5(1), 193-206.

Kahneman, D., Wakker, P. P., & Sarin, R. (1997). Back to Bentham? Explorations of experienced

utility. The Quarterly Journal of Economics, 112(2), 375-406.

Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., ... &

Yerushalmi, Y. (1999). Web caching with consistent hashing. Computer Networks, 31(11),

1203-1213.

Kaur, K., & Rani, R. (2013). Modeling and querying data in NoSQL databases. In 2013 IEEE

International Conference on Big Data (pp. 1-7). IEEE.

Kemper, C. (2015). Beginning Neo4j. Berkeley, CA: Apress.

Khetrapal, A., & Ganesh, V. (2006). HBase and Hypertable for large scale distributed storage

systems. Department of Computer Science, Purdue University, 21-28.

Kuhlenkamp, J., Klems, M., & Röss, O. (2014). Benchmarking scalability and elasticity of

distributed database systems. Proceedings of the VLDB Endowment, 7(12), 1219-1230.

Kulak, D., & Guiney, E. (2012). Use cases: requirements in context. Boston, MA: Addison-

Wesley.

Kvale, S. (2008). Doing interviews. Thousand Oaks, CA: Sage.

Lakkaraju, K., Yurcik, W., & Lee, A. J. (2004). NVisionIP. Proceedings of the 2004 ACM

Workshop on Visualization and Data Mining for Computer Security - VizSEC/DMSEC, 65.

http://doi.org/10.1145/1029208.1029219

Leavitt, N. (2010). Will NoSQL databases live up to their promise?. Computer, 43(2), 12-14.

LeBoeuf, R. A., & Shafir, E. (2006). The long and short of it: Physical anchoring effects. Journal

of Behavioral Decision Making, 19(4), 393-406.

Li, Y., & Manoharan, S. (2013). A performance comparison of SQL and NoSQL databases. In

2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing

(PACRIM), (pp. 15-19). IEEE.

BIBLIOGRAPHY

145

Lourenço, J. R., Abramova, V., Vieira, M., Cabral, B., & Bernardino, J. (2015a). Nosql databases:

A software engineering perspective. In 3rd World Conference on Information Systems and

Technologies (WorldCIST'15), (pp. 741-750). Springer International Publishing.

Lourenço, J. R., Cabral, B., Carreiro, P., Vieira, M., & Bernardino, J. (2015b). Choosing the right

NoSQL database for the job: a quality attribute evaluation. Journal of Big Data, 2(1), 18.

https://doi.org/10.1186/s40537-015-0025-0

Lumsdaine, E., & Lumsdaine, M. (1994). Creative problem solving. IEEE Potentials, 13(5), 4-9.

Magee, J. F. (1964). Decision trees for decision making (pp. 35-48). Harvard Business Review.

Magnusson, H. (2013, October 11). Common MongoDB Use Cases. Retrieved from

https://www.slideshare.net/mongodb/common-use-cases-hannes

March, S. T., & Smith, G. F. (1995). Design and natural science research on information

technology. Decision Support Systems, 15(4), 251-266.

Mayo, M. (2016, June). Top NoSQL database engines. Retrieved from

http://www.kdnuggets.com/2016/06/top-nosql-database-engines.html

Medjahed, B., Ouzzani, M., & Elmagarmid, A. K. (2009). Generalization of ACID Properties.

In Encyclopedia of Database Systems (pp. 1221-1222). Springer US.

Merriam-Webster. (n.d.). Bias. Retrieved from https://www.merriam-webster.com/dictionary/bias

Microsoft. (2005). Understanding availability, reliability, and scalability. Retrieved from

https://technet.microsoft.com/en-us/library/aa996704(v=exchg.65).aspx

Minarik, P., & Dymacek, T. (2008). NetFlow Data Visualization Based on Graphs. In J. R.

Goodall, G. Conti, & K.-L. Ma (Eds.), Visualization for Computer Security: 5th

International Workshop, VizSec 2008, Cambridge, MA, USA, September 15, 2008.

Proceedings (pp. 144–151). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-85933-8_14

MongoDB. (2008). The MongoDB 3.4 Manual. Retrieved from https://docs.mongodb.com/manual/

Moniruzzaman, A.B.M. & Hossain, S.A. (2013). NoSQL database: new era of databases for big

data analytics – classification, characteristics and comparison, International Journal of

Database Theory and Application, 6(4), pp.1–14.

BIBLIOGRAPHY

146

Montag, D. (2013). Understanding Neo4j scalability. Retrieved from

http://info.neo4j.com/rs/neotechnology/images/Understanding%20Neo4j%20Scalability%2

82%29.pdf?_ga=1.160766525.1090831026.1491384086

Morewedge, C. K., & Kahneman, D. (2010). Associative processes in intuitive judgment. Trends in

Cognitive Sciences, 14(10), 435-440.

Morgan, D. (1996). Focus groups. Annual Review of Sociology,22, 129-152. Retrieved from

http://www.jstor.org/stable/2083427

Naheman, W., & Wei, J. (2013). Review of NoSQL databases and performance testing on HBase.

In 2013 International Conference on Mechatronic Sciences, Electric Engineering and

Computer (MEC), (pp. 2304-2309). IEEE.

Nayak, A. (2014). MongoDB cookbook: over 80 practical recipes to design, deploy, and administer

MongoDB. Birmingham, UK: Packt Publishing.

Nayak, A., Poriya, A., & Poojary, D. (2013). Type of NOSQL databases and its comparison with

relational databases. International Journal of Applied Information Systems (IJAIS), 5(4),

16-19.

Nelubin, D., & Engber, B. (2013). NoSQL failover characteristics: Aerospike, cassandra,

couchbase, mongodb. Thumbtack Technology, 1-19.

Neo4j. (2017). The Neo4j Operations Manual v3.3. Retrieved from

https://neo4j.com/docs/operations-manual/3.3/

Newton, P. (2016). 6 Key Decision Making Techniques. Retrieved from http://www.free-

management-ebooks.com/dldebk-pdf/fme-6-decision-making-techniques.pdf

Nishimura, S., Das, S., Agrawal, D., & El Abbadi, A. (2011). MD-HBase: A scalable multi-

dimensional data infrastructure for location aware services. In 2011 12th IEEE

International Conference on Mobile Data Management (MDM), 1, pp. 7-16. IEEE.

Nooraie, M. (2012). Factors influencing strategic decision-making processes. International Journal

of Academic Research in Business and Social Sciences, 2(7), 405-429.

Nunnally, J. C. (1967). Psychometric theory. New York, USA: McGraw-Hill.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, USA:

McGraw-Hill.

BIBLIOGRAPHY

147

Olivier, M. S. (2009). Information technology research – a practical guide for computer science

and informatics (3rd ed.). Pretoria, SA: Van Schaik Publishers.

O'Reilly, C. A. (1980). Individuals and information overload in organizations: is more necessarily

better?. Academy of Management Journal, 23(4), 684-696.

Orend, K. (2010). Analysis and Classification of NoSQL Databases and Evaluation of their Ability

to Replace an Object-relational Persistence Layer. (Master Thesis), Technical University

of Munich, Munich. Retrieved from

https://weblogs.in.tum.de/file/ikcuitkq8cpm/Publications/2010/Or10/Or10.pdf

Oxford English Dictionary. (2017a). Bias - definition of bias in English | Oxford Dictionaries.

Retrieved from https://en.oxforddictionaries.com/definition/bias

Oxford English Dictionary. (2017b). Measure - definition of measure in English | Oxford

Dictionaries. Retrieved from https://en.oxforddictionaries.com/definition/measure

Oxford English Dictionary. (2017c). Decision | Definition of decision in English by Oxford

Dictionaries. Retrieved from https://en.oxforddictionaries.com/definition/decision

Padhy, R. P., Patra, M. R., & Satapathy, S. C. (2011). RDBMS to NoSQL: Reviewing some next-

generation non-relational databases. International Journal of Advanced Engineering

Sciences and Technologies (IJAEST), 11(1), 15-30.

Piplani, A. (2010, May 6). U pick 2 selection for NoSQL providers. Retrieved November 20, 2016,

from http://amitpiplani.blogspot.co.za/2010/05/u-pick-2-selection-for-nosql-providers.html

Plugge, E., Hows, D., Membrey, P., & Hawkins, T. (2015). The Definitive Guide to MongoDB: A

complete guide to dealing with Big Data using MongoDB. California: Apress.

Pokorny, J. (2013). NoSQL databases: a step to database scalability in web environment.

International Journal of Web Information Systems, 9(1), 69-82.

Qu, S. Q., & Dumay, J. (2011). The qualitative research interview. Qualitative Research in

Accounting & Management, 8(3), 238-264.

Redis. (2017). Redis Documentation. Retrieved from https://redis.io/documentation

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph databases: new opportunities for connected

data (2nd ed.). Sebastopol, CA: O'Reilly Media, Incorporated.

BIBLIOGRAPHY

148

Rokach, L., & Maimon, O. (2005). Decision trees. In Data mining and knowledge discovery

handbook (pp. 165-192). Springer, Boston, MA.

Russo, J. E., Schoemaker, P. J., & Russo, E. J. (1989). Decision traps: Ten barriers to brilliant

decision-making and how to overcome them. New York, NY: Doubleday/Currency

Publishers.

Sasaki, B. M. (2015, September 11). Graph databases for beginners: a tour of aggregate stores.

Retrieved November 23, 2016, from https://neo4j.com/blog/aggregate-stores-tour/

SASO. (2006). Guide to the expression of uncertainty in measurement. Retrieved from

http://chapon.arnaud.free.fr/documents/resources/stat/GUM.pdf

Scheubrein, R., & Zionts, S. (2006). A problem structuring front end for a multiple criteria decision

support system. Computers & Operations Research, 33(1), 18-31.

Schmidt, R. D. O., Sperotto, A., Sadre, R., & Pras, A. (2012). Towards bandwidth estimation using

flow-level measurements. Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7279, 127–138.

https://doi.org/10.1007/978-3-642-30633-4_18

Seguin, K. (2012). The Little Redis Book. Retrieved from http://openmymind.net/redis.pdf

Sharma, V., & Dave, M. (2012). SQL and NoSQL Databases. International Journal of Advanced

Research in Computer Science and Software Engineering, 2(8), 20-27.

Shon, P. (2014). Redis Explained in 5 Minutes or Less. Retrieved from

https://www.credera.com/blog/technology-insights/java/redis-explained-5-minutes-less/

Sommer, R., & Feldmann, A. (2002). NetFlow: Information loss or win? In Proceedings of the 2nd

ACM SIGCOMM Workshop on Internet Measurement, 173–174.

https://doi.org/10.1145/637201.637226

Speier, C., Valacich, J. S., & Vessey, I. (1999). The influence of task interruption on individual

decision making: An information overload perspective. Decision Sciences, 30(2), 337-360.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., & Stiller, B. (2010). An overview of

IP flow-based intrusion detection. IEEE Communications Surveys & Tutorials, 12(3), 343-

356.

BIBLIOGRAPHY

149

Stephens, R., Plew, R., & Jones, A. D. (2009). Sams teach yourself SQL in one hour a day. Sams

Publishing.

Stewart, D. W., & Shamdasani, P. N. (2014). Focus groups: Theory and practice (Vol. 20).

London, UK: Sage publications.

Stonebraker, M. (1986). The case for shared nothing. IEEE Data Engineering Bulletin, 9(1), 4–9.

Strack, F., Martin, L. L., & Schwarz, N. (1988). Priming and communication: Social determinants

of information use in judgments of life satisfaction. European Journal of Social

Psychology (EJSP), 18(5), 429-442.

Strauch, C., Sites, U. L. S., & Kriha, W. (2011). NoSQL databases. Lecture Notes, Stuttgart Media

University.

Strozzi, C. (2010). NoSQL - A Relational Database Management System. Retrieved from

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page

Tauro, C. J., Aravindh, S., & Shreeharsha, A. B. (2012). Comparative study of the new generation,

agile, scalable, high performance NOSQL databases. International Journal of Computer

Applications, 48(20), 1-4.

Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic Behavior &

Organization, 1(1), 39-60.

Tutorialspoint. (n.d.). Redis Partitioning. Retrieved from

https://www.tutorialspoint.com/redis/redis_partitioning.htm

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science,

185(4157), 1124–1131.

Tversky, A., & Kahneman, D. (1985). The framing of decisions and the psychology of choice.

In Environmental Impact Assessment, Technology Assessment, and Risk Analysis, 107-129.

Springer Berlin Heidelberg.

Vogels, W. (2009). Eventually consistent. Communications of the ACM (52)1, 40-44.

https://doi.org/10.1145/1435417.1435432

Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., & Partner, J. (2015). Neo4j in action. Shelter Island,

NY: Manning Publications Company.

BIBLIOGRAPHY

150

Wellhausen, T. (2012). Highly scalable, ultra-fast and lots of choices a pattern approach to NoSQL.

Retrieved from http://www.tim-wellhausen.de/papers/NoSQL-Patterns/NoSQL-

Patterns.html

Yu, S. (2009). Acid properties in distributed databases. Advanced eBusiness Transactions for B2B-

Collaborations.

Zhang, Q. (2011). Research based on cloud database, Management Expert. 12(15).

Zhou, X., Petrovic, M., Eskridge, T. & Carvhalo, M. (2014). Exploring Netflow data using

Hadoop, In Proceedings of the Second ASE International Conference on Big Data Science

and Computing, Academy of Science and Engineering (ASE), US, 2014. CA: Stanford.

1-10.

APPENDIX A: RESEARCH REGARDING BIASES IN DECISION-

MAKING

Biases Sources Applicability to IT

Status Quo [1] [8] [13] [14] *****

Anchoring [1] [5] [6] [14] *****

Sunk-Cost [1] [8] [14] [16] *****

Confirming Evidence [1] [4] [10] [11] [14] *****

Framing [1] [3] [12] [14] *****

Estimating and Forecasting [1] [14] [15] **

Overconfidence [1] [4] [14] ****

Prudence [1] [14] *****

Prediction [2] [6] [15] **

Recallability [1] [9] [14] *****

Plunging in [7] ****

Frame blindness [7] [12] *

Lack of frame control [7] [10] [14] ***

Overconfidence in our judgement [7] [14] ****

Shortsighted shortcuts [7] ***

Shooting from the hip [7] *****

Group failure [7] [14] **

Fooling ourselves about feedback [7] ***

Not keeping track [7] [14] ****

Failure to audit decision process [7] *****

Reciprocity [14] *

Halo Effect [14] *****

Expectations [14] ***

Number Citation

[1] Hammond, J. S., Keeney, R. L., & Raiffa, H. (1998). The hidden traps in decision
making. Harvard business review, 76(5), 47-58.

[2] Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological
review, 80(4), 237.

[3] Tversky, A., & Kahneman, D. (1985). The framing of decisions and the psychology of
choice. In Environmental Impact assessment, technology assessment, and risk
analysis (pp. 107-129). Springer, Berlin, Heidelberg.

[4] Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under
risk. Econometrica: Journal of the econometric society, 263-291.

[5] LeBoeuf, R. A., & Shafir, E. (2006). The long and short of it: Physical anchoring
effects. Journal of Behavioral Decision Making, 19(4), 393-406.

[6] Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and
biases. Science, 185, 1124–1131.

[7] Russo, J. E., Schoemaker, P. J., & Russo, E. J. (1989). Decision traps: Ten barriers to
brilliant decision-making and how to overcome them. New York, NY.:
Doubleday/Currency.

APPENDIX A

152

[8] Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect,
loss aversion, and status quo bias. The journal of economic perspectives, 5(1), 193-
206.

[9] Kahneman, D., Wakker, P. P., & Sarin, R. (1997). Back to Bentham? Explorations of
experienced utility. The quarterly journal of economics, 112(2), 375-406.

[10] Morewedge, C. K., & Kahneman, D. (2010). Associative processes in intuitive
judgment. Trends in cognitive sciences, 14(10), 435-440.

[11] Brenner, L. A., Koehler, D. J., & Tversky, A. (1996). On the evaluation of one-sided
evidence. Journal of Behavioral Decision Making, 9(1), 59-70.

[12] Strack, F., Martin, L. L., & Schwarz, N. (1988). Priming and communication: Social
determinants of information use in judgments of life satisfaction. European journal
of social psychology, 18(5), 429-442.

[13] Bazerman, M.H. and Moore, D.A. (2008), Judgment in Managerial Decision Making,
7th ed. New York: Wiley.

[14] Dobelli, R. (2013). The art of thinking clearly: better thinking, better decisions.
Hachette UK.

[15] Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological
bulletin, 76(2), 105.

[16] Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic
Behavior & Organization, 1(1), 39-60.

Definition of each bias:

The anchoring trap refers to a situation where a business decision is influenced by information from

past trends or events. The bulk of the decision is influenced by past events which mean that other

factors are ignored. If an individual were asked to provide the population amount of South Africa,

the individual might not be able to provide an exact number. However, the individual may recall

information they read which had a number of the population and then use this recollection as the

answer. The answer might be close to the correct amount, but in most cases, a factual number will

not be provided. Thus, an anchor is used to base decisions on and affect the answer provided.

The status-quo trap refers to the biases that individuals have regarding the current state of affairs.

Individuals would stick with the status quo and have a bias against the alternatives since the

alternative involve too much risk. An individual is comfortable with a specific technology; however,

work requires the individual to learn and use another technology. The individual knows nothing about

the new technology and feels he is good enough with the current technology to not have to learn the

new technology. Thus, a biased opinion is formed against the new technology even if it is the perfect

solution.

The sunk-cost trap is where business decisions are made to justify past business decisions, even when

these past decisions are not valid anymore. An example is finances spent on technology, that is not

relevant anymore, but management refused to change the technology because of the cost. An

individual invests 1000 rands in shares. The investment fails since it is now worth 750 rand.

APPENDIX A

153

However, the individual does not sell the shares and hopes the price of the shares will increase again.

The individual could sell the shares and invest the money to make more than 1000 off other profitable

shares.

The confirming-evidence trap is where individuals are looking for information that endorses and

supports their knowledge. The individual assumes the acquired information is correct while not

considering the alternative. The individual is looking for a reason to accept the confirming

information and not question/consider opposing information. A board meeting will rarely discuss

facts and information that oppose the views of the board. The focus would be on evidence or facts

that confirm the board’s views.

The framing of a question or problem can influence the way a business decision is made. If the

emphasis of the problem or question is incorrect, the solution might be incorrect too. The framing

trap can influence the success or failure of a project. Individuals interpret the problem incorrect since

the emphasis is incorrectly placed in the problem or question.

The estimating and forecasting trap is where forecasting and estimating is done without the factual

information. Estimating and forecasting can lead to incorrect business decisions or mistakes being

made. An example of estimating and forecasting trap is with estimating the prices of fuel in 50 years.

There is not sufficient information to make an accurate forecast for such a scenario.

Overconfidence can lead to a bias decision since other possibilities are not taken into account.

Overconfidence means that a proper solution to a problem might not be looked at since an individual

is overconfident about their predictions. An individual that is overconfident in their abilities and

knowledge may not consider the alternatives to decision-making situations. A proper solution to a

problem can be overlooked because of overconfidence.

The prudence trap is where individuals are over cautious when high-risk decisions need to be made.

Individuals can lead a project to failure if the proper decisions are not made since the individual

wants to be safe. A high-risk decision may have many rewards if the correct choices are made. The

high-risk decision may also have many penalties if the incorrect choices are made. An example of

this trap is in weapons design. Engineers design rugged weapons to handle the worst conditions,

however, the weapons hardly ever operate in harsh conditions.

The recallability trap is when past events or dramatic occurrences in an individual’s life influences

the business decisions the individual must make. This influence can lead to biased decisions which

influence the success of a project or business decision. An example of this is when individuals see a

plane crash on television. The memory of the accident will influence the individual’s decision about

APPENDIX A

154

whether to take a flight or take a boat to reach their destination. Past events are recalled to base

decisions on, and this can lead to incorrect decisions being made.

Plunging in is where conclusions are drawn prematurely without sufficient knowledge about the

problem and how to solve the problem. Individuals do not stop and think about the crux of the issue

and which information to collect before making premature conclusions. Individuals work on a crucial

issue of a project. The individual does not step back and consider the actual problem which can lead

to wrong decisions being made. The individual should ask secondary questions, for example; what

is the primary problem, how much time do I estimate till completion, and how do I think such a

decision should be made.

Frame blindness is where individuals’ base decisions on their mental framework. The mental

framework considers all information regarding the problem and refers to how the individual thinks

about the decision(s) to be made; what must be decided, what are the options, and what are the criteria

for choosing between options. Their mental framework could be wrong since not enough information

is present which could lead to overlooking the correct decisions. The framing of the problem has a

large influence on this decision-making mistake.

Lack of frame control occurs when individuals influence the decision-making process of others. The

influence of others can affect the decisions made by introducing biases to the decision-making

process. Lack of frame control can also occur if an individual cannot consciously define the problem

in different ways. The individual does not understand the problem and adopts other individual’s

mental frameworks for decision-making.

Overconfidence in our judgement is when individuals are overconfident in their knowledge without

collecting the necessary information. Decisions made with overconfidence can result in an incorrect

decision and wrong solutions being chosen. An overconfident individual value their knowledge more

than the factual information and may not consider the alternative. The decisions are based on their

knowledge which can be incorrect.

Shortsighted shortcuts are a barrier to decision-making since anchors influence the decision being

made. The most readily available information is trusted to be correct while other opposing

information is not considered. This decision-making mistake can result in biased decision-making

since the alternative is not investigated.

Shooting from the hip is a barrier where individuals do not follow a systematic decision process to

solve a problem. An individual is presented with a problem for a project. The individual’s mind

processes all of the possessed information quickly, without properly noting the factual information.

APPENDIX A

155

A conclusion is drawn based on all the processed information and accepted as correct. However,

important facts and information may not be noted/investigated which leads to incorrect decisions

being made. Individuals not following a systematic decision process have the risk of making the

incorrect decisions.

Group failure is a barrier that occurs in decisions being made by groups of individuals. The

assumption is that groups of individuals will make the correct decision. If members of a group agree

prematurely on an answer, it may be the incorrect answer if not all factual information is investigated.

Some individuals within the group influence others to agree with their decision, although the decision

may be incorrect. If there is no group-decision process being followed, the decision-making can be

biased and incorrect. An example of the group failure barrier is when 50 million people agree that

an answer is correct. However, it does not mean the answer is correct.

Fooling ourselves about feedback is when individuals do not consider past events or occurrences

when making business decisions. Ignoring past feedback could lead to information being missed or

left out that can influence the success of decisions. If an individual ignores past experiences with

decision-making, the individual might make the same mistakes since no hindsight is gained about

the problem. An individual purchases a car with black paint. The individual experiences extreme

heat and has an unpleasant experience. The individual buys another car with black paint. Making the

same decision to buy a black paint car, implies that the individual did not learn from past experiences

and did not have hindsight regarding the problem.

Not keeping track of decisions and their outcomes is another barrier to decision-making. Past

decisions and their outcomes can teach lessons about what to consider for future decision-making. If

an individual makes a mistake in the past, the individual is not expected to make the same mistake

twice. However, an individual does not keep track of past mistakes/decisions and makes the same

mistake as in the past. Making the same mistake implies that the individual did not keep track of the

outcomes of past decisions or experiences. The not keeping track barrier is closely related to fooling

ourselves about feedback barrier to decision-making.

Failure to audit decision process is another barrier to decision-making. Not following a decision

process can make a decision-maker vulnerable to numerous barriers and traps. A decision-process is

there to assist an individual to understand the problem, the different choices to be made and how to

implement the decisions. If an individual does not follow such a decision process, the wrong

decisions may be made since the individual may not understand the problem.

Prediction can be a barrier to decision-making when individuals make predictions under uncertainty.

Individuals make predictions based on many factors to predict an event that might happen. If not,

APPENDIX A

156

enough factual information is considered, the prediction is made under uncertainty which means it is

more than likely to not be true. Individuals can make predictions about finances of a company,

however, may be wrong if the incorrect or too little information is used.

Reciprocity refers to an exchange of services/goods for other services/goods. If an individual

purchase a service from another individual, money is provided in exchange for a service being

provided. The exchange of services or items is what reciprocity refers to. Reciprocity becomes a

barrier to decision-making when an individual is in debt to another individual. Decisions made are

influenced by feelings of guilt/debt and can lead to incorrect decisions being made.

Halo-effect means that one aspect can affect the way individuals see the whole picture. If one aspect

produced a positive or negative feeling, the feeling could influence the individual’s decision about a

specific topic. The Halo-effect could lead to a biased decision that affects the success of the project.

Depending on the feeling an individual receives, the choice about the topic may be influenced, and

other alternatives may not be investigated.

Expectations can influence the way individuals make decisions. If an individual has expectations, it

means that the individual is expecting a certain result/occurrence to happen. If the expectation(s) of

the individual are not met, the individual may judge the topic with a negative feeling and could

influence the decisions after that. However, if the expectations are met, the individual may be biased

towards the topic and not consider other alternatives.

APPENDIX B: WEIGHTING CRITERIA INSTRUMENT

APPENDIX B

158

