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ABSTRACT 

Making decisions regarding technology is difficult for IT practitioners, especially when they lack 

formal guidance. Ad hoc decisions are prone to be influenced by biases. This research study 

specifically considered decisions regarding NoSQL. The primary objective of this study was to 

develop a framework that can assist IT practitioners with decisions regarding NoSQL technologies. 

An investigation into typical decision-making problems encountered when having to make 

technology-based decisions provided an understanding of the problem context. The application 

context was explored through a literature study of the four NoSQL families. 

This study produces a framework to assist IT practitioners in making decisions regarding technology. 

The framework comprises two models. Firstly, a weighted decision model combines several 

constructs, thereby providing a general method of making decisions. Secondly, a 6-step process 

model that can be used to adapt the weighted decision-model to a specific type of technology and a 

specific use case is proposed.  

The feasibility and utility of the proposed framework are demonstrated by applying the framework 

to a NetFlow use case. If NetFlow data is to be used for analytical decision-making, the data must be 

stored long-term. NoSQL databases have increased in popularity, especially in decision-making 

contexts. Therefore, NoSQL is a logical storage choice. However, which NoSQL family to use is not 

self-evident. Therefore, the decision-maker may require assistance to make the right decision. 

To assist with this decision, the framework was adapted to be used in the NoSQL context. A set of 

criteria was developed to allow various NoSQL options to be uniformly compared. Furthermore, the 

four NoSQL families were graded based on this set of criteria. After adaptation, experts provided 

input regarding the requirements of the NetFlow use case. This resulted in the weighting of the 

criteria for this specific use case. Finally, a weighted score was calculated for each family. For the 

NetFlow use case, the model suggests that a document-based NoSQL database be used. 

The framework ensures that all NoSQL technologies are systematically investigated, thereby 

reducing the effect of biases. Thus, the problem identified in this study is addressed. The proposed 

model can also serve as a foundation for future research.  
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CHAPTER 1: INTRODUCTION 

The Oxford English Dictionary (2017) defines a decision as “a conclusion or resolution reached after 

consideration”. Individuals make decisions regarding all aspects of life and draw countless 

conclusions in a variety of contexts. Decision-making is a core process of daily life (Nooraie, 2012). 

Some decisions are made knowingly and others unknowingly (Kahneman & Tversky, 1984). 

Decisions can be high-risk, for example deciding to go to war, or low-risk, for example deciding to 

buy a loaf of bread (Kahneman & Tversky, 1984).  

Some decisions are easy, while other decisions are difficult. Easy decisions do not require much 

effort from the individual. Difficult decisions require more effort from the individual because they 

require more information to be considered or because their outcomes are of higher importance 

(Kahneman & Tversky, 1984). As a result, the chance of making a wrong decision increases. There 

are two factors, namely decision-making biases and measurements, that can influence the decisions 

that individuals make. Behavioural economists have argued that all decision-makers are subject to 

biases. Analytical individuals could use measurements to inform decisions and fight these biases. 

However, the decision-maker’s view on measurement would introduce further biases. If decision-

makers are not cognisant of how measurements and biases may influence them, this could lead to 

incorrect decisions being made.  

As mentioned before, decision-making is part of many aspects of life, ranging from mathematics and 

statistics, through economic and political science, to sociology and psychology (Kahneman & 

Tversky, 1984; Nooraie, 2012). In this research study, decision-making regarding technology is the 

specific domain of interest.  

1.1 Technology decision-making 

Decision-making in general is a broad concept to consider and discuss. This study will focus 

specifically on decision-making concerning technology. Making technology decisions requires an IT 

practitioner to consider several aspects that could be influential. Examples of such aspects include 

information overload (Speier, Valacich & Vessey, 1999), the lack of information regarding a 

technology (Cowan, 1991; Desouza, Jha, Papagari & Ye, 2006), and the documented use cases of the 

technology (Hoff, 2011). Information overload refers to the constantly expanding and growing 

plethora of information regarding technologies that must be taken into consideration when making 

technology decisions (O'Reilly, 1980). The volume of information can be too great to consider at 

once, thereby increasing the difficulty of making the technology decision and increasing the chances 

of making the wrong decision.  
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The lack of information regarding a technology refers to how unknown the information regarding a 

specific technology is (Cowan, 1991). Relatively new technologies, such as NoSQL (Not Only SQL), 

are not as common as relational databases. Therefore, individuals may not have much information 

regarding the technology (Leavitt, 2010). The uncommon nature of and lack of information regarding 

the technology increases the difficulty of making a technology decision.  

Documented use cases of the technology refer to the common practices and requirements regarding 

a specific technology (Kulak & Guiney, 2012). Known use cases are well documented, which 

decreases the difficulty of making decisions (Jacobson, 2003). However, a use case is just a specific 

case and individuals may not know how to apply or customize it to specific requirements, for example 

the requirements to store NetFlow data within a NoSQL database. In this case, current use cases may 

not be particularly helpful, because NetFlow data is not commonly associated with NoSQL. An IT 

practitioner may not know how to decide which technology is best suited for this specific use case.  

1.2 Problem area 

The above-mentioned examples are based on real-world cases of decision-making. They illustrate 

the real-world problem that decision-making is a difficult task to complete. However, decision-

making without a context is too broad and general to focus on. Therefore, this study uses a specific 

context that represents technology decision-making concerning NoSQL.  

When the term NoSQL first appeared in 1998, it referred to a relational database system that did not 

employ SQL as a querying language (Strauch, Sites & Kriha, 2011; Strozzi, 2010). The term 

reappeared in 2009 in a conference set up by Jon Oskarsson that focused on non-relational database 

systems (Evans, 2009) and has increased in popularity ever since. NoSQL now refers to a type of 

database management system that is non-relational (Naheman & Wei, 2013) and was created to 

address certain limitations of relational databases. There are four categories of NoSQL databases: 

key-value stores, column-family stores, graph stores, and document-based stores (Aniceto, Xavier, 

Guimarães, Hondo, Holanda, Walter & Lifschitz, 2015).  

The use cases for NoSQL databases are well documented. Key-value stores are well geared to handle 

use cases that include quick retrievals or updates, such as managing user profiles or managing web 

sessions (Moniruzzaman & Hossain, 2013). Column-family stores can store a variety of data types 

and involve large volumes of data. A common use case for column-family stores is storing and 

managing Facebook messages (Dimiduk, Khurana, Ryan & Stack, 2013). Graph stores focus on 

linked and relationship-heavy data. Therefore, common use cases are fraud detection and social 

networking (Hecht & Jablonski, 2011). Document-based stores involve large volumes of data. 

Common use cases include content management and event logging (Magnusson, 2013).  
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Storing NetFlow data in a NoSQL database is an uncommon use case. Its uncommon nature may 

lead to individuals not knowing how to handle this use case. If a use case is not well documented, 

the IT practitioner is required to find more information and decide which NoSQL family to choose. 

Therefore, the less common the knowledge regarding a technology is, the more wrong decisions are 

likely to occur. This leads to the research problem for this study.  

1.3 Problem statement 

IT practitioners do not have a systematic way to select the NoSQL family for non-arbitrary use cases.  

1.4 Research objectives and questions 

The primary research objective of this study is to create a framework to help IT practitioners with 

NoSQL decisions. To achieve this objective, three research sub-objectives need to be addressed.  

Sub-objective 1 (SO1) :  Enumerate typical decision-making problems when choosing between 

technologies. 

Sub-objective 2 (SO2) :  Identify a general model of decision-making. 

Sub-objective 3 (SO3) :  Create a process to tailor the approach to the NoSQL scenario. 

1.5 Research approach  

The problem addressed by this research study suggests an artifact in the form of a decision model to 

help IT practitioners with NoSQL decisions should be created. Therefore, the design of the study is 

influenced by design science research. This study employs the design science research framework of 

March and Smith (1995) with a focus on IT research. To facilitate the achievement of the study’s 

goal, the research framework will provide direction for the research, discussion, and argumentation 

within this study. The framework views research outputs on four levels of abstraction, namely, 

constructs, models, methods, and instantiation.  

The first research output, constructs, refers to “concepts form the vocabulary of a domain” (March 

& Smith, 1995, p. 256). Constructs are the basic terms and concepts used to describe an area, a 

situation, or a problem. The constructs can be formal or informal as long as they define the terms 

used to describe and think about tasks (March & Smith, 1995). Examples of formal constructs in the 

context of relational databases include rows, columns, and relationships. Examples of informal 

constructs include agreement, dissatisfaction, and participation.  

The second research output, the model, refers to “a set of propositions or statements expressing 

relationships among constructs” (March & Smith, 1995, p.256). The model describes the 

relationships between the constructs to represent the situation or problem. To be a useful 
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representation, a model needs to capture the structure of the situation through the constructs and their 

relationships (March & Smith, 1995).  

The third research output, the method, refers to “a set of steps (an algorithm or guideline) used to 

perform a task” (March & Smith, 1995, p. 257). The method is essentially based on the fundamental 

concepts (constructs) and the relationships between the concepts (model). The method takes various 

inputs from the model to create steps to perform tasks (March & Smith, 1995).  

The last research output, instantiation, refers to “the realization of an artifact in its environment” 

(March & Smith, 1995, p. 258). Instantiations are used to provide a context for the operationalisation 

of the constructs, models, and methods. They “demonstrate the feasibility and effectiveness of the 

models and methods they contain” (March & Smith, 1995, p. 258). Thus, instantiation provides the 

first level of evaluation by showing that it is indeed feasible to construct the artifact and that the 

artifact is useful.  

1.6 Research design and reporting 

This study can be broken into four parts representing the four outputs of March and Smith’s (1995) 

research framework. These can also be mapped to the objectives of this study. Figure 1.1 is a 

graphical representation of the relationship between the framework of March and Smith (1995) and 

this study’s sub-objectives.  

 

 

 

 

 

 

 

 

 

The study places focus on the build research activity. Build refers to “the construction of the artifact, 

demonstrating that such an artifact can be constructed” (March & Smith, 1995, p. 258). By focussing 

Figure 1.1: Mapping research objectives to March and Smith’s (1995) design science framework. 
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on building an artefact, feasibility can be demonstrated (March & Smith, 1995). Therefore, each of 

the four parts must be built to demonstrate the feasibility of the framework.  

Part A deals with the context of this study. The main topics that need to be defined are decision-

making and the problems that influence decision-making within a technology context. These 

problems include biases and the role of measurement. The technology context used within this study 

is that of the NoSQL families. The context of this study is described in Chapters 1, 2 and 3 and 

indicates the study’s problem situation. 

Part B deals with the construction of the framework. The framework is made up of constructs, a 

decision model, and a process model, and is discussed in Chapter 4. The constructs used in the study 

are a list of choices, a fixed set of criteria, the weights of criteria, grades, score calculation, and 

process steps. Firstly, the list of choices refers to the four NoSQL families. Secondly, the fixed set 

of criteria refers to the criteria used to compare the families uniformly. Thirdly, the weights of criteria 

refer to the importance of each of the criteria. Fourthly, the grades refer to the performance of each 

NoSQL family pertaining to the criteria. Fifthly, score calculation refers to calculating the final score 

of each NoSQL family. Lastly, the process steps refer to the steps followed to implement the 

framework. Sub-objective 1 (SO1) is met through a literature survey that defines the constructs used 

in this study.  

The decision model within the framework deals with the relationships between the constructs. A 

basic overview of the decision model is discussed in Chapter 4. Sub-objective 2 (SO2) is met through 

a literature survey that identifies a framework and a mathematical expression to depict the framework 

within this study. 

The method used to accomplish the task of the framework consists of a 6-step process. Step 1 is to 

investigate the technologies, and is presented in Chapter 3. Step 2 is to create a fixed set of criteria. 

The criteria discussion influences only NoSQL and is presented in Chapter 5. Step 3 is to grade the 

criteria in order to be able to compare the NoSQL technologies. Step 4 is to assign weight values to 

the criteria. Step 5 is to score each of the NoSQL technologies, and Step 6 is to provide a 

recommendation. Steps 3, 4, and 5 are discussed in Chapter 6, while Step 6 is discussed in Chapter 

8. Sub-objective 3 (SO3) is met through argumentation and a literature survey that expands on the 

constructs within this study to tailor its approach to the NoSQL scenario.  

Essentially, all the objectives of the study are met in Parts A and B. However, questions regarding 

the feasibility and usefulness the model may arise. Therefore, Part C demonstrates the feasibility and 

usability of the model.  
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Part C deals with instantiation, which refers to the use case within the study. The artefact is placed 

within a specific instance (use case) to verify and demonstrate its use. At the start of the verification, 

the NoSQL technologies are graded to ensure a uniform comparison can be made. This is described 

in Chapter 7. The specific instance (use case) for this study concerns NetFlow data, which has certain 

requirements that need to be considered. These requirements are reflected in weights that are assigned 

to the criteria in Chapter 8. Once the weights are assigned, the final score for each NoSQL technology 

can be calculated. Thereafter, a recommendation can be provided. This is also discussed in Chapter 

8. The instantiation of the artefact in the last part of the study will verify that the model can be 

utilised. 

Part D is the epilogue and contains only one chapter, Chapter 9, which deals with a reflection on 

what was done and how the objectives of this study were met. Thereafter, limitations and future work 

are mentioned to conclude this study.  

All the above-mentioned points are brought together through argumentation to achieve the main 

research objective of creating a framework to help IT practitioners with NoSQL decisions. To 

indicate whether the objective was met, a NetFlow use case is employed to demonstrate the feasibility 

and utility of the model.   

1.7 Conclusion  

Making the right decisions regarding technologies is important and difficult. As mentioned above, 

there are a variety of elements that could influence such a decision, including information overload, 

the lack of information regarding a technology, and the documented use cases of the technology. 

These elements could all lead to the wrong decisions being made, which would affect the success of 

a use case. An individual requires a process to follow to combat the effect of biases and measurements 

and to ensure better decisions are made. To ensure better decision-making, a model is proposed 

within this study that could help IT practitioners mitigate the effects of biases and measurements. 

The next chapter will discuss the context of this study.



 

CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY 

Chapter 1 argued that decision-making is a difficult process. This dissertation hinges on the problem 

that IT practitioners do not have a systematic way to select a NoSQL family for a non-arbitrary use 

case. This research aims to provide such a framework.  

The goal of this chapter is to further elaborate on decision-making and the problems that might 

influence decision-making. This chapter assists in providing context to the rest of the study. This 

chapter focuses on decision-making and the effects of measurements and biases on decision-making.  

2.1 Decision-making 

Decision-making is regarded as a problem-solving activity (Kahneman & Tversky, 1979). The 

activity is completed when a solution which is deemed as satisfactory or optimal is found. A large 

part of making decisions is to analyse a set of alternative solutions. These alternatives may be seen 

according to evaluation criteria, where an individual may rank the alternatives according to 

“attractiveness” (Kahneman & Tversky, 1979). One alternative may be more attractive than another 

alternative since it meets more criteria. Therefore, the end-goal of the problem-solving activity is to 

select one of the alternatives to address the problem.  

Every individual participates in decision-making on a daily basis, since all tasks require some form 

of a decision to be made (Hammond, Keeney & Raiffa, 1998; Kahneman & Tversky, 1984). 

Individuals face decisions from the moment they wake up in the morning until the moment they go 

to sleep at night. These decisions vary in difficulty and importance. Examples of easy decisions 

include deciding whether a door should be open or closed or in which direction an individual should 

walk to reach a certain destination. Most easy decisions do not require a heavy thought process 

(Hammond et al., 1998; Kahneman & Tversky, 1984).  

Many day-to-day activities require an individual to make snap decisions (Hammond et al., 1998). 

Driving a car requires many snap decisions, as there is little time available to consider and analyse 

the options in detail. Examples of snap decisions include deciding whether to turn on the lights, 

switch lanes, change gears, or apply the brakes when stopping is required. Decisions can also be 

challenging and have a high level of importance connected to their outcomes (Kahneman & Tversky, 

1984). Difficult decisions mostly require a cumbersome thought process, since it is important that 

they lead to the desired outcomes. These types of decisions are made without advanced knowledge 

of their consequences (Kahneman & Tversky, 1984). An example of a difficult decision is deciding 

whether an investment is worthwhile or not. There is no certainty about the outcome of such a 

decision.  
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Individuals have business goals and objectives that need to be achieved (Clemen & Gregory, 1995). 

The decisions they make will influence the way in which individuals reach their goals and objectives 

(Tversky & Kahneman, 1985). When making a decision, each alternative will have different 

consequences (Kahneman & Tversky, 1979; Kahneman & Tversky, 1984; Tversky & Kahneman, 

1985). The consequences of a decision can be advantageous or disadvantageous depending on the 

situation (Clemen & Gregory, 1995). Therefore, it is important to make the right decisions.  

Conflicting business goals can increase the difficulty of making a decision. For example, when 

deciding whether to implement an expensive technology or an inexpensive technology, a tradeoff is 

present in both alternatives (Clemen & Gregory, 1995). If the IT practitioner decides to implement 

the expensive technology, more benefits can be gained from the technology, but there will be fewer 

finances available for other IT projects. If the IT practitioner implements the inexpensive technology, 

more finances will be available, but the technology will have fewer benefits.  

Different levels of importance are connected to decisions and their outcomes (Kahneman & Tversky, 

1979; Kahneman & Tversky, 1984). The more crucial the outcome of a decision, the harder the 

decision becomes. For example, judging distance requires an individual to make use of heuristics, 

which are small routines based on decisions (Hammond et al., 1998). The heuristic an individual uses 

for judging distance is clarity times proximity (Hammond et al., 1998). Therefore, the heuristic allow 

an individual to quickly judge the distance to an object. When an individual is faced with a difficult 

decision, they can employ heuristics to make a quick decision to solve the problem.  

Heuristics apply to technology decisions as well. Along with the importance of the decisions, the 

amount of information to that needs to be considered also influences IT practioners when making 

decisions. The more information needs to be considered, the more difficult the decision becomes and 

the more likely it becomes that using the heuristic will lead to making the wrong decision. This shows 

that there is a need for a framework that will help IT practitioners make better decisions.  

The different levels of risk connected to decisions may also affect the way individuals make decisions 

(Kahneman & Tversky, 1979; Kahneman & Tversky, 1984). The higher the risks associated with a 

decision, the more difficult it becomes to make such a decision. If a decision is difficult and requires 

a heavy thought process, an individual is more likely to experience problems. Two of the problems 

that individuals can face are the influences of measurement and biases on decision-making.  

2.2 Measurement 

A measure refers to “a standard unit used to express size, amount, or degree” (Oxford English 

Dictionary, 2017). Therefore, to measure means to “ascertain the size, amount, or degree of 

(something) by using an instrument or device marked in standard units” (Oxford English Dictionary, 
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2017). Measuring values can heavily influence the decisions of IT practitioners. If the wrong values 

are presented through measurement, then bad decisions can be made. 

The process of measuring involves “rules for assigning numbers to objects to represent quantities of 

attributes” (Nunnally, 1967 as cited by Churchill Jr, 1979). The definition of measurement provided 

by Nunnally (1967) states that measurement involves measuring the attributes of objects, not the 

objects themselves (Churchill Jr, 1979). However, the measurement definition does not specify the 

rules through which measurement values are assigned (Churchill Jr, 1979). Measurement involves 

two rules. The first is that symbols must be assigned to objects. The second is that objects must be 

classified according to a specific attribute (Nunnally & Bernstein, 1994). 

The term rules indicate the methods to be used. This needs to be explained in further detail. For a 

measure to be standardised, the rules need to be clear and practical to apply. The rules should not 

require great skill from the administrator and the results of the measurement should not depend on 

the administrator. The use of the term attributes within the definition indicates that a measurement 

focusses on the features of an object and not the object itself (Nunnally & Bernstein, 1994, p. 4). 

When employing measurement, there are certain concepts that need to be considered. 

2.2.1 What to consider when measuring 

Making a measurement means determining the value of some quantifiable item (SASO, 2006). 

Before measurement can occur, enough detail regarding the items to be measured, the method, and 

the measurement procedure must be provided (SASO, 2006). There are various concepts to consider 

when measuring values such as how values are aggregated, the precision, and accuracy of values. 

Other concepts include uncertainty, the mean (average), the median, the mode, and outliers. These 

concepts can influence the type of measure to be selected. Just consider mean and mode as an 

example.  

Specific measures are seldom useful. For example, the time it took for a process to complete may be 

operationally useful, but in the context of making decisions provide much more meaning when the 

times are aggregated in a specific manner. The average (mean) of the times could be an indication  

of overall performance (Dean & Dixon, 1951; Gravetter & Wallnau, 2011). However, should there 

be extreme cases or an uneven distribution, the average may not be a good indication anymore. and 

other measures such as the mode, which is the middle value of the sorted sample (Gravetter & 

Wallnau, 2011), may be more appropriate.  

Also, to consider is the issue of precision versus accuracy. Accuracy refers to how well the 

measurement represents the actual value, while precision speaks to the consistency achieved through 

multiple measurements (Hubbard, 2011, p. 133).  Accuracy and precision are not related. A wrongly 
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calibrated measurement instrument can consistently give the same inaccurate reading, this having 

high precision and low accuracy. It is also important to consider to which degree accuracy is 

important. Numbers may have a psychological effect on people. For example, giving a response rate 

to a questionnaire as 71.62% while mathematical accurate and precise (at least to two decimal places) 

when you have 53 of the 74 people responded it might provide an inflated sense of security in the 

measurement. Similarly, highly precise values may be construed as accurate just because they are to 

the 5th decimal. 

The above examples show that there may be more to take note of when dealing with measures than 

what is immediately apparent. Therefore, special attention must be placed on which type of measure 

is used and for which purpose it is used. The following section discusses the types of measures.  

2.2.2 Types of measures  

There are two main categories of measures, namely nonmetric and metric measures. The nonmetric 

category is concerned with differences in type or kind that indicate the presence or absence of 

attributes in subjects (Hair, Black, Babin & Anderson, 2010). The metric category is concerned with 

differences in degree regarding a specific attribute (Hair et al., 2010). Measures under the nonmetric 

category are nominal and ordinal measures. Ratio and interval measures fall under the metric 

category.  

Nominal measures use numbers to identify and represent subjects or objects (Gravetter & Wallnau, 

2011; Hair et al., 2010). Nominal measures are also known as categorical scales and can be used to 

decide whether two objects are equivalent or not for categorising purposes (Nunnally & Bernstein, 

1994). When there are only two options, for example male or female, one (male) is assigned the 

number 1 and the other (female) is assigned the number 2. The numbers are used only to keep track 

of the different categories (Nunnally & Bernstein, 1994) and do not refer to any mathematical 

calculation to be done (Hair et al., 2010). Therefore, nominal data refers only to the category and not 

to the quantity of an attribute (Hair et al., 2010; Nunnally & Bernstein, 1994). Categories may not 

reflect any quantitative relationship, but they can lead to valuable insights concerning correlations 

within and between the categories (Nunnally & Bernstein, 1994).  

Ordinal measures involve a rule where respondents decide whether one subject is greater than or less 

than the other subjects (Hair et al., 2010; Nunnally & Bernstein, 1994). The subjects can be arranged 

in order with regards to how much of an attribute the subject possesses (Gravetter & Wallnau, 2011; 

Hair et al., 2010; Olivier, 2009). Numerical values are assigned to the subjects but have no 

mathematical meaning. Therefore, they represent the relative position in the order of subjects (Hair 

et al., 2010). For example, when arranging the names of individuals according to their height from 
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tallest to shortest (Nunnally & Bernstein, 1994), the order of individuals does not explicitly indicate 

the differences in height. Therefore, the types of analyses to be performed are limited, as no 

arithmetic operations can be performed (Hair et al., 2010).  

Ratio measures (Olivier, 2009, p. 83) require the respondent to choose from a provided list of ratios. 

In ratio measures, there exists a true zero (0), which means nothing, rather than an arbitrary zero, 

which means the middle point (Gravetter & Wallnau, 2011; Nunnally & Bernstein, 1994). Ratio 

measures can permit all mathematical operations (Hair et al., 2010). An example of a device that uses 

a ratio measure is a bathroom scale that is used to measure weight. Bathroom scales employ a ratio 

measure with a true zero to indicate the weight of an individual. The weight values can also be seen 

in terms of multiples. For example, 50 kilograms equals half the weight of 100 kilograms (Hair et 

al., 2010).  

Interval measures (Gravetter & Wallnau, 2011; Olivier, 2009, p. 83) resemble ratio measures but do 

not have a true zero. Interval measures provide the user with the ability to perform any mathematical 

operation using their values (Hair et al., 2010). Interval measures use constant units of measurement 

to ensure that the difference between any two adjacent points is equal (Hair et al., 2010; Nunnally & 

Bernstein, 1994). The range of values must have equal intervals between them and the number of 

values used must have a neutral point. This type of measure is commonly combined with a Likert 

scale. A Likert scale with a range of 1–5, 1–7, or 1–9 can be used, since these all contain a neutral 

point. An example of using this type of measure is asking a respondent to indicate what the likelihood 

of a storm occurring is. 

Table 2.1: Measurement scales retrieved from Nunnally and Bernstein (1994). 

The role of measurement in decision-making can influence the decisions an individual makes. 

However, it is not the only problem that can lead to bad decisions being made. Decision-making can 

also be negatively affected by biases. 

Measure Basic operation Permissible 
transformations 

Permissible 
statistics 

Examples  

Nominal = vs.   
(equality vs. 
inequality) 

Any one-to-one Numbers of cases, 
mode 

Telephone 
numbers  

Ordinal > vs. <  
(greater than vs. 
less than) 

Monotonically 
increasing 

Median, 
percentiles, order 
statistics 

Hardness of 
minerals, class 
rank 

Ratio Equality of ratios Multiplicative 
(similarity) 
x = bx 

Geometric mean Temperature 
(Kelvin) 

Interval Equality of 
intervals or 
differences 

General linear 
x = bx + a 

Arithmetic mean, 
variance, Pearson 
correlation 

Temperature 
(Celsius), 
conventional test 
scores 
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2.3 Biases 

Biases are difficult to define because they are context dependant. However, The Oxford English 

Dictionary (2017) defines bias as “an inclination or prejudice for or against one person or group, 

especially in a way considered to be unfair” meaning biases refer to prejudiced beliefs or viewpoints. 

Biases lead to certain subjects being perceived as superior or inferior to other subjects. Therefore, 

biases in decision-making refer to prejudices that support one decision above other decisions (Hahn 

& Harris, 2014). A specific outcome is seen as superior to the other possible outcomes of a decision. 

Thus, if an individual is a victim of a decision-making bias, the alternatives not supported by the bias 

may not even be considered.   

Individuals that are faced with tough decisions tend to employ heuristics (Hahn & Harris, 2014). 

Heuristics are shortcuts or small routines that individuals can use to make quick judgement calls 

based on the decision or task at hand (Hahn & Harris, 2014; Hammond et al., 1998). Heuristics help 

individuals in everyday life. They allow us to make quick judgement calls, be effective, and not waste 

time (Hahn & Harris, 2014). For example, individuals with heart problems can make use of a 

heuristic and quickly decide to drink heart medication to prevent having a heart attack.  

Heuristics are commonly employed when making complex decisions (Hammond et al., 1998). 

However, heuristics are not fail-proof and can have a considerable influence on decisions made by 

individuals. The more complex a decision, the more an individual relies on heuristics to make 

judgement calls that may occasionally be wrong (Hahn & Harris, 2014). If an individual does not 

have enough information gathered to effectively employ a heuristic, a biased decision may be made. 

Therefore, heuristics can introduce biases to individuals making difficult and crucial decisions (Hahn 

& Harris, 2014; Hammond et al., 1998; Kahneman, 2000).  

As mentioned before, making a decision is a planned process that results in a commitment to a 

proposition (Gold & Shadlen, 2007). When individuals have crucial decisions to make, they typically 

try to gather as much information as possible. The task of gathering information may be easy or 

difficult, since individuals may or may not have access to appropriate information. Decisions based 

on inadequate information cause uncertainty about decisions and their outcomes (Clemen & Gregory, 

1995). Thus, uncertainty depends on the state of the knowledge an individual possesses (Clemen & 

Gregory, 1995). If an individual has sufficient information to know what the outcomes of decisions 

will be, the individual is certain (Clemen & Gregory, 1995; Hammond et al., 1998). If an individual 

does not have sufficient information to predict the outcomes of a decision, the individual is uncertain. 

Uncertainty has a drastic influence on the decisions individuals make. Uncertainty and heuristics 

introduce biases when complex and difficult decisions must be made (Clemen & Gregory, 1995; 

Hahn & Harris, 2014).  
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The example of a judge or jury deciding on a verdict in court illustrates the importance of certainty 

when making decisions. The judge or jury must gather and investigate all the evidence and identify 

all possible alternative interpretations thereof before making a decision. They must have certainty 

about the facts before a verdict can be reached. If there is uncertainty, a wrong and biased decision 

could be made.  

The higher the risks associated with a decision, the more susceptible an individual becomes to biases 

in decision-making. Multiple biases regarding decision-making have been identified in research 

(Appendix A). These biases can add to one another and increase the number of flaws in the decision-

making process. Biases have been identified in several research areas, such as the financial and 

behavioural sciences. However, not much research has been done in the area of technology and how 

biases affect technology decision-making.  

2.4 Biases in technology decision-making 

There is a large body of literature on biases in decision-making. Appendix A presents some of the 

research into this topic and lists some biases. Research has been done mainly in areas such as 

behavioural decision-making, behavioural economics, and managerial decision-making. Behavioural 

decision-making investigates the choices made by individuals and why these choices were made. 

Behavioural economics involves psychological insight into the behaviour of humans where 

economic and financial decision-making are concerned. Managerial decision-making investigates 

the decisions of top-level management within an organisation. There is sufficient information 

regarding each bias and how it affects individuals’ decision-making. There are several real-life 

examples of how each bias affects individuals’ day-to-day lives, work lives, and financial decision-

making. However, research done on how these biases affect IT staff within the technology 

environment is not common. Thus, for this study, each bias was investigated within a technology 

context to make an objective decision regarding if and how each bias affects technology decision-

making.  

Each bias was investigated through literature to achieve an understanding of the bias and what it 

entails. A definition of each bias was found, and sufficient information was gathered to identify the 

areas of research in which each bias is generally investigated. Once the research areas were identified, 

scenarios were formed to illustrate the effects of each bias on decision-making. The researcher then 

created a technology scenario for each bias to objectively evaluate its effects on technology decision-

making. Each bias was assigned a rating out of five stars (*) based on the effect it has on technology 

decision-making. The rating refers to the applicability of each bias to the technology decision-making 

context. Figure 2.1 is a graphical representation of the process followed to assign a rating to each 

bias.  
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After careful investigation and consideration, the researcher identified the biases listed in Table 2.2 

as the most relevant to the technology environment. The biases with an applicability rating of five 

stars (*) are discussed next to illustrate their applicability to the technology environment. Refer to 

Appendix A for a full list of the ratings applied to the investigated biases.  

Table 2.2: Biases affecting technology decision-making. 

 

2.4.1 Status quo 

The status quo bias refers to a bias individuals have regarding the current state of a situation or 

business decision. The status quo phenomenon has been investigated thoroughly in the areas of 

economics (Kahneman, Knetsch & Thaler, 1991), managerial business decision-making (Bazerman 

& Moore, 2008), business decision-making (Dobelli, 2013), and daily decision-making (Hammond 

et al., 1998). The following paragraph gives an example of status quo phenomenon in daily life.  

Bias Meaning  

Status quo Preferring the current status of a situation and disregarding alternatives 
Anchoring Assuming the first available information is correct and disregarding the 

alternatives 
Sunk cost Decisions are made to justify past decisions, even when those past 

decisions are not valid anymore 
Confirming evidence Seeking only information that agrees with established views and 

disregarding alternatives 
Framing Overemphasising the wrong aspects of a problem 
Prudence Making overcautious decisions based on perceived low risk and 

disregarding risky alternatives 
Recallability Past experiences heavily influence decisions and current information is 

disregarded 
Shooting from the hip Making decisions without a systematic decision process 
Failure to audit decision process Not questioning or investigating which decision process to follow 
Halo effect Decisions are based on a single attractive aspect, while the rest of the 

information is disregarded  

Figure 2.1: Process of rating biases in the area of technology. 
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An individual receives the wine list of a restaurant (Dobelli, 2013) and needs to choose a wine to 

order. There are a wide variety of wines to choose from. However, the individual is immediately 

biased and chooses the house wine. Upon consecutive visits to the restaurant, the individual selects 

the house wine each time. Therefore, the individual is biased towards a single recommended wine. 

This is an example of the effects of the status quo bias on daily decision-making. 

The status quo bias is also relevant to technology decision-making. Individuals in a technology 

context can also support the current state of affairs and have a bias against the alternatives because 

they require too much effort. For example, a certain NoSQL database is set up. Switching to an 

alternative database would involve effort. Therefore, decision-makers affected by the status quo bias 

will choose to continue using the current NoSQL database. Such decision-makers could potentially 

reject other NoSQL databases that are better suited for their use cases, because they already have a 

NoSQL database set up and setting up a new NoSQL database would require too much effort. This 

shows that individuals in a technology context can also be negatively affected by the status quo bias 

when making decisions. 

2.4.2 Anchoring 

The anchoring bias leads to situations where business decisions are based on the first piece of 

information gathered. The anchoring phenomenon has been investigated in the fields of business 

decision-making (Dobelli, 2013), daily decision-making (Hammond et al., 1998; LeBoeuf & Shafir, 

2006), and heuristics (Tversky & Kahneman, 1974). The research regarding anchoring investigates 

the effect this specific bias has on the behaviour and decisions of individuals. The following 

paragraph provides an example of the anchoring bias in daily life. 

For example, a marketer attempting to project the number of sales for the coming year (Hammond 

et al., 1998) may begin by investigating the sales volumes of previous years. The marketer is 

susceptible to the anchoring bias and the number of sales made in previous years could become an 

anchor. The marketer will still adjust the previous numbers according to other factors. However, too 

much weight can be assigned to the past numbers and too little weight to the other factors. Thus, the 

anchoring bias can influence the decisions of the marketer.  

The anchoring bias is also relevant to technology decision-making. Technology decisions can also 

be made based on the first piece of information gathered, while other factors are ignored. For 

example, individuals may decide to use the first NoSQL database they hear of, even if it does not fit 

their use case. In this case, it is the influence of anchoring bias that leads to the decision to implement 

a specific NoSQL technology without considering the alternatives.  
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2.4.3 Sunk cost 

The sunk cost bias leads to current business decisions being made to justify past business decisions, 

even when these past decisions are not valid anymore. The sunk cost phenomenon has been explored 

and described in the areas of economics (Kahneman et al., 1991; Thaler, 1980), business decision-

making (Dobelli, 2013), and daily decision-making (Hammond et al., 1998). The sunk cost bias has 

been thoroughly investigated in the contexts of human behaviour and financial decision-making.  

An example of a financial decision that can be affected by the sunk cost bias is deciding to make an 

investment. Decisions regarding financial investments can be a difficult to make due to the financial 

risks involved. For example, an individual chooses to invest R100,000 in a specific company by 

buying shares in that company. The share value drops, and the individual’s investment is now worth 

R60,000. The individual needs to decide whether to sell or keep the shares. In such a situation, the 

individual can be influenced by the sunk cost bias and decide to keep the shares in the hope that they 

will increase in value and avert financial loss. Owing to the influence of the sunk cost bias, the 

individual will not consider the alternative of selling the shares and reinvesting the money in other 

companies.  

The sunk cost bias is also relevant to technology decision-making. The sunk cost bias can lead to 

additional money being spent on technology that is not relevant anymore. Management may refuse 

to implement a new technology due to the costs of implementing the current technology. For 

example, IT staff have spent time, money, and effort implementing a certain NoSQL database. 

However, this database does not provide the needed levels of support and performance for a specific 

use case. There are alternative technologies available, but owing to the sunk cost bias, these are not 

considered for the use case. Thus, the financial burden of maintaining the inappropriate technology 

is not averted. 

2.4.4 Confirming evidence 

The confirming evidence bias leads individuals to look for information that endorses or supports their 

current views and knowledge. The confirming evidence phenomenon has been investigated in the 

fields of business decision-making (Dobelli, 2013), daily decision-making (Brenner, Koehler & 

Tversky, 1996; Hammond et al., 1998), important and risky decision-making (Kahneman & Tversky, 

1979), and intuitive judgement (Morewedge & Kahneman, 2010).  

In day-to-day decision-making, the confirming evidence bias can be a prevalent factor in many 

decisions. For example, an individual must decide whether to expand a house by adding another 

room. Currently, building materials are available at a competitive price. However, the individual is 

experiencing doubts about the cost of the expansion. The neighbours expanded their house six 
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months ago, when building materials were expensive. The individual decides to get the neighbours’ 

opinion regarding such an expansion, and the neighbours explain that their expansion was expensive. 

The individual is now influenced by the confirming evidence bias. Since the individual already had 

doubts about the cost, the confirming evidence leads to a decision not to expand because an expansion 

would be too expensive.  

The confirming evidence bias can also be found in technology decision-making when individuals 

assume that the information collected is correct and accept that information without considering the 

alternative. Individuals look for reasons to accept the information they already have without question 

and do not consider opposing information. They look for confirming information that is in agreement 

with their pre-existing knowledge. For example, an individual who must choose a NoSQL product 

to employ asks the opinion of another individual. If the second individual’s opinion confirms the 

knowledge or viewpoint of the first individual, the confirming evidence bias will influence the 

decision. Alternative opinions will be ignored, which could lead to the incorrect NoSQL database 

being chosen. Therefore, a bad decision may be made because of the influence of the confirming 

evidence bias. 

2.4.5 Framing 

The framing of a question or problem can influence the way a decision is made. The framing 

phenomenon has been investigated in the areas of business decision-making (Dobelli, 2013), daily 

decision-making (Hammond et al., 1998; Tversky & Kahneman, 1985), and judgement formation 

(Strack, Martin & Schwarz, 1988). The framing bias can have an influence on various everyday 

decisions, including purchasing decisions. For example, two types of meat are found in a grocery 

store. They are described as being 99% fat-free and containing 1% fat, respectively (Dobelli, 2013). 

Individuals may perceive the one type of meat (99% fat-free) to be healthier than the other type of 

meat (1% fat). However, there is no difference in their fat contents, as they both contain the same 

percentage of fat. The only difference lies in the framing of the information. Thus, individuals may 

be influenced by the framing bias when choosing between these two types of meat.  

The framing bias can heavily influence technology decision-making. If emphasis is placed on the 

wrong aspect of a problem or question, an incorrect solution could be found. The framing bias can 

influence the success or failure of a project. For example, overemphasising the relationships between 

data, even though there is no heavily linked data present, may lead individuals to decide on a 

technology that can accommodate heavily linked data rather than one that fulfils the other 

requirements. Thus, individuals can be affected by the framing bias when selecting a technology. If 

a problem is framed incorrectly with the bulk of the focus placed on the wrong part of the problem, 

better alternatives can be ignored. 
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2.4.6 Prudence 

The prudence bias causes individuals to be overcautious when high-stakes decisions need to be made. 

The prudence phenomenon has been investigated in the areas of business decision-making (Dobelli, 

2013) and daily decision-making (Hammond et al., 1998). The research investigates the effect of the 

prudence bias on individuals’ behaviour and decision-making. Individuals faced with the task of 

making difficult decisions want to be certain of what the outcomes of their decisions will be. 

Individuals perceive certain decisions as low-risk. However, the outcomes of these decisions can 

actually be more harmful than those of high-risk decisions. An example of the prudence bias in 

business decision-making follows. 

For example, when market-planners for an automotive manufacturer must make a forecast regarding 

the number of sales for the following year, they slant their forecast numbers in favour of producing 

additional automobiles to be sure that there will be enough. The market-planners’ decision-making 

is influenced by the prudence bias. They make the safe, low-risk choice. However, this results in the 

number of cars produced far exceeding the number of sales predicted, which leads to unnecessary 

financial losses. 

The prudence bias can also be found in technology decision-making. Individuals influenced by the 

prudence bias can cause a project to fail by making the wrong decisions. Individuals want to be safe 

by making choices that are perceived as low-risk. Therefore, they do not consider high-risk 

alternatives that may better fit their use case. For example, a business’s employees investigate 

another business’s NoSQL technology implementations and choose to implement the same NoSQL 

database without considering alternatives. However, they do not get the same results as the other 

business, as their businesses’ requirements differ. Their decision was based on the prudence bias and 

not on what technology would best suit their particular business.  

2.4.7 Recallability 

The recallability bias causes past events or dramatic occurrences to influence an individual’s 

decision-making. The recallability phenomenon has been investigated in the areas of economics 

(Kahneman, Wakker & Sarin, 1997), business decision-making (Dobelli, 2013), and daily decision-

making (Hammond et al., 1998). Memories and experiences greatly influence the decisions 

individuals make. For example, when individuals see a train wreck on the news, the memory of the 

accident will influence their future decisions regarding whether to travel via train or car to reach a 

destination. Decisions based on past events are often incorrect.  

Recallability is also relevant to technology decision-making and can influence the success of project 

decisions. An IT practitioner could recall a specific experience with a certain NoSQL database 
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whenever faced with NoSQL technologies. This could cause the individual to make biased decisions 

where NoSQL technologies are concerned. If the recalled experience was negative, the individual 

may not consider implementing that NoSQL technology, even if it best fits the problem. If the 

recalled experience was positive, the individual may choose to implement that NoSQL technology, 

even if it does not solve the problem. Thus, biased decisions can lead to technologies that are not 

appropriate for the specific use case being implemented.  

2.4.8 Shooting from the hip 

Shooting from the hip is a decision-making bias that prevents individuals from following a systematic 

decision-making process to make decisions and solve problems. The shooting from the hip 

phenomenon has been investigated in business decision-making (Russo, Schoemaker & Russo, 

1989). This bias can negatively influence decision-making. For example, a mechanic disassembling 

an engine needs to keep track of where each screw was removed from. An experienced mechanic 

may feel that they have enough experience disassembling engines to not have to take note of the 

exact position of each screw. Such a mechanic is influenced by the shooting from the hip bias. The 

bias results in the decision not to follow the process of noting all facts and relevant information. The 

mechanic may attempt to rebuild the engine and fail, since some screws do not fit or are placed in 

the wrong holes. Thus, decisions influenced by the shooting from the hip bias can have negative 

outcomes. 

Shooting from the hip is a bias that is relevant to technology decision-making. Individuals perceive 

themselves as capable enough not to have to follow a decision-making process. Decision-making 

processes assist individuals by gathering enough information to base decisions on. If individuals do 

not follow a process, they can make mistakes or miss key facts, which can lead to bad decisions being 

made. Individuals confident in their knowledge about certain technologies may be faced with a 

NoSQL problem. If the individuals believe that they can decide on a solution without investigating 

all alternatives, they can easily make incorrect decisions.  

2.4.9 Failure to audit decision process 

Failing to audit a decision process means not questioning or investigating the decision process. If 

individuals do not follow a decision process, they become vulnerable to many decision biases. If they 

do follow a decision process, they are still vulnerable to the failure to audit decision process bias. 

The phenomenon of failing to audit decision processes has been investigated in the field of business 

decision-making (Russo et al., 1989). It is important to follow a specific process when making 

decisions.  
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For example, to build a car from the ground up requires an individual to follow a decision process 

with specific steps. If the steps are mixed up, the car parts will not fit together correctly. An individual 

that does not question their decision process is susceptible to the influence of the failure to audit 

decision process bias. This means that even though an individual is following a decision process, it 

may not be the right decision process to solve the problem.  

The goal of a decision process is to assist an individual in understanding the problem, the various 

decisions that can be made, and how to implement those decisions. It is crucial to consider the failure 

to audit decision process bias in technology decision-making. If an individual follows the incorrect 

decision process, the individual may make bad decisions. When following a decision process to 

choose a NoSQL technology, the use case problem needs to be understood first. Thereafter, the 

choices of NoSQL storage technologies should be identified. Finally, the implementation process of 

the chosen NoSQL technology must be understood. If an individual does not follow the correct 

process, the problem can be misunderstood, and the wrong technology chosen.  

2.4.10 Halo effect 

The halo effect refers to the way one specific aspect of an item can affect how individuals perceive 

the item as a whole. The halo effect phenomenon has been researched in the field of business 

decision-making (Dobelli, 2013). An example of the halo effect can be found in marketing campaigns 

that advertise products using celebrities. For example, Roger Federer, a professional tennis player, 

appears in an advertisement for a coffee machine (Dobelli, 2013). Some individual viewing this 

advertisement may feel the need to purchase that specific coffee machine because their favourite 

tennis player is endorsing it. Their decision to purchase the coffee machine is based on a single 

element – the famous tennis player who is endorsing it – and other factors, such as the reliability and 

usability of the coffee machine, are ignored. Thus, they are experiencing the halo effect.  

The halo effect bias is also relevant to technology decision-making. If a NoSQL technology has a 

certain property that is appealing or unappealing to individuals, they may make biased decisions 

based on a personal feeling regarding the technology. If the feeling is positive, they may choose this 

technology over others, even if it is not the best choice. If the feeling is negative, they may not 

consider choosing the technology, even if it is the best solution to the problem. Thus, the decision is 

based on a single element and the alternatives are not investigated. 

2.5 Four categories of biases 

The previous sections showed that there are a wide variety of biases that can affect decision-making. 

Benson (2016) grouped these biases into four main categories according to the overarching problem 

faced by each group. The four categories are too much information, not enough meaning, act fast, 

and memory effects (Benson, 2016). Each kind of problem occurs for a reason. Too much information 
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problems occur when an individual is overwhelmed by the amount of information that needs to be 

considered. Not enough meaning problems occur when the information that has to be considered has 

no context or meaning. Act fast problems occur when individuals react too fast and ignore crucial 

pieces of information. Memory effects problems occur when the human memory cannot keep up with 

the volume of information.  

Table 2.3: Bias categories adapted from Benson (2016). 

 Categories Biases 

1 Too much information Anchoring 
Confirming evidence 
Framing 

2 Not enough meaning Failure to audit decision process 
Halo effect 

3 Act fast Status quo 
Sunk cost 
Prudence 
Shooting from the hip 

4 Memory effects Recallability 

To overcome these categories of biases, certain methods are required. To counter the first category 

of biases, a method is required to provide only presently relevant information. This will ensure that 

less information needs to be considered. To counter the second category of biases, a method is 

required to provide only contextual information. This will ensure that the information has meaning. 

To overcome the third category of biases, a method is required to force individuals to follow steps to 

reach a conclusion. This will ensure that the individual does not react too fast. To overcome the last 

category of biases, a method is required to encourage individuals to investigate specific information 

before reaching a conclusion. This will ensure that the human memory is not overloaded with 

information. Mitigating the effects these four categories of biases have on decision-making can lead 

to better decisions and outcomes.  

2.6 Decision-making techniques 

As stated above, there are numerous decisions with varying degrees of difficulty. The more difficult 

a decision is, the more thought is required to make the decision. To assist with making difficult 

decisions, one can use  decision-making frameworks (Rokach & Maimon, 2005). One example of a 

often used decision framework is that of a decision tree. The goal of a decision framework is to 

manipulate the alternatives to assist in making the optimal decision. A framework provides a 

structured format to think about a decision and all its alternatives.  

Decision-making frameworks are able to assist individuals by bringing structure to the decision-

making process (Newton, 2016). There exists a wide variety of frameworks which an individual can 

choose from to assist in making decisions. Example frameworks are the Kepner-Tregoe Matrix, 



CHAPTER 2: DECISION-MAKING REGARDING TECHNOLOGY 

22 

 

Decision Matrix Analysis, The Analytic Hierarchy Process, Pareto Analysis, The Futures Wheel, and 

Force Field Analysis (Newton, 2016).  

To illustrate the point of decision frameworks, consider two examples. Fisrt, the Kepner-Tregoe 

Matrix as the framework of choice. This framework employs four steps which an individual can 

follow from the start to the end of the decision process (Lumsdaine & Lumsdaine, 1994). The first 

step is ‘situational analysis’ where the top-level view of the decision to be made is gained (Newton, 

2016; Scheubrein & Zionts, 2006). The second step is ‘problem analysis’ where the problem is 

investigated to identify the root cause of the problem (Newton, 2016; Scheubrein & Zionts, 2006). 

The third step is ‘decision analysis’ where the alternatives are investigated and evaluated to find the 

solution to the problem (Newton, 2016; Scheubrein & Zionts, 2006). The last step is ‘potential 

problem analysis’ where the selected solution is analysed to identify additional problems that could 

occur from making such a decision (Newton, 2016; Scheubrein & Zionts, 2006). If an individual 

follows the steps of the framework, then he/she are enabled to make a good decision.  

Second, consider decision trees. A decision tree represents a decision and its consequences, that is 

the subsequent decsions that must be made. The tree consists of a node, also known as the root, which 

has no incoming edges (Magee, 1964; Rokach & Maimon, 2005). The root can be viewed as the main 

issue or problem. All subsequent nodes, known as ‘leaves’ or decision nodes, have outgoing edges 

which are known as test nodes. Each of the decision nodes can be seen as subsequent decisions to be 

made as a result of the root problem. Each decision node splits the instance into two or more sub-

instances according to the input and test of a function (Rokach & Maimon, 2005). As a result, a 

decision tree can be employed to map out a decision and its alternatives to assist with making 

decisions (Magee, 1964).  

As a result of the above mentioned, the need for frameworks in decision-making is clear as they can 

improve the quality of decisions individuals make.  

2.7 Conclusion 

In this chapter, it was established that decision-making is a daily task that all individuals partake in 

and that decision-making can be easy or difficult. It was also established that measurements and 

biases can negatively affect decision-making and cause individuals to make bad decisions. There are 

a wide variety of measurements and biases. The effects of these measurements and biases need to be 

mitigated to ensure better decision-making.  

This chapter elaborated on the context of this study to indicate the need for a model to assist IT 

practitioners with technology decisions. Since IT practitioners do not have a systematic way to decide 

between NoSQL families, a need for a way to make such decisions without being affected by the 
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problems of measurement and biases exists. However, before such a model can be created, NoSQL 

must first be understood. Therefore, the next chapter will investigate NoSQL technologies.  

 

 

  



 

CHAPTER 3: NOSQL 

The second chapter focused on explaining how difficult decision-making is and that it is a daily task. 

It also established that measurements and biases can negatively influence decisions and increase the 

difficulty of decision-making. Therefore, there is a need to mitigate the effects of biases and 

measurement on technology decisions.  

The technology context for this study is found in NoSQL (Not only SQL). Therefore, the chapter 

starts by investigating data storage technologies in general. Thereafter, a comparison is made 

between relational and non-relational (NoSQL) storage technologies. The data model behind NoSQL 

storage technology is an important aspect that needs to be considered. There are four types of data 

models used by NoSQL technologies that need to be investigated. Decision-making regarding 

NoSQL is further complicated by this.  

3.1 Storage technologies  

A database is a technology used for storing data. Data can originate from various sources and have 

different formats. Numerous types of data storage technologies, such as hierarchical databases, 

network databases, relational databases, and database management systems (DBMS), have been 

developed (Naheman & Wei, 2013). Currently, the two terms that are generally used to differentiate 

between types of database technologies are relational and non-relational databases.  

The creation of relational databases has been key to the development of storage technologies 

(Naheman & Wei, 2013). However, the development of technology and the internet contributed to 

the creation of large volumes of semi- and unstructured data. Relational databases struggle to store 

such data. Storage technologies should not struggle to accommodate semi- and unstructured data 

(Naheman & Wei, 2013). Continuous growth in technology means that data storage technologies 

also need to evolve to keep up with the ever-growing requirements to accommodate different types 

of data (Leavitt, 2010). These new requirements are based on the data model, the data storage, and 

the distributed architecture (Naheman & Wei, 2013). Firstly, the database refers to the physical 

storage of data. Secondly, the database systems refer to the management software to manage the 

database, and thirdly, the database model refers to the representation of data and how it is stored.  

3.1.1 Relational databases 

A relational database is a set of tables containing data that is fitted into predefined categories (Leavitt, 

2010). The data have relations to one another, hence the name relational database (Han, Cai & 

Cercone, 1993). Each table in the relational database contains one or more categories of structured 

and organised data that is stored in rows and columns (Han, Cai & Cercone, 1993). The relational 

data structure allows information from different tables to be linked (Padhy et al., 2011). The table 
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should also have a key, which is used to uniquely identify the data and to create links between the 

tables (Padhy et al., 2011).  

The relational model also employs a procedure called normalisation. Normalisation is a set of 

procedures used to remove redundant values and improve data integrity (Chapple, 2018; Coronel & 

Morris, 2016). In doing so, normalisation prevents data manipulation irregularities and loss of data 

integrity. A large advantage to database normalisation is that data is logically stored, and less space 

is consumed (Chapple, 2018). The way to conduct normalisation is through the processes called 

‘normal forms’ which has five forms namely, 1NF to 5NF (Coronel & Morris, 2016). Each of these 

forms can be seen as increased levels of normalisation. After 1NF, each subsequent form must meet 

the requirements of the previous form with additional requirements (Chapple, 2018).   

Some benefits of normalisation include better overall database organisation, reducing the volume of 

redundant data, higher consistency, and possible better database security (Stephens, Plew & Jones, 

2009). However, there is one major drawback to normalisation, namely reduced database 

performance. The reason is because more resources are required to react to a query since the data 

must be located, joined from multiple tables, and then processed to provide an answer to the query 

(Coronel & Morris, 2016; Stephens, Plew & Jones, 2009). Therefore, database normalisation has an 

impact on the transactions within the relational database.  

Most relational database systems are based on transactions to ensure the integrity of the data. 

Transactions ensure the atomicity, consistency, isolation, and durability (ACID) of data management 

(Moniruzzaman & Hossain, 2013). Atomicity refers to the ability of the database management system 

to follow an ‘all or nothing’ approach to transactions (Yu, 2009). Therefore, if a part of the transaction 

fails, then the whole transaction fails. Consistency refers to the degree of consistency of the database 

after a transaction is completed or failed (Medjahed, Ouzzani & Elmagarmid, 2009; Yu, 2009). 

Therefore, the focus would be on the state of the data and whether it is in a consistent state before 

and after the transaction occurs. Isolation means that the data used in the transaction cannot be 

accessed by other processes during the transaction (Medjahed et al., 2009; Yu, 2009). Durability 

refers to the guarantee that transactions will persist even if system failures occur (Medjahed et al., 

2009; Yu, 2009). Therefore, the transaction will not be affected by system failure.  

As a result of the above, ACID aims to provide assurance and guarantee the reliability of database 

transactions (Moniruzzaman & Hossain, 2013). ACID works well with structured data such as 

banking transactions. However, when faced with unstructured data, it may struggle to provide 

guarantees on the reliability of the data.  
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Therefore, relational databases operate best when handling structured data and struggle to 

accommodate semi- or unstructured data (Leavitt, 2010; Zhang, 2011). Another solution was found 

to accommodate the drawbacks of the relational data model which is a non-relational technology 

known as NoSQL (Naheman & Wei, 2013). There are certain limitations and drawbacks to the 

relational data model when it is faced with storing semi- or unstructured data. The limitations need 

to be highlighted and understood to indicate why non-relational (NoSQL) databases are a better 

solution when storing or working with semi- or unstructured data.  

3.1.2 Limitations of relational databases 

Scaling, complexity, large feature set, and slow reading and writing performance are some of the 

limitations of relational databases when working with semi- and unstructured data (Han, Haihong, 

Le & Du, 2011; Jatana et al., 2012; Leavitt, 2010).  These include scaling, complexity, large feature 

set, and slow reading and writing performance.  

Scaling refers to increasing the database size. There are two methods of scaling a database can 

employ, namely vertical and horizontal scaling. Vertical scaling involves increasing the storage and 

processing capacity, which can become a costly venture. Horizontal scaling means storing the same 

table across multiple servers (Han et al., 2011; Jatana et al., 2012; Leavitt, 2010). Therefore, when 

storing large volumes of semi- and unstructured data, it would be better to use horizontal scaling, as 

this could be a cheap method (Jatana et al., 2012; Leavitt, 2010). However, horizontal scaling can be 

expensive also.  

Complexity refers to the ease of working with the data structure.  Relational databases work with a 

fixed structure (Leavitt, 2010). Therefore, if the data does not fit into the structure, conversion and 

change of the data must occur.  

Relational databases can also offer a large set of features, which can complicate the work to be done 

(Leavitt, 2010). These additional features also add to the total cost of the relational database (Jatana 

et al., 2012). Thus, the database system could turn out to be very costly due to having additional 

features that may not even be needed.  

Slow reading and writing performance may be found when relational databases are used to work 

with semi- and unstructured data (Han et al., 2011; Leavitt, 2010) which indicates that relational 

databases cannot handle the semi- or unstructured data.  

Non-relational databases were created to overcome the limitations of relational databases. Therefore, 

non-relational databases are focussed on working with or storing semi- and unstructured data. The 

development of non-relational data storage technologies has led to the creation of NoSQL.  
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3.1.3 Non-relational databases 

Non-relational databases refer to a data model that differs from relational systems in that data is 

stored without an explicit structure (Padhy et al., 2011). Non-relational databases do not use tables 

as a data structure to store data in. Other aspects that differentiate non-relational databases from 

relational systems are, firstly, that non-relational systems do not just use SQL as their query language. 

Secondly, non-relational databases do not guarantee ACID properties. Thirdly, they do not employ 

join operations, and lastly, they can scale horizontally (Jatana, Puri, Ahuja, Kathuria & Gosain, 

2012). Non-relational databases are commonly linked with NoSQL because NoSQL is non-relational 

in nature (Naheman & Wei, 2013).  

3.1.4 Overcoming limitations of relational databases 

As stated before, relational databases struggle to accommodate semi- or unstructured data. Therefore, 

NoSQL databases were created to overcome such limitations. The first identified limitation was 

scaling where relational databases use vertical scaling to scale the data. However, with the increase 

of datasets and the increasing use of semi- or unstructured data, makes it difficult and expensive to 

scale with relational databases (Kuhlenkamp, Klems & Röss, 2014). As a result, NoSQL employs 

horizontal scaling to counter the limitations of vertical scaling by exponentially increasing the 

capacity and performance to accommodate the size and type of data (Moniruzzaman & Hossain, 

2013). However, horizontal scaling can be more expensive to implement than vertical scaling.  

The second limitation identified is complexity. Relational databases have a focus on working with 

structured data which means the complexity is low since the data fits into the structure with ease 

(Moniruzzaman & Hossain, 2013). However, if semi- or unstructured data are stored within a 

relational database, then the complexity is high since the data must be manipulated and changed to 

fit the fixed data structured (Abadi, 2009). NoSQL places fewer constraints on the structure of the 

data to be stored (Győrödi, Győrödi & Sotoc, 2015a). Therefore, NoSQL allows the storage of several 

data structures without the need to manipulate the data structures to meet certain requirements.   

The third limitation identified is slow reading and writing performance (Naheman & Wei, 2013). 

Relational databases provide excellent performance when dealing with structured data. However, 

when semi- or unstructured data is stored, then the performance of the relational database will slow 

considerably down (Han et al., 2011; Naheman & Wei, 2013). Therefore, NoSQL overcomes this 

limitation since it can provide high reading and writing performance when working with semi- or 

unstructured data (Hecht & Jablonski, 2011).  
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3.2 Classification of NoSQL databases  

There are four families of NoSQL databases, namely key-value stores, column-family stores, graph 

stores, and document-based stores (Aniceto et al., 2015).  The following section describes and 

provides a general use case for each family of NoSQL.  

3.2.1 Key-value stores 

Key-value stores are database management systems that store keys (identifiers) and values associated 

with the keys inside a hash table (Moniruzzaman & Hossain, 2013). The values can vary from simple 

text to complex lists. Data searching is done against the keys and looks for exact matches. Figure 3.1 

is a graphical representation of a key-value store.  

Key-value stores contain data that is being stored in a key to value pair (Aniceto et al., 2015; Padhy 

et al., 2011). The values stored are indexed for retrieval by unique keys (Aniceto et al., 2015; Padhy 

et al., 2011). Values are stored independently from each other and the application logic handles the 

relationships between the data (Aniceto et al., 2015). Key-value stores can handle structured and 

unstructured data (Padhy et al., 2011). They are simplistic and ideally used when highly-scalable 

databases that can retrieve and store large volumes of records quickly are required (Moniruzzaman 

& Hossain, 2013).  

 

 

 

 

 

3.2.2 Use case for Key-Value stores 

Key-value databases may be an appropriate solution for applications with one kind of object where 

queries are based on one attribute (Cattell, 2011). Key-value databases are best suited for use cases 

such as managing user profiles within a large financial business which requires a scalable and high-

performance database (Moniruzzaman & Hossain, 2013). Amazon is making use of a NoSQL 

database called Dynamo. It is a key-value store that is readily available and is used in their shopping 

cart feature (DeCandia et al., 2007). Implementing a key-value store provides Amazon with a 

scalable and available distributed data store for their online business.  

Figure 3.1: Key-value store contents, adapted from Wellhausen (2012). 
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Another example of a key-value product is Riak. A couple of uses for Riak (Nayak, Poriya & Poojary, 

2013) include firstly, managing personal information on social media websites. Secondly, to manage 

profiles for Massively Multiplayer Online Role-Playing Games (MMORPGs). Thirdly, manage 

factory and information control systems and lastly, to collect Point of Sales (POS) or checkout data. 

Other products belonging to the key-value family are Voldemort (used by LinkedIn), Redis, and 

Berkeley DB.  

3.2.3 Document-based stores 

Document-based stores utilise the same concept as key-value stores (Aniceto et al., 2015). 

Documents refer to collections of attributes where each attribute can have multiple values assigned 

to it (Aniceto et al., 2015; Padhy et al., 2011). One can add any number of records of any length to 

any document in the store (Padhy et al., 2011). Each document in the store contains an ID key that 

uniquely identifies that specific document (Aniceto et al., 2015). The documents are encoded in a 

data exchange format such as JSON (JavaScript Option Notation) which are commonly stored in 

document-based stores. Examples of document-based stores include MongoDB and CouchDB 

(Padhy et al., 2011). 

 

 

 

 

 

 

 

The ID keys that explicitly identify each specific document must be unique (Hecht & Jablonski, 

2011). The values inside a document store can be queried, which means that complex data structures 

can be handled with ease. Document stores do not have any schema restrictions and adding new 

attributes to a store is easy (Hecht & Jablonski, 2011). A user can also do multi-attribute searches 

from a variety of key-value pairs. Document stores are convenient for data integration and schema 

migration tasks.  

Figure 3.2: Relational data model versus the document-based data model (Couchbase, n.d.). 
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3.2.4 Use case for document-based stores 

Document-based stores are good for managing and storing enormous size collections of documents, 

such as collections of text documents, emails, and XML documents, as well as semi- and unstructured 

data (Moniruzzaman & Hossain, 2013). Document-based stores can be used by content management 

systems, blogging platforms, and applications for electronic commerce as well as for web analysis 

and real-time analysis. However, document-based stores may not be an appropriate solution for 

websites with complex transactions or queries that dynamically change the calculation structure 

(Hwang, Lee, Lee & Park, 2015). The document data model can facilitate website creation, since the 

data model supports unstructured data by default while not requiring costly and time-consuming 

migrations between systems (Hwang et al., 2015). An in-practice example of a document store in use 

is traffic department records that contain two categories of objects (vehicles and drivers) and can do 

a lookup of objects on multiple fields (driver’s name, owned vehicle, birth date, license number).  

An important element to consider is the level of concurrency a task requires when employing 

document-based databases. If “eventually consistent” can work with the use case, then document-

based stores may work well (Cattell, 2011). An example of this idea being applied to daily life can 

also be found in traffic department records. The traffic department may not need to know if a driver 

of a specific license number received a traffic violation within the last minute. However, the records 

will be updated eventually 

3.2.5 Graph stores 

Graph stores are excellent at handling and managing heavily linked data. Graphs represent the data 

schema for this database type. In cases where relationship-heavy data is stored, graph data models 

are better suited to handle the data than other kind of data model (Hecht & Jablonski, 2011). Graph 

stores consist of three elements, namely nodes, the relationships between nodes, and the values 

attached to the relationships and the nodes (Aniceto et al., 2015). Graph stores are the only NoSQL 

database type that focuses on the relationships between the data (Moniruzzaman & Hossain, 2013). 

Graph stores also visually represent the data, which is more human-friendly.  

Graph stores can be used by location-based services and recommendation systems. They can also be 

used for knowledge representation and to solve pathfinding problems in navigation systems (Hecht 

& Jablonski, 2011). The use cases, for example pathfinding problems, employ complex relationships. 

3.2.6 Use case for graph stores 

Graph databases are more useful when the relationships between the data are more important than 

the data itself (Moniruzzaman & Hossain, 2013). Graph stores are optimised for traversing 

relationships. The best use cases for graph stores are when dealing with heavily linked data, location-
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based services, and recommendation services (Hwang et al., 2015). Graph stores do not provide the 

best solution for modifying entity updates (Hwang et al., 2015). However, graph stores can be used 

as a mechanism for graph-based queries, such as computing the shortest path between two nodes 

inside a cluster. Another possible use is pattern detection through forensic investigation 

(Moniruzzaman & Hossain, 2013). Examples of graph databases include Neo4j, InfoGrid, GraphDB, 

and InfiniteGraph. 

 

 

 

 

 

 

 

 

3.2.7 Column-family stores 

Column-family stores define the structure in which the data is stored as a set of columns (Aniceto et 

al., 2015). Column-family stores contain an extendable column of related data. They can also be 

referred to as super columns or column-family structures (Padhy et al., 2011; Aniceto et al., 2015). 

Columns refer to the data schema of the column-family databases. Examples of products that fall 

under the column-family category are Cassandra, HBase, and Google’s BigTable (Padhy et al., 

2011).  

Column-family databases can be used for distributed data storage. They can also be used for large-

scale, batch-oriented data processing, such as converting, sorting, and parsing data (Moniruzzaman 

& Hossain, 2013). An example of this is the conversion of numbers between binary and hexadecimal 

values. Statisticians or programmers can do predictive and exploratory analytics on the data stored 

in column-family databases (Moniruzzaman & Hossain, 2013).  

3.2.8 Use case for Column-family stores 

Column-family store use cases focus on multiple kinds of objects and do lookups based on any field 

(Cattell, 2011). Column-family stores aim to provide higher throughput and concurrency (Cattell, 

2011). However, their complexity of use is higher than that of other NoSQL families (Cattell, 2011). 

Column-family stores are suitable for distributed data storage, large-scale data processing, and 

exploratory and predictive analytics (Moniruzzaman & Hossain, 2013). Column-family stores can 

Figure 3.3: Graph NoSQL Database 
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be used firstly, by content management systems to store all data regarding the contents. Secondly, 

blogging-platform services to store and enable blogging of events. Thirdly, visitor countering 

services to keep track of visitors and lastly, for event logging to capture and store the occurrence of 

specific events (Hwang et al., 2015).  

Using this type of store for blogging would allow blog entries to be stored alongside tags, categories, 

links, and trackbacks in different columns (Hwang et al., 2015). Furthermore, when storing customer 

information for an online transaction web application, the data must be partitioned vertically and 

horizontally. This type of database allows customers to be clustered by country and can store data 

that rarely changes in a different place than data that is changes regularly. This could also be achieved 

by using document-stores. However, it is more easily achieved by using column-family databases 

(Cattell, 2011). Examples of products belonging to the column-family of NoSQL technology are 

HBase and Hypertable.  

 

 

 

 

 

 

 

 

3.3 Conclusion 

Non-relational storage technologies, which can also be referred to as NoSQL technologies, overcome 

the limitations of relational storage technologies. This chapter provided background information 

relating to NoSQL technologies. There are four families within NoSQL and there are advantages and 

disadvantages to employing each of them. Within each family, there are a variety of products that 

can be selected and used. When faced with a use case that relational technology cannot accommodate, 

decisions must be made regarding which NoSQL family to use. The data storage model is a crucial 

aspect to consider when deciding between NoSQL families and products. A decision must be made 

regarding the best data model and technology option for the use case. Therefore, it is important to 

Figure 3.4: Wide-Column Store NoSQL Database (Sasaki, 2015). 
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have a decision model that removes as much ambiguity and provides as much structure as possible 

to combat the influence of measurements and biases.  

Individuals need to do their best to be aware of biases and to prevent these biases from influencing 

the decisions made. Therefore, the following chapter will investigate and discuss the decision 

framework that can be used to aid in the decision process.   
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CHAPTER 4: CONCEPTUAL FRAMEWORK 

The previous chapters have established that decisions regarding NoSQL families are difficult and 

can be affected by biases and measurements. IT practitioners lack a systematic process to follow 

when making these types of decisions. Therefore, a need for a process that will enable better decision-

making by reducing the effects of biases and measurements exists.  

Chapter 4 provides a conceptual framework that aims to minimise the effect of decision biases. The 

conceptual framework comprises three parts: constructs, a weighted decision model that is formed 

by combining the constructs, and a process model that explains how to tailor the decision model to 

specific scenarios.  

The chapter starts by motivating the need for the proposed framework and explaining how it would 

help. Thereafter the chapter develops the three parts of the framework. Firstly, the constructs are 

identified. Secondly, the weighted decision model is specified. Lastly, the process model is defined.  

4.1 Why is the framework necessary? 

During the day, many decisions with varying levels of complexity and importance need to be made. 

The level of complexity a decision can influence individuals’ decision-making (Kahneman & 

Tversky, 1979; Kahneman & Tversky, 1984). When faced with difficult and complex situations, 

individuals may employ heuristics to make quick judgements (section 2.1) (Hammond et al., 1998). 

However, heuristics are not always fail-proof and can lead to wrong decisions being made.  

IT practitioners are constantly faced with technology-based decisions with varying levels of 

complexity. An important decision they need to make is which NoSQL family to use when doing a 

project where NoSQL is used as the storage technology. This decision is not made in an impromptu 

manner and can be influenced by several biases. Therefore, it is important for IT practitioners to be 

aware of these biases when making decisions regarding NoSQL. An IT practitioner can counter 

several decision-making biases by understanding the unique strengths and weaknesses of each 

NoSQL family.  

There are four NoSQL families and numerous products within each of these families (Edlich, 2011). 

Each family has a data model that is used to stored data. Several products employ the data models of 

specific NoSQL families. The data models handle stored data in different ways and each data model 

has its own unique strengths and weaknesses. The unique strengths and weaknesses of each NoSQL 

family need to be understood before an informed decision can be made regarding which of them to 

use.  
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To make an informed decision regarding which family and product to use, IT practitioners need to 

consider large volumes of information. A framework that aims to mitigate the effects of biases and 

measurements on decision-making needs to be created. There are two situations that require the 

assistance of such a framework.  

The first situation presents itself when a decision must be made regarding which of the four NoSQL 

families is best suited for a specific use case. If uncertainty regarding this choice exists, the IT 

practitioner can employ the framework to counter decision-making biases and make an informed 

decision.  

The second situation presents itself when a decision must be made between NoSQL products. Once 

a NoSQL family has been chosen, the IT practitioner must decide on a specific product to use for the 

same use case. The same decision-making biases apply to decisions regarding NoSQL products as to 

those regarding NoSQL families. Therefore, the IT practitioner can employ the same framework to 

better decide between NoSQL products.  

These are the two most prominent situations the framework will assist IT practitioners with. 

However, the framework can assist them in other ways too. Current documented use cases cater for 

the different data types that may be stored within NoSQL technologies. They do not however cater 

for uncommon types of data stored in NoSQL technologies. Therefore, the proposed framework 

caters for more than just the type of data to be stored. In addition, the framework also makes the IT 

practitioner more aware of biases. The framework will result in a better decision-making regarding 

NoSQL technologies. Therefore, there is a need for the proposed framework.  

4.2 How will the framework help? 

The proposed framework can assist IT practitioners in making technology-based decisions. It 

contributes in multiple ways: 

 A set of fixed criteria allows uniform comparison. 

 A list of options ensures that all relevant options are considered. 

 Weights ensure that criteria are considered to the degree that they matter in the use case. 

 Grading ensures that all options are carefully considered. 

 A decision model suggests a choice based on the calculation of a final score. 

 A process model caters for adaptation to specific technologies. 

Through the ways mentioned above, the framework aims to assist IT practitioners in making better 

decisions regarding technology. The proposed framework encompasses several artefacts, which are 

discussed in the following section.  
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4.3 What does the framework encompass? 

The framework comprises multiple artefacts that aid in the decision process. These artefacts map 

well to the four levels of artefacts proposed by March and Smith (1995). Figure 4.1 graphically 

depicts the four levels of artefacts. The first level refers to constructs and the second level refers to a 

model, which is defined as the relationships between constructs. In the proposed framework, the 

decision model links various constructs (criteria, weights, grades, options) through the calculation of 

a final score. The third level of March and Smith’s (1995) artefacts refers to a method, which is a set 

of steps followed to perform a task. In the proposed framework, a 6-step process to adapt the decision 

model to specific technologies is presented.  

The proposed framework can be used by the IT practitioner to assist with decisions in specific use 

cases. This use of the model represents the fourth level of March and Smith’s (1995) artefacts, namely 

instantiation.  

The following sections discuss the artefacts the proposed framework is comprised of in more detail.  

4.3.1 Constructs 

There are six constructs found within this framework: the list of choices, the fixed set of criteria, the 

weights of criteria, the grades, the score calculation, and the sequence of steps.  

The first construct in the decision model is the list of choices to decide between. To ensure a uniform 

comparison, it is important to create a fixed set of criteria, which is the second construct within the 

decision model. The different criteria are not of equal importance and therefore must be weighted. 

The weights of criteria is the third construct within the model. Each choice will receive a grade for 

each of the criteria, which is the fourth construct in the model. A weighted average can be used to do 

a score calculation, which is the fifth construct in the model. The last construct in the model is the 

sequence of steps followed to apply the framework.  

Figure 4.1: Artefacts of a design science study (March & Smith, 1995). 
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4.3.2 Model 

Table 4.1 represents the weighted decision model with all the constructs inside. The list of choices 

(families F1 to Fm) will be graded (R11 to Rnm) according to the fixed set of criteria (C1 to Cn). The 

fixed set of criteria will be assigned weight values (Wi to Wn) that reflect the use case requirements. 

The decision model will calculate a weighted score (Score(Fk)= ∑ 𝑊𝑖. 𝑅𝑖𝑘
𝑛
𝑖=1 ) for each of the 

families, which can assist in decision-making. To implement this model, a specific method in the 

form of a process model is required.  

Table 4.1: The weighted decision model. 

 

 

𝑆𝑐𝑜𝑟𝑒(𝐹𝑘) =  ∑ 𝑊𝑖. 𝑅𝑖𝑘

𝑛

𝑖=1

 

4.3.3 Method 

Figure 4.2 is a visual representation of the process model found within the framework. The process 

model provides a 6-step process to implement the framework. Following these steps can also assist 

with NoSQL product recommendations.  

4.3.3.1 Investigate the technology (Step 1) 

Since this model will always be used to make decisions within a technology context, it is important 

to gain an understanding of the relevant technology and the choices that must be made regarding the 

technology. In the context of this study, this means investigating NoSQL technologies and families. 

Refer to Chapter 3 for more information on NoSQL families.  

     

Criteria Weight F1 F2 … Fk … Fm 

C1 W1 R11 R12 … R1k … R1m 

…        

Ci Wi Ri1 Ri2 … Rik … Rim 

…        

Cn Wn Rn1 Rn2 … Rnk … Rnm 

Figure 4.2: General steps of the weighted decision model. 
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The technology focus of this study lies within the NoSQL technology area. Each of the NoSQL 

families represents a different data model with unique strengths and weaknesses.  

4.3.3.2 Identify the comparison criteria (Step 2) 

In Step 1, a good understanding of what the technology involves is gained. In Step 2, this knowledge 

is used to create a fixed set of criteria that are important to the specific technology. The development 

of the fixed set of criteria for NoSQL technologies is discussed in Chapter 5. The fixed set of criteria 

enables the NoSQL families and products to be uniformly compared.  

The fixed set of criteria will ensure that only relevant information is used to compare NoSQL families 

with one another. Therefore, no unnecessary information can influence the decision-making process. 

This counters the not enough meaning category of biases. A fixed set of criteria will encourage 

investigation, which will counter the memory effects category of biases. Individuals will not need to 

rely on past experiences to compare the NoSQL families but will be able to base their decisions on 

investigated information. The criteria can also be adapted to a specified context (NoSQL), which 

ensures contextual information is used to compare the families. This will counter the not enough 

meaning category of biases.  

4.3.3.3 Grade according to the criteria (Step 3)  

Each option must be graded based on the extent to which it fulfills each of the criteria. This will 

ensure that the decision-maker considers all possible options and thereby remove some bias. In the 

context of this study, the options will be graded according to nine criteria. These criteria will be 

developed in Chapter 5, and grading will be discussed in Chapters 6 and 7. Chapter 6 will provide 

information pertaining to the application of the process model to a NoSQL technology context. 

Chapter 7 will apply the process model grading system in the context of instantiation meaning the 

performance of the four families will be graded.  

Once the fixed set of criteria has been identified, grading can commence. Each NoSQL family is 

graded using the fixed set of criteria. The grades represent the performance level of a specific NoSQL 

family for each of the criteria. Examining all the grades of a NoSQL family can show its unique 

strengths and weaknesses. High precision values would not heavily influence the performance levels 

of the families. Within the context of this study, there is no need for a decimal value to depict the 

performance levels of the families since the decimal values may not change the meaning of the 

performance level. Therefore, high accuracy values are used to depict the performance level of each 

family.  
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Grading the families by using the criteria will ensure that IT practitioners investigate the NoSQL 

families by following systematic steps to provide values for all of the criteria. This counters the act 

fast and memory effects categories of biases.  

Depending on the use case, certain criteria will be more important than others. Weighting the criteria 

will show the different levels of importance of the different criteria in the context of the specific use 

case.  

4.3.3.4 Weight the criteria (Step 4) 

Step 4 entails weighting the criteria to indicate the level of importance of each criterion within the 

context of a specific use case. Since each use case has specific requirements, the criteria are not all 

of equal importance. Therefore, it is crucial to allow IT practitioners to input weights into the model. 

In the context of this study, the weighting of criteria is done within the context of a NetFlow use case 

and is discussed in Chapters 6 and 8. Chapter 6 will provide information relating to the application 

of the process model in the context of the use case. Chapter 8 will apply the process model weighting 

system in the context of the NetFlow use case (instantiation).  

A tool that will enable an IT practitioner to assign weights to the different criteria is required. A fixed 

amount of points is provided to the IT practitioner to assign to the various criteria. The tool is an 

essential element of the weighting process, as it prevents the IT practitioner from assigning equal 

weights to all the criteria. Therefore, the IT practitioner is forced to consider which of the criteria are 

more important and which are less important. Ensuring that proper weights are assigned to the criteria 

will increase the quality of the recommendation from the model.  

The average of values measurement can influence the final weight values assigned to the criteria. An 

average of the weighted values received from respondents is used to derive a common weight value 

for each criterion. However, the derived value may not represent all the respondents’ specific weight 

values. Therefore, the wrong requirements may be used to base decisions on. The weights of the 

criteria must represent the level of importance of each criterion within the specific use case. High 

precision values would not change the meaning of the final weights for each criterion. A decimal 

number would not change the meaning of the weight. Therefore, high accuracy values are adequate 

for the weight values within the model.  

The model will provide weighted criteria by using relevant information to determine the importance 

value of each criterion within the use case. Using only relevant information will counter the too much 

information category of biases, because no unnecessary information will be able to influence the 

weightings of the criteria. Weighting criteria also forces the IT practitioner to investigate only 

contextual information regarding the importance level of each criterion. This counters the not enough 
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meaning and memory effects categories of biases. Focus is also placed on the importance level of 

each criterion. This forces the individual to investigate the importance of each criterion to ensure the 

specific use case requirements are represented.  

4.3.3.5 Score the options (Step 5) 

Once Step 4 has been completed, the options can be scored. The final score for each family is derived 

from a combination of the weights (Step 4) and grades (Step 3) of its criteria. The grades are used to 

indicate the unique strengths and weaknesses of each family, while the weight values represent the 

importance of each criterion within the context of the use case. Scoring the options is discussed in 

Chapters 6 and 8. Chapter 6 provides information relating to the process model, while Chapter 8 

focuses on how the weights are applied during instantiation. In the context of this study, the weights 

represent the importance of the criteria within a NetFlow use case.  

The accuracy and precision of values influence the scoring of the NoSQL families. When scoring, 

only high accuracy values are used meaning high precision values would not influence the meaning 

of the final score. Therefore, high accuracy values can be used to determine the final score of each 

option.  

A calculation is used to determine the score for each criterion. A criterion’s score is a combination 

of its weight and grade. Once all the criteria have been scored, the NoSQL families’ final scores can 

be calculated. All the criterion scores of a NoSQL family are added together to obtain its final score. 

The final score is an indication of the appropriateness of the family for the particular use case. This 

calculation process is followed to obtain the final score of each of the NoSQL families. The final 

score of each family will be different, as each family has its own unique strengths and weaknesses. 

The next step is to make recommendations based on the final scores the NoSQL families.  

4.3.3.6 Recommend an option (Step 6) 

The last step of the framework is to provide a recommendation based on the final scores of the 

options. Completing Step 5 provides the final scores, which should differ from one another. The 

highest score indicates which option is most appropriate for the use case. The recommendation are 

based on a mathematical formula, however the recommendation is not perfect. Therefore, the 

recommendation reduces uncertainty but does not remove uncertainty. 

In the context of this study, the NoSQL families are scored to find the one most appropriate to be 

used in the NetFlow use case. The final scores represent the ability of each NoSQL family to fulfil 

the specific NetFlow use case requirements. The higher the final score, the more a specific NoSQL 

family meets the requirements of the use case. In Step 6, the final scores of the NoSQL families are 
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displayed and a recommendation is made based on them. The family with the highest final score will 

perform the best within the context of the specific use case.  

Figure 4.3 provides a graphical overview of the artefacts comprising the proposed framework. The 

weighetd decision model combines several constructs which include the list of options, the 

comparison criteria, the importance weightings, the performance grades, the final scores for each 

option and the 6-step process which can adapt the framework to specific technologies. 

4.4 Conclusion 

In previous chapters, it was established that there is a need for a framework that can help IT 

practitioners make better decisions regarding technology. Therefore, this chapter proposed a 

framework that can assist with technology-based decisions.  

Figure 4.3 provides a graphical overview of the artefacts that make up the proposed framework. The 

weighted decision model combines several constructs, including the list of options, the comparison 

criteria, the importance weightings, the performance grades, the final scores for each option, and the 

6-step process that can be used to adapt the framework to specific technologies.  

In Chapters 5 and 6, the weighted decision model within the proposed framework will be modified 

to enable it to be applied to the context of NoSQL technologies. The adjustments that will allow it to 

be used in a specific technology context rather than a general technology context will be made by 

using the 6-step process discussed in this chapter. Chapter 5 will investigate the development of the 

comparison criteria to ensure that a uniform comparison of the NoSQL families can be made. Chapter 

6 will discuss how to implement various steps in the process model within the context of NoSQL 

technologies.  

Figure 4.3: Overview of the framework. 
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The next part of this study uses the proposed framework within a specific use case to demonstrate 

the feasibility and utility of the framework. This is indicated by the top layer of Figure 4.3. The 

framework is employed within a NetFlow use case context to assist IT practitioners in deciding which 

NoSQL family is most approproiate for storing Netflow data. The next chapter will develop a set of 

criteria that can be used to compare NoSQL families. 



 

CHAPTER 5: CRITERIA DEVELOPMENT 

In previous chapters, it was made clear that making decisions regarding NoSQL families is difficult. 

This motivated the need for a framework that IT practitioners can use to make better decisions 

regarding technologies. In response to this need, Chapter 4 proposed a framework to help counter 

the problems that can influence technology decision-making. The framework comprises several 

constructs that work together within a decision model. It also proposes a 6-step process to adapt the 

decision model for specific technologies to assist in decision-making regarding a specific technology.  

Chapters 5 and 6 set out to customise the decision model to the context of this research study. This 

will enable it to be used to decide between NoSQL technologies. Step 1, investigating the technology, 

was completed in Chapter 3 of this dissertation. Chapter 5 focusses on Step 2, which is identifying 

comparison criteria. To assist IT practitioners in choosing between NoSQL families, a fixed set of 

criteria will be used to uniformly compare the families.  

The chapter starts off by explaining the need for comparison criteria and provides an example of 

existing comparison criteria. Thereafter, additional criteria are added to the existing criteria to create 

to the full set of comparison criteria that will enable the NoSQL families to be uniformly compared.  

5.1 Why develop comparison criteria? 

Chapter 3 identified the four existing NoSQL families, each of which uses a specific data model. The 

families all have unique strengths and weaknesses that need to be compared so that an informed 

decision regarding which family to select for a specific use case can be made. Therefore, a uniform 

comparison must be made between the four families.  

The criteria are based on certain aspects of NoSQL databases that can be used to uniformly compare 

the families. The aim of the criteria is to enable the framework to indicate the unique strengths and 

weaknesses of each family. The criteria will also assist in combatting some of the bias categories 

(section 2.5) by ensuring the IT practitioner considers all possible alternatives for the use case.  

An example of a method that can be used to compare NoSQL families is the CAP theorem. The CAP 

theorem states that a NoSQL family can only contain two of the three CAP properties. The three 

CAP properties are consistency, availability, and partitioning (Brewer, 2000). The CAP theorem is 

an example of a fixed set of criteria in the comparison of NoSQL databases (Brewer, 2000, 2012). 

In the following sections, the CAP theorem is investigated and expanded on using additional criteria 

to enable a better uniform comparison of the NoSQL families.  
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5.2 The CAP theorem 

As stated in section 3.1.1, most relational database systems are based on transactions to ensure the 

atomicity, consistency, isolation, and durability (ACID) of data management (Moniruzzaman & 

Hossain, 2013). However, storing large volumes of semi- and unstructured data may cause ACID-

compliant relational databases to struggle. Therefore, to overcome the shortcomings of ACID, 

Brewer (2000) proposed the CAP theorem.  

The CAP theorem describes a NoSQL database in terms of consistency, availability, and partition 

tolerance (Brewer, 2000, 2012). Firstly, high consistency refers to the ability of the system to always 

provide clients with the most up-to-date data (Brewer, 2012). Secondly, high availability refers to 

the ability of a system to ensure successful reads and writes most of the time (Brewer, 2000, 2012). 

High availability may also refer to the expectation that each operation will terminate successfully 

(Pokorny, 2013). Thirdly, high partition tolerance refers to the ability of a system to accept read and 

write requests even if network partitions are unavailable (Brewer, 2012; Pokorny, 2013). The three 

properties (CAP) should be balanced against one another when considering a database management 

system.  

A NoSQL database can only possess two of the three desirable CAP properties (Brewer, 2000, 2012). 

Table 5.1 lists several NoSQL products and their corresponding CAP properties. There are a wide 

variety of products with different combinations of the CAP properties. This implies that there may 

be no single solution to all problems. Instead, there are many products which can be used to solve a 

variety of problems. The possible combinations of the CAP properties are AP (Availability-

Partition), CP (Consistency-Partition), and AC (Availability-Consistency).  

Table 5.1: Tabular format of CAP properties for popular NoSQL databases (Hu, Wen, Chua, & Li, 2014). 

Data model Technology CAP option 

Key-value Dynamo AP 
 Voldemort AP 
 Redis AP 
Column-family BigTable CP 
 Cassandra AP 
 HBase CP 
 Hypertable AP 
Document-based SimpleDB AP 
 MongoDB AP 
 CouchDB AP 
Graph PNUTS AP 

Figure 5.1 also indicates the CAP combinations and some of the products associated with each 

combination. The products indicated are only examples and not a complete list. The AP combination 

of properties means that full consistency is not a goal of the system. Higher availability and partition 

tolerance (AP) is the aim of most NoSQL systems (Moniruzzaman & Hossain, 2013). The CP 
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combination of properties means that high availability is not important to the system (Han et al., 

2011). The AC combination of properties means that high partition tolerance is not a priority (Han 

et al., 2011). If high consistency is not part of the combination of properties of a NoSQL system, the 

system becomes basically available, soft-state, and eventually consistent (BASE) (Hecht & 

Jablonski, 2011; Sharma & Dave, 2012). Therefore, systems that has do not have a focus on providing 

high consistency will provide availability and partition tolerance. The NoSQL system may restrict 

the data model to enable better partitioning (Moniruzzaman & Hossain, 2013).  

Figure 5.1: CAP theorem combined with NoSQL database products (Piplani, 2010). 

The four NoSQL families have varying levels of abilities. A comparison must be made to help IT 

practitioners decide between the families. The CAP criteria provide a platform that can be used to 

compare the NoSQL families. However, this places the focus on only three criteria, while other 

factors are ignored. The CAP criteria are centred around the state of the data in storage. However, 

CAP does not consider how the data is processed to be stored later. Additional criteria will be able 

to provide a more holistic view that can be used to enable a better comparison between the NoSQL 

families. Therefore, additional criteria need to be identified to ensure a holistic and uniform 

comparison.  

5.3 The fixed set of criteria 

Throughout the literature review process, certain prominent criteria were identified by investigating 

data storage technologies. These criteria can be used to provide IT practitioners with a more informed 

and less biased view of the NoSQL families. Using a fixed set of criteria will ensure that the families 

are uniformly compared with one another. This will assist in mitigating the problems identified in 

Chapter 2. The identified criteria comprise of the CAP theorem (consistency, availability, and 
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partitioning) as well as some additional criteria. The additional criteria are read and write 

performance, scalability, conceptual data structure, reliability, and learning curve.  

These criteria represent certain abilities and aspects of database technologies. The identified criteria 

cover the overall abilities of the NoSQL families. An explanation and justification of each criterion 

follows.  

5.3.1 Consistency 

Completing a write operation will insert a record into a database. If the database system has high 

consistency, all readers will immediately see the most up-to-date information (Brewer, 2000, 2012; 

Strauch et al., 2011). Therefore, consistency refers to the extent to which the system is in a consistent 

state after operations such as reading and writing have occurred (Chen, Mao & Liu, 2014). The level 

of consistency in a database system depends on the requirements of the use case. There are several 

levels of consistency, including strong, weak, and eventual consistency (Gilbert & Lynch, 2012; 

Vogels, 2009).  

Strong consistency refers to a level of consistency at which any client accessing the data after an 

update to the data set will immediately see the most up-to-date version of the data (Lourenço, Cabral, 

Carreiro, Vieira & Bernardino, 2015b; Moniruzzaman & Hossain, 2013; Pokorny, 2013; Vogels, 

2009). Weak consistency refers to a level of consistency at which accessing the data subsequent to 

an update does not guarantee that the most up-to-date version will be displayed. Certain conditions 

need to be met before the up-to-date data can be returned (Pokorny, 2013; Vogels, 2009). Eventual 

consistency is closely related to weak consistency. Eventual consistency means that the current data 

will become the most up-to-date data if no new updates are made to the dataset (Lourenço et al., 

2015b; Vogels, 2009). The eventual consistency model has several variations, such as causal, read-

your-writes, session, monotonic read, and monotonic write consistency, that can be used depending 

on the use case requirements (Vogels, 2009). The use case influences the level of consistency 

required to provide a specific service. An advantage of having weak consistency is that availability 

and scalability levels increase within the system (Brewer, 2012).  

According to the ACID model, relational databases support full consistency most of the time 

(Pokorny, 2013). Strong consistency can affect database performance, as the data needs to be kept 

up to date constantly. Complex application logic is employed to detect and resolve any 

inconsistencies to constantly provide up-to-date information. However, the complex logic affects the 

database performance, as more time needs to be spent on consistency (Pokorny, 2013). If semi- or 

unstructured data is stored in a relational database, the performance will degrade.  
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The CAP theorem allows NoSQL databases to employ either strong or eventual consistency, 

depending on the grouping of CAP properties (Brewer, 2000, 2012). According to the CAP theorem, 

NoSQL databases can provide high performance and strong consistency (Han et al., 2011). The 

groupings of CAP properties influence the abilities of the database system. The possible grouping of 

properties for consistency are CP and AC (Brewer, 2000, 2012). These groupings mean that the 

NoSQL databases have flexible data models that can accommodate different needs. Relational 

databases provide full ACID support and focus on storing structured data. Storing semi- and 

unstructured data in a relational database can lead to much slower performance, as time is wasted on 

transactions.  

Depending on the use case, there may or may not be a need for strong consistency. If the use case 

works with semi- or unstructured data, non-relational databases should be considered. High 

consistency is a requirement when working with transactional data, such as banking data. The data 

must always be up to date. However, high consistency may not be a requirement when working with 

decision-making data. An example of decision-making data is network monitoring data such as 

NetFlow data. NetFlow is an instrument used in the Cisco IOS software to monitor and characterise 

network operation (Cisco, 2012). NetFlow captures data between two hosts for a period of time. A 

set of old NetFlow data can be used to base decisions on, because the data does not have to be updated 

anymore. A set of NetFlow data for a past time period can be used to make decisions regarding the 

network, therefore it does not have to be updated.  

5.3.2 Availability 

Availability refers to the percentage of time a system operates correctly and is deemed as running 

(Domaschka, Hauser & Erb, 2014; Microsoft, 2005; Orend, 2010). Availability can also mean that 

continuous operation occurs even if a fault is present (Chen et al., 2014; Strauch et al., 2011). In other 

words, availability refers to the uninterrupted operation of the service (Gilbert & Lynch, 2012; Han 

et al., 2011). Availability is a guarantee that clients will receive at least one copy of the data even if 

nodes are down (Moniruzzaman & Hossain, 2013; Pokorny, 2013). An example of availability is a 

server that has a 95% uptime, meaning 5% of the total running time the server was offline. However, 

availability does not reflect the frequency of the interruptions that occurred during the 5% downtime.  

NoSQL database systems can provide availability more easily than SQL database systems, because 

NoSQL favours availability over consistency (Lourenço, Abramova, Vieira, Cabral & Bernardino, 

2015a). There is a trade-off between the consistency and availability properties of the CAP theorem. 

If high availability is present in a system, it will have lower levels of consistency. Some NoSQL 

products allow the trade-off to be managed by adjusting the levels of consistency and availability. 
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An example of a database that allows the management of the tradeoffs is Dynamo (DeCandia et al., 

2007).  

Nelubin and Engber (2013) conducted a study that tested NoSQL products and their failover 

characteristics. The database technologies tested were Aerospike, Cassandra, Couchbase, and 

MongoDB. The results of the study showed that Aerospike and Cassandra had the shortest downtime, 

while MongoDB had the least favourable downtime (Nelubin & Engber, 2013). Therefore, different 

NoSQL technologies provide varying levels of availability to solve different problems.  

High availability is a requirement for systems that aim to spend a high percentage of time operating 

correctly. For example, an online instant messaging service requires the database system to be 

available at all times to ensure all messaging operations occur. However, high availability may not 

be a requirement in instances where the database will not lose value if the system goes down.  

5.3.3 Partitioning 

Partition tolerance refers to a system’s ability to continue functioning even if some network partitions 

are unavailable (Pokorny, 2013; Strauch et al., 2011). It is the ability of a database system to cope 

with the addition or removal of nodes (Brewer, 2000, 2012; Moniruzzaman & Hossain, 2013) and 

must be considered in situations where partitioning is present. If the volume of data exceeds the 

capacity of a database, partitioning the data must be considered (Domaschka et al., 2014; Strauch et 

al., 2011).  

A partition tolerant database system will forward read and write requests to available nodes instead 

of offline nodes (Gilbert & Lynch, 2012; Han et al., 2011). Once an offline node comes online, the 

node will receive its requests that were intended for it (Pokorny, 2013). The database system must 

ensure that the write operations finish only if the nodes have replicated their stored data onto other 

nodes.  

Partitioning the database across other clusters is a solution to capacity and performance problems 

(Moniruzzaman & Hossain, 2013). Relational databases scale vertically to address these problems. 

Scaling vertically refers to upgrading hardware (Hecht & Jablonski, 2011). However, upgrading the 

hardware of a server can be expensive and does not result in a linear increase of performance within 

relational databases.  

NoSQL databases scale horizontally to overcome capacity and performance limitations. Scaling 

horizontally means employing multiple machines to exponentially increase the capacity and 

performance of the database system (Hecht & Jablonski, 2011). NoSQL families differ in the way 

they partition data across multiple machines (Hecht & Jablonski, 2011). Some of the NoSQL families 
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have a type of key-oriented data model (Hecht & Jablonski, 2011) where the key is used to store, 

identify and sort data (Abramova, Bernardino & Furtado, 2014). When partitioning data within a 

NoSQL system, two key-based strategies are employed to distribute data sets.  

The first partitioning strategy is range-based partitioning, which entails distributing data sets 

according to the range of their keys (Hecht & Jablonski, 2011). Splitting a key set into blocks allows 

a routing server to assign these blocks to various nodes in the cluster (Chen et al., 2014). Each node 

handles the performance and storage of its assigned block of keys (Sharma & Dave, 2012). Queries 

searching for a specific key are first sent to the routing server and then assigned to the appropriate 

node to allow efficient handling of queries (Hecht & Jablonski, 2011). Therefore, an advantage of 

this method is that the routing server handles the partition block allocations and load balancing (Chen 

et al., 2014). However, a disadvantage is that the availability of the entire cluster is dependent on the 

single routing server (Hecht & Jablonski, 2011). This means that a single point of failure exists. To 

counter this disadvantage, the routing server is often replicated to other machines.  

The second partitioning strategy is consistent hashing, which allows for higher availability (Hecht & 

Jablonski, 2011; Karger et al., 1999). This strategy employs a shared nothing architecture with no 

single point of failure. A shared nothing architecture refers to a distributed-computing architecture 

where each node in the cluster is independent from other nodes (Stonebraker, 1986). Therefore, none 

of the nodes share resources such as memory and storage capacity (Stonebraker, 1986) Hash 

functions distribute the keys randomly and allow for quick calculation of a key's address within the 

cluster (Hecht & Jablonski, 2011). Consistent hashing does not require a load balancer as range-

based partitioning does. However, the addition or removal of nodes may have a negative impact on 

the performance of the system. The performance may be negatively influenced, because the keys are 

randomly distributed throughout the cluster and the addresses of the keys need to be re-calculated 

with the addition or removal of nodes (Hecht & Jablonski, 2011).  

A highly partition tolerant system will continue to function without being affected by the addition or 

removal of nodes. High partition tolerance is required in situations that need a high fault tolerance, 

such as LinkedIn accounts. The users need to be able to access their LinkedIn accounts to make be 

in contact at all times and not miss opportunities. However, low partition tolerance can be utilised in 

situations where no data needs to be partitioned. If there are no other nodes in the server, partition 

tolerance will not be a critical requirement.  

The CAP criteria have now been thouroughly investigated. The following sections will discuss 

additional criteria that represent some other features and aspects of the NoSQL families. They have 

been included to enable a more holistic comparison between the families.  
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5.3.4 Read and write performance 

Read and write performance refers to the performance output of a database and the time it takes to 

complete a function. The read and write requests are sent to the database to complete a function or a 

request from a client. The client expects that the database to respond quickly without any noticeable 

delay (Hecht & Jablonski, 2011).  

NoSQL databases may be the solution to performance demands when storing and working with semi- 

and unstructured data. NoSQL database performance can be optimised for both reads and writes 

(Lourenço et al., 2015a). The read/write optimisation depends on the tools used for the retrieval, 

storage, and organisation of data. Write optimisation means that a higher level of performance is 

experienced with write functions than with read functions. However, several NoSQL databases are 

in-memory stores meaning they can be optimised for read or write performance (Lourenço et al., 

2015a). A database’s performance may differ considerably depending on its optimisation. Some 

cases may require more reading performance than writing performance or vice versa. Therefore, 

within the model, reading and writing performance are included as two separate criteria.  

5.3.5 Scalability 

Scalability refers to a system's ability to deal with increasing workloads (Orend, 2010). Scalability 

of a database represents the performance change that occurs with the addition or removal of nodes. 

The addition of improved hardware or nodes impacts the performance and capacity levels of a 

database system (Kuhlenkamp et al., 2014). In a scalable system, the performance and capacity 

increase is proportional to the amount of hardware added (Agrawal, El Abbadi, Das & Elmore, 2011). 

There are two methods according to which systems can be scaled when hardware resources are added.  

The first method is to scale vertically or follow the scale-up approach. To scale up means to add 

resources to a single node inside a system (Agrawal et al., 2011; Kuhlenkamp et al., 2014). Adding 

improved processors to a single server and increasing the storage capacity of a single server are 

examples of scaling vertically (Agrawal et al., 2011). Scaling vertically improves the performance 

of a single node.  

The second method is to scale horizontally or follow the scale-out approach (Microsoft, 2005; 

Moniruzzaman & Hossain, 2013). Adding more nodes to the system leads to horizontal scaling. The 

performance and capacity of the system scale linearly with the number of servers (Pokorny, 2013). 

Thus, the addition of new servers to the system leads to an increase in capacity and performance 

proportional to the number of servers.  
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Relational and non-relational databases scale their performance and storage capacities differently. 

Relational database management systems use a scale-up method and scale vertically (Microsoft, 

2005; Padhy et al., 2011). The scale-up method entails upgrading the performance and capacity of 

the server through hardware upgrades. Upgrading the performance and capacity of the server 

increases the performance of the relational database system (Naheman & Wei, 2013). Therefore, one 

of the most popular methods of scaling a relational database is running the database on a more 

powerful server (Leavitt, 2010; Padhy et al., 2011).   

The greatest drawback to scaling up is the financial burden that must be carried in exchange for 

increased performance. Scaling up does not guarantee that the increase in performance and capacity 

will be proportional to the amount of hardware employed (Agrawal et al., 2011). The scale-up method 

has limitations. The data must be distributed across multiple servers and relational databases may not 

function well with data partitioning (Leavitt, 2010). Thus, the performance gain may not be as great, 

while the cost of the scale-up method will increase by a large margin.  

Non-relational (NoSQL) databases can improve performance and capacity levels through horizontal 

scaling (Moniruzzaman & Hossain, 2013). Scaling horizontally means evenly distributing the 

workload among the nodes in a cluster. This scaling method provides performance levels that are 

proportional to the number of servers employed (Naheman & Wei, 2013). Horizontal scaling can 

assist in providing superior performance and adequate levels of storage with which to address the 

requirements of unstructured data. Consequently, scalability may be a crucial requirement when 

dealing with large volumes of unstructured and heterogeneous data (Lourenço et al., 2015a).  

There exist drawbacks to scaling out. Horizontal scaling also has performance drawbacks since the 

type of deployment will impact the performance (Audette, 2011). For example, a scaled-up website 

will provide better performance than the scaled-out website when accessing a local database rather 

than over the internet. The scaled-out system will provide better capacity while having a higher 

latency when reacting to requests (Audette, 2011). Additionally, scaling out allows the addition of 

more nodes to the cluster to increase the processing and storage capacity. The addition can lead to 

higher initial and operational costs when compared to scaling up as there are more servers running 

(Audette, 2011). Employing horizontal scaling can lead to much higher financial costs if powerful 

servers are used within the cluster. Therefore, cost can be a major drawback to horizontal scaling 

too.  

A highly scalable database can increase its performance and capacity levels to accommodate an 

increase in workload. The particular instance determines which method of scalability is employed. 

There are two methods (vertical and horizontal scaling) that can be used to achieve high scalability 
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within databases. If data needs to be scaled to various other nodes in the cluster, horizontal scaling 

is best the approach to use. NoSQL databases commonly employ horizontal scaling to achieve the 

best performance and capacity levels possible. If the data does not need to be scaled to other nodes, 

vertical scaling may be the best approach to use. Relational databases commonly employ the vertical 

scaling method.  

5.3.6 Conceptual data structure 

A substantial amount of data is created daily. Businesses run constantly, and individuals have free 

reign over content creation (Naheman & Wei, 2013). The data takes several forms, for example text, 

images, audio, and video (Gandomi & Haider, 2015). There are three types of data, namely 

structured, semi-structured, and unstructured data. Structured data refers to data that is organised 

using a pre-defined structure (Gandomi & Haider, 2015). There are many restrictions placed on the 

structure of the data. Semi-structured data refers to data that is similar to structured data but has fewer 

restrictions placed on its structure (Chen et al., 2014; Gandomi & Haider, 2015). The data structure 

can change to a certain degree. Unstructured data refers to data with no pre-defined structure (Chen 

et al., 2014). This type of data does not conform to any of the restrictions placed on it by the data 

model (Gandomi & Haider, 2015). Thus, it is schema-free data. These three data types must be stored 

in appropriate databases.  

There are two main types of database systems, namely relational and non-relational database systems. 

Relational database systems store data in a structured format (Moniruzzaman & Hossain, 2013). 

Unstructured or semi-structured data can be stored in a relational database only if it has been 

transformed into a structured format. Storing unstructured or semi-structured data in a relational 

database may cause performance penalties (Abadi, 2009). Non-relational database systems can store 

semi-structured and unstructured data without transforming the data (Chen et al., 2014). Therefore, 

no performance penalties will occur. 

There is little to no restriction placed on the non-relational data model (Chen et al., 2014). NoSQL 

database systems are non-relational. As mentioned in Chapter 3, there are four NoSQL families and 

each family represents a specific data model that can store unstructured and semi-structured data. 

However, each data model is also equipped to store specific types of data.  

Key-value stores are well suited for quick retrieval of values, such as user profile data or online 

shopping cart data (Moniruzzaman & Hossain, 2013). Graph stores are well suited for data that is 

heavily linked and relationship heavy (Moniruzzaman & Hossain, 2013). An example of such data 

is routing data that can be used for online maps as well as by location-based services and 

recommendation services (Hwang et al., 2015). Document-based stores are well suited for large 
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volumes of semi- or unstructured data (Moniruzzaman & Hossain, 2013). Examples of such data can 

be found in content management systems and applications for e-commerce. Column-family stores 

are well suited for heavily distributed data storage and large-scale data processing (Moniruzzaman 

& Hossain, 2013). Examples of data stored in column-family stores include online transaction data, 

user profile data, and content management system data (Hwang et al., 2015). All the data types 

mentioned above are semi-structured or unstructured in nature. These types of data have elements 

that can change structure and need to be stored in databases that can handle this.  

Thus, data structure influences which NoSQL database system is chosen. Certain data types must be 

stored within a specific database system that employs a specific data model. If the data structure is 

the overriding factor in the decision, the criteria can be used to decide between products of the same 

conceptual data model.  

5.3.7 Reliability 

As stated above, availability represents the percentage of time a system is up and running. However, 

there is no indication of the frequency of incidents occurring which is where reliability is found. 

Reliability is an indication of how often an incident occurs (Domaschka et al., 2014). Therefore, high 

reliability is an indication of the database system’s ability to operate without frequent failures 

occurring (Domaschka et al., 2014). The reliability criterion can influence the operation time of a 

database. If the database is highly reliable, the database will perform its function with a low 

probability of frequent failures occurring. Storing sensitive business data would require a highly 

reliable database system. If a database experiences frequent faults, it may stop functioning, which 

can result in value being lost. Thus, the level of reliability represents the level of tolerance against 

failures. A system is more reliable if it is fault tolerant (Microsoft, 2005). Therefore, fault tolerance 

refers to the ability of a database system to continue operating if a part of the system fails (Microsoft, 

2005).  

Relational databases may currently be the dominating force in databases due to their ACID properties 

(Lourenço et al., 2015a). ACID properties indicate that the reliability level of a relational database is 

high (Leavitt, 2010). NoSQL databases do not provide the degree of reliability that relational 

databases do, as NoSQL is not ACID compliant. If an IT practitioner wants NoSQL to be ACID 

compliant, additional programming is needed.  

However, NoSQL databases can also have high levels of reliability. If NoSQL databases aim to be 

highly reliable, then two questions regarding their operation need to be answered (Domaschka et al., 

2014). The first question is: How does the database resolve concurrent writes to the same item? 

(Domaschka et al., 2014; Lourenço et al., 2015b). The second question is: What level of consistency 
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is observed by clients? (Domaschka et al., 2014; Lourenço et al., 2015b). These questions represent 

how reliability is provided within a NoSQL database system. Consequently, the answers to these 

questions represent the level of reliability within a NoSQL database system. Therefore, IT 

practitioners should investigate NoSQL technologies that can answer both these questions well in 

order to find highly reliable NoSQL databases (Lourenço et al., 2015b). 

A highly reliable database allows continuous functioning without failures for an extended period of 

time. Online shopping websites requires highly reliable databases because transactional data needs 

to be committed immediately and requires the database system to be functioning properly. Decision-

making analyses of data may not require highly reliable databases because failures would not affect 

their value. Therefore, the level of reliability needed depends on the specific instance.  

5.3.8 Learning curve 

The learning curve refers to the time and effort needed to set up a database technology. This time 

spans from installation to the point where information has been captured. The learning curve can also 

be a good indication of the complexity of a specific database. If the learning curve is high, certain 

factors need to be considered. Firstly, there will be many prerequisites to attend to before setting up. 

Secondly, setting up the database will be complicated and time-consuming. Lastly, it will take time 

to learn the database commands and become fluent in its operation.  

The above-mentioned factors are some of the reasons the learning curve of a database is important. 

The time needed to set up a database may indicate its level of complexity. Therefore, setting up a 

database should be done as quickly as possible in a way that will allow the database to remain stable. 

The database is the storage medium for the data and should be able to start capturing and storing data 

as quickly as possible. If it takes a long time to set up the database to start capturing data, then it is 

an indication of a large learning curve. 

As stated above, the learning curve of a database is a good indication of the complexity level of 

setting up and using the database. This criterion is hard to measure, as all use cases are not the same. 

Currently, most database guides, research papers, and database books available are about relational 

databases. Relational databases are still the dominant technology in the data storage area, which is 

why they are focused on in study materials. However, since unstructured data is also on the rise, 

more research on other technologies should be done.  

Non-relational (NoSQL) databases are currently very prevalent. Therefore, various books and guides 

about them are available. These books and guides can teach individuals about NoSQL in general as 

well as how to set up specific NoSQL products. The amount of research into non-relational data 
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storage technologies is on the rise. Numerous websites have product documentation to assist 

individuals in setting up and using NoSQL databases.  

The learning curve may have an impact on the selection of database systems. The lower the learning 

curve, the easier it will be to employ and use a database system. The higher the learning curve, the 

more complex and time-consuming it will be to employ a database system. The learning curve may 

be an indication of the potential value to be gained from a database system. A high learning curve 

may indicate the level of functioning the database system can achieve. Therefore, depending on the 

needs of the instance, either a high or a low learning curve can be selected.  

5.4 Conclusion 

In previous chapters, it was established that a fixed set of criteria is needed to uniformly compare the 

NoSQL technologies with one another. This chapter set out to identify and explain the criteria that 

will be used to compare the NoSQL families. The identified criteria are consistency, availability, 

partitioning, read and write performance, scalability, conceptual data structure, reliability, and 

learning curve.  

The goal of the fixed set of criteria is to uniformly compare the families to assist IT practitioners in 

deciding between them. The above criteria represent certain capabilities and aspects of NoSQL 

families that IT practitioners must consider. Table 5.2 lists the criteria and the research studies that 

informed their adoption.  

This chapter completed Step 2 (identify the comparison criteria) of the 6-step process model that is 

being used to adapt the decision model to the context of NoSQL databases. The following chapter 

performs Step 3 (grade according to the criteria), Step 4 (weight the criteria), and Step 5 (score the 

options) of the 6-step process model to further customise the decision model to be used to make 

choices regarding NoSQL databases.  
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CHAPTER 6: DECISION-MAKING PROCESS 

Chapter 4 proposed a framework to assist with decisions regarding technologies. The framework 

presented a weighted decision-making model aimed at technology-based decisions in general. 

However, a 6-step process model can be used by IT practitioners to adapt the weighted decision 

model for use in the context of a specific technology.  

The research problem deals with decisions regarding NoSQL databases. Step 1, investigating the 

technology, has been completed as part of the background study and identified NoSQL as the 

technological context. Chapter 5 was dedicated to developing a set of criteria that can be used to 

uniformly compare NoSQL families.  

Chapter 6 provides a more detailed account of Steps 3 to 5 of the 6-step process model. The focus of 

Chapter 6 is indicated in Figure 6.1 by the shaded area. The following sections consider each of the 

steps in turn. 

6.1 Grade according to the criteria (Step 3) 

In Step 2, a fixed set of criteria that will be used to uniformly compare the technologies was 

identified. The uniform comparison aims to provide the IT practitioner with a holistic view of the 

options being compared. Such a holistic view assists with better decision-making. A specific 

approach is followed when grading the criteria to ensure appropriate grades are assigned and 

justified.  

Step 3 is to assign grades to the criteria in the context of the specific technological options being 

investigated. Investigating each criterion will show the unique strengths and weaknesses of each 

technology option. Therefore, the assigned grade must represent the performance level of each 

Figure 6.1: Focus of this chapter. 
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technology option. The result of completing this step is having an appropriate grade assigned to each 

criterion.  

The model proposes that grades ranging from 0 to 10 be assigned. Each grade has a different meaning 

to indicate a specific level of performance. Table 6.1 contains the suggested grades with their 

associated meanings.  

Table 6.1: Legend for grades assigned to the fixed set of criteria. 

The grades can ensure a holistic view of the strengths and weaknesses of each technology. A 

combination of performance tests, document analyses, and other data collection methods leads to a 

grade out of 10. However, this study will rely on existing literature to assign grades when the 

framework is instantiated in Chapters 7 and 8. The next important aspect of the model to be discussed 

is the weight values.  

6.2 Weight the criteria (Step 4) 

Use cases represent real-world scenarios that IT practitioners work with. They have different 

requirements that IT practitioners must accommodate. Therefore, IT practitioners must be able to 

enter such information into the framework.  

In Step 4, an IT practitioner enters weights that represent the importance level of each criterion as 

derived from a real-world use case. Each use case has unique requirements that must be represented 

in the decision-making model.  

The criteria have varying levels of importance in a use case. If one criterion is more important than 

another, the weights must indicate this. The weights will influence the calculation of the final scores 

and thus also influence the recommendation. The advantage of assigning weights is that the relative 

importance of each criterion is considered and represented in the model.  

Grade Meaning of grade 

0 Criterion does not exist within the current technology. 
1 Weakest performance. Many other more viable solutions available. 
2 Weaker performance. May need another solution to increase performance.  
3 Weak performance. May not be the best solution for this criterion. 
4 Less than average performance. Can be improved upon. 
5 Average performance. Much room for improvement. 
6 Above average performance. Many improvements available. 
7 Good performance. Alternative improvements available. 
8 Very good performance. Few improvements available. 
9 Great performance. Little room for improvement. 

10 Most up-to-date/best solution is implemented. Cannot be improved upon, as it is currently the 
best solution available. 
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6.2.1 The importance of weights 

Table 6.2 provides an example of how the criteria weights for two use cases could differ. The values 

in this example were not empirically determined and are purely illustrative in nature.  

The example illustrates that a use case based on SANReN (Use Case 1) and a use case based on an 

online shopping cart (Use Case 2) would assign different weights to the same criteria. Use Case 1 is 

a business related. SANReN (South African National Research Network) is capturing semi-

structured Netflow data for future data analytics. This use case places focus on data analytics, writing 

and storing enormous amounts of semi-structured data, high scalability, high partition tolerance, 

eventual consistency, and some availability of the data. These properties are essential to the success 

of the use case.  

Use Case 2 is an online shopping cart for an online retail store. The online retail store can serve tens 

of thousands of customers each day from thousands of servers, and each customer has their own cart. 

The goal is to provide customers with uninterrupted, highly available, scalable, reliable, and 

consistent access to the website while storing large amounts of semi- and unstructured data.  

Table 6.2: Illustration of different weights based on use cases. 

Criteria Use Case 1 Use Case 2 

Consistency 5 9 

Availability 4 7 

Partitioning 8 3 

Read performance 3 5 

Write performance 8 4 

Scalability 7 7 

Conceptual data structure 7 5 

Reliability 6 8 

Learning curve 2 2 

The two use cases have different goals. Where Use Case 1 focuses on data analytics to provide value, 

Use Case 2 aims to provide uninterrupted access to a service. Therefore, the use cases’ requirements 

also differ. This is why the weights of the criteria are different. The use case requirements determine 

the weights of the criteria. For Use Case 1, the read/write performance, partition tolerance, and 

scalability criteria are more important than consistency and availability, as the use case only requires 

eventual consistency and some availability. Therefore, higher weights will be assigned to the 

scalability, partition tolerance, and write performance criteria and lower weighting will be assigned 

to the consistency, availability, and conceptual data structure criteria.  

In comparison, Use Case 2 requires high consistency, high availability, high scalability, high 

reliability, and good performance to provide clients with uninterrupted access to their data and 
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shopping carts. For Use Case 2, higher weights will be assigned to the consistency, availability, 

scalability, reliability, and conceptual data structure criteria. The requirements of the use case 

determine the weights, as some criteria are more crucial to the success of a project than others. The 

weights for the same criteria for these use cases will not be the same because the one use case requires 

these criteria more than the other.  

In a business environment, IT practitioners should have adequate knowledge of the requirements of 

their use cases. The decision-maker compares the requirements of the use case to the criteria to 

identify the most important criteria for the success of the use case. The more important a criterion is 

to the success of the use case, the higher a weighting is assigned to that criterion. Of the criteria, the 

most important should be weighted the highest and the least important the lowest. 

The following section deals with different techniques that can be used to determine the weights of 

the criteria.  

6.2.2 Techniques used to determine the weights 

There are several methods IT practitioners can use to obtain appropriate weight values to input into 

the model. Some of these methods are interviews, focus groups, and questionnaires. These methods 

will be discussed individually in the following section. How each method can be used by IT 

practitioners to enter appropriate weight values into the model will also be discussed.  

Interviews refer to verbal interactions with other individuals (Kvale, 2008). Questions are posed and 

need to be answered by the respondents to provide information on topics. The goal of an interview 

is to construct knowledge from the interaction between the interviewer and the interviewee (Kvale, 

2008). The interview may allow the interviewer to gain insight into the problem from the 

interviewee’s perspective and thereby gain in-depth information regarding the problem. There are 

three different categories of interviews. The three categories are structured, unstructured, and semi-

structured interviews (Qu & Dumay, 2011).  

In the context of this study, structured interviews can be used to gather the weights of the criteria. 

The interviews must be conducted with experts that have extensive knowledge regarding the specific 

use case and its requirements. Before an interview can start, background information must be 

provided to the interviewee. The purpose of the interview must be disclosed as an investigation into 

the importance of the criteria in a specific context. The IT practitioner will ask the experts technical 

questions regarding the criteria and their importance to a specific use case. During an interview, 

special attention must be paid to the observed behaviour of the expert. The expert may indicate 

excitement or concern when asked a technical question. This can be an indication of the importance 

level of the criterion in question. The responses of the experts can be compared to indicate agreement 
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or disagreement, which can influence the weighting assigned to each of the criteria for a specific use 

case. The expert’s justification of an answer may also be an indication of the appropriate weight 

value to be assigned to a criterion.  

Interviews may be able to provide an indication of which criteria are the most important by obtaining 

the opinions of numerous experts. The experts’ answers and behavioural reactions to the questions 

can be used to derive weight values that will indicate which criteria are more important and which 

are less important. 

Focus groups refer to groups of individuals discussing a topic (Morgan, 1996; Stewart & 

Shamdasani, 2014). Focus groups (Morgan, 1996; Stewart & Shamdasani, 2014, pp. 7-8) are versatile 

because groups of individuals can discuss any topic and share ideas regarding any problem (Morgan, 

1996; Stewart & Shamdasani, 2014). Interactions between individuals in such an environment may 

stimulate creative thinking regarding a topic. Focus groups are used in marketing research to address 

concerns regarding the design and service of products (Goldman & McDonald, 1987). In marketing 

research, the focus group can be used to obtain clients’ perceptions of pricing, brands, and retail 

environments as well as their level of satisfaction with a product (Stewart & Shamdasani, 2014, pp. 

7-8). Focus groups are user-friendly and can be analysed quickly (Stewart & Shamdasani, 2014). A 

focus group will lead to individuals supporting, contradicting, and extending the opinions of others 

and thereby provide new insights into a topic or problem (Stewart & Shamdasani, 2014, pp. 7-8). 

Without employing a focus group, such information might not be gained.  

In the context of this study, a focus group can be used to derive the weight values of the criteria. A 

group of experts with knowledge regarding the specific use case must be gathered to discuss the 

importance of each criterion. The goal of the focus group is to have the experts interact with one 

another and determine the importance of each of the criteria. The experts will be able to express their 

opinions regarding the most important and least important criteria for the specific use case. The 

opinions of the experts may be the same. If so, the appropriate weight values can be derived easily. 

However, their opinions may also differ. If so, disagreements can be further discussed until a 

conclusion regarding the importance of the criteria is reached. The behavioural reactions of the 

experts can indicate agreement or disagreement. This can also be an indication of the importance of 

the criteria. Therefore, appropriate weight values can be assigned to the criteria by using a discussion 

group. 

The value of a focus group lies in its ability to enable the IT practitioner to assign an agreed-on 

weight value to represent the importance of each criterion. The focus group enables in-depth 

discussions about the importance of the criteria to take place between experts. Therefore, the weight 
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values are derived from more than one opinion. If there is contention between the experts, in-depth 

discussions can result in the final weight value to be assigned. The opinions and reactions of the 

experts are assessable and can indicate the appropriate weight value for each criterion. Therefore, the 

IT practitioner can assign appropriate weight values to the criteria for a specific use case by using 

focus groups. 

Questionnaires refer to questions posed to an individual to gain insight and retrieve unknown 

information regarding a topic (Gillham, 2011; Olivier, 2009). A questionnaire can have open-ended 

and close-ended questions (Gillham, 2011). Two types of instruments that can be used to ask close-

ended questions are Likert scales and LPC scales (Olivier, 2009, p. 83). Likert scales can be used to 

measure the degree to which a statement applies to the respondent. When using a Likert scale, there 

must be a neutral point in the values. An LPC scale is comparable to a Likert scale. However, the 

respondent must provide a numerical value to indicate their preference to one of two alternatives. 

Open-ended questions are not feasible for the purpose of the questionnaire in this study. In the context 

of this study, a close-ended questionnaire with LPC-like scales can enable experts to provide the 

appropriate weight value for each criterion. The LPC-like scales consist of the values 1 to 10. The 

value 1 represents the lowest weight value, and the value 10 represents the highest weight value that 

can be assigned. A total of 50 marks can be distributed between the criteria to indicate their various 

importance levels for the use case. Therefore, all criteria cannot have the same level of importance. 

The limit forces the experts to apply their minds to indicate the most appropriate importance level 

for each of the criteria. Thus, the limit may increase the quality of the recommendation in Step 6 of 

the framework.  

What gives value to the questionnaire is that the experts are able to assign the weight values 

themselves. Therefore, the most appropriate weight values can be assigned to each criterion for the 

specific use case based on the experts’ opinions. The responses of the experts can be compared with 

one another to indicate agreement and disagreement regarding the importance of each criterion. 

Outliers can be ignored to ensure a majority view. Thus, an appropriate weight value can be assigned 

to each criterion based on the majority opinion of numerous experts. 

6.3 Score the options (Step 5) 

The decision model compares different technologies with one another by grading each technology 

using a fixed set of criteria. The fixed set of criteria will ensure that a uniform comparison of the 

technologies can be made.  

Table 6.3 depicts the decision model. The first column represents the set of n criteria (C1 to Cn). The 

criteria represent the abilities of the technologies. Each criterion will have a weight assigned to it 
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based on the needs of the use case. The weights of the criteria are presented in the second column of 

Table 6.3 by W1 to Wn. The different technologies (F1 to Fm) will each be graded according to the 

criteria. Technology k (Fk) for criterion i (Ci) is assigned a grade (Rik). The final score of a technology 

Fk (Score(Fk)) is equal to the sum of the weighted grades of all the criteria for that specific technology 

Fk.   

The goal of the decision model is to assist an IT practitioner in making an informed decision. The 

decision model does so by comparing the criteria. The grades reflect the strengths and weaknesses 

of each technology. A justification of each grade shows the reasoning behind assigning that grade to 

a specific criterion. Weights assigned to the criteria recognise that not all criteria are equal, but that 

they must be considered in the context of a specific use case.  

The decision model does not remove uncertainty completely. However, it aims to remove a degree 

of uncertainty and give direction to the decision process while combatting technology decision-

making biases.  

Table 6.3: The weighted decision model. 

 

 

 

𝑆𝑐𝑜𝑟𝑒(𝐹𝑘) =  ∑ 𝑊𝑖. 𝑅𝑖𝑘

𝑛

𝑖=1

 

6.4 Conclusion 

This chapter discussed Steps 3, 4, and 5 of the 6-step process proposed in the framework. These steps 

were grading the options according to the criteria (Step 3), weighting the criteria (Step 4), and scoring 

the options (Step 5). Each of these steps plays a critical role in the framework, which is used to make 

a recommendation.  

Firstly, the grading of criteria aims to reflect the unique strengths and weaknesses of the NoSQL 

technologies. Secondly, the weights assigned to the criteria represent the requirements of the use 

case. These requirements are obtained through a questionnaire that IT practitioners must complete. 

The fixed set of criteria enables a uniform comparison of the technologies to be made. Lastly, the 

final scoring uses a method that combines the grades and weights of the criteria to derive a final score 

for each technology. The final score is used to make a recommendation regarding which technology 

to choose.  

     

Criteria Weight F1 F2 … Fk … Fm 

C1 W1 R11 R12 … R1k … R1m 

…        

Ci Wi Ri1 Ri2 … Rik … Rim 

…        

Cn Wn Rn1 Rn2 … Rnk … Rnm 
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The last part of March and Smith’s (1995) design science framework is instantiation. During 

instantiation, the model is placed within a specific instance to demonstrate its utility and feasibility. 

The next chapter discusses the instantiation of the model to demonstrate its use within the context of 

a specific use case. 
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CHAPTER 7: GRADING THE NOSQL FAMILIES 

Chapters 4 to 6 proposed a framework that can assist IT practitioners in making better decisions 

regarding technology. The framework included a 6-step process that can assist IT practitioners in 

adapting the framework to specific technologies. Chapters 7 and 8 will demonstrate the feasibility 

and utility of the proposed framework. 

In Part B, the framework was proposed and adapted to assist with decisions regarding NoSQL 

technologies. Chapter 7 rates each of the four NoSQL families in terms of the criteria developed in 

Chapter 5. Using a fixed set of criteria ensures that a uniform comparison of the families can be 

made. Therefore, it is possible to have a holistic view of the technologies. Chapter 8 will weight the 

various criteria within the context of a specific use case concerning NetFlow data. 

This chapter starts by discussing the grading step in the context of the case study. A product 

representative of each family is identified to be graded. Thereafter, each of the four families, 

represented by their respective products, is assigned performance grades for the criteria. Each family 

is investigated and graded individually to ensure a holistic view of their unique strengths and 

weaknesses. 

7.1 Grading NoSQL families (Step 3) 

Each use case has unique requirements that must be met for the project to be a success. Some 

requirements are more important for the success of the project than others. The use case used to 

demonstrate the use of the framework is found in the NoSQL environment. To make a decision 

regarding NoSQL, the four NoSQL families need to be compared to depict their unique strengths 

and weaknesses.  

Grading takes place only once per type of comparison. In the context of this research study, grading 

will take place once in the context of NoSQL. Thereafter, the grades can be used for many use cases 

that deal with the selection of an appropriate NoSQL family. Grading can also be done once for a 

specific set of NoSQL products. Thereafter, the model can be used for many use cases that require a 

selection to be made from the same set of products. The utility of the framework is thus not limited 

to one specific use case.  

The fixed set of criteria (Chapter 5) allows the families to be uniformly compared while combatting 

certain decision-making biases. Each family has a popular database product that can be used to 

represent it (DB-Engines, n.d.; ITBusinessEdge, n.d.; Mayo, 2016). The column-family stores are 

represented by HBase. MongoDB represents the document-based stores. Neo4j represents the graph 

stores, and the key-value stores are represented by Redis. Each of these database products are well 
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researched and were created by large organisations that will ensure that the development of the 

database technologies continues (HBase, 2007; MongoDB, 2008; Neo4j, 2017; Redis, 2017). They 

are well-developed, popular databases that are used in many organisations and have proven to be 

good benchmarks throughout the NoSQL environment (DB-Engines, n.d.; ITBusinessEdge, n.d.; 

Mayo, 2016). As a result, the four most popular database products are used to represent each of the 

NoSQL families. Table 7.1 gives a summary of the databases that represent the various families. 

Table 7.1 Summary of choices. 
Family Represented by 

Column-family stores HBase 
Document-based stores MongoDB 
Graph stores Neo4j 
Key-value stores Redis 

The following sections aim to explain each of the NoSQL families and assign grades to the criteria. 

A grade out of 10 will be assigned to each criterion for each of the NoSQL families. To motivate 

why these grades were assigned, the investigations into the families will be discussed. Column-

family stores are discussed first. This is followed by discussions on the investigations into document-

based stores and graph stores. Key-value stores are the last to be discussed.  

7.2 Column-family stores (HBase) 

HBase is an open source NoSQL database implementation based on Google’s Bigtable data store 

(Cattell, 2011). HBase employs the column-family data model, which stores data in rows and 

columns (Naheman & Wei, 2013). A row, identified by a unique row key, can consist of multiple 

columns (George, 2011). Rows and columns belong to a specific table and many tables can exist. 

Each column contains a different version of the data and a different value is assigned to each cell 

inside the column (George, 2011). For example, a column that contains the home address of a user 

is created. The user later changes home address, and a new entry is made for that user. The old data 

is kept, and the new data is entered and linked to the same user. HBase adds a timestamp to keep 

track of these different versions of data. Each column value and timestamp combination is referred 

to as a cell (George, 2011). Figure 7.1 is a graphical representation of the data model in HBase. 

Figure 7.1: Representation of how HBase’s data model works (George, 2011). 
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Column families consist of groups of columns that are stored in the same file, known as an HFile, 

which is defined when the table is created (Dimiduk, Khurana, Ryan & Stack, 2013). There is no 

limit on the number of columns in a family or on the length of a stored value (George, 2011). The 

column-family data model stores data as a multidimensional sorted map and is accessed through a 

row key, column key, and a timestamp (George, 2011). To retrieve data, a client requires the family 

name, table name, row key, column key, and timestamp (Du Toit, 2016).  

The investigation of the criteria for each NoSQL family starts with the consistency criterion.  

7.2.1 Consistency  

A write operation from a client to a database will insert or update records in the dataset. If another 

client reads the database contents and it is displayed the updated record immediately, then the 

consistency of the database is high (Brewer, 2000, 2012).  

A study done by Hecht and Jablonski (2011) compared the four NoSQL families by investigating 

certain capabilities of these databases. Their study indicates that HBase can provide high consistency 

(Hecht & Jablonski, 2011) and is supported by the work of Dimiduk, Khurana, Ryan and Stack 

(2013), which also indicates that HBase can provide high consistency. High consistency means that 

clients can see the most up-to-date information immediately once it is written to the database. HBase 

operates in a multi-node cluster environment instead of a single machine. Therefore, HBase employs 

data replication to provide data consistency.  

Replication refers to copying data between multiple HBase deployments. A log, known as the HLog, 

is created to keep track of the replications (George, 2011). Keeping track of the replications can 

ensure that consistency is provided with less effort. An HBase cluster can consist of several 

RegionServers with multiple regions, which refer to adjacent ranges of rows that are stored together 

(HBase, 2007). Each RegionServer can participate in the replication process to copy its data to other 

RegionServers. HBase employs Master/Slave replication to replicate the data between the different 

RegionServers (George, 2011).  

The Master/Slave replication technique enables the data to be spread across nodes in clusters. There 

are two distinct roles that are assigned to the nodes in a cluster, known as a Master role and a Slave 

role (Gu, Wang, Shen, Ji & Wang, 2015). Only one Master role can be assigned at a time, while the 

rest of the nodes are assigned Slave roles (Gu, Wang, Shen, Ji & Wang, 2015). A Master node can 

replicate its dataset to any number of Slave nodes (George, 2011). Figure 7.2 shows an example of 

the Master/Slave process. 
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HBase replication is done asynchronously, which means the data is written to the Master node and 

eventually to the Slave nodes (George, 2011). This refers to eventual consistency.  

The basis of HBase replication is the HLogs from each RegionServer. These HLogs must be stored 

in a file system, such as the Hadoop file system, to ensure that replication to Slave clusters can occur 

(George, 2011). The RegionServer reads from the oldest log file to assist with the replication process. 

Therefore, the Master node will attempt to balance the stream of replication on Slave clusters by 

relying on randomisation (George, 2011).  

Master/Slave replication is not without faults. If write operations are implemented on the Master 

node, the Slave nodes will forward the synchronise data command asynchronously to the Master 

node to update the Slave nodes’ data (Gu, Wang, Shen, Ji & Wang, 2015). Read operations 

implemented on the Master node provides high consistency. However, read operations on Slaves 

provide only eventual consistency. Master/Slave replication does not provide automatic failover. 

Therefore, if the Master goes down, an election among the Slaves must occur to select a new Master 

node (George, 2011). The elected Slave must restart to change its role, which means there may be 

downtime. Also, if the number of write requests exceeds the capacity of the server, bottlenecks in 

performance can occur (Tauro, Aravindh & Shreeharsha, 2012).  

As a result, HBase scores a grade of 7 for consistency of data. The rating of 7 justifies the use of 

Master/Slave in HBase to ensure consistency of the datasets. High consistency can be configured 

through Master/Slave in HBase to ensure data is consistent across the nodes. However, the drawback 

to this method is that when a Master node experiences a fault, a new Master node must be elected, 

and the election process may lead to downtime. Master/Slave replication can be used to provide high 

Figure 7.2: Master/Slave replication process (George, 2011). 
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consistency if implemented correctly. There are alternative options, such as sharding and the dynamo 

model, that can provide full consistency most or all the time. These options attempt to address the 

issues regarding the Master/Slave replication model for consistency of data. 

7.2.2 Availability 

Availability refers to the percentage of time that a system is operating correctly (Orend, 2010). A 

highly available database system aims to be available for client queries as long as possible before 

experiencing a fault.  

Per the CAP theorem (Brewer, 2000, 2012), the combination of attributes for HBase is CP, which 

implies that there is a focus on providing data consistency and partition tolerance, while a degree of 

availability is sacrificed (Brewer, 2000, 2012; Cai, Huang, Chen & Zheng, 2013). Availability within 

HBase also refers to the ability of the system to handle node failures within the cluster (Dimiduk et 

al., 2013).  

The HBase cluster consists of many nodes. Each node is referred to as a RegionServer. Each 

RegionServer has several regions that consist of adjacent ranges of rows stored together. Each 

RegionServer can serve multiple regions, while each region can only be served by one RegionServer 

(George, 2011). Therefore, HBase provides availability through the combination of Master/Slave 

replication and the RegionServers.  

Master/Slave replication replicates the data to different RegionServers within the HBase cluster, 

thereby assisting the system in providing availability (Dimiduk et al., 2013; George, 2011). A 

RegionServer has access to the data of other RegionServers (Dimiduk et al., 2013; George, 2011). If 

a RegionServer experiences a failure, the data it was serving must be attended to by another 

RegionServer to ensure availability of service to a client. Therefore, HBase can still be available by 

enabling other RegionServers to attend to the faulty region of data (Dimiduk et al., 2013; George, 

2011).  

A drawback to this method is that when too many RegionServers are down, performance bottlenecks 

will occur, because the current RegionServers cannot attend to all regions. Another drawback is if 

the Master server or ZooKeeper is separated from the cluster, the Slave servers cannot function on 

their own (Figure 7.3) (Dimiduk et al., 2013; George, 2011). A solution to these drawbacks is 

defensive deployment schemes that can ensure higher availability (Dimiduk et al., 2013).  

 

 



CHAPTER 7: GRADING THE NOSQL FAMILIES 

72 

 

The type and amount of failures that HBase can handle is an indication of how strong its availability 

is. Lourenço et al. (2015a) investigated the availability guarantees of HBase and other database 

systems. Their research graded the database systems according to the level of performance the 

systems can provide. HBase, received a rating of “-” for the availability performance, implying that 

it may not provide the best levels of availability. Cai, Huang, Chen and Zheng (2013) agree that this 

database loses some availability, as its focus is on data consistency and partition tolerance. As a 

result, HBase receives a grade of 5 for the availability criterion.  

A grade of 5 means that column-family stores is not be the strongest NoSQL family in terms of 

availability guarantees. However, they can be set up to provide higher availability through defensive 

deployments at the expense of other performance areas. A way to achieve higher availability is to 

configure more backup Master servers, which can mitigate the downtime of the election process.  

7.2.3 Partitioning 

Large volumes of data and a large number of read or write requests can lead to the capacity of a 

server being exceeded. Therefore, partitioning data to other servers may need to be considered. The 

data models of NoSQL databases are mostly key-oriented, meaning that partitioning is based on keys 

(Hecht & Jablonski, 2011).  

There are two strategies that can be followed when implementing partitioning. The first strategy is 

to distribute datasets by the range of their keys. This is known as range-based partitioning (Hecht & 

Jablonski, 2011). A routing server is responsible for splitting the keysets into blocks, which are 

allocated to different nodes (Hecht & Jablonski, 2011). Once the allocation of blocks is completed, 

each node is responsible for request handling and storage of its specific keys (Hecht & Jablonski, 

2011). To search for a specific key, the client should retrieve the partition table from the routing 

Figure 7.3: The HBase architecture (Gao, Nachankar & Qiu, 2011). 
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server. A strength of range-based partitioning is that it can efficiently handle range queries, as it is 

highly probable that neighbouring keys are stored on the same server (Hecht & Jablonski, 2011). 

However, a weakness of this strategy is that the availability of the entire cluster depends on the fault 

tolerance of the routing server (Cai, Huang, Chen & Zheng, 2013). 

The second strategy is consistent hashing, which provides a simpler cluster layout to counter the 

weaknesses of range-based partitioning by having no single point of failure (Hecht & Jablonski, 

2011; Karger et al., 1999; Hecht & Jablonski, 2011). Keys are distributed using hash functions. Each 

server is responsible for a hash region. Therefore, the address of a key can be calculated quickly 

(Dimiduk et al., 2013; Hecht & Jablonski, 2011). The addition or removal of nodes affects a small 

portion of the entire cluster. However, the architecture and random distribution of keys lead to 

performance drawbacks, such as more processing time being spent on the calculation of the address 

of keys. (Hecht & Jablonski, 2011). 

HBase implements range-based partitioning to partition its data and provide good performance 

(Nishimura, Das, Agrawal & El Abbadi, 2011). An increase in range query performance can occur 

if columns of the same family are stored on the same server (Hecht & Jablonski, 2011). The column-

family data model can be partitioned efficiently, meaning these databases are more than adequate for 

large datasets (Hecht & Jablonski, 2011).  

Hecht and Jablonski (2011) gave HBase a positive rating for range-based partitioning and a negative 

rating for consistent hashing. Their ratings mean that this database provides good performance with 

its range-based queries as a result of storing neighbouring keys next to one another. The database 

also hides the information that there are partitions present from the client application. Therefore, 

queries are less complex to perform (Dimiduk et al., 2013).  

Given the above information, partitioning and partition tolerance within column-family stores 

receive a grade of 7. The grade of 7 means that HBase can provide good levels of partition tolerance 

while performing well where partitioning is concerned. However, the range-based partitioning 

strategy has its drawbacks. As stated above, the range-based partitioning strategy can provide good 

range query performance. However, the availability of HBase depends on the single routing server, 

which means there is a single point of failure that could result in downtime. 

7.2.4 Read and write performance 

A part of Du Toit’s (2016) study evaluated the reading and writing capabilities of different NoSQL 

databases. The author inserted different amounts of records and recorded the time in milliseconds 

that the database took to execute the operations.  
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Du Toit (2016) executed a bulk write operation with various amounts of records within HBase. The 

author’s research found that the average time used to insert a record within HBase increased as the 

amount of records increased (Du Toit, 2016). At 100 records, the time per record was 2.5 

milliseconds, whereas at 20 000 records, the average time was 7.6 milliseconds per record (Du Toit, 

2016). Du Toit (2016) found that the addition of data nodes leads to improvements in data writing 

performance. At 10 000 and 20 000 records, the addition of a fourth node led to an increase in 

performance greater than that of the other three nodes. This can be seen in Figure 7.4 (Du Toit, 2016). 

Du Toit (2016) also tested the reading performance of HBase. The author executed read queries while 

recording the time needed to complete the queries. HBase reads single records in an average time of 

3.7 milliseconds. Reading records in batches led to faster reading times ranging from 1.8 milliseconds 

(100 records) to 2.2 milliseconds (2500 records) (Du Toit, 2016). The author found that sets larger 

than 4000 records caused communication timeouts between the nodes (Du Toit, 2016). Therefore, to 

do a bulk retrieve query, a client has to create a list of get objects, which adds more processing time 

(Du Toit, 2016). His research could only produce results for read queries of up to 2500 records. Table 

7.2 is a consolidated list of the reading performance for HBase within Du Toit’s (2016) study. 

Table 7.2: HBase data read average over four nodes (Du Toit, 2016) 

Records  1  100 1000  2500  

Duration in ms (average)  3.7  189.8 1614.8  5574.1  
Latency per record in ms  3.7  1.898 1.6148  2.22964  
Records per second  270.27  526.87 619.272 448.503  

Write operations could handle considerably more records read operations. The considerable 

difference in performance between writing and reading may indicate that HBase is write optimised.  

Figure 7.4: HBase data inserts average over four nodes (Du Toit, 2016). 
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Lourenço et al. (2015a) compared NoSQL databases using a set of criteria by assigning a rating to 

represent the performance of the databases within each criterion. Lourenço et al. (2015a) compared 

the read and write performances of NoSQL databases, including HBase. In their rating system, HBase 

received a “+” for write performance and a “-” for read performance. These ratings imply that HBase 

is more oriented towards write performance than read performance.  

A study done by Khetrapal and Ganesh (2006) examined HBase’s read and write performance. The 

tests included sequential and random read and write operations. The results (Table 7.3) showed that 

the sequential reads achieved a rate of 310 reads per second. The sequential writes achieved a rate of 

1600 writes per second. The random reads achieved a rate of 290 reads per second, while the random 

writes achieved a rate of 1550 writes per second (Khetrapal & Ganesh, 2006). There is a large gap 

between the performance levels of reading and writing for HBase. Therefore, the results of the studies 

done by Khetrapal and Ganesh (2006), Du Toit (2016), and Lourenço et al. (2015a) agree that HBase 

is write optimised.  

Table 7.3: Read and write speeds of HBase (Khetrapal & Ganesh, 2006) 

Operation Rate 

Sequential reads 310 reads per second 
Sequential writes 1600 writes per second 
Random reads 290 reads per second 
Random writes 1550 writes per second 

Naheman and Wei (2013) attempted to inspect the relation of read and write performance to the 

number of column families in HBase. Their results show that HBase supports multiple column 

families that can store large volumes of different types of data (Naheman & Wei, 2013). Their study 

indicates that write performance is superior to read performance. This can be seen in Table 7.4. There 

is a significant difference in performance values when a higher number of records is reached, and 

the writing throughput is much higher than the reading throughput. Therefore, their study results 

suggest that HBase is write optimised and agrees with the previously mentioned studies. 

Table 7.4: Comparison between read and write performance (Naheman & Wei, 2013). 

 1 Region server 8 Region servers 

Experiment 1 10 100 500 1000 1 10 100 500 1000 
Writes/sec 15 159 330 427 Timeout 3 35 160 384 Timeout 
Reads/sec 10 93 142 128 Timeout 112 129 121 128 Timeout 

A study done by Cooper et al. (2010) investigated the performance of some databases, including 

HBase. The authors performed several experiments, including reading and writing to the database. 

Their experiment results (Table 7.5) showed that the write performance of HBase is superior to its 
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read performance (Cooper et al., 2010). There is a noticeable difference between these two abilities 

of HBase, which implies that it is better able to handle write operations than read operations.  

Table 7.5: Read or write optimisation of database technologies (Cooper et al., 2010). 

System Read or write optimisation 

PNUTS Read 
Bigtable Write 
HBase Write 
Cassandra Write 
Sharded MySQL Read 

Literature provides sufficient evidence that HBase is optimised for write operations. There is a 

significant gap between its performance levels when writing and reading, which was identified in 

several studies above (Cooper et al., 2010; Du Toit, 2016; Khetrapal & Ganesh, 2006; Lourenço et 

al., 2015a; Naheman & Wei, 2013). These results may imply that HBase is a good option to consider 

for use cases that require high writing performance and average reading performance.  

By taking all the above-mentioned points are into account, a grade of 8 is assigned to column-family 

stores for write performance and a grade of 4 is assigned for read performance. These ratings mean 

that this NoSQL family can provide very good writing performance and below-average reading 

performance. If a use case is write heavy and moderate on reads, then HBase may be an appropriate 

choice. Table 7.6 summarises the conclusions of the studies mentioned above.  

Table 7.6: Comparison of read and write performance of different studies conducted. 

Study Read performance Write performance Optimisation (read or write) 

Lourenço et al. (2015a) Weak Strong Write 
Khetrapal & Ganesh (2006) Weak Strong Write 
Naheman & Wei (2013) Weak Strong Write 
Cooper et al. (2010) Weak Strong Write 
Du Toit (2016) Weak Strong Write 

 

7.2.5 Scalability  

Scalability refers to the system's ability to deal with increasing workloads (Orend, 2010). Column-

family stores provide high scalability through partitioning data across multiple servers by splitting 

rows and columns (Cattell, 2011). Splitting rows and columns is done through sharding primary keys. 

Each database node in the cluster will store a shard and the range of data connected to that shard 

(Cattell, 2011).  

A region is the basic unit of scalability in HBase (George, 2011; Dimiduk et al., 2013). In situations 

where a region’s size is too large, the system will split the region into two or more regions to 

accommodate the size (George, 2011). Regions can also merge if they are small in size to reduce the 
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storage space and number of regions used (George, 2011; Dimiduk et al., 2013). When creating a 

table, there is only one region for that table. Once data is added to the table, a monitor checks if the 

table’s size exceeds a configured maximum size. If the maximum size is exceeded, the region is split 

in two at the middle key, creating roughly two halves (George, 2011).  

Each region is attended to by one RegionServer, which can serve many regions at any time. The 

splitting and serving of regions may be seen as autosharding (George, 2011). Autosharding regions 

enables rapid fault recovery if a server goes down. The regions can also be moved between the servers 

to assist with the load balancing of servers (George, 2011). Splitting the regions is fast because the 

split regions read from the original storage files (George, 2011, pp. 21-22).  

HBase updates data on an atomic per row basis, which means that when applying an update to a row, 

that row is locked for the update period (George, 2011). The other clients that read or write to the 

same row will read a consistent last update or wait until they can update that row. That row cannot 

receive other updates until the current update is applied, meaning that if multiple clients try to update 

the same row at the same time, contention may occur (George, 2011, p. 75).  

To deploy a fully distributed cluster for HBase, the Hadoop Distributed File System (HDFS) is 

required. The HDFS is the default file system for a distributed HBase cluster, since it has features 

that HBase requires to be deployed in a distributed environment. The HDFS has built-in fault 

tolerance, scalability, and replication to work with HBase and store data reliably (George, 2011, p. 

54).  

Lourenço et al. (2015a, 2015b) rated some capabilities of different NoSQL families that are 

represented by their respective databases. In their rating system, HBase received a “+” rating for 

scalability. A “+” rating is assigned if a database is geared for that specific property (Lourenço et al., 

2015a, 2015b). Therefore, such a rating means that HBase is optimised for scalability. 

A grade of 7 represents the scalability performance within column-family stores. Autosharding 

enables HBase to achieve high scalability, since the regions in HBase allow fast recovery of function 

if a server goes down. Autosharding also enables load balancing to balance the performance load of 

servers. The dataset can be split via the rows or the columns. Both row and column partitions can be 

used at the same time in the same table. Therefore, there are various ways to achieve high scalability, 

meaning high scalability is possible within column-family stores. 

Another reason for assigning a grade of 7 is that scalability must be accompanied by a distributed 

file system. An example of such a file system is the HDFS. The HDFS enables HBase to achieve 

high scalability. However, the HDFS must be installed and set up. A problem with the scalability of 
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HBase is found when multiple clients update the same row or column at the same time, which leads 

to contention between the different clients. However, the reading clients will always see a consistent 

last update. Therefore, a grade of 7 is assigned as a result of the additional effort needed to enable 

high levels of scalability within the column-family databases.  

7.2.6 Conceptual data structure 

Several sources, such as online user-generated content and businesses that run all day, have led to 

the creation of large volumes of structured, unstructured, and semi-structured data (Dimiduk et al., 

2013). HBase is a schema-less store that does not have a predefined structure (Dimiduk et al., 2013). 

Consequently, it does not support a full relational data model. The data model supports dynamic 

control over the data layout and format (George, 2011). Therefore, HBase can store and work with 

large volumes of semi- and unstructured data.  

HBase is commonly employed in use cases that deal with large volumes of data (Hecht & Jablonski, 

2011). This database can store any data type that can be converted into a byte of arrays (HBase, 

2007). Stored data could consist of strings, images, numbers, and any other objects that can be 

converted (George, 2011). However, it is not geared to handle transactional data. If a use case 

employs heavily linked data, such as transactional data, HBase may not be the best solution to the 

problem. A popular use case for this type of database is storing Facebook messages (Aiyer et al., 

2012). Facebook messages contain several types of data, including images, videos, and text. Other 

use cases include real-time analytics, monitoring systems, and search indexing (Aiyer et al., 2012). 

Additionally, HBase employs a storage technology known as HDFS to assist with the storage of the 

data. 

The Hadoop Distributed File System (HDFS) provides highly scalable and reliable storage for data. 

Implementing the HDFS allows IT practitioners to control various aspects of the data, such as the 

data structure, so that semi- or unstructured data formats can be stored. Thus, HBase combined with 

HDFS allows the storage of semi- or unstructured data formats (George, 2011). 

Ultimately, HBase can be used to store and work with large volumes of records coming from several 

sources (Dimiduk et al., 2013). The flexible schema of HBase allows the data to evolve over time. 

Therefore, a grade of 8 reflects the ability of column-family stores to work with large volumes of 

semi- or unstructured data.  

7.2.7 Reliability 

In a business environment, reliability is a key feature that can influence the operation of a business. 

Reliability in a database sense can refer to a system’s ability to operate without failures for a certain 

amount of time (Domaschka, Hauser & Erb, 2014).  
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HBase employs the HDFS as storage mechanism and assumes that two properties of the HDFS will 

assist in providing reliability to the clients. The first property is single namespace, which refers to 

the single file system HBase uses to store data. It is assumed that all RegionServers across the entire 

cluster have access to the file system. The file system provides a single namespace, which the 

RegionServers must use to access the data. If data is visible or written by one RegionServer, all other 

RegionServers have access to that data. Therefore, HBase can make reliability guarantees to the 

entire cluster. If a RegionServer experiences a fault and goes down, the other RegionServers can 

access the data and serve the regions under the failed RegionServer (Dimiduk et al., 2013, p.79).  

The second property is reliability and failure resistance, which refers to the assumption that the data 

in the underlying storage system will be accessible even after a failure occurs. If a RegionServer 

experiences a failure, the other RegionServers must be able to fulfil the role of the failed 

RegionServer. The assumption is that a failed RegionServer would not lead to downtime or data loss. 

A way downtime or data loss can be mitigated is through the HDFS replicating the data to other 

nodes and keeping copies of the data (Dimiduk et al., 2013, p.81). Therefore, column-family stores 

can guarantee certain levels of reliability. 

The combination of column-family stores and the HDFS allows high reliability to be implemented. 

A grade of 7 is provided to HBase for reliability, since high reliability can be implemented within 

column-family stores. The underlying storage system of HBase is the HDFS. The HDFS allow an 

entire cluster to have access to the entire dataset in storage. A RegionServer should be able to access 

other RegionServers' data to serve their regions. It is assumed that the other RegionServers will serve 

a failed RegionServer’s regions. Therefore, a grade of 7 is assigned to column-family stores, as no 

downtime or data loss should occur. However, downtime or data loss is still possible.  

7.2.8 Learning curve 

The learning curve criterion refers to the time and effort needed for and complexity level of setting 

up and learning how to use a database that meets specific requirements. This criterion is hard to 

measure, since not all use cases are the same. Thus, the focus is placed on the volume of information 

that can be utilised. The information that will be investigated includes documentation data, books, 

and tutorials. These information sources can be used to teach IT practitioners about the column-

family stores. 

HBase in Action (Dimiduk et al., 2013) contains 329 pages that give the reader an overview of how 

this database works and what technologies it employs. HBase in Action (Dimiduk et al., 2013) starts 

by discussing the fundamentals of column-family stores and HBase. Thereafter, it describes how to 

install a single instance of HBase. HBase in Action teaches the reader how to start a fresh installation 
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of the database by providing tutorials and examples of code. The book introduces the reader to a 

variety of terms that refer to technologies and meeting the requirements of a use case. The book 

moves past a single instance setup of HBase to investigate HBase in a distributed environment and 

determine what the requirements of such an environment are. The book also begins to explain more 

advanced usage of HBase, such as table designs, and extensions of HBase. HBase in Action also has 

example applications to help teach the reader how to efficiently employ HBase to facilitate their use 

case. 

The HBase Administration Cookbook (Jiang, 2012) teaches the reader how to set up HBase through 

tutorials and commands. This book has 315 pages that cover the most basic to the most advanced 

usage and setup of HBase. The HBase Administration Cookbook contains many code examples with 

explanations to teach the reader how to set up HBase. The book focusses on the administration of 

HBase clusters and how to tweak HBase to meet the requirements of the reader. This book caters to 

more experienced readers who want to learn about the advanced usage and setups of HBase.  

The HBase website is where an individual can find all relevant documentation regarding HBase. A 

download link can be used to get the files necessary to install HBase. On the website 

(https://hbase.apache.org), up-to-date information regarding the latest release of HBase as well as all 

HBase documentation can be found. On YouTube (www.youtube.com), there are several tutorials 

for beginners and advanced users. Below is a list of popular books that can be used to teach users 

about column-family stores and HBase. These books can teach users the most basic terms and 

concepts as well as the most advanced usage of HBase and column-family stores.  

 George, L. (2011). HBase: The Definitive Guide: Random Access to Your Planet-Size 

Data. Sebastopol, CA: O'Reilly Media, Incorporated. 

 Jiang, Y. (2012). HBase Administration Cookbook: master HBase configuration and 

administration for optimum database performance. Birmingham, UK: Packt Publishing. 

 Redmond, E., Wilson, J. R., & Carter, J. (2012). Seven databases in seven weeks: a guide 

to modern databases and the NoSQL movement. Dallas, TX: Pragmatic Bookshelf. 

 Dimiduk, N., Khurana, A., Ryan, M. H., & Stack, M. (2013). HBase in action. Shelter 

Island, NY: Manning Publications Company. 

 Shriparv, S. (2014). Learning HBase: learn the fundamentals of HBase administration and 

development with the help of real-time scenarios. Birmingham, UK: Packt Publishing Ltd. 

 Garg, N. (2014). HBase essentials: a practical guide to realizing the seamless potential of 

storing and managing high-volume, high-velocity data quickly and painlessly with HBase. 

Birmingham, UK: Packt Publishing. 

 Kerzner, M., & Maniyam, S. (2014). HBase Design Patterns. Packt Publishing Ltd. 

 Vohra, D. (2016). Apache HBase Primer. Berkeley, CA: Apress. 

Performing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as 

on Google Scholar returned the following number of results. The keyword used for the search was 

“HBase”. 

 Web of Science: 55 results 
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 IEEE Xplore: 275 results 

 ScienceDirect: 570 results 

 Google Scholar: 24 200 results 

A wide variety of materials can be used to teach IT practitioners about column-family stores. These 

materials include books with tutorials, video tutorials, and courses on HBase. The material is readily 

available, and HBase’s documentation is available on their website. The amount of documentation 

is always expanding as new information is added to the current body of knowledge. Considering the 

number of search results and the volume of learning materials available, column-family stores score 

a grade of 8 for the learning curve criteria. The rating of 8 means that individuals can download 

information, install the database, and teach themselves how to use it easily with the help of online 

tutorials and books. There are also tutorials and books that specifically show individuals how to set 

up HBase for and use advanced techniques. The results of the search in the databases show that 

research is being done to improve HBase, as most of the results were relevant research.  

7.3 Document-based stores (MongoDB) 

Document-based stores store key to value pairs in files known as documents. Within a document, the 

key for each value must be unique (Hecht & Jablonski, 2011). The documents in a database are 

grouped into collections (Abramova & Bernardino, 2013). Each document within the collection has 

a special ID key to identify that specific document. The ID key must be unique within the collection 

so that documents can be identified individually. Each value in a document is open for queries (Hecht 

& Jablonski, 2011). Complex data structures can be handled more conveniently because document-

based stores allow several data types to be stored in a single document (Hecht & Jablonski, 2011). 

Document-based stores are developer-friendly, as they support multiple data types by being schema-

free and do not place any restrictions on storing data (Hecht & Jablonski, 2011).  

MongoDB provides a document querying mechanism that groups documents into collections 

(Abramova & Bernardino, 2013; Cattell, 2011). In MongoDB, the unique ID of each document in a 

collection can be specified. For instance, a unique ID can be the combination of a timestamp and the 

ID of a document. Figure 7.5 is a graphical representation of a document with values. 

 

Figure 7.5: A representation of a document containing data (MongoDB, 2008). 
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7.3.1 Consistency 

MongoDB provides consistency through replication of the stored data. Replication is a way of storing 

identical copies of the data on numerous servers to keep the data safe from faults (Banker, 2011; 

Chodorow, 2013). In this database, replication is set up through replica sets, which are groups of 

servers that consist of one primary and multiple secondaries (Banker, 2011; Chodorow, 2013; 

MongoDB, 2008). Figure 7.6 graphically depicts a replica set.  

The primary server accepts all the client requests, while the secondaries store copies of the primary’s 

data. If a primary server experiences a fault, the secondary servers may elect a new primary server 

from the secondaries (Banker, 2011; Chodorow, 2013; MongoDB, 2008). Replication enables the 

client to access the full set of data even if the primary server fails, because full consistent copies of 

the data can be found on the secondaries. If the data on one server is damaged or corrupt, a new copy 

can be made from another server in the set (Banker, 2011, p. 10, 157; Chodorow, 2013, p. 169).  

MongoDB can support strong consistency with multiple levels of consistency control (Chodorow, 

2013; Hecht & Jablonski, 2011). The levels of consistency produce the configuration in which 

consistent data is displayed (Chodorow, 2013). A client might want to see only their own writes or 

request the most up-to-date data. To facilitate a high level of consistency, the server creates a que of 

requests for each connection (Chodorow, 2013), which represents the order in which the requests are 

performed. Any new requests will be placed at the back of the que (Chodorow, 2013), thereby 

enabling the connection to have a consistent view of the data.  

There is a drawback to this method of consistency that caused by each connection having its own 

que of requests (Chodorow, 2013). If two simultaneous connections are made and one performs an 

insert and the other performs a read, the read operation may not be provided with the latest inserted 

document. Therefore, the client is presented with out-of-date data (Chodorow, 2013; Orend, 2010). 

Another problem that may occur is that when read requests are sent to a secondary server, the 

secondary may read old data (Chodorow, 2013). A solution to this problem is to forward all read 

requests to the primary server in the set.  

Figure 7.6: Graphical representation of a replica set (Banker, 2011). 
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Abramova and Bernardino (2013) indicate that MongoDB can provide good consistency using 

Master/Slave-like replication through the replica sets. According to their study (Brewer, 2012), 

MongoDB possesses the CP combination of the CAP theorem properties, which refers to consistency 

and partition tolerance. Therefore, strong consistency is achievable with this database.  

Document-based stores score a grade of 7 for consistency. A grade of 7 means that high consistency 

can be achieved. However, there are some drawbacks to the method of consistency that MongoDB 

employs. The replica sets work in a manner comparable to Master/Slave replication. Therefore, 

downtime is possible when an election occurs. However, replica sets attempt to mitigate these 

drawbacks by immediately electing a new primary. Another potential problem with replica sets is 

that multiple concurrent connections can lead to inconsistent and out-of-date data being read.  

7.3.2 Availability 

Availability refers to the percentage of time a system is operating correctly (Orend, 2010). As 

described above, replica sets are used to provide strong consistency. However, replication and replica 

sets also influence availability.  

In MongoDB, a replica set is set up to assist with fault tolerance (Banker, 2011; Chodorow, 2013). 

High availability is achieved using automatic failover within the replica sets (MongoDB, 2008). 

Automatic failover refers to a process during which an election occurs among the secondary servers 

(Banker, 2011; Chodorow, 2013). Automatic failover occurs when a primary server experiences a 

fault and goes down. The failover process means that a secondary server must be elected become the 

new primary (MongoDB, 2008). An improved version of the replication process is present from 

version 3.2 of MongoDB. The improved versions reduce the failover time and can detect if there are 

multiple primary servers in the set (MongoDB, 2008).  

If replication is implemented, the client should be able to access the data even after a server goes 

down. All the servers in the set have access to the other servers’ data. Thus, the client can still access 

the data even after a primary server goes down (Chodorow, 2013, p. 169). 

Lourenço et al. (2015a) assigned a rating of “-” for availability to MongoDB, which means that this 

database may not be the best database to provide availability. A drawback of replica sets is that 

rollbacks can occur (MongoDB, 2008). A rollback reverts write operations on failed primary servers 

after a failover process occurs (MongoDB, 2008). Rollbacks occur when failed primary servers that 

have come online again re-join the replica set. However, rollbacks do not always occur after a 

failover. Rollbacks only occur when the primary server contained write requests that the secondary 

servers had not yet replicated when the primary stepped down (MongoDB, 2008). Rollbacks occur 

to maintain consistency between the new secondary server and the other servers (MongoDB, 2008). 
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Each rollback cannot roll back more than 300 megabytes of data. Therefore, manual recovery is 

required for rollbacks of more than 300 megabytes (MongoDB, 2008).  

MongoDB provides an adequate availability process with automatic failover. The process has limits 

and resembles the Master/Slave replication method but has fewer drawbacks. However, data can be 

lost if rollbacks occur on more than 300 megabytes of data. This will require manual recovery to 

retrieve the data. The failover process can provide good levels of availability, but it is not the best 

option. Therefore, document-based stores receive a grade of 5 for availability.  

7.3.3 Partitioning  

Abramova and Bernardino (2013) compared the performance of MongoDB and Cassandra. In their 

study, it is shown that MongoDB is of the CP type, which means that partitioning is a focus within 

this database.  

There are two strategies that can be followed when implementing partitioning (section 5.3.4). The 

first strategy is to distribute datasets by the range of their keys. This is known as range-based 

partitioning (Hecht & Jablonski, 2011). The second strategy is consistent hashing (Hecht & 

Jablonski, 2011). 

The documents in MongoDB are partitioned by the range of their keys (range-based partitioning) 

(Banker, 2011; Hecht & Jablonski, 2011). Hecht and Jablonski (2011) investigated the partitioning 

performance of NoSQL databases as part of their study. MongoDB received a positive rating (+) for 

range-based partitioning and a negative rating (-) for consistent hashing. These ratings mean that it 

performs range-based queries well. This is because neighbouring keys are stored next to one another.  

High partition tolerance in this database is achieved through the range-based partitioning strategy 

known as sharding (Banker, 2011). Sharding splits data across numerous servers. This is done by 

storing subsets of data on other servers in a cluster (Chodorow, 2013). Sharding can be implemented 

in two ways, namely manual sharding and autosharding (Banker, 2011; Chodorow, 2013). Manual 

sharding occurs when an application connects to several independent databases. The client 

application manages the storing of data on different servers as well as the queries to retrieve data. 

The manual sharding approach can work well. However this approach can struggle with the addition 

or removal of nodes within a cluster (Banker, 2011; Chodorow, 2013, p. 231).  

Autosharding attempts to automate sharding by simplifying the administration process (Chodorow, 

2013). MongoDB employs autosharding and allows the client application to communicate with the 

whole cluster as opposed to one server. Autosharding allows the addition or removal of nodes, while 

balancing the data across the servers (Banker, 2011; Chodorow, 2013, p. 231) 



CHAPTER 7: GRADING THE NOSQL FAMILIES 

85 

 

MongoDB uses autosharding, which is the superior option for providing partition tolerance. Setting 

up autosharding is a troublesome process, and extensive knowledge is required to set up all 

components correctly. Setting up MongoDB with autosharding is difficult and complex. However, 

setting up this database with autosharding allows better communication with the whole cluster by 

balancing the data across the entire system. Autosharding makes the addition and removal of nodes 

easier. Therefore, achieving high partition tolerance is also made easier.  

As a result of the above-mentioned points, MongoDB receives a grade of 7 for partitioning and 

partition tolerance. MongoDB employs the range-based partitioning strategy to store neighbouring 

documents on the same node. This leads to better performance with queries. Autosharding allows 

easy addition and removal of nodes. However, extensive knowledge is required to set it up properly.  

7.3.4 Read and write performance 

Du Toit (2016) performed bulk inserts of various amounts of records (ranging from 100 to 20 000) 

into MongoDB. Du Toit’s (2016) research indicated that the time MongoDB took to insert a record 

remained constant even if the dataset size increased. Figure 7.7 shows the performance results of 

MongoDB’s bulk insert test (Du Toit, 2016). Du Toit (2016) noted that MongoDB took an average 

of 2.5 to 3.5 milliseconds to insert a single record. The addition of other nodes did not decrease the 

insertion time (Du Toit, 2016). At 20 000 records, there was a spike in the insertion time for one of 

the nodes. According to the author, this increase occurred because MongoDB optimised itself based 

on the client application and what the application was doing (Du Toit, 2016).  

Du Toit (2016) performed data read tests on MongoDB with various amounts of records ranging from 

1 to 50 000 records. The data write tests could only accept up to 20 000 records compared to the 

50 000 that were accepted by the read tests (Du Toit, 2016). This indicates that MongoDB can 

perform read operations better than write operations. Completing the 100-record job took 2.1 

milliseconds, whereas it took 2.35 milliseconds for 10 000 records (Du Toit, 2016). MongoDB allows 

Figure 7.7: MongoDB data insert averages over four nodes (Du Toit, 2016). 
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result sets of 20 000 records to be returned by default (Du Toit, 2016). A result set of 20 000 records 

took an average of 3.8 seconds per record to complete. His research also shows that MongoDB reads 

a document set of 50 000 records in 179 seconds, compared to the 251 seconds it takes to insert them. 

Therefore, his research indicates that MongoDB is optimised for reading purposes (Du Toit, 2016).  

During the investigation of MongoDB’s read performance in Du Toit’s (2016) research, the retrieval 

of a single record took 17.6 milliseconds on average. His research indicates that the average retrieval 

time for single records was higher than the average retrieval time for records that were part of larger 

read requests (Du Toit, 2016). His research also shows that the size of the result set impacted the 

performance (Du Toit, 2016). According to his research, the best performance was recorded when 

retrieving a 1000 records. A speed of 2.414 milliseconds per record was achieved (Table 7.7) (Du 

Toit, 2016). MongoDB was able to return the larger result set without using batches.  

Table 7.7: MongoDB read statistics (Du Toit, 2016). 

Records  1  100  1 000  2 500  5 000  10 000  20 000  50 000 

Duration in ms 
(average) 

17.6 314.8 2 414 
 

6 089.2 12 610.9 25 378 56 114.8 176 203 

Latency per record 
in ms  

17.6  3.148  2.414  2.43568  2.52218  2.5378  2.80574  3.52406 

Records per second  56.8182  317.662  414.25  410.563  396.482  394.042 356.412  283.764 

Lourenço et al. (2015a) made a comparison of NoSQL databases using a set of properties. The 

authors assigned ratings to these properties to indicate the performance level of each database. In 

their rating system, MongoDB received a rating of “-” for write performance and “++” for reading 

performance (Lourenço et al., 2015a). A rating of “++” indicates that MongoDB is very focused on 

reading performance. This implies that MongoDB is read optimised.  

Győrödi et al. (2015a) compared the performance of MongoDB and MSSQL. In their study, they 

proved that there are major differences between these two types of databases (NoSQL vs. SQL). The 

authors indicated that MongoDB took less time to read 50 000 records than to write 50 000 records. 

Figure 7.8 is a graphical representation of the results for the read and write tests.  

Figure 7.8: Read and write performance of MongoDB (Győrödi et al., 2015a). 
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Győrödi et al. (2015b) also compared MongoDB with MySQL. Experiment tests were done to 

compare these two databases with each other (Győrödi et al., 2015b). The first test was to write to 

the databases. The authors inserted 10 000 records into MongoDB (Győrödi et al., 2015b). MongoDB 

took 0.29 seconds to complete the write operation (Győrödi et al., 2015b). The second test was to 

read from the database. MongoDB took 0.0052 seconds to complete the read operation (Győrödi et 

al., 2015b). The reading test results show that this database has fast reading performance. Comparing 

the writing time (0.29 seconds) with the reading time (0.0052 seconds) indicates a significant gap in 

performance levels. Therefore, the results imply that MongoDB is read optimised. Figure 7.9 shows 

a graphical representation of the results for its reading and writing performance tests.  

Abramova and Bernardino (2013) compared MongoDB and Cassandra. Their study shows that 

MongoDB can provide good reading and writing performance. The amounts of records used in their 

tests were 100 000, 280 000, and 700 000 (Abramova & Bernardino, 2013). A comparison of the 

read and write results indicates the superiority of read performance over write performance as was 

the case throughout all the performance tests. At the 700 000-record test, MongoDB completed the 

read operation in 35 seconds, while the write operation took 282 seconds. These results support the 

previously mentioned studies that indicated the read optimisation of MongoDB. Figure 7.10 indicates 

the results of the write and read performance tests. 

Figure 7.9: Graphical representation of the performance test results (Győrödi et al., 2015b). 

Figure 7.10: Write and read speeds of MongoDB compared with Cassandra (Abramova & Bernardino, 2013). 
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Li and Manoharan (2013) proved that MongoDB is exceptional with reads and average with writes. 

The authors tested the read and write performance of MongoDB against several other NoSQL 

products. MongoDB was one of the best databases in each of their experiment. Figure 7.11 compares 

the reading performance of the several database products. The time took to complete the operations 

was measured in milliseconds. The number of operations refers to the number of times a specific 

operation is executed and ranged from 10 to 100 000 (Li & Manoharan, 2013). The results of the 

performance tests show that MongoDB had the second fastest read performance of the databases that 

were tested.  

Figure 7.12 shows the write performance of the several databases. A comparison of the reading and 

writing performance results for MongoDB indicates a difference in performance levels. At 100 000 

operations, reading took 10201 milliseconds, while writing took 23354 milliseconds. The writing 

performance test took more than double the time of the reading performance test. Therefore, the 

results indicate that reading performance is far superior to writing performance and that MongoDB 

is read optimised. 

Considering the results of all the above-mentioned studies, it may be concluded MongoDB is read 

optimised (Abramova & Bernardino, 2013; Du Toit, 2016; Győrödi et al., 2015a; Győrödi et al., 

2015b; Li & Manoharan, 2013; Lourenço et al., 2015a). Read optimisation means that the reading 

performance is better than the writing performance. Thus, a grade of 9 is assigned for reading 

performance and a grade of 5 for writing performance. These ratings reflect the gap between reading 

and writing performance within MongoDB. MongoDB can accommodate a high read request use case 

Figure 7.11: Reading performance of databases (Li & Manoharan, 2013). 

Figure 7.12: Writing performance of databases (Li & Manoharan, 2013). 
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with a moderate number of writes. If the use case is write heavy, then MongoDB might not be a 

suitable choice for optimal performance.  

7.3.5 Scalability  

Partitioning data across multiple servers is the way document-based databases provide scalability 

(Cattell, 2011). MongoDB allows scaling of data across multiple servers in a distributed environment 

by employing automatic sharding (Banker, 2011; Chodorow, 2013; MongoDB, 2008). Replication 

in MongoDB is used for redundancy purposes and not for scalability reasons. However, a 

Master/Slave-like replication model is used (Du Toit, 2016).  

In MongoDB, a mongod instance allows data to shard across several database nodes in a cluster 

(MongoDB, 2008). Mongod stands for mongo daemon. The mongod instance is responsible for 

storing the subset of the collection’s data (Figure 7.13) (Chodorow, 2013; MongoDB, 2008). Config 

servers are also a requirement for storing the metadata of the clusters (MongoDB, 2008). The config 

server can be found in a mongod instance (MongoDB, 2008). The queries from clients are directed 

to the appropriate shard on a mongod instance via the mongos routing service (Chodorow, 2013; 

MongoDB, 2008). MongoDB instances on each node start as soon as the config and routing servers 

are running. Thereafter, they are added to the cluster through the routing service (MongoDB, 2008).  

Du Toit’s (2016) research found that data in MongoDB is not sharded automatically. To shard data, 

an index key must be specified (MongoDB, 2008). He also found that performance increases can be 

noticed when adding nodes to the cluster (Du Toit, 2016). If autosharding is set up within MongoDB, 

it will manage the distribution of data across the nodes as well as facilitate the addition of nodes to 

the cluster (Banker, 2011). The document data model allows documents in MongoDB to be divided 

between the different nodes in the cluster (Chodorow, 2013). In the rating system of Lourenço et al. 

(2015a), MongoDB received a rating of “-” for scalability, implying that MongoDB might not the 

best choice to facilitate high scalability. 

Figure 7.13: Graphical representation of a sharded client connection (Chodorow, 2013, p.233). 
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As a result of the aforementioned points, a grade of 6 is assigned to document-based stores for 

scalability. A grade of 6 means that document-based stores may not provide the best levels of 

scalability. However, document-based stores can provide adequate levels of scalability across the 

cluster. MongoDB employs sharding to facilitate its scalability, which is difficult to set up in the 

correct manner. There are plenty of components to be set up that require extensive knowledge 

pertaining to the functioning of sharding. Sharding is not done automatically when MongoDB is set 

up. However, good scalability can be achieved through autosharding. Autosharding makes the 

scalability process much easier if it is set up correctly to handle the distribution of data across the 

nodes automatically. Autosharding also manages the queries sent to the nodes. Therefore, clients are 

not aware that they are communicating with other nodes. The above reasons are why a grade of 6 is 

assigned to document-based stores.  

7.3.6 Conceptual data structure  

Document-based stores can store semi- and unstructured data (Banker, 2011; Chodorow, 2011). This 

family employs a flexible data model with no predefined schema (Banker, 2011; Chodorow, 2013; 

Orend, 2010). A document-based store, such as MongoDB, groups documents into collections 

(Banker, 2011). A document refers to the basic unit of data for MongoDB. A document contains a 

key and the value(s) associated with that key. Collections store documents with a similar data 

structure (Banker, 2011). Multiple data structures can be stored within a single collection. A single 

instance of MongoDB can have multiple separate databases, each with their own collections inside. 

(Chodorow, 2013, p. 7). 

There are advantages to employing a schemaless data model. Firstly, it is easier to make changes to 

the dataset (Banker, 2011). Secondly, it is easier to add or remove fields (Chodorow, 2013). Lastly, 

the schemaless model allows the representation of several data types within a single document 

(Banker, 2011). Use cases for document-based stores are typically involve storing enormous-size 

collections of documents (Moniruzzaman & Hossain, 2013). Use cases include high volume data 

feeds, operational intelligence, behavioural profiling, content management, and metadata storage 

(Magnusson, 2013). Some data types stored within documents include text, emails, XML, and semi-

structured data (Moniruzzaman & Hossain, 2013). Document-based stores are geared to work with 

semi-structured data (Kaur & Rani, 2013). However, they are not geared to deal with relationship-

heavy data.  

Thus, document-based stores receive a grade of 7 for the conceptual data structure criterion. A grade 

of 7 represents the ability of document-based stores to work with semi- and unstructured data. The 

database provides a schemaless storage model for the data, which means that various data structures 

can be stored together. The schemaless model enables changes to the data to be made easily without 
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affecting the database. The use cases indicate some of the different data types, each with their own 

structure, that can be stored within this family. However, it is not well suited for relationship-heavy 

data, such as transactional data.  

7.3.7 Reliability 

As stated previously, the reliability of a system refers to its ability to operate without faults that 

reduce the operation quality (refer to section 5.3.7). Within MongoDB, replication can provide 

reliability to the system through replica sets (Banker, 2011; Plugge, Hows, Membrey, & Hawkins, 

2015). A replica set consist of a primary node and two or more secondary nodes (Banker, 2011; 

Plugge et al., 2015). Replica sets combat faults through fault tolerance (Banker, 2011; Chodorow, 

2013) and employ automatic failover to mitigate the effects of downtime and data loss. Automatic 

failover can also provide fault tolerance and high reliability (MongoDB, 2008).  

If a primary server goes down, an election takes place to select a new primary server. Once the 

election process is completed, the elected secondary immediately becomes the new primary server 

and handles all the requests from clients. If replication is implemented and a primary server goes 

down, the data should still be accessible. All the servers in the set have access to the other servers’ 

data. Therefore, the client has access to the data even if a primary server experiences a fault. If the 

data on one server is corrupt, a new copy can be made from the other servers in the set. (Chodorow, 

2013, p. 169; Plugge et al., 2015). Thus, replication in MongoDB increases the reliability of the 

overall database deployment (Banker, 2011).  

Another feature that can aid in increasing the reliability of the overall database system is RAID 

setups. RAID is software that allows one to handle multiple disks as if they were a single disk 

(Chodorow, 2013). A RAID array is a set of disks that implement RAID software. There are 

numerous levels of RAID and each level has distinctive features. The levels are RAID0, RAID1, 

RAID5, and RAID10. RAID10 is the best option for reliability, because the data is striped and 

mirrored. The level chosen for a specific use case depends on how reliable the database needs to be 

for that use case (Chodorow, 2013, pp. 369-370). 

A grade of 7 is assigned for this criterion because document-based stores can provide high reliability. 

However, there are some drawbacks to the methods MongoDB employs to provide reliability. The 

replica sets allow reliability to be high, because the primary server is replaced as soon as it goes 

down. Replica sets improve this process by instantly electing a new primary server. However, data 

loss can still occur due to rollbacks. Another drawback is that these features (RAID and replica sets) 

need to be set up before reliability can be achieved. MongoDB does not have these features set up 
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automatically. A grade of 7 indicates that high levels of reliability can be achieved with document-

based stores. However, this requires some effort.  

7.3.8 Learning curve 

The learning curve criterion refers to the time and effort needed to set up and learn how to use a 

database that meets specific requirements. This criterion is hard to measure, as not all use cases are 

the same. Therefore, the focus of this criterion is on the available knowledge regarding document-

based stores. The investigated information includes books, tutorials, and official documentation. 

These sources of information can provide IT practitioners with all the relevant knowledge needed to 

employ document-based stores.  

MongoDB in Action (Banker, 2011) contains 287 pages that aim to provide the reader with a holistic 

view of document-based stores and MongoDB. The book starts by explaining basic terms and 

concepts related to document-based stores and MongoDB. The book examines the techniques that 

MongoDB implements, for example the sharding technique. The book also assists the reader in 

setting up MongoDB in a basic single node environment through code examples. MongoDB in Action 

shows the reader how to manage and troubleshoot the database if faults occur. This book focusses 

on beginners who want to get started with MongoDB.  

MongoDB: The Definitive Guide is a book written by Chodorow (2013) that helps readers with basic 

and advanced usage of MongoDB. This book has 409 pages that cover many aspects of the MongoDB 

database system. The book informs the reader about many relevant terms and technologies that 

MongoDB employs. Detailed instructions on how to set up and use MongoDB in a basic environment 

are provided. Advanced techniques, such as sharding and replication, are discussed in detail. It also 

explains how MongoDB employs these techniques to achieve a goal. Basic setups of the advanced 

techniques are described to the reader. Administration of the MongoDB server is covered in a large 

section of this book, which helps the reader with several relevant administration tasks. This book is 

appropriate for beginners as well as advanced users of MongoDB.  

A book focused on advanced usage of MongoDB is the MongoDB Cookbook written by Nayak 

(2014). This book starts by explaining how to set up MongoDB through the use of code examples. 

The book covers single node setups as well as multi-node distributed setups. The book also covers 

advanced management of the database and dataset. Furthermore, it assists the reader in implementing 

and deploying MongoDB with Hadoop and other open source tools to accomplish tasks. This book 

is focusses on advanced usage of MongoDB and how to manipulate the database to accomplish tasks 

for a specific use case.  
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The MongoDB website (https://www.mongodb.com) is where a wide variety of resources, including 

all documentation concerning MongoDB, can be obtained. Research papers on MongoDB can also 

be retrieved from the website. A download link on the website allows clients to download and install 

MongoDB. There are also numerous tutorials for beginners and advanced users on YouTube 

(www.youtube.com). Below is a list of popular books about document-based stores and MongoDB. 

These books can teach users about MongoDB and how it functions. The books also explain how to 

set up a basic MongoDB instance and discuss advanced usage of MongoDB. The books can train 

users to become well informed about the commands used in MongoDB.  

 Chodorow, K. (2013). MongoDB: the definitive guide. Sebastopol, CA: O'Reilly Media, 

Incorporated. 

 Banker, K. (2011). MongoDB in action. Shelter Island, NY. Manning Publications 

Company. 

 Plugge, E., Hows, D., Membrey, P., & Hawkins, T. (2015). The Definitive Guide to 

MongoDB: A complete guide to dealing with Big Data using MongoDB. California: 

Apress. 

 Chodorow, K. (2011). Scaling MongoDB. Sebastopol, CA: O'Reilly Media, Incorporated.  

 Copeland, R. (2013). MongoDB Applied Design Patterns. Sebastopol, CA: O'Reilly Media, 

Incorporated. 

 Francia, S. (2012). MongoDB and PHP: Document-Oriented Data for Web Developers. 

Sebastopol, CA: O'Reilly Media, Incorporated. 

 Chodorow, K. (2011). 50 tips and tricks for MongoDB developers. Sebastopol, CA: 

O'Reilly Media, Incorporated. 

 Marchioni, F. (2015). MongoDB for Java Developers: design, build, and deliver efficient 

Java applications using the most advanced NoSQL database. Birmingham, UK: Packt 

Publishing. 

 Nayak, A. (2014). MongoDB cookbook: over 80 practical recipes to design, deploy, and 

administer MongoDB. Birmingham, UK: Packt Publishing.  

 Hows, D., Membrey, P., & Plugge, E. (2014). MongoDB basics. Berkeley, CA: Apress. 
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Doing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as on 

Google Scholar returned the following number of results. The keyword used for the search was 

“MongoDB”. 

 Web of Science: 44 results 

 IEEE Xplore: 164 results 
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 ScienceDirect: 353 results 

 Google Scholar: 18 100 results 

Document-based stores have a variety of teaching materials readily available on the internet. Out of 

all the families, document-based stores have the most teaching documentation available. MongoDB 

has an organisational website (https://www.mongodb.com) on which the documentation for the 

database can be found. A download link is available to download the necessary program to install 

MongoDB. There are also book and video tutorials on how to set up and use MongoDB in different 

situations. The books about MongoDB can teach an individual the fundamentals of document-based 

stores as well as MongoDB. The teaching materials cater for beginners and advanced users of 

MongoDB. Document-based stores are assigned a grade of 9 due to the amount of available teaching 

materials for MongoDB. A grade of 9 means that individuals can easily teach themselves how to set 

up, use, and accommodate their use case through MongoDB. The database search results also indicate 

that research is being done to improve document-based stores and MongoDB.  

7.4 Graph stores (Neo4j) 

A graph, in formal terms, is a group of vertices, properties, and edges (Kemper, 2015). A graph can 

also be seen as a set of nodes and the relationships that connect them. When a node is created, it 

receives properties as well as any edges that are used (Kemper, 2015). Nodes represent the different 

entities in the graph, while relationships show their relation to one another. The structure of a graph 

allows different scenarios to be modelled. A graphical example of a graph is seen in Figure 7.14 

(Robinson, Webber & Eifrem, 2015, p. 1). 

Figure 7.14 represents a small group of individuals and the relationships they have with one another. 

It represents a small network of Twitter users and not the entire Twitter network. Each node 

represents a specific user. Users are connected to one another through their relationships (Robinson, 

Webber & Eifrem, 2015, p. 2). The graph provides a holistic view of the stored data through a 

graphical representation that makes it easier to understand. Neo4j is graph database that allows 

developers to provide good performance where queries over large and complex datasets are 

concerned (Goel, 2015).  

Figure 7.14: Graph example within the Twitter context (Robinson, Webber & Eifrem, 2015). 
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7.4.1 Consistency  

Completing a write operation will insert a record into a database. If the database has high consistency, 

all readers will view the most up-to-date information (Brewer, 2012; Strauch, Sites & Kriha, 2011). 

Thus, consistency refers to the extent to which the system is in a consistent state after operations 

occur. Neo4j provides eventual consistency (Hecht & Jablonski, 2011), meaning that if no new 

updates to a record are made, all reads show the latest updated record. Neo4j employs Master/Slave 

replication to facilitate consistency throughout its clusters.  

The typical Master/Slave replication setups require all write requests to operate through the Master, 

while read requests go to the Slaves (Vukotic et al., 2015). However, Neo4j does not employ the 

typical Master/Slave replication model. Therefore, any Master/Slave node can handle both reads and 

writes (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). Writing to a Slave does have some 

drawbacks. To ensure its data is consistent, the Slave must synchronise with the Master through a 

coordination protocol before it can return to the client (Robinson, Webber & Eifrem, 2015). This 

process creates extra network traffic and causes the Slave nodes to be slower than the Master nodes. 

Master and Slave nodes handle write requests differently (Vukotic et al., 2015). Reasons to write to 

a Slave include that it can provide durability guarantees and enable clients to read their own writes 

(Robinson, Webber & Eifrem, 2015). It is recommended that writes be made only on the Master and 

then replicated to the Slaves (Robinson, Webber & Eifrem, 2015). 

Updates to records are applied to the Master node first. If this is successful, then the updates are 

applied to the Slaves. A Slave must be up to date to ensure overall consistency of data between the 

Master and Slave nodes. If the Slave is up to date, then write requests can be performed. This means 

that Neo4j will make sure that all Slaves are up to date before local writes can occur (Vukotic et al., 

2015, p. 238). This process can be seen as eventual consistency.  

A grade of 6 is assigned to Neo4j for its ability to provide eventual consistency. A grade of 6 means 

that above-average consistency performance can be achieved. However, the consistency is not 

without faults. Neo4j provides full consistency in single instances but eventual consistency in a 

distributed environment. The Master/Slave replication method has its own drawbacks, such as 

downtime. Master/Slave replication assists in providing consistency of data. A Master node will 

always be present to handle the read and write requests. Neo4j also allows reading and writing to 

both Master and Slave nodes. However, writing to a Slave node leads to slower performance. The 

data on the nodes is eventually consistent, which means that clients will eventually read the most up-

to-date information.  
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7.4.2 Availability  

Availability refers to a system’s resistance to faults that may occur and its ability to provide 

continuous operation (Han, Haihong, Le & Du, 2011; Orend, 2010; Strauch, Sites & Kriha, 2011). 

An example of a fault occurring is a node in a cluster going down. Availability in Neo4j is achieved 

through a component known as Neo4j HA (high availability). The HA component allows the database 

to run in a clustered setup. This enables the distribution of the database across multiple machines. A 

Master/Slave replication architecture is employed to provide fault tolerance and resistance to failures 

(Montag, 2013; Vukotic et al., 2015). Figure 7.15 is a graphical depiction of the Master/Slave 

replication used to provide fault tolerance.  

Using a Master/Slave replication architecture allows Neo4j to counter hardware failures as well as 

handle large volumes of read requests (Vukotic et al., 2015). Each Neo4j instance contains two parts, 

namely the database and the cluster management component (Montag, 2013). The cluster 

management component is synchronised with all the instances in the database to keep track of 

instances that join and leave the cluster (Montag, 2013). Therefore, if the database experiences a 

fault, such as a hardware failure or a network outage, the cluster management component will detect 

the failure and mark the database as having temporarily failed (Montag, 2013; Neo4j, 2017). The 

database will update itself with the rest of the cluster when it comes back online (Neo4j, 2017).  

The cluster management component works with the Master/Slave replication method. Within the 

cluster, it is expected that a single Master will always be present along with any number of Slaves 

(Vukotic et al., 2015). If a Master goes down, the cluster management component will ensure that a 

Slave is elected as the new Master (Montag, 2013; Neo4j, 2017). The new Master begins to function 

after a quorum is reached. This means that more than half of the cluster members must be active 

(Neo4j, 2017). The new Master will broadcast its availability to all the members of the cluster (Neo4j, 

2017). Typically, the election of a new Master will occur within a few seconds. However, no new 

writes can be accepted during the election time (Neo4j, 2017).  

Figure 7.15: A graphical representation of the Master/Slave replication architecture of Neo4j (Montag, 2013). 
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An advantage of Master/Slave replication is the ability to write through both Master and Slave nodes 

(Montag, 2013). Although the write performance of Slave nodes is not the best, clients can still write 

to the database. Therefore, Neo4j can provide availability to the clients.  

A grade of 9 is assigned to Neo4j for its availability property. The Master/Slave replication 

architecture enables very high uptime. However, there are drawbacks to employing the Master/Slave 

replication architecture. The election of a new Master can lead to downtime or data loss, since the 

election process prohibits clients from writing to the database. The load balancer assists with the 

election process and combats the drawbacks to a certain degree. The load balancer enables Neo4j to 

have an automatic election whenever a Master node goes down. Therefore, Neo4j is geared to provide 

high availability to the cluster. The HA component supports resilience and fault tolerance to ensure 

the availability of the database.  

7.4.3 Partitioning  

Partition tolerance refers to the ability of a system to continue to function even if there are faulty 

network partitions (Strauch et al., 2011). In data partitioning situations, partition tolerance plays a 

vital role in ensuring continuous operation.  

Queries are executed the quickest when the graph dataset is stored in main memory (Robinson, 

Webber & Eifrem, 2015). However, the size of main memory becomes a problem when the graph 

dataset is too large to store in main memory. Partitioning plays a vital role, as other technologies 

partition their data to solve this problem (Robinson, Webber & Eifrem, 2015). 

A graph dataset is difficult to divide among several partitions, because partitions may influence the 

data and the relationships between the entities (Hecht & Jablonski, 2011). Thus, a problem is faced 

when partitioning a graph dataset. On the hand, partitions provide better performance and fault 

tolerance. On the other hand, a heavily linked graph dataset should not be distributed, because 

traversals and lookups would cause performance penalties (Hecht & Jablonski, 2011) due to the 

additional heavy network load. 

As mentioned above, partitioning a graph dataset is not an easy task. Cache sharding can solve the 

problem to a certain degree (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). In a Neo4j 

cluster with the HA component, each HA instance expects to have access to the full set of data. Cache 

sharding is a routing-based technique that routes requests to a certain database instance within the 

Neo4j HA cluster (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). Cache sharding routes 

requests to the specific database instance that can best satisfy them (Robinson, Webber & Eifrem, 

2015; Vukotic et al., 2015). Therefore, it assists in increasing the performance of requests over a 

distributed environment.  
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Partitioning a graph dataset is a challenging task to accomplish, because the graph can rapidly mutate 

and grow in size and relationships. The node relationships play a significant role in creating the value 

that a graph database provides. Partitioning a large graph dataset across multiple nodes can incur 

performance penalties and decrease the value of the dataset. Thus, partition tolerance is assigned a 

grade of 4 for graph stores. Partitioning a large graph dataset is not recommended, because a large 

number of relationships can lead to complex queries. However, cache sharding is a technique that 

can be used to assist in partitioning data in graph databases.  

7.4.4 Read and write performance 

Jouili and Vansteenberghe (2013) developed a benchmark that can be used to test the performance 

levels of graph databases by running simulations of real graph workloads. Their tool was used to test 

Neo4j’s write performance. Jouili and Vansteenberghe (2013) also investigated the effect a bigger 

buffer size has on the writing performance of graph databases. The buffer size refers to the number 

of records inserted before the records are stored on a disk (Jouili & Vansteenberghe, 2013). They 

found that the larger the buffer size, the better the performance of Neo4j.  

The writing performance results (Figure 7.16) indicate that Neo4j achieved the best write 

performance results in the performance tests until the 2.5 million-record entry. Thereafter, Neo4j’s 

time increased drastically from 33.10 seconds to 297.87 seconds (Jouili & Vansteenberghe, 2013), 

which was the second slowest time.  

Next, the authors investigated the effect of increasing the buffer size on the write performance (Figure 

7.17). The buffer size increased from 5000 to 20 000. Neo4j completed the 3 million-record workload 

in a time of 143.57 seconds, compared to its previous time of 297.87 seconds (Jouili & 

Vansteenberghe, 2013). The performance results may imply that Neo4j provides good linear write 

performance up to a certain point. However, after that point is reached, the performance decreases 

and is not linear anymore. 17Workload results using a buffer size of 20 000 (Jouili & Vansteenberghe, 2013). 

18Workload results using a buffer size of 20 000 (Jouili & Vansteenberghe, 2013). 

Figure 7.16: Workload results using a buffer size of 5000 records (Jouili & Vansteenberghe, 2013). 
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The read test results of Neo4j indicate good reading performance. It was the top database in the set 

of databases. As shown with the Figure 7.18, Neo4j had the best results while also having the least 

variance in results (Jouili & Vansteenberghe, 2013). The results of this study found that Neo4j is a 

top contender with good performance for both reading and writing jobs. Based on these results, it 

can be concluded that the reading performance of Neo4j is better than its writing performance. This 

indicates read optimisation. 

The authors of Neo4j in Action (Vukotic, Watt, Abedrabbo, Fox, & Partner, 2015) compared Neo4j 

with a relational database. Their goal was to investigate the difference in performance levels. The 

test environment was that of a social network with various levels of friends. Each level represented 

a certain depth of friends, for example friends-of-friends-of-friends (Vukotic et al., 2015). The results 

indicate that Depth Level 2 of the test did not yield considerably different levels of performance from 

the relational database and Neo4j. However, a significant difference in reading performance can be 

Figure 7.17: Workload results using a buffer size of 20 000 (Jouili & Vansteenberghe, 2013). 

 

Figure 7.18: Reading and traversing the data entries (Jouili & Vansteenberghe, 2013). 
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seen at Depth Level 3 (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). The reading 

performance of Neo4j does not increase in large intervals as the depth level increases. Instead, it 

increases linearly with the depth level (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). 

Figure 7.19 is a summary of the results. 

Batra and Tyagi (2012) compared Neo4j with MySQL. Their goal was to investigate the performance 

differences between relational and non-relational data stores. Their test had various levels in which 

the database had to search for results. The execution times of the read requests are tabulated in Table 

7.8. The results indicate that Neo4j completed the queries in less time than MySQL (Batra & Tyagi, 

2012). To complete the largest query, Neo4j took 21 seconds, while MySQL took 620.56 seconds. 

This result is a good indication that Neo4j is formidable at reading results at multiple depth levels.  

Table 7.8: Results of the performance tests of Neo4j and MySQL (Batra & Tyagi, 2012). 

No_of_objects MySQL:S0 Neo4j:S0 MySQL:S1 Neo4j:S1 MySQL:S2 Neo4j:S2 

100 19.56 8 33 12.65 111.334 19.57 

500 281.38 10 333.96 17 620.56 21 

The results of these studies indicate that Neo4j can provide good read and adequate write 

performance, because Neo4j is read optimised. Its superior read performance becomes especially 

noticeable when working with larger datasets with more depth levels. The studies of Jouili and 

Vansteenberghe (2013), Robinson, Webber and Eifrem (2015), Vukotic et al. (2015), and Batra and 

Tyagi (2012) indicate that Neo4j’s read performance is superior, especially with heavily linked data. 

If a use case is very relationship driven or employs linked data, graph databases can be used for the 

use case. A grade of 7 for reads and grade of 5 for writes are assigned to Neo4j. This reflects the 

performance levels achieved for read and write requests in graph databases. 

Figure 7.19: Reading speeds of Neo4j (Robinson, Webber & Eifrem, 2015; Vukotic et al., 2015). 
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7.4.5 Scalability  

Scalability refers to the system's ability to deal with increasing workloads (Orend, 2010). The Neo4j 

HA component allows the database to run in a clustered setup, meaning the database is distributed 

across several machines. This enables Neo4j to scale (Vukotic et al., 2015). A Neo4j cluster consists 

of one Master node and zero or more Slave nodes that all have full copies of the data (Neo4j, 2017). 

Figure 7.20 is a graphical representation of the replication process to scale the data among the cluster 

nodes. Neo4j employs Master/Master replication and all nodes can accept read and write requests 

(Hecht & Jablonski, 2011; Neo4j, 2017).  

Unlike the normal Master/Slave replication model, Neo4j can accept read and write requests through 

both Masters and Slaves (Vukotic et al., 2015). However, write requests are handled differently when 

received by a Slave than by a Master. A write request through a Master will be completed under 

normal conditions and the Master will update the dataset. A write request through a Slave will require 

a Master to be available to update the dataset (Vukotic et al., 2015). If a Master is down, an election 

process takes place during which a new Master is elected. This, along with the HA component, assists 

with the scalability of the cluster, because it ensures that a Master is always available.  

Write operations are done through the Master, whereas read operations can be done locally on each 

Slave (Montag, 2013). This means that the read capacity of a cluster with the HA component will 

increase proportionally with the amount of running servers (Montag, 2013). If a cluster with five 

instances is serving five hundred read requests per second, the addition of a sixth instance would 

increase its capacity to six hundred read requests per second. Thus, the scalability performance level 

is also influenced by the number of running servers (Montag, 2013).  

Robinson, Webber and Eifrem (2015, p. 169) state that a future goal is to be able to fully partition a 

graph database across multiple machines without interference from the client’s application 

(Robinson, Webber & Eifrem, 2015). A benefit of this would be that read and write access could be 

Figure 7.20: Graphical representation of replication between the Master and Slave instances (Neo4j, 2017). 

 



CHAPTER 7: GRADING THE NOSQL FAMILIES 

102 

 

scaled horizontally (Robinson, Webber & Eifrem, 2015). The authors state that graph databases 

currently struggle to scale a graph dataset horizontally (Robinson, Webber & Eifrem, 2015). If a 

graph dataset is scaled horizontally, unpredictable query times may occur, because graph traversals 

could go across multiple machines (Robinson, Webber & Eifrem, 2015).  

The information above leads to a grade of 5 being assigned to the graph stores’ ability to scale. While 

it is possible to scale these datasets, performance will be unpredictable. The Neo4j HA component 

assists with replication and the performance of these replicas. A Master/Master replication method 

is employed and both Masters and Slaves can accept read and write requests. However, this method 

has the usual Master/Slave drawbacks. Focus is placed on the relationships between data. Therefore, 

if the graph dataset is partitioned among different servers, the performance could be unreliable due 

to traversals across the various nodes. Graph stores do not have a solution to both facilitate scalability 

and provide superior performance. However, replication can be seen as a method of providing 

scalability, because the different servers contain full copies of the graph data. Therefore, Neo4j is 

assigned a grade of 5 for scalability.  

7.4.6 Conceptual data structure 

Relationship-heavy data may be difficult to store in databases that do not focus on the relationships 

between the data. Graph stores place a focus on the relationships between data, while the other 

NoSQL families do not (Hecht & Jablonski, 2011). Examples of relationship-heavy data include 

social media data, transactional data, geospatial data, and linked data (Hecht & Jablonski, 2011). 

Social media data, for example data from Facebook or Twitter, is a good example of  relationship-

heavy data. A user can have friends and friends of friends (Robinson, Webber & Eifrem, 2015). The 

depth levels of relationships with friends and followers can become vast (Hecht & Jablonski, 2011). 

Graph stores, such as Neo4j, can handle these depth levels easily, while also providing high 

performance for queries (Robinson, Webber & Eifrem, 2015).  

Robinson, Webber and Eifrem (2015) list some use cases in their book about Neo4j. The use cases 

depict how various data types can be utilised with graph stores to provide value (Robinson, Webber 

& Eifrem, 2015, p. 106). A business can employ social media data within a graph store to gain a 

competitive advantage. Recommendations regarding the next best product to sell can be made by 

investigating the relationship strengths between products. Graph stores can analyse geospatial data 

to determine the route or distance between two regions (Hecht & Jablonski, 2011). Graph stores can 

store network and data centre management data. A graph store can graphically depict the network 

performance to assist with troubleshooting. Graph stores can give insight into network deployment 

for future recommendations. The use cases above employ data with unique structures. Graph stores, 
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such as Neo4j, can store and work with such semi- and unstructured data and place focus on the 

relationships between the data.  

Consequently, graph stores receive a grade of 9 for the conceptual data structure criterion. This 

represents the performance and ability of graph stores. Graph stores are the only NoSQL family that 

can provide superior performance when working with relationship-heavy data. Graph stores can store 

and work with semi- and unstructured data types. However, focus is placed on the relationships 

between datasets. The use cases mentioned some of the different data types that can be stored within 

graph stores. Graph stores may be the correct storage medium for a use case that employs 

relationship-heavy data.  

7.4.7 Reliability 

Reliability refers to the system’s ability to operate without failures for a certain amount of time 

(Domaschka, Hauser & Erb, 2014). If a database is reliable, it may perform its function without any 

failure. Reliability in Neo4j is enabled by the HA component, which employs a Master/Slave 

replication model.  

In a cluster with the HA component, the entire graph dataset is replicated to each instance in the 

cluster (Montag, 2013). The advantage of replication is that the data is safe even if a server fails. The 

disadvantage of replication is that it is resource intensive. The entire graph dataset needs to be able 

to fit into the capacity of every instance (Montag, 2013). The current version of Neo4j has no 

limitation on the number of nodes per instance it can store. Each Neo4j instance can store more than 

34 billion nodes (Neo4j, 2017). Therefore, replication can be completed more easily, and better data 

reliability can be provided.  

The Neo4j HA component requires a quorum to be present in the cluster to serve write requests 

(Neo4j, 2017; Montag, 2013). A quorum is reached when more than half of the nodes in the cluster 

are active. This allows elections to take place when a Master goes down so that write requests can be 

made (Neo4j, 2017). This is the method Neo4j uses to continue operating even after a failure occurs.  

A grade of 8 is assigned to the reliability criterion for graph stores. A grade of 8 reflects the level of 

reliability that can be achieved within graph stores. Graph stores have certain drawbacks, such as 

Master/Slave elections and quorum requirements. Elections can result in data loss and down time. If 

a quorum is not present for an election in the Neo4j cluster, the cluster will degrade to read-only 

operation. This mode of operation allows only read requests to be completed until a quorum is 

established. Nevertheless, Neo4j is operational and allows requests to be made. The dataset is 

replicated to all the servers, which ensures the data is safe and reliable. Thus, graph stores can provide 

superior reliability. 
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7.4.8 Learning curve 

Learning curve refers to the complexity level of a database as well as the time and effort needed to 

set it up and to learn how to use it. The focus of this criterion is on the available knowledge regarding 

graph stores and Neo4j.  

Neo4j in Action by Vukotic et al. (2015) is a book for beginners who want to learn more about graph 

stores and Neo4j. Neo4j in Action contains 281 pages that explain graph stores and Neo4j in detail. 

The book starts by making a case for Neo4j. The book explains what Neo4j is and indicates how 

Neo4j and graph stores compare to other NoSQL stores. The book continues by explaining relevant 

terms and technologies used by Neo4j. Lastly, the book describes how Neo4j functions in a 

production environment. Neo4j in Action is aimed at novice IT practitioners.  

The Neo4j Cookbook by Goel (2015) has 205 pages that focus on how to use Neo4j. The book 

explains single node setups as well as advanced setups with numerous technologies. Each example 

in the book is accompanied by code to assist the reader in learning to use and set up Neo4j. This book 

contains industry examples to illustrate how graph stores function in a contemporary technology 

context. The book covers advanced setups of Neo4j in distributed environments. It also investigates 

the scaling of Neo4j and graph stores. Lastly, the book explains how to do maintenance and 

administration for a Neo4j database. The Neo4j Cookbook (Goel, 2015) focusses on advanced usage 

of Neo4j and how Neo4j can fulfil various needs.  

The Neo4j website (https://neo4j.com) contains a wide variety of resources. All the Neo4j 

documentation data of can be found on the website. Research papers on Neo4j can also be obtained 

from the website. On the website, a download link for Neo4j allows clients to download and install 

Neo4j. There are also numerous tutorials for beginners and advanced users on YouTube 

(www.youtube.com). Below is a list of popular books about Neo4j. The books can be used to train 

users to take advantage of graph stores and Neo4j.  

 Van Bruggen, R. (2014). Learning Neo4j: run blazing fast queries on complex graph 

datasets with the power of the Neo4j graph database. Birmingham, UK: Packt Publishing. 

 Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., & Partner, J. (2015). Neo4j in Action. 

Shelter Island, NY: Manning Publications Company. 

 Gupta, S. (2015). Neo4j essentials. Birmingham, UK: Packt Publishing Limited.  

 Robinson, I., Webber, J., & Eifrem, E. (2015). Graph databases: new opportunities for 

connected data (2nd ed.). Sebastopol, CA: O'Reilly Media, Incorporated. 

 Goel, A. (2015). Neo4j Cookbook: harness the power of Neo4j to perform complex data 

analysis over the course of 75 easy-to-follow recipes. Birmingham, UK: Packt Publishing 

Ltd. 

 Raj, S. (2015). Neo4j high performance design, build, and administer scalable graph 

database systems for your applications using Neo4j. Birmingham, UK: Packt Publishing. 
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 Redmond, E., Wilson, J. R., & Carter, J. (2012). Seven databases in seven weeks: a guide 

to modern databases and the NoSQL movement. Dallas, TX: Pragmatic Bookshelf. 

 Lal, M. (2015). Neo4j graph data modeling: design efficient and flexible databases by 

optimizing the power of Neo4j. Birmingham, UK: Packt Publishing Limited. 

 Jordan, G. (2014). Practical Neo4j. Berkeley, CA: Apress. 

 Kemper, C. (2015). Beginning Neo4j. Berkeley, CA: Apress. 

 Webber, J., & Robinson, I. (2016). A programmatic introduction to Neo4j. Harlow: 

Addison-Wesley. 

Performing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as 

on Google Scholar returned the following number of results. The keyword used for the search was 

“neo4j”. 

 Web of Science: 22 results 

 IEEE Xplore: 36 results 

 ScienceDirect: 107 results 

 Google Scholar: 5030 results 

As can be seen above, there are a several books available about graph databases, such as Neo4j. Some 

of the most popular books have been listed above. Graph databases focus on relationship-heavy data. 

This may require a different mentality when attempting to learn about a new graph database 

technology. The books range in content from the fundamentals of graph stores to experienced and 

advanced usage of Neo4j. There are many tutorials online that an individual follow to learn how to 

use Neo4j. Neo4j has a website (https://neo4j.com) that individuals can visit to download the software 

and read the latest documentation about Neo4j and graph databases. Graph stores are assigned a grade 

of 8 for the amount teaching materials available.  

A grade of 8 means that individuals can teach themselves how to use graph stores, such as Neo4j. 

Books and tutorials on the subject are readily available. Beginners might struggle with graph 

databases, as they require individuals to think more about relationships. However, the amount of 

documentation available is still sufficient. According to the search results, not as much research is 

being done into graph databases as into the previous two NoSQL families. However, research is 

continually being done to improve graph stores, such as Neo4j.  

7.5 Key-value stores (Redis)  

The key-value data model stores data against a specific key. The data is stored as uninterpreted byte 

arrays, and the key is used to store, find, and sort the data (Abramova, Bernardino & Furtado, 2014; 

Hecht & Jablonski, 2011). The data is independently stored, which means that relationships between 

the data must be handled by the application logic (Hecht & Jablonski, 2011). The simple data 

structure of key-value stores enables schema-free storage. Any type of value can be added during 

runtime without affecting the availability of the database (Hecht & Jablonski, 2011). Key-value 
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stores prioritise scalability over consistency (Strauch, Sites & Kriha, 2011). Therefore, key-value 

stores may be able to address the need for access to distributed data.  

Redis is an implementation of key-value databases. Redis stores data as values against keys. The keys 

are used to uniquely identify the data stored in Redis. Redis can provide fast access to the data because 

data is stored in main memory. Redis is schema-free and does not place any restrictions on the data 

it stores. The client application logic is required to process the value of and relationships between 

the data (Seguin, 2012, p. 7). Figure 7.21 shows key-value pairs that consist of different data values 

stored against their respective keys.  

7.5.1 Consistency 

High consistency is achieved when clients always read the most up-to-date information (Pokorny, 

2013). If high consistency is not supported, the most up-to-date information is not displayed. In time, 

the out-of-date information will be updated and the newest information displayed. This process is 

known as eventual or weak consistency (Pokorny, 2013). Redis employs eventual consistency due to 

the Master/Slave replication model (Hecht & Jablonski, 2011).  

Redis uses a Master/Slave model to replicate data onto different nodes in an asynchronous manner, 

which means that the data is not replicated immediately (Das, 2015). The Master node will write all 

the data and then replicate the dataset to the Slaves. Therefore, the data on the Master and the Slave 

nodes is eventually consistent. An advantage of eventual consistency is increased performance. If 

high consistency is employed, any update or write to a Master must be replicated to the Slaves 

immediately. A large number of Slave nodes means that a large amount of resources will be used to 

update the data to all the Slaves (Das, 2015, p. 107).  

The Master/Slave model also has drawbacks. An election process occurs when a Master node 

experiences a fault. When a new Master is elected, the Slave nodes must reconfigure to view the new 

Master. Redis employs a technology known as Redis Sentinel that aims to automate the 

reconfiguration of Slave nodes, which used to be a manual process (Da Silva & Tavares, 2015). Redis 

Sentinel aims to combat the drawbacks of the Master/Slave model by automatically promoting a 

Slave to the role of Master (Da Silva & Tavares, 2015). Redis Sentinel does not replicate data. 

Figure 7.21: Key-value store contents, adapted from Wellhausen (2012). 
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However, it ensures that the Master and Slave nodes are operational to provide consistency to the 

data (Da Silva & Tavares, 2015, p. 171).  

Redis employs eventual consistency, which means that the Master dataset is not immediately 

replicated to the Slaves. The Slave nodes contain old copies of the data until an update operation 

occurs. The drawbacks of the Master/Slave model are mitigated through Redis Sentinel. The election 

process is automated to ensure a new Master is elected and the Slaves are reconfigured to view the 

new Master node. Therefore, key-value stores can provide adequate levels of consistency. A grade 

of 6 represents the level of consistency of data within key-value stores. A combination of eventual 

consistency and the Master/Slave model enables above-average levels of consistency to be achieved. 

Redis can provide asynchronous consistency of data with reliable performance benefits. Thus, if a 

use case does not require synchronous consistency of data, Redis can be employed to provide 

eventual consistency.  

7.5.2 Availability 

The percentage of time a system is functioning correctly is an indication of its availability (Orend, 

2010). Availability also refers to continuous operation after a fault occurs (Han, Haihong, Le & Du, 

2011; Strauch, Sites & Kriha, 2011). Redis employs the Master/Slave replication model to provide 

availability and fault tolerance (Das, 2015). This replication model allows the Master to replicate the 

dataset to the connected Slaves (Carlson, 2013). The updated Slaves make it possible for the clients 

to retrieve the full dataset by ensuring the data is available.  

The availability of Redis depends on the availability techniques of the Master and Slave nodes. The 

availability technique used by Slaves differs from the Master’s technique. There are numerous Slave 

nodes that can be used to counter a failure. The available Slave nodes will accommodate the failed 

Slave’s requests to ensure that clients can access the dataset (Das, 2015). The technique employed 

by the Master node is more difficult because there is only one Master at a time (Das, 2015; Da Silva 

& Tavares, 2015). If the Master node fails, write requests will not execute until a new Master node 

is running (Das, 2015). This means that data loss can occur, because only read requests can be 

completed. A technology known as Redis Sentinel can be used to combat data loss (Das, 2015, p. 

265). Redis Sentinel performs the election process automatically and configures all the Slaves to 

point to the new Master node (Da Silva & Tavares, 2015). Therefore, Redis Sentinel attempts to 

combat the downtime and data loss that can occur if a Master node fails (Da Silva & Tavares, 2015, 

p. 171). 

Redis can provide high availability through the Master/Slave replication model and Redis Sentinel. 

The data is always safe, because each node contains a copy of the entire dataset. However, a 
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drawback of this replication method is experienced when a Master node fails, because write requests 

may not be executed without the presence of a Master node. Therefore, to prevent data loss, it is 

important that a Master node always be present. Redis Sentinel is the solution to the data loss 

problem. It automatically elects a new Master from among the Slaves to ensure that write requests 

can continue. High availability can be achieved with key-value stores. Therefore, a grade of 8 is 

assigned to the availability criterion. This reflects the level of availability key-value stores can 

provide if they are set up correctly.  

7.5.3 Partitioning  

There are limits to the capacity and performance of database servers. Exceeding these limits requires 

the database to be partitioned across multiple database clusters. NoSQL families’ methods of 

distributing data to multiple machines differ (Hecht & Jablonski, 2011). The majority of the NoSQL 

families have a key-oriented data model. There are two methods that can be used to partition data. 

The first method is range-based partitioning, and the second method is consistent hashing (Redis, 

2017).  

The range-based partitioning strategy distributes a dataset by using the range of the dataset’s keys 

(Hecht & Jablonski, 2011). The keyset is split into blocks and each block is stored on a different 

node (Chen, Mao & Liu, 2014). For example, users with an ID of 0 to 10 000 are stored on instance 

R0, and users with an ID of 10 001 to 20 000 are stored on instance R1 (Redis, 2017). Range-based 

partitioning allows efficient handling of queries, as the keys and their associated data are stored on 

the same node (Hecht & Jablonski, 2011). A disadvantage of this method is the table required to 

manage the mappings of ranges to instances (Redis, 2017). The table must be constantly updated to 

keep track of stored records. If the table were to fail, the queries could be sent to the wrong instances, 

which could cause downtime. Therefore, a single point of failure exists within the range-based 

method. 

The consistent hashing method allows for higher availability (Hecht & Jablonski, 2011; Karger et 

al., 1999). This strategy employs a shared nothing architecture (Stonebraker, 1986) and does not have 

a single point of failure. The keys are distributed through hash functions to allow quick calculation 

of a key’s address within the cluster (Hecht & Jablonski, 2011). Consistent hashing does not require 

a table to keep track of the data locations. However, since the keys are distributed at random 

throughout the cluster, this strategy may cause performance penalties on queries due to the high 

network load (Hecht & Jablonski, 2011). Hecht and Jablonski (2011) gave Redis a positive rating for 

consistent hashing and a negative rating for range-based partitioning. These ratings indicate that 

Redis should employ consistent hashing and not range based partitioning.  
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Key-value stores receive a grade of 6 for the partitioning criterion. The two methods of partitioning 

each have their own advantages and disadvantages. Range-based partitioning has a single point of 

failure but provides superior performance. Consistent hashing does not have a single point of failure. 

However, performance penalties may occur since a tracking table is absent. Therefore, it is possible 

to provide above-average performance through partitioning data in Redis. The advantages and 

disadvantages of the two methods must be investigated before implementing partitioning in Redis.  

7.5.4 Read and write performance 

In a study done by Du Toit (2016), the reading and writing capabilities of different NoSQL databases 

were evaluated. Workloads of various sizes were implemented and the time until completion was 

recorded. Du Toit (2016) performed bulk inserts of various amounts of records into several NoSQL 

databases. Du Toit (2016) found that Redis does not allow batch loading from a client application. 

The batch loading of data had to be done through a text file and a batch load program (Du Toit, 

2016). Owing to this, Du Toit (2016) stated that its performance could not be tested by the benchmark 

tool. Du Toit (2016) added the total dataset as a single record through the benchmark tool and found 

the writing speed to be 51 records per second and 19.56 milliseconds per record (Du Toit, 2016).  

The reading performance of Redis indicates that result sets of up to 20 000 records were possible (Du 

Toit, 2016). Redis could read a single record in an average time of 9.3 milliseconds (Du Toit, 2016). 

However, Table 7.9 indicates that a single record took longer than any batch reading query (Du Toit, 

2016). The fastest time recorded was 3.26 milliseconds per record for a batch read job of a 1000 

records (Du Toit, 2016). The read performance of Redis remained relatively consistent up to 20 000 

records where there was a slight increase to 4.4 milliseconds (Du Toit, 2016). At its fastest, Redis 

could read 300 records per second when reading between 1000 and 5000 records in total (Du Toit, 

2016). Its slowest performance of 227 records per second was recorded at 20 000 records (Du Toit, 

2016). Du Toit’s (2016) research indicates that Redis can provide superior read performance, 

especially during batch queries. Table 7.9 depicts the results of Du Toit’s (2016) reading benchmark 

tests for Redis. 

Table 7.9: Results of Redis reading benchmark tests over four nodes (Du Toit, 2016). 

 

Records 1 100 1000 2500 5000 10000 20000 

Duration in 
ms (average)  

9.3 382.9 3258.9 8188.5 16644.9 34176.4 88079.1 

Latency per 
record in ms  

9.3 3.829 3.2589 3.2754 3.32898 3.41764 4.40396 

Records per 
second  

107.527 261.165 306.852 305.306 300.392 292.6 227.069 
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Abubakar, Adeyi and Auta (2014) compared the performance of MongoDB, Redis, OrientDB, and 

ElasticSearch. Figure 7.22 indicates that Redis outperformed the other NoSQL databases in the write 

benchmark test (Abubakar, Adeyi & Auta, 2014). Redis completed the write operation in the smallest 

amount of time (Abubakar, Adeyi & Auta, 2014). Redis provides superior write performance because 

the dataset is stored within main memory (Seguin, 2012).  

Figure 7.23 indicates that Redis was the second best in the read benchmark test (Abubakar, Adeyi & 

Auta, 2014). Thus, according to the findings of this study, Redis provides superior read and decent 

write performance (Abubakar, Adeyi & Auta, 2014). This study’s findings indicate that the read 

performance of Redis is superior to its write performance and thus agree with Du Toit’s (2016) 

findings. 

Abramova, Bernardino and Furtado (2014) evaluated the performance capabilities of several NoSQL 

databases. The evaluation compared three of the four NoSQL families by comparing several NoSQL 

databases. The NoSQL databases represented their respective families. The aim of the evaluation 

Figure 7.23: Read performance comparison (Abubakar, Adeyi & Auta, 2014). 

 

Figure 7.22: Write performance comparison (Abubakar, Adeyi & Auta, 2014). 
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was to understand the effect of the data model on the performance of each family (Abramova, 

Bernardino & Furtado, 2014).  

Figure 7.24 indicates the performance of each database in the write test. Redis was the fith fastest 

database to complete the operation (Abramova, Bernardino & Furtado, 2014). It took Redis 5 minutes 

and 17 seconds to write 600 000 records (Abramova, Bernardino & Furtado, 2014). The authors 

noted that Redis could not insert 600 000 records at once (Abramova, Bernardino & Furtado, 2014). 

Two write operations were used to write 600 000 records. The sum of the operation times was 5 

minutes and 17 seconds (Abramova, Bernardino & Furtado, 2014).  

Figure 7.25 indicates the performance of each database in the read test. Redis completed the test 

within 0.49 seconds, which was the second fastest time (Abramova, Bernardino & Furtado, 2014). 

The results of these tests show that the read performance of key-value stores is far superior to their 

write performance. Key-value stores use main memory to store data, which may be an indication of 

why their read performance is fast (Seguin, 2012).  

Key-value stores can provide fast read and write performance, because data is stored in main 

memory, which makes it quickly accessible. Most of the performance studies above indicate that 

key-value stores provide superior reading and proficient writing performance. Therefore, grades of 

7 and 6 are assigned to reading and writing performance, respectively. The grade of 7 means that 

Figure 7.25: Read performance times (Abramova, Bernardino & Furtado, 2014). 

 

Figure 7.24: Write performance times (Abramova, Bernardino & Furtado, 2014). 
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good reading performance is achievable within key-value stores, while the grade of 6 means that 

writing performance is above average. However, there are drawbacks to consider. The first drawback 

is that key-value stores use volatile memory to store datasets, which means that data loss can occur 

if power is lost. Another drawback is the capacity of main memory. The entire dataset is stored in 

main memory. Therefore, the size of the dataset is limited by the capacity of main memory. Large 

datasets may lead to a higher cost to accommodate the size of the dataset. Key-value stores are 

suitable for high-performance computing that employs moderately sized datasets. 

7.5.5 Scalability  

Scalability refers to the system’s ability to handle increasing workloads (Orend, 2010). Redis 

achieves high scalability through replication and clustering (Redis, 2017). Replication of data is 

achieved through the Master/Slave model. Writes performed on the Master node are replicated to the 

Slave nodes (Redis, 2017). Thus, the Slave nodes have an exact copy of the Master node’s data. 

Therefore, clients can query both the Master and Slave nodes (Carlson, 2013). The benefit of this 

replication model is that the data can be scaled to various nodes within the cluster. If failures were to 

occur, the data would be safe because exact copies can be found on all nodes (Da Silva & Tavares, 

2015). The Master/Slave model does have drawbacks, such as downtime. However, Redis Sentinel 

aims to combat the drawbacks of the Master/Salve model (Da Silva & Tavares, 2015, p. 171). 

Redis clustering is the second approach used to provide high scalability (Redis, 2017). Redis 

clustering is a method of automatically sharding the dataset across several nodes (Redis, 2017). Hash 

slots are employed to allow the addition or removal of nodes without the occurrence of downtime. 

Asynchronous replication exists between the nodes in the Redis cluster, meaning the Slave nodes are 

not updated immediately (Redis, 2017). The Master/Slave replication model ensures that data can be 

scaled. The drawback of the clustering method is that new nodes do not store data immediately. The 

cluster needs to be re-sharded to configure and add blocks to the new node (Redis, 2017). In doing 

so, data can be split across numerous Redis instances to provide high scalability.  

The abovementioned leads to a grade of 7 being assigned to the scalability criterion. The grade of 7 

reflects the high level of performance that key-value stores can provide where scaling is concerned. 

Redis employs two approaches to provide high scalability. The Master/Slave replication model 

replicates the dataset between the nodes. There are drawbacks to employing the Master/Slave model. 

However, Redis Sentinel automates the election process to mitigate these drawbacks. Redis 

clustering provides the ability to shard the dataset across numerous cluster nodes. This method allows 

new nodes to be added without downtime. However, if a new node is added, the cluster must be re-

sharded to allocate blocks to store the data, meaning downtime could occur.  
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7.5.6 Conceptual data structure 

Semi- and unstructured data can originate from various sources with different structures. Therefore, 

the storage technology must be able to handle the heterogeneous nature of the data. Redis is 

completely schema-free and allows the insertion of data during runtime (Hecht & Jablonski, 2011). 

Key-value stores are useful in use cases that deal with key-based attributes (Hecht & Jablonski, 

2011). Common use cases include the management of user profiles, the management of sessions, and 

the retrieval of product names (Moniruzzaman & Hossain, 2013). Redis can support a rich set of data 

types that includes strings, hashes, lists, sets, and sorted sets (Redis, 2017). These five data types 

allow a range of problems to be solved (Carlson, 2013).  

Some companies that use Redis include companies such as Twitter, Pinterest, Snapchat and Flickr 

among others (Redis, 2017). Redis can provide high performance while dealing with a rich set of 

data types. An example of a Redis use case is within the Twitter context where Redis is used to create 

an individual’s timeline (Iravani, 2015).  The timeline consists of tweets indexed by their id which 

allows Redis to chain the tweets together, regardless of the data type (Hecht & Jablonski, 2011; 

Iravani, 2015). As a result, Twitter employs Redis as it meets the performance and data structure 

requirements of its use case. Other companies such as Pinterest and GitHub have different data type 

requirements than that of Twitter (Shon, 2014). However, each of the companies employ Redis since 

it can accommodate their data type requirements. Therefore, key-value stores can accommodate 

various data type requirements. 

Consequently, key-value stores receive a grade of 7 for the conceptual data structure criterion. This 

family is able to store and work with semi- and unstructured data. Key-value stores, such as Redis, 

can accommodate numerous data types. Therefore, they can be used to solve numerous problems.  

7.5.7 Reliability 

If the reliability of a database system is high, then the database system is less likely to fail 

(Domaschka, Hauser & Erb, 2014). A method of combatting weak reliability in key-value stores is 

persisting data to disk (Redis, 2017). Within Redis, there are two methods of persistence, known as 

snapshotting and append only file (AOF), which can be used separately, together, or not at all 

depending on the situation (Carlson, 2013; Redis, 2017). The choice between these methods depends 

on the data stored and the application implemented (Carlson, 2013). One of the primary reasons to 

use these methods is to provide high reliability of data. Key-value stores use main memory to store 

the data. Main memory is volatile, which means the data can be lost. Therefore, main memory data 

is persisted to disk to ensure the reliability of data (Carlson, 2013; Redis, 2017). 
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Snapshotting is a persistence method that writes the current data to a disk at specific intervals 

(Carlson, 2013). Snapshotting is appropriate when working with datasets less than a few gigabytes 

in size (Carlson, 2013; Redis, 2017). Snapshotting is a method used to persist data to disk (Carlson, 

2013). As the dataset size increases, the time needed to persist the data increases. There are two 

drawbacks to implementing snapshotting. The first drawback is that a large dataset leads to less 

memory being available. Therefore, snapshotting will take more time to complete (Carlson, 2013). 

The performance of Redis can degrade heavily if snapshotting is slow to complete (Carlson, 2013). 

The second drawback is data loss. If a crash occurs, all the data modified since the last snapshot is 

lost (Carlson, 2013; Redis, 2017). 

Append only file (AOF) is the second method used to provide high reliability. AOF enables Redis to 

store more up-to-date data (Carlson, 2013). The AOF log tracks all changes that occur in the dataset. 

Thus, the dataset can be recovered from the AOF log if faults occur (Carlson, 2013). The 

configuration of AOF can meet various needs, such as persisting data to disk every second. Such a 

configuration means that only one second of data will be lost if a failure occurs. A drawback to AOF 

is that increased storage capacity is used. AOF can also be slower than snapshotting the dataset 

(Redis, 2017).  

A grade of 7 is assigned to key-value stores for the reliability criterion, because they employ different 

methods to ensure data reliability. Key-value stores can provide superior reliability through each 

method. Each method has its own drawbacks and advantages. However, the choice of method 

depends on the circumstances and the applications used.  

7.5.8 Learning curve 

The time and effort needed to set up and learn how to use a database as well as the database’s 

complexity level are represented by the learning curve criterion. Redis in Action (Carlson, 2013) is a 

book that teaches the reader about Redis and key-value stores. The book contains 293 pages that 

introduce the reader to Redis. Many relevant terms associated with Redis and key-value stores are 

explained. The book also explains the data types that Redis can work with as well as how several 

problems can be solved through Redis. The last part of the book explains how Redis can scale within 

a distributed environment. This book is aimed at novice readers who want to get started with Redis.  

Redis Essentials (Da Silva & Tavares, 2015) is a book of 197 pages that aims to teach readers how 

to use Redis in a business environment. The topics covered include the installation of Redis and how 

to implement the Redis cluster and Redis Sentinel technologies. The book includes some example 

code to assist the reader in understanding the techniques being implemented. The book is aimed at 

both beginners and advanced readers who want to employ Redis.  
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The Redis website (https://redis.io) supplies a wide variety of resources, including the most up-to-

date Redis documentation. A full set of commands for Redis is available on the website. A download 

link for Redis is available for clients to download and install the database. There are also numerous 

tutorials for beginners and advanced users on YouTube (www.youtube.com). Numerous other 

learning materials can be found on the internet. These materials include research materials, tutorial, 

and books. Some popular books about Redis and key-value stores are listed below. These books 

provide the reader with the fundamentals of key-value stores. They can be used to teach users the 

most basic concepts and most advanced usage of Redis.  

 Carlson, J. L. (2013). Redis in Action. Shelter Island: Manning. 

 Macedo, T., & Oliveira, F. (2014). Redis Cookbook. Beijing; Köln; Sebastopol, Calif.: 

O'Reilly. 

 Dayvson, D. S., & Tavares, H. L. (2015). Redis Essentials. Packt Publishing. 

 Das, V. (2015). Learning Redis. Packt Publishing. 

 Redmond, E., Wilson, J. R., & Carter, J. (2012). Seven databases in seven weeks: a guide 

to modern databases and the NoSQL movement. Dallas, TX: Pragmatic Bookshelf. 

 Nelson, J. (2016). Mastering redis. Packt Publishing Limited. 

 Chinnachamy, A. (2013). Instant redis optimization how-to. Packt Publishing Limited. 

 Palmer, M. (2013). Instant redis persistence. Packt Publishing Limited. 

 Sanfilippo, S., & Noordhuis, P. (2011). Redis: The Definitive Guide Data Modeling, 

Caching, and Messaging. Oreilly & Associates Inc. 

 Chinnachamy, A. (2014). Redis applied design patterns: use Redis' features to enhance 

your software development through a wide range of practical design patterns. 

Birmingham: Packt Publishing. 

Performing a search on the databases of Web of Science, IEEE Xplore, and ScienceDirect as well as 

on Google Scholar returned the following number of results. The keyword used for the search was 

“redis”. 

 Web of Science: 21 results 

 IEEE Xplore: 47 results 

 ScienceDirect: 0 results 

 Google Scholar: 105 000 results  

However, the content received was not always in line with the keyword. For example, a change in 

search term from “redis” to “redis database” delivered only 13 500 results on Google Scholar. 

There are various materials available that can be used to teach IT practitioners about key-value stores, 

such as Redis. The teaching materials consist of book tutorials, video tutorials, and courses about 

key-value stores. The material is readily available and Redis’s documentation is available on their 

website (https://redis.io). The documentation is always expanding as new information is constantly 

added to the current body of knowledge.  
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Considering the number of search results and the amount of teaching materials available, key-value 

stores are assigned a grade of 7. The grade of 7 means that an individual can download information, 

install the database, and teach themselves through online tutorials and books. There are also more 

advanced tutorials and books available that show individuals how to set up and use Redis to solve 

problems. The results of the search performed on the databases show that some research is being 

done in this area, but not as much as with the previous NoSQL database families.  

7.6 Conclusion 

Each NoSQL family has its own benefits. However, there are also disadvantages to using each of the 

families, which means that there is no single technology that can fulfil all possible requirements. 

Table 7.10 provides a summary of the grading done in this chapter. 

This chapter set out to grade the four NoSQL families on their performance by using a fixed set of 

criteria. The four NoSQL families each have unique strengths and weaknesses. For example, graph 

stores excel at using relationship heavy data to solve problems. Document-stores allow a multitude 

of data types to be stored together in a single document. Key-value stores provide the most consistent 

performance but have a storage limitation. Column-family stores provide proficient writing and 

consistency performance when working with heterogeneous data. There is no single solution for all 

use cases. However, each NoSQL family can be a better choice for a specific use case than the other 

families, as the capabilities of the families differ.  

This chapter performed Step 3 (grade according to the criteria) of the 6-step process model. It graded 

the performance of each family by using a fixed set of criteria. The next chapter will apply the 

framework to a specific use case and provide a recommendation regarding which NoSQL family to 

choose. Chapter 8 will perform Step 4 (weight the criteria), Step 5 (score the options), and Step 6 

(recommend an option) of the 6-step process model. The goal of the next chapter is to continue to 

demonstrate the feasibility and utility of the framework in a real-world use case by completing Steps 

4 to 6 of the process model within the context of storing NetFlow data in a NoSQL database.  
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Table 7.10: Summary of grades for each NoSQL family. 

Criterion Column-family Document-based Graph Key-value 

Consistency (7) Master/Slave 
replication provides 
good consistency.  

(7) Replica sets 
replication provides 
good consistency. 

(6) Master/Slave 
replication provides 
eventual consistency. 

(6) Master/Slave 
replication 
provides eventual 
consistency. 

Availability (5) Master/Slave 
combined with 
RegionServers 
provides average 
availability.  

(5) Replica sets and 
fault tolerance. 
Rollbacks can cause 
data loss. 

(9) Master/Slave and 
cluster management 
provide excellent 
availability. 

(8) Redis Sentinel 
and Master/Slave 
provide very good 
availability. 

Partitioning (7) Range-based 
partitioning provides 
good performance. 

(7) Range-based 
partitioning and 
autosharding provide 
good performance. 

(4) Difficult to 
partition. Can be 
partitioned through 
cache sharding. 

(6) Consistent 
hashing provides 
low performance 
and better fault 
tolerance. 

Read 
performance 

(4) Weak read 
performance. 

(9) Excellent read 
performance. 

(7) Good read 
performance. 

(7) Good read 
performance. 

Write 
performance 

(8) Strong write 
performance.  

(5) Average write 
performance. 

(5) Average write 
performance. 

(6) Above-average 
write 
performance. 

Scalability (7) HDFS and 
autosharding 
provide high 
scalability. 

(6) Autosharding and 
Master/Slave provide 
decent scaling but 
are difficult to set up. 

(5) Difficult to scale. 
Master/Slave 
replicates full copies 
to all nodes. 

(7) Master/Slave 
and Redis Sentinel 
provide good 
scalability. 

Conceptual 
data 
structure 

(8) HDFS and flexible 
schema. No heavily 
linked data. 

(7) Schemaless. 
Documents and 
collections. 

(9) Heavily linked 
data. Can also store 
different types of 
data. 

(7) Can store 
several types of 
data. 

Reliability (7) HDFS provides 
high reliability. 

(7) Replica sets and 
automatic failover 
provide high 
reliability. 

(8) Neo4j HA 
component provides 
good reliability. 

(7) Snapshotting 
and append only 
file provide good 
reliability. 

Learning 
curve 

(8) Easy to learn. 
Many learning 
materials available. 
Not too difficult to 
implement. 

(9) Easy to learn. 
Many learning 
materials available. 
Not difficult to 
implement. 

(8) Easy to learn. 
Many learning 
materials available. 
Not too difficult to 
implement. 

(7) Not too difficult 
to learn. Some 
learning materials 
available. 



 

CHAPTER 8: NETFLOW USE CASE 

In this dissertation, a framework that can be used to assist IT practitioners in making decisions 

regarding NoSQL technologies is proposed. The proposed framework presents a weighted decision 

model that can be tailored to assist with specific technological use cases by following a 6-step 

process. The previous chapter adapted the weighted decision model by grading the four NoSQL 

families using a fixed set of criteria for NoSQL technologies. The current chapter will further 

demonstrate the feasibility and utility of the framework in a real-world use case and complete the 

adaption process.  

The next step (Step 4) of the 6-step process model is to allocate weights to the criteria. The 

requirements of the use case determine what weight is allocated to each criterion. Input regarding the 

relative importance of each criterion is obtained from IT practitioners who are familiar with the 

requirements of the use case. The goal is to indicate which of the criteria are important for the success 

of the use case. After the weights are assigned, calculations can be performed to compute the final 

score for each family (Step 5), which can then be used to make a recommendation (Step 6).  

The use case context for this study is NetFlow. This chapter starts by explaining the NetFlow use 

case. Thereafter, the requirements of the use case that will affect the weight values assigned to the 

criteria are investigated. The instrument used to gather the weight values is described and the final 

scores of the NoSQL families are discussed. Lastly, the recommendation provided by the framework 

is discussed and an explanation of why that specific recommendation was made is given.  

8.1 Use case 

Most networks have some sort of network monitoring or reporting tool in place. Network monitoring 

tools are used to gain an understanding of a network’s operation. NetFlow is a popular protocol that 

can be used to report on a network’s operation or identify irregularities if normal functioning is not 

occurring (Cisco, 2012). In the use case focused on in this study, IT practitioners must decide which 

NoSQL family to use to store captured NetFlow data for decision-making purposes.  

Normal operational use of NetFlow will continue. However, storing the data in a NoSQL database 

will allow it to be used for additional purposes, such as trend analysis, security analysis, and decision 

support. It is essential to obtain weight values to indicate which criteria are important for this use 

case.  

8.1.1 NetFlow 

There are a variety of factors that can influence the amount and type of traffic that is generated inside 

a network (Sommer & Feldmann, 2002). Examples of such factors include a change in users’ 
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behaviour on the network, the installation of new technologies or hardware, and the time of the day 

(Sommer & Feldmann, 2002). In order to make sense of the increase in and type of traffic on the 

network, the IT practitioner needs to have a clear understanding of what is occurring inside the 

network. Network measurement systems can provide aggregated information for each pair of IP 

addresses or port numbers (Sperotto et al., 2010). To gain an understanding of the network and its 

performance, the information regarding communications inside the network needs to be inspected. 

NetFlow is a tool that can be used to aggregate such information. 

According to Cisco (2012), NetFlow is an instrument in Cisco IOS software that can be used to 

characterise the operation of the network. NetFlow data is network traffic data between two hosts. 

NetFlow data consists of NetFlow records. Each record contains information, such as IP addresses, 

port numbers, traffic protocol types, and the volume of traffic being sent across the network (Table 

8.1) (Lakkaraju, Yurcik, & Lee, 2004). A prominent characteristic of NetFlow data is the rate at 

which the data is generated (Zhou, Petrovic, Eskridge & Carvhalo, 2014). An organisation with a 

major internet backbone can generate large volumes of NetFlow data at a high velocity. For example, 

routers of a university can generate large amounts of NetFlow data (Zhou et al., 2014).  

 Table 8.1: NetFlow fields and their meanings (Sommer & Feldmann, 2002) 

 

 

 

 

 

Capturing NetFlow data requires large amounts of storage space. The next section describes how 

NetFlow can add value to organisations.  

8.1.2 The value of NetFlow 

Storing NetFlow data without using it wastes resources. There are numerous ways through which 

NetFlow can add value to an organisation, such as intrusion detection, network monitoring, 

bandwidth estimation, and predicting future data requirements. This data can also be used to 

determine more in-depth information, such as the relationships between NetFlow data from several 

locations, future network requirements, and the cybersecurity state of the network, as well as to gain 

knowledge of the network. NetFlow data can be used to detect network intrusions (Sperotto et al., 

2010), to estimate bandwidth for a network (Schmidt, Sperotto, Sadre & Pras, 2012), and for 

Name Description 

Srcaddr Source address 
Dstaddr Destination address 
Input Input interface 
Output Output interface 
dPkts Number of packets 
dOctets Number of octets 
First Start of NetFlow 
Last End of NetFlow 
Srcport Source port 
Dstport Destination port 
Tcp_flags TCP flags 
tos IP type of service 
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visualising the data to solve problems (Minarik & Dymacek, 2008). Therefore, there are a variety of 

ways NetFlow can add value to an orginisation. However, the organisation may be required to be 

store the NetFlow data in a NoSQL technology. If so, a decision will have to be made regarding 

which NoSQL family to use to store the NetFlow data. An instrument will enable the IT practitioners 

to assign weights to criteria, which will assist with the decision-making process.  

8.2 The instrument used to weight the criteria 

In Chapter 6, three methods that can be used to capture the criteria weights from experts were 

investigated (section 6.2.2). These methods were interviews, focus groups, and questionnnaires.  

Interviews offer the ability to examine experts’ behaviour and answers to technical questions. 

However, the researcher did not have physical access to experts. Therefore, interviews were not 

feasible.  

Focus groups enable a group of experts to voice their opinions and discuss the weight values in the 

context of a use case. However, since the researcher did not have access to co-located experts, a focus 

group could not be conducted.  

For this study, a close-ended questionnaire with LPC-like scales is used. This enables the 

practitioners to enter specific weight values for each of the criteria. As stated before, the weights 

represent the level of importance of each criterion for the NetFlow use case. The questionnaire 

displays each criterion along with a short definition, which could assist the IT practitioner in 

assigning the correct weight. Refer to Appendix B for the instrument used in this study.  

The method used has two rules for assigning weights. The first rule is that each criterion can be 

assigned a weight of 1 to 10. A scale of 1 to 10 is used to allow the IT practitioners to assign a value 

that is representative of the importance level of each criterion. Also, the scale can help prevent some 

decision-making biases from influencing the decision.  

The second rule is that a maximum of 50 marks can be assigned per questionnaire. Placing a limit 

on a number of marks combats the effects of certain decision-making biases. Allowing a maximum 

of 50 marks to be distributed prevents individuals from assigning the same weight value to each of 

the criteria. It forces the IT practitioners to apply their minds to the task. Thus, this limit ensures that 

the recommendation provided is of a high quality.  

Once the weights are assigned, the instrument determines whether more than 50 marks were assigned 

in total. If more than 50 marks were assigned, an error message is shown to indicate that the rules 
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were not followed. Thereafter, the instrument closes and records the answer. However, less than 50 

marks may be assigned if it is of the IT expert’s opinion.  

Figure 8.1 is an example of the instrument that allows IT practitioners to assign weight values. Each 

criterion is represented on the left side as shown in Figure 8.1. Along with each of the criteria, a short 

definition is provided to assist IT practitioners in understanding the goal of each criterion. Both the 

minimum and maximum value that can be assigned are displayed to remind the IT practitioner of the 

rules. The IT practitioner is asked to assign the appropriate weight value to each of the criteria.  

Figure 8.1: Example of the read performance criterion within the instrument. 

The weighting instrument was distributed to expert IT practitioners who were asked to determine the 

importance of each criterion for the NetFlow use case. The identified weight values for the NetFlow 

use case will be inserted into the framework, which will recommend which NoSQL family to use.  

8.3 Weight the criteria (Step 4) 

The instrument that was developed to enable IT practitioners to insert weights was given to SANReN 

network engineers. The instrument requested that the IT practitioners indicate the importance of each 

criterion with regards to the NetFlow use case.  

Additional proof that technology decisions are difficult to make was provided when the SANReN 

engineers were asked to complete the questionnaire. Some SANReN engineers felt that they did not 

have the required expertise to complete the questionnaire. This supports the claim that technology 

decisions are difficult to make.  

Since such a decision is difficult, more than one opinion is necessary to derive an appropriate set of 

weight values. Therefore, a single opinion regarding the requirements of a use case is not a reliable 

source of information. More than one individual should complete the questionnaire from which the 

criteria weightings are derived. Since some SANReN engineers felt they did not have the required 

expertise, the questionnaire had to be distributed to other IT experts. Therefore, the questionnaire 

was distributed to NfSen and NFDUMP communities, whose members also have various levels of 

expertise in dealing with NetFlow data.  

A total of six responses were received. However, only three responses were selected to be used. The 

final weightings for the NetFlow use case were derived from a comparison of these responses. Out 

of the six respondents, three respondents did not follow the rules of the questionnaire. One of the 
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respondents assigned 15 marks to one criterion, therefore the respondent did not follow the rules. 

Two respondents did not apply their minds to the task. They assigned many of the criteria a weight 

value of 10 and no values to others. This means that these two respondents did not carefully consider 

the importance of each criterion in the context of the use case to assign an appropriate weight value. 

The three remaining responses were deemed proper responses and used to determine the weights of 

the criteria. A high weight value indicates that it is important to achieve high performance within the 

specific criterion and a low weight value indicates that it is not important to have high performance 

within the specific criterion. The following sections will discuss each criterion by comparing the 

weight values assigned to it by the respondents.  

Consistency 

For the consistency criterion, the first respondent provided a weight value of 3, indicating that high 

consistency is not very important for the use case. The second respondent assigned a weight value of 

6 to the criterion, which means that high consistency is of moderate importance to the use case. The 

third respondent assigned consistency a weight value of 8, indicating that high consistency is very 

important to the use case.  

Two of the three weight values are relatively close to each other and indicate that consistency is 

important for the use case. However, the first respondent’s weighting indicates otherwise. Owing to 

the large gap between the values, the average of the values may not properly represent the responses 

of the first and third respondents (section 2.2.1).  

However, two of the respondents indicated that consistency is important. Therefore, the final weight 

assigned to consistency is 6, which represents the moderate importance of high consistency within 

the NetFlow use case. A weight of 6 means that the NoSQL family should provide above-average 

levels of performance where consistency is concerned.  

Availability 

Respondents 1 and 2 assigned a weight value of 5 to the availability criterion, while Respondent 3 

assigned a weight value of 7. A weight value of 5 indicates that high availability is of average 

importance for the use case. However, a weight value of 7 indicates that high availability is very 

important for the use case. These values are relatively close to one another. Therefore, an average 

value can be used to represent the importance of the availability criterion. The final weight assigned 

is 6, which indicates that high availability is moderately important for the use case. Therefore, the 

NoSQL family should be able to provide above-average levels of performance where availability is 

concerned.  
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Partitioning  

The first respondent assigned a weight value of 4 to the partitioning criterion. The second respondent 

assigned a weight value of 5, and the third respondent assigned a weight value of 7. A weight value 

of 4 indicates that a high level of performance is not very important where partitioning is concerned. 

A weight value of 5 indicates that it is of average importance, while a weight value of 7 indicates a 

high importance level.  

There is a significant gap between the highest value of 7 and the lowest value of 4. Therefore, the 

average of the values would not be able to accurately represent the three respondents’ opinions. 

However, two of the three respondents (Respondent 1 and 2) assigned weight values that are close 

to each other. This may be a better indication of the importance of the partitioning criterion for the 

use case. The final weight assigned to the partitioning criterion is 5. This indicates that it is of average 

importance to the use case. The NoSQL family should be able to provide average performance where 

partitioning and partition tolerance are concerned.  

Read and write performance 

The read and write criteria are weighted as two separate criteria. The read criterion will be 

investigated first. Respondent 1 assigned a weight value of 9 to the read criterion, indicating that this 

criterion is extremely important for the use case. Respondent 2 assigned a value of 8, indicating that 

this criterion is very important for the use case. Respondent 3 assigned a weight of 10, indicating that 

this criterion is vital for the use case. These grades are close to one another and are all very high 

grades. Therefore, it can be assumed that the reading performance of the NoSQL family should be 

very high to be able to fulfil the reading requirements of the NetFlow use case.  

Respondent 1 assigned a weight value of 7 to the write criterion, which indicates that fast writing 

speeds must be achievable. However, Respondents 2 and 3 indicated that average writing speeds are 

adequate for the NetFlow use case by each assigning a weight of 5.  

As the weight values assigned to both criteria are close to one another, their averages can be 

calculated to obtain final weight values to represent the read and write requirements of the use case. 

A final weight value of 9 is assigned to the reading criterion, and a final weight value of 6 is assigned 

to the writing criterion. The weight value of 9 means that high reading performance is extremely 

important, while the weight value of 6 means that high writing performance is only moderately 

important.  
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Scalability 

Respondent 1 assigned a weight of 7 to the scalability criterion, which indicates that high scalability 

is very important for the NetFlow use case. Respondent 2 indicated that high scalability is moderately 

important by assigning value of 6, while Respondent 3 indicated that it is of average importance by 

assigning a value of 5. The highest value of 7 and the lowest value of 5 are relatively close to each 

other. Therefore, the average of the three responses can be used to indicate the importance of high 

scalability to the NetFlow use case. The final weight of 6 indicates that it is moderately important to 

provide high scalability within the NetFlow use case. Therefore, the NoSQL family should be able 

to provide above-average levels of performance where scalability is concerned.  

Conceptual data structure 

For the conceptual data structure criterion, the first respondent provided a weight value of 6, 

indicating that it is of moderate importance for the use case. Respondent 2 assigned a weight value 

of 7 to the criterion, indicating that it is very important for the use case. Respondent 3 provided a 

weight value of 1, indicating that the conceptual data structure criterion is of very low importance 

for the NetFlow use case.  

The weight value of Respondent 3 contradicts the values of Respondents 1 and 2. This implies that 

there are contradicting opinions regarding the importance of the conceptual data structure criterion 

within the NetFlow use case. As there is a large gap between the values, the average of the three 

responses will not represent the view of Respondent 3. Therefore, the average of the three responses 

will not be used.  

A final weight value of 4 is assigned to the conceptual data structure criterion. The value of 4 better 

represents the importance of this criterion within the NetFlow use case. All four of the NoSQL 

families can accommodate semi-structured data. This means that the NetFlow data can be stored and 

used with ease. Therefore, the weight value of 4 represents the less important nature of this criterion 

for this specific use case.  

Reliability 

For the reliability criterion, the first respondent provided a weight value of 3, indicating that high 

reliability is of low importance. The second and third respondents each assigned a weight value of 5 

to the criterion, which means that high reliability is of average importance to the use case.  

The highest and lowest value are close to each other. Therefore, an average value can be used to 

represent the importance of the availability criterion. The final weight assigned is 4, which indicates 
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that high availability is not very important for the NetFlow use case. Therefore, the database does 

not have to provide high levels of reliability.  

Learning curve 

For the learning curve criterion, the first respondent provided a weight value of 6, indicating that the 

learning curve criterion is moderately important for the NetFlow use case. The second respondent 

provided a weight value of 3, which means that the learning curve is of low importance for the use 

case. The third respondent agreed by assigning a weight value of 2, also indicating that the learning 

curve is of low importance for the use case.  

There is a large gap between the highest and lowest value, which implies that there are different 

opinions regarding the importance of this criterion. Two of the three weight values are close to each 

other and indicate that the learning curve is not very important for the use case. However, the first 

respondent’s weighting indicates otherwise. Owing to the gap between the values, the average of the 

values may not properly represent the first and third respondents’ responses.  

However, because two of the three respondents indicated that the learning curve is not very 

important, it can be assumed that the learning curve does not heavily affect the use case. Therefore, 

the final weight assigned to the criterion is 4. This indicates that the learning curve is not very 

important within the NetFlow use case.  

Table 8.2 is a summary of the weights provided by the three respondents. It also indicates the final 

weights used to represent the use case requirements. The requirements need to be inserted into the 

model before it can provide the recommendation.  

Table 8.2: Summary of respondents’ and final weights for the model. 
 
 

 

 
 

 
 

 

Criteria Respondent 1 Respondent 2 Respondent 3 Final weight 

Consistency 3 6 8 6 

Availability 5 5 7 6 

Partitioning 4 5 7 5 

Read  9 8 10 9 

Write 7 5 5 6 

Scalability 7 6 5 6 

Conceptual data structure 6 7 1 4 

Reliability 3 5 5 4 

Learning curve 6 3 2 4 
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8.4 Score the options (Step 5) 

The final weights derived from the instrument can now be entered into the model to calculate the 

final score of each NoSQL family. The final scores are derived from the mathematical calculation 

represented below.  

𝑆𝑐𝑜𝑟𝑒(𝐹𝑘) =  ∑ 𝑊𝑖. 𝑅𝑖𝑘

𝑛

𝑖=1

 

This calculation will provide each family with a final score. The higher the score, the more the family 

meets the use case requirements. Table 8.3 is a representation of the model and the final scores 

calculated for the families.  

Table 8.3: Final scores of the NoSQL families. 

Criteria Weight Column-family Document-based Graph  Key-value  

Consistency 6 7 7 6 6 

Availability 6 5 5 9 8 

Partitioning 5 7 7 4 6 

Read 9 4 9 7 7 

Write 6 8 5 5 6 

Scalability 6 7 6 5 7 

Conceptual data structure 4 8 7 9 7 

Reliability 4 7 7 8 7 

Learning curve 4 8 9 8 7 

Final score  325 341 333 339 

The final score for column-family stores is 325. Document-based stores scored 341, while graph 

stores scored 333, and key-value stores scored 339. The highest score belongs to document-based 

stores, followed by key-value and graph stores, while column-family stores scored the lowest.  

8.5 Recommend an option (Step 6) 

The use case requires above-average levels of consistency. Document-based stores can provide high 

levels of consistency through their replica sets which replicate data. Therefore, they fulfil the use 

case’s requirement regarding consistency. Column-family stores provide good consistency through 

Master/Slave replication, while key-value and graph stores provide eventual consistency.  

The use case requires the database system to be moderately available at all times. Document-based 

stores can provide average availability through replica sets. Therefore, the family will perform 

adequately even though its performance regarding availability is slightly under what is required.  As 

a result, document-based stores can satisfy the availability requirement of the use case. However, 

graph stores provide excellent availability through Master/Slave replication, while key-value stores 
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provide good availability through Master/Slave replication. This implies that graph and key-value 

stores can better satisfy the use case’s availability requirement. Column-family stores provide only 

average availability through Master/Slave replication, therefore it can also meet the availability 

requirement.  

The use case requires average performance where partitioning and partition tolerance are concerned. 

Document-based stores can provide high partitioning performance and be highly partition tolerant 

through range-based partitioning and autosharding. Therefore, they meet the use case’s requirement 

regarding partitioning. Column-family stores employ range-based partitioning, and key-value stores 

employ consistent hashing, which means that these families can also fulfil the partitioning 

requirement of the use case. However, graph stores do not perform sufficiently where the partitioning 

criterion is concerned, since graph data is difficult to partition.  

The most important requirement for the NetFlow use case is high reading performance. Document-

based stores provide excellent reading performance. Therefore, they fulfil the most important 

requirement for the NetFlow use case. Column-family stores provide weak reading performance, 

while graph stores and key-value stores provide good reading performance. Therefore, they do not 

adequately meet the requirement of high reading performance.  

The use case requires above-average writing performance. Document-based stores provide average 

writing performance, which could still satisfy the writing performance requirement. Document-based 

stores will perform adequately but not the best for the writing criterion. However, column-family 

and key-value stores are better equipped to provide the writing performance required by the use case. 

Graph stores also provide average writing performance, meaning it could also satisfy the writing 

requirement of the use case.  

The use case requires above-average levels of performance where scalability is concerned. 

Document-based stores can provide above-average scaling through autosharding and Master/Slave 

replication. Therefore, they meet the requirement of the use case. Column-family stores employ the 

Hadoop Distributed File System (HDFS) with autosharding to provide good scalability performance. 

Key-value stores can provide good scalability performance through Master/Slave replication. 

Therefore, column-family and key-value stores could better satisfy the requirement of the use case. 

However, graph stores do not provide good scalability performance, because it is difficult to scale 

graph datasets. Therefore, graph stores do not meet the scalability requirement.  

NetFlow is semi-structured data. The storage medium for the use case is required to be able to work 

with such data. All NoSQL families are able to meet the data structure requirement of the NetFlow 
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use case. Therefore, the conceptual data structure has an average level of importance within the use 

case.  

The NetFlow use case does not require high levels of reliability. Document-based stores provide 

good reliability through Replica Sets and automatic failover. Therefore, they meet the use case’s 

reliability requirement. Column-family stores use the HDFS (Hadoop distributed file system) to 

provide high reliability, while graph stores use the HA component to provide very good reliability. 

Key-value stores use snapshotting and the append-only file (AOF) methods to provide good 

reliability. Therefore all NoSQL families can provide the required reliability performance levels for 

the use case.  

The learning curve is not very important for the NetFlow use case. Therefore, all of the NoSQL 

families are able to fulfil the learning curve requirement. There are many teaching materials available 

about all of the NoSQL families.  

As can be seen in Table 8.3, the document-based family provides the best performance for the 

NetFlow use case. The document-based family fulfils the majority of its requirements, which were 

provided by the experts. Therefore, the recommendation from the model is to employ document-

based stores within the NetFlow use case. Key-value stores receive an honourable mention, as their 

performance levels are close to those of document-based stores. Therefore, key-value stores could 

also be used within the NetFlow use case. However, a drawback to using key-value stores is that 

main memory is employed to store the dataset. This means that the size of the store’s memory limits 

the size of the data set. NetFlow use cases can comprise of very large data sets to be stored. Therefore, 

the key-value store’s memory may not be able to accommodate the size aspect connected to the 

NetFlow use case.  

8.6 Conclusion 

This chapter served as an instantiation to demonstrate the feasibility and utility of the framework. 

The decision framework was tailored to the NetFlow use case and used to recommend which NoSQL 

family to choose when storing NetFlow data in a NoSQL database. IT practitioners indicated the 

importance level of each criterion in terms of the use case through a data collection instrument. This 

made it clear that the criteria have various degrees of importance in the context of the NetFlow use 

case.  

The weight values assigned to the criteria are representative of the use case requirements. This 

increased the quality of the recommendation provided by the framework. Once the weight values 

were inserted into the framework, the final scores could be calculated, and a recommendation could 

be made.  
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The recommendation was to use the document-based NoSQL family to store the NetFlow data. 

According to the framework, the document-based family is the best fit in terms of the requirements 

of the use case. The framework assisted the IT practitioner in making a more informed decision 

regarding which NoSQL family to choose. This demonstrated the utility value of the proposed 

framework.  
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CHAPTER 9: CONCLUSION 

Decision-making is a difficult task and there are problems, such as biases and measurements, that 

can influence the outcomes of decisions. Therefore, there is a need for a framework that IT 

practitioners can employ to make better decisions. This study set out to provide a framework that can 

help IT practitioners make better decisions regarding NoSQL families.  

The focus of this chapter is to revisit each sub-objective to indicate how the primary research 

objective was met. Each chapter within this study will be examined and explained as it pertains to 

the research objectives of this study.  

9.1 Overview of the study 

Decision-making is a core process of daily life (Nooraie, 2012). It was introduced in Chapter 1 as a 

major focus of this study. Chapter 1 introduced the problem area for this study as technology 

decision-making. The problem statement for this study was: IT practitioners do not have a systematic 

way to select a NoSQL family for non-arbitrary use cases. The problem statement indicated that IT 

practitioners struggle to make decisions regarding NoSQL technologies.  

Design science influences this study. Therefore, the framework of March and Smith (1995) was 

employed to provide structure to the research. The study was broken into four parts. Part A focussed 

on context and discussed decision-making, biases, and NoSQL. Part B discussed the proposed 

framework, which consists of constructs, a decision model, and a process model in the form of the 

6-steps. Part C focussed on instantiation in the context of a NetFlow use case. Part D is an epilogue, 

which is provided in the current chapter. These parts map well to the research framework of March 

and Smith (1995) as can be seen in Figure 9.1.  

Figure 9.1: Overview of framework. 
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Chapter 2 introduced the context of the study and investigated decision-making and biases. The 

investigation showed that biases can negatively impact decisions. There are a wide variety of biases 

that can be classified using four categories that represent the overarching problems found in the 

biases. The biases focussed on in this study were grouped accordingly.  

Chapter 3 added to the background of this study by investigating NoSQL storage technologies. This 

represented Step 1 of the 6-step process model. The focus of Chapter 3’s investigation was NoSQL 

and the different NoSQL technologies. It was found that NoSQL has four families and many products 

associated with each family.  

Chapter 4’s goal was to provide an overview of the proposed framework. Chapter 4 discussed the 

need for a framework as well as how it should assist IT practitioners. Thereafter, a framework 

comprised of constructs, a weighted decision model, and a process model was proposed.  

The decision-model combines all the constructs (options, criteria, grades, weights) through a final 

score and depicts their relationships with one another. The list of technologies is graded according 

to a fixed set of criteria to ensure all the options are properly investigated. Thereafter, the criteria are 

assigned weight values that represent the importance of each criterion within a use case context. The 

model calculates weighted final scores for the technologies to help the IT practitioner make an 

informed decision.  

A specific method in the form of a process model is used to implement the decision model. The 

process model has 6 steps that IT practitioners can follow systematically to implement the 

framework. Each of the 6 steps plays an integral part in technology decision-making by mitigating 

the effects of measurements and biases. The 6-step process can also be used to adapt the framework 

to other contexts.  

Chapter 5 focused on Step 2 of the 6-step process model, which is to identify comparison criteria. 

Therefore, the goal of Chapter 5 was to identify a fixed set of criteria that can be used to uniformly 

compare the NoSQL families. Nine criteria were identified, including the CAP criteria. A fixed set 

of criteria enables the IT practitioner to compare the NoSQL families uniformly.  

Chapter 6 focused on explaining Steps 3, 4, and 5 of the 6-step process model. Chapter 6 started by 

explaining how to grade the options using the fixed set of criteria to ensure that all the options are 

properly investigated. Thereafter, the weights of the criteria were discussed. The weight values 

represent the importance of each criterion within a specific context. Lastly, the final weighted scores 

of the options were investigated and the calculation of the final scores through the mathematical 

formula was explained.  
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The above-mentioned chapters showed that the proposed framework can assist with technology 

decision-making. However, its feasibility and utility could still be questioned. Therefore, the 

framework was instantiated. Instantiation refers to placing an artefact within a specific instance to 

verify and demonstrate its use. The demonstration started in Chapter 7. The NoSQL families were 

graded according to the fixed set of criteria. This ensured that a uniform comparison of the NoSQL 

families, which would indicate their unique strengths and weaknesses, could be made.  

Chapter 8 focused on the weighting of criteria within the NetFlow use case context to indicate the 

importance of each criterion for the use case. Once weights were assigned to the criteria, the final 

weighted score of each family could be calculated, which led to a recommendation of which 

technology to choose. The framework recommended the document-based family for the NetFlow use 

case, as it best fulfils the requirements. This recommendation was discussed and justified within the 

chapter. Chapter 8 also represented the final step of the 6-step process model. 

9.2 Meeting the objectives 

This section will look at how the objectives of this study were met.  

The problem statement indicated the need for a systematic approach that IT practitioners can follow 

to make better decisions. Therefore, the primary research objective of this study was to create a 

framework to help IT practitioners with NoSQL decisions. To develop such a framework, various 

sub-objectives had to be met. The researcher first needed to understand decision-making and the 

problems that can influence decision-making. These problems also indicate why decision-making 

can be a difficult task. The study focused on technology decision-making and the researcher aimed 

to list typical problems that IT practitioners are faced with when making technology decisions. 

Thereafter, the researcher needed to identify a general model that can assist with decision-making 

and counter these problems. The model also needs the ability to adapt to specific scenarios.  

To achieve the primary objective of developing a framework, three research sub-objectives needed 

to be addressed.  

9.2.1 Enumerate typical decision-making problems 

Sub-objective 1 (SO1) was to enumerate typical decision-making problems IT practitioners face 

when choosing between technologies.  

The first sub-objective (SO1) was achieved in Chapters 2 and 3 (Part A) through a literature survey 

on decision-making, biases, and NoSQL. The problems and their effects on decision-making were 

investigated within the context of this study.  
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9.2.2 Identify a general model for decision-making 

Sub-objective 2 (SO2) was to identify a general model for decision-making.  

Sub-objective 2 (SO2) was accomplished through a literature survey done to find an appropriate 

framework as well as a mathematical expression with which to depict the framework. The framework 

was proposed and discussed in Chapter 4 (Part B).  

9.2.3 Create a process to tailor the approach to the NoSQL scenario 

Sub-objective 3 (SO3) was to create a process to tailor the approach to the NoSQL scenario. The 

context of this study was technology decision-making. It focussed specifically on decisions regarding 

NoSQL technologies. Therefore, a process to adapt the framework to the NoSQL scenario was 

proposed.  

Sub-objective 3 (SO3) was partially met through a literature survey done to expand on the constructs 

within this study and a 6-step process model for adapting the framework to specific scenarios that 

was proposed through argumentation. This was discussed in Chapter 4. 

Chapters 5 and 6 (Part B) also addressed the third sub-objective (SO3) through a literature survey 

and argumentation. The specific steps within the process model were discussed to indicate how to 

adapt the approach to the NoSQL scenario.  

9.2.4 Create a framework 

The researcher investigated decision-making and identified the problems faced when making 

decisions in Chapter 2. Since decision-making in general is a broad subject, a narrower context was 

found in technology decision-making and NoSQL, which were investigated in Chapter 3. Therefore, 

the first sub-objective was met. Next, the researcher needed to identify a model for making decisions. 

A framework to assist IT practitioners in making decisions regarding technology was proposed in 

Chapter 4. Therefore, the second sub-objective was met. A process model that can be used to adapt 

the framework to a specific NoSQL scenario was also proposed. The framework was discussed in 

detail in Chapters 5 and 6. Therefore, the third sub-objective was met.  

As all three the sub-objectives were met, the main objective of this study, to create a framework to 

help IT practitioners with NoSQL decisions, was also met. However, the feasibility and utility of the 

framework could still be questioned. Therefore, instantiation was used to demonstrate the feasibility 

and utility of the framework within an instance. A NetFlow use case was used to demonstrate the 

utility of the framework in Chapters 7 and 8 (Part C). The framework provided the researcher with a 

recommendation of which NoSQL family to employ for the specific use case. Thus, the feasibility 
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and utility of the framework were demonstrated. This indicated that the primary objective of this 

study was sufficiently met. 

9.3 Reflections on the proposed framework 

This section will reflect on the proposed framework and its shortcomings.  

In order to compare the NoSQL families, four very popular database products, one from each of the 

families, were used to represent the performance characteristics of the families. The researcher 

generalised the information of specific products to the NoSQL families, because non-generalised 

information may not exist. For example, the document-based family was represented by the 

MongoDB product. Therefore, the information used to compare the families can be seen as a 

shortcoming of the study. However, IT practitioners would also have to use generalised information 

to represent the families.  

Since this is a Master’s study, time was a restriction. The grading process especially was very time-

consuming. The time spent grading the NoSQL families placed a limitation on this study. With more 

time, a more comprehensive evaluation could have been done, which may have led to a better 

recommendation. However, IT practitioners in the industry will not be able to spend large amounts 

of time finding and evaluating all relevant information either.  

As a result of time constraints, only one instance was used to demonstrate the feasibility and utility 

of the framework. With more time, additional scenarios could have been used to demonstrate the 

effect of the framework on other specific instances.  

One of the more difficult tasks of the proposed framework was assigning performance grades to the 

families according to the criteria. The grades that could be assigned ranged from 1 to 10. However, 

when grading was completed, no family received a grade close to either 1 or 10. Thus, it could be 

argued that the grading method used a smaller scale (4 to 9) to indicate the performance values of 

the NoSQL families.  

The weighting of criteria was another difficult process. Many of the weights that were provided by 

the experts were close in value. Therefore, the majority of the weights did not contradict one another. 

This indicates that assigning weight values is not an easy task for experts to perform. The weight 

values may assist the IT practitioner in overcoming some of the decision-making biases. However, 

they may also support other biases. For example, a false sense of accuracy may be created when a 

decision is based on a calculation involving the weight values.  

The conceptual data structure criterion captures two aspects pertaining to the general use of the data. 

The first is how the data looks after conversion, and the second is how the data can be used in general. 
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However, the criterion may not place enough focus on the use of the data in specific contexts, which 

could also influence the recommendation of the framework. Therefore, some of the criteria may not 

be granular enough to assign an appropriate weight value to accommodate the actual use of the data.  

The recommendation of the framework is not perfect. In the NetFlow use case, the four families 

received relatively close final scores. The scores of two families were very close to each other, 

indicating these families could provide comparable levels of performance within the use case. While 

the recommendation from the framework may reduce uncertainty, it does not remove uncertainty 

completely. As the weights and gradings came from a smaller range than anticipated, uncertainty 

may not have been reduced enough for the recommendation to be trusted fully. Thus, the 

recommendation could result in a deeper investigation. 

9.4 Future research 

Future studies could investigate the rest of the design science framework of March and Smith (1995) 

within the context of this framework. This study only focused on the build research activity. However 

there are three other activities, namely evaluate, theorise, and justify, that could also be investigated. 

To evaluate means to determine if any progress has been made towards the goal of the artefact (March 

& Smith, 1995). To theorise means to develop theories regarding the framework. After the theories 

are created, they also need to be justified (March & Smith, 1995). As a result of their goals, theorise 

and justify do not provide value in the context of this study. 

In terms of the NoSQL technology, this study had a focus on the four NoSQL families and the choice 

between them. However, a future research project could take the framework a step further and assist 

in the selection of a specific product within one of the families. Once a family is chosen, the next 

choice is to select a product since there are many products deriving from each family.  

In terms of evaluation, a future research project could be performing a more comprehensive 

evaluation of the assignment of performance grades. Currently, each family’s performance grades 

were assigned based on literature and argumentation. However, a more refined grade value could be 

provided if actual performance tests were done. The use case could also be changed to evaluate the 

effectiveness of the framework within other contexts.  

Another future research project could be investigating the weighting process and the meaning of the 

weight values in more granular detail. This could assist IT practitioners in assigning weight values 

that indicate the importance of the criteria more easily. The fixed set of criteria should also be 

investigated further to account for various situations, as this could increase the quality of the 

recommendation.  
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Creating an application that will enable the framework to be used in industry without time constraints 

could also be a future research project. The application would aim to automate the framework to 

provide quick recommendations to the IT practitioners. The application would have a specific 

technology focus, namely the NoSQL focus found within this study. Therefore, the application would 

represent the framework used to assist IT practitioners with decisions regarding the NoSQL families. 

The goal of the research would be to measure the effectiveness of the framework in industry and 

determine whether IT practitioners would employ it. To enable such an application to be created, a 

more in-depth evaluation of the NoSQL families would have to be performed to determine a 

standardised set of performance figures for each family.  

Since there are copious amounts of information about the NoSQL families and products available, 

another future research project could be creating a more consolidated piece of information pertaining 

to the NoSQL families, their levels of performance, their limitations and drawbacks, and common 

and uncommon use cases. The goal of such a research project would be to measure the effectiveness 

of this information in helping IT practitioners make better decisions regarding NoSQL technologies.  

9.5 Final words 

It was determined that decision-making is a difficult task to accomplish. Making decisions regarding 

technologies, such as NoSQL databases, is even more difficult, as there are large volumes of 

information to consider. Furthermore, biases and measurements can influence the IT practitioner and 

lead to incorrect decisions being made. Therefore, the problem statement of this study was: IT 

practitioners do not have a systematic way to select a NoSQL family for non-arbitrary use cases.  

This study aimed to develop an artefact that can assist IT practitioners with decisions regarding the 

NoSQL families. To accomplish this goal, it proposed a framework that can mitigate the effects of 

biases and measurements while assisting IT practitioners in making more informed technology 

decisions.  

This chapter reported the success of this research study. Each of the research sub-objectives was 

aligned with a part of the study, meaning that each sub-objective was met successfully. The primary 

research objective was also met by developing a framework that can assist IT practitioners in making 

better decisions regarding NoSQL technologies and thereby decrease the difficulty of making certain 

technology-based decisions. 
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APPENDIX A:  RESEARCH REGARDING BIASES IN DECISION-

MAKING 

Biases Sources Applicability to IT 

Status Quo [1] [8] [13] [14] ***** 

Anchoring [1] [5] [6] [14] ***** 

Sunk-Cost [1] [8] [14] [16] ***** 

Confirming Evidence [1] [4] [10] [11] [14] ***** 

Framing [1] [3] [12] [14] ***** 

Estimating and Forecasting [1] [14] [15] ** 

Overconfidence [1] [4] [14] **** 

Prudence [1] [14] ***** 

Prediction [2] [6] [15] ** 

Recallability [1] [9] [14] ***** 

Plunging in [7] **** 

Frame blindness [7] [12] * 

Lack of frame control [7] [10] [14] *** 

Overconfidence in our judgement [7] [14] **** 

Shortsighted shortcuts [7] *** 

Shooting from the hip [7] ***** 

Group failure [7] [14] ** 

Fooling ourselves about feedback [7] *** 

Not keeping track [7] [14] **** 

Failure to audit decision process [7] ***** 

Reciprocity [14] * 

Halo Effect [14] ***** 

Expectations [14] *** 
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Definition of each bias: 

The anchoring trap refers to a situation where a business decision is influenced by information from 

past trends or events. The bulk of the decision is influenced by past events which mean that other 

factors are ignored. If an individual were asked to provide the population amount of South Africa, 

the individual might not be able to provide an exact number. However, the individual may recall 

information they read which had a number of the population and then use this recollection as the 

answer. The answer might be close to the correct amount, but in most cases, a factual number will 

not be provided. Thus, an anchor is used to base decisions on and affect the answer provided.  

The status-quo trap refers to the biases that individuals have regarding the current state of affairs. 

Individuals would stick with the status quo and have a bias against the alternatives since the 

alternative involve too much risk. An individual is comfortable with a specific technology; however, 

work requires the individual to learn and use another technology. The individual knows nothing about 

the new technology and feels he is good enough with the current technology to not have to learn the 

new technology. Thus, a biased opinion is formed against the new technology even if it is the perfect 

solution.  

The sunk-cost trap is where business decisions are made to justify past business decisions, even when 

these past decisions are not valid anymore. An example is finances spent on technology, that is not 

relevant anymore, but management refused to change the technology because of the cost. An 

individual invests 1000 rands in shares. The investment fails since it is now worth 750 rand. 
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However, the individual does not sell the shares and hopes the price of the shares will increase again. 

The individual could sell the shares and invest the money to make more than 1000 off other profitable 

shares.  

The confirming-evidence trap is where individuals are looking for information that endorses and 

supports their knowledge. The individual assumes the acquired information is correct while not 

considering the alternative. The individual is looking for a reason to accept the confirming 

information and not question/consider opposing information. A board meeting will rarely discuss 

facts and information that oppose the views of the board. The focus would be on evidence or facts 

that confirm the board’s views.  

The framing of a question or problem can influence the way a business decision is made. If the 

emphasis of the problem or question is incorrect, the solution might be incorrect too. The framing 

trap can influence the success or failure of a project. Individuals interpret the problem incorrect since 

the emphasis is incorrectly placed in the problem or question.  

The estimating and forecasting trap is where forecasting and estimating is done without the factual 

information. Estimating and forecasting can lead to incorrect business decisions or mistakes being 

made. An example of estimating and forecasting trap is with estimating the prices of fuel in 50 years. 

There is not sufficient information to make an accurate forecast for such a scenario.  

Overconfidence can lead to a bias decision since other possibilities are not taken into account. 

Overconfidence means that a proper solution to a problem might not be looked at since an individual 

is overconfident about their predictions. An individual that is overconfident in their abilities and 

knowledge may not consider the alternatives to decision-making situations. A proper solution to a 

problem can be overlooked because of overconfidence.  

The prudence trap is where individuals are over cautious when high-risk decisions need to be made. 

Individuals can lead a project to failure if the proper decisions are not made since the individual 

wants to be safe. A high-risk decision may have many rewards if the correct choices are made. The 

high-risk decision may also have many penalties if the incorrect choices are made. An example of 

this trap is in weapons design. Engineers design rugged weapons to handle the worst conditions, 

however, the weapons hardly ever operate in harsh conditions.   

The recallability trap is when past events or dramatic occurrences in an individual’s life influences 

the business decisions the individual must make. This influence can lead to biased decisions which 

influence the success of a project or business decision. An example of this is when individuals see a 

plane crash on television. The memory of the accident will influence the individual’s decision about 
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whether to take a flight or take a boat to reach their destination. Past events are recalled to base 

decisions on, and this can lead to incorrect decisions being made.  

Plunging in is where conclusions are drawn prematurely without sufficient knowledge about the 

problem and how to solve the problem. Individuals do not stop and think about the crux of the issue 

and which information to collect before making premature conclusions. Individuals work on a crucial 

issue of a project. The individual does not step back and consider the actual problem which can lead 

to wrong decisions being made. The individual should ask secondary questions, for example; what 

is the primary problem, how much time do I estimate till completion, and how do I think such a 

decision should be made. 

Frame blindness is where individuals’ base decisions on their mental framework. The mental 

framework considers all information regarding the problem and refers to how the individual thinks 

about the decision(s) to be made; what must be decided, what are the options, and what are the criteria 

for choosing between options. Their mental framework could be wrong since not enough information 

is present which could lead to overlooking the correct decisions.  The framing of the problem has a 

large influence on this decision-making mistake. 

Lack of frame control occurs when individuals influence the decision-making process of others. The 

influence of others can affect the decisions made by introducing biases to the decision-making 

process. Lack of frame control can also occur if an individual cannot consciously define the problem 

in different ways. The individual does not understand the problem and adopts other individual’s 

mental frameworks for decision-making.  

Overconfidence in our judgement is when individuals are overconfident in their knowledge without 

collecting the necessary information. Decisions made with overconfidence can result in an incorrect 

decision and wrong solutions being chosen. An overconfident individual value their knowledge more 

than the factual information and may not consider the alternative. The decisions are based on their 

knowledge which can be incorrect. 

Shortsighted shortcuts are a barrier to decision-making since anchors influence the decision being 

made. The most readily available information is trusted to be correct while other opposing 

information is not considered. This decision-making mistake can result in biased decision-making 

since the alternative is not investigated.   

Shooting from the hip is a barrier where individuals do not follow a systematic decision process to 

solve a problem. An individual is presented with a problem for a project. The individual’s mind 

processes all of the possessed information quickly, without properly noting the factual information. 
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A conclusion is drawn based on all the processed information and accepted as correct. However, 

important facts and information may not be noted/investigated which leads to incorrect decisions 

being made. Individuals not following a systematic decision process have the risk of making the 

incorrect decisions.  

Group failure is a barrier that occurs in decisions being made by groups of individuals. The 

assumption is that groups of individuals will make the correct decision. If members of a group agree 

prematurely on an answer, it may be the incorrect answer if not all factual information is investigated. 

Some individuals within the group influence others to agree with their decision, although the decision 

may be incorrect. If there is no group-decision process being followed, the decision-making can be 

biased and incorrect. An example of the group failure barrier is when 50 million people agree that 

an answer is correct. However, it does not mean the answer is correct.  

Fooling ourselves about feedback is when individuals do not consider past events or occurrences 

when making business decisions. Ignoring past feedback could lead to information being missed or 

left out that can influence the success of decisions. If an individual ignores past experiences with 

decision-making, the individual might make the same mistakes since no hindsight is gained about 

the problem.  An individual purchases a car with black paint. The individual experiences extreme 

heat and has an unpleasant experience. The individual buys another car with black paint. Making the 

same decision to buy a black paint car, implies that the individual did not learn from past experiences 

and did not have hindsight regarding the problem.  

Not keeping track of decisions and their outcomes is another barrier to decision-making. Past 

decisions and their outcomes can teach lessons about what to consider for future decision-making. If 

an individual makes a mistake in the past, the individual is not expected to make the same mistake 

twice. However, an individual does not keep track of past mistakes/decisions and makes the same 

mistake as in the past. Making the same mistake implies that the individual did not keep track of the 

outcomes of past decisions or experiences. The not keeping track barrier is closely related to fooling 

ourselves about feedback barrier to decision-making. 

Failure to audit decision process is another barrier to decision-making. Not following a decision 

process can make a decision-maker vulnerable to numerous barriers and traps. A decision-process is 

there to assist an individual to understand the problem, the different choices to be made and how to 

implement the decisions. If an individual does not follow such a decision process, the wrong 

decisions may be made since the individual may not understand the problem.  

Prediction can be a barrier to decision-making when individuals make predictions under uncertainty. 

Individuals make predictions based on many factors to predict an event that might happen. If not, 
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enough factual information is considered, the prediction is made under uncertainty which means it is 

more than likely to not be true. Individuals can make predictions about finances of a company, 

however, may be wrong if the incorrect or too little information is used. 

Reciprocity refers to an exchange of services/goods for other services/goods. If an individual 

purchase a service from another individual, money is provided in exchange for a service being 

provided.  The exchange of services or items is what reciprocity refers to. Reciprocity becomes a 

barrier to decision-making when an individual is in debt to another individual. Decisions made are 

influenced by feelings of guilt/debt and can lead to incorrect decisions being made.  

Halo-effect means that one aspect can affect the way individuals see the whole picture. If one aspect 

produced a positive or negative feeling, the feeling could influence the individual’s decision about a 

specific topic. The Halo-effect could lead to a biased decision that affects the success of the project. 

Depending on the feeling an individual receives, the choice about the topic may be influenced, and 

other alternatives may not be investigated.  

Expectations can influence the way individuals make decisions. If an individual has expectations, it 

means that the individual is expecting a certain result/occurrence to happen. If the expectation(s) of 

the individual are not met, the individual may judge the topic with a negative feeling and could 

influence the decisions after that. However, if the expectations are met, the individual may be biased 

towards the topic and not consider other alternatives.  
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