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Deployment Optimization of Small Cell
Networks with Sleep Mode

Edwin MugumeT, Member, IEEE, and Daniel K. C. Sot, Senior Member, IEEE

Abstract—Demand for mobile data services is increasing ex-
ponentially and operators have responded by expanding and
upgrading their networks to enhance capacity. One promising
technique is to densify the network with low-power and small-
coverage base stations (BSs) to provide significant capacity gains.
In this paper, we develop a multi-user connectivity model for
a Poisson Point Process (PPP)-based homogeneous network to
facilitate a realistic study of its energy performance subject to
blocking constraints. We then derive the average rate per channel
and per user and compute the average sum rate of the network.
An area power consumption (APC)-minimization framework is
then formulated subject to appropriate coverage and average rate
constraints to determine the optimal deployment configuration
of BS density and associated transmit power. Furthermore, a
new sleep mode mechanism called centralized strategic scheme
is analyzed to determine its ability to adapt energy consumption
to variable user density. Our results show that sleep mode is
a viable solution for managing network energy consumption in
dense networks.

Index Terms—Homogeneous network, optimization,
power consumption, sleep mode, energy efficiency.

area

I. INTRODUCTION

OBILE network operators are faced with exponentially-

increasing data traffic demand caused by significant
advances in mobile cellular technologies, smart end-user de-
vices and their associated data-hungry applications [1]-[2]. A
Cisco forecast of the global mobile data traffic for the period
2016-2021 shows a compound annual growth rate of 47% [2],
which is a major challenge for current systems and future 5G
networks [3]-[4]. However, the capacities of individual links
in current network designs are close to their theoretical limits.
Macro base stations (BSs) which dominate current networks
consume a lot of energy and this has raised economic and
environmental concerns over increasing energy cost and the
associated greenhouse gas emissions. A popular strategy to
address these challenges is to reduce the average size of
cells which enhances frequency reuse and bandwidth per user
[5]. Other techniques to enhance network capacity include
deployment of heterogeneous cellular networks (HetNets) [6]-
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[7], MIMO and massive MIMO techniques [8]-[9], cognitive
radio systems [10], among others.

A dense deployment of small BSs can bring significant
coverage and capacity gains to mobile users. However, even
though small BSs consume much less power than macro
BSs [11], their deployment in large numbers may worsen the
aggregate power consumption. It is well known that traffic
intensity highly varies spatiotemporally throughout each 24-
hour day, peaking during the day and early evening hours
[12]. However, cellular networks are traditionally designed
to support peak traffic at all times, meaning that a large
proportion of network resources may become idle when traffic
demand inevitably drops. Idle BSs still consume significant
power which negatively impacts energy performance [11],
[13]. It is therefore important to adapt power consumption
to variations in the network load.

Our paper combines two specific ideas of deployment
strategy and sleep mode mechanisms to enhance network
energy performance. Some works have focused on network
deployment strategies [14]-[16]. Authors in [14] show that
the energy efficiency (EE) of a homogeneous network can
be enhanced by densifying it with more BSs coupled with
reduced transmit power. Authors in [15] jointly optimize the
BS densities and transmit powers per tier in a two-tier HetNet
to minimize the area power consumption (APC) subject to
a coverage probability constraint. In [16], the BS density
and transmit power are jointly optimized to minimize the
APC subject to coverage and rate constraints under different
network conditions. However, these works do not describe how
to choose the BSs that remain active as conditions change.

Other works have focused on managing network power
consumption using sleep mode mechanisms [17]-[24]. Sleep
mode decisions should consider the load profile in the wider
geographical coverage of the network as opposed to localized
decisions [17]. Furthermore, network coverage and cnergy
performance are improved when cells are switched off based
on their levels of activity [18]. Authors in [19] study an
energy minimization problem subject to downlink coverage
and uplink power constraints. Some macro BSs are switched
off and replaced by micro BSs coupled with power adjustment
techniques. In [20], a joint optimization of BS sleeping control
and power matching schemes is performed to achieve flexible
tradeoffs between power consumption and quality of service
(QoS). In [21], a technique is proposed to manage power
consumption by switching off some BSs and balancing the
prevailing traffic load between the remaining active BSs. Our
work in [22] studied a sleep mode strategy which prioritizes
cells with the fewest users for sleep mode; results showed



enhanced network coverage, average rate and EE. In [23]-[24],
authors considered dynamic long-term traffic and jointly opti-
mized cell association, cell activation, and spectrum allocation
in their study of energy aware management in HetNets.

The time domain operation of sleep mode has been studied
extensively in literature with the objective of ensuring that
BS switch on/off strategy is not too disruptive but can still
quickly respond to new traffic requests. Some approaches, for
instance [25], consider two stages of sleep mode i.e. light
and deep sleep stages. The deep sleep strategy is influenced
by slow-varying long-term traffic and can therefore be used
to determine how many BSs to switch off for a given time
interval. During such an interval, all remaining BSs only save
energy using the light sleep strategy and are able to quickly
wake up and serve new users. In another approach, [26]
combines deep sleep strategies for long-term traffic variation
and discontinuous transmission which implements micro-sleep
schemes for short-term traffic variations.

In the stochastic geometry approach, some works such as
[18], [27] assume that each cell randomly selects and connects
one user in its coverage area but this is unrealistic from an
EE point of view if the network is subjected to blocking
constraints. Blocking performance is especially important in
a network implementing sleep mode strategies to guarantee
QoS [28]. Other works assume that the user density is so
large that each cell has at least one user and therefore always
transmits [16], [27]. This is also generally unrealistic since
the user density is finite and spatiotemporally variable. Our
work relaxes these assumptions to obtain a more generic and
realistic analysis of the performance of the network.

In general, locations of small BSs are highly irregular and
there is a high degree of randomness of cell sizes and shapes.
Hence, grid-based cellular topologies are too idealized to
effectively study dense small cell networks. Random spatial
techniques that model both BS and user locations as inde-
pendent Poisson Point Processes (PPPs) have been proposed
in recent years [29]-[30]. The approach has been applied to
study homogeneous networks [27], HetNets [6]-[7], cognitive
radio systems [10], network optimization [14], [19], [31],
etc. It facilitates simple and tractable network analysis and
often provides closed-form expressions. Moreover, it has been
shown to provide a tight approximation of the performance
of practical networks [27], [32], [33]. We therefore use this
approach for the analysis in this paper.

A. Main Contributions and Outcomes

In this paper, we first develop a multi-user connectivity
model that facilitates connection of multiple users at each
BS. We then study sleep mode techniques that can utilize this
model to adapt energy consumption to inevitable variations
in user density. The study is based on a homogeneous small
cell network where some cells may be idle (have no users)
while others contain more users than the available physical
channels. We derive the average rate per channel, average user
rate and average sum rate of the network using simple channel
allocation assumptions. This paper significantly extends our
previous work in [22] which only considers conventional sleep

mode where idle BSs are put into sleep mode. Our work also
uses and builds upon some of the performance analysis of
a homogeneous network shown in [27]. However, our major
contributions are significantly different and can be summarized
as follows:

e Our analysis relaxes the ‘single-channel network’ as-
sumption in [27] to analyze a more realistic multi-channel
network in which each BS has the ability to connect
multiple users. This multi-user connectivity model is also
very important in a scenario where network analysis is
subjected to blocking or connectivity constraints.

« We formulate an APC-minimization framework to deter-
mine the optimal combination of BS density and transmit
power per BS subject to coverage probability and average
rate constraints. This analysis considers the effect of idle
and sleep mode BSs to derive more realistic results.

o In addition, we propose a new centralized strategic sleep
mode scheme that considers the long-term spatiotem-
poral distribution and variation of traffic to minimize
disruptions due to sleep mode and enhance network per-
formance. The multi-user connectivity model facilitates
analysis by enabling affected users to connect to other
suitable active BSs.

o To simplify implementation in the network, a distributed
version of the strategic sleep mode algorithm is analyzed.
The distributed strategic sleep mode scheme shows a
slight degradation of performance compared to its cen-
tralized counterpart.

The results of this analysis show that the criteria of choosing
BSs for sleep mode is a major determinant of the resulting
coverage probability, average rate and energy performance
of the network. Our proposed strategic sleep mode schemes
enhance the average rate of each remaining active BS which
improves network resource utilization.

B. Paper Organization

The rest of the paper is organized as follows. Section
IT discusses the system model and assumptions. Section III
models single user and multi-user connectivity at the BS.
Section IV presents a constrained APC-minimization frame-
work using only conventional sleep mode. Section V proposes
and discusses our proposed sleep mode strategies. Section VI
presents the numerical results and discussions. The paper is
concluded in Section VIIL

II. SYSTEM MODEL
A. Network Topology

Consider a PPP-based homogeneous small cell network in
which both BSs and users are located according to independent
homogeneous PPPs ®; of intensity A\, and ®, of intensity
A, respectively in the R? plane [27]. Shadowing effects are
ignored and universal frequency reuse is considered in the
analysis. We consider a total network area A = 22m? and
assume that all BSs transmit power P,. Hence, each user
connects to its nearest BS which makes the cellular layout
resemble the Poisson Voronoi (PV) tessellation [27]. Table I
shows a summary of the common notations used in this paper.



TABLE I
SUMMARY OF NOTATIONS

Variable Description of variable
« Pathloss exponent with a value in range (2, 4]
o Additive noise power
K A constant equal to 3.575
B, o System bandwidth, and number of channels
A A Area of a cell; Total network area

L Pathloss constant

Niz, Py, A | BS power consumption parameters
Abs Ay BS density; User density
Pa Probability of a BS being active
Dy Proportion of interfering BSs i.e. P, Ay = paXp\bo
Dr Random thinning probability in random sleep mode
Ds Proportion of BSs available for user association in

centralized sleep mode

B. Channel Model

Consider a typical user located at the origin, a distance of
r from its parent BS b,. The considered pathloss model is
l(r) = L|jr|~®, where L is a constant and o« > 2 is the
pathloss exponent. The power received by the typical user from
its parent BS is P,.(r) = P.hLr—®, where h models the fading
loss between the typical user and its parent BS. After cell
association, any idle BSs will thin the aggregate interference
suffered by the typical user. Denoting the set of idle BSs as
{bia}, the SINR of the typical user is expressed as

h -
SINR = —; - — ()
pL T > giR;
iE‘bb\{boUbid}

where o2 is additive noise power, g; is the fading loss between
the typical user and the i-th interfering BS and R; is the
distance between the typical user and the :-th interfering BS.
Both h and g; are assumed to be i.i.d. exponential where

h, gi ~ eXp(l)

C. Base Station Power Model

A BS consumes different amounts of power depending on
its operating mode. In active mode, the power consumed by
a BS, denoted as Py4.:, constitutes contributions from the
power amplifier, signal processing, cooling, antenna and feeder
losses, etc. In light sleep mode, a BS consumes less power,
denoted as Prgicep. When the BS is switched off (denoted
as deep sleep mode in this paper), it consumes no power i.c.
Ppsieep = 0. Hence, the power consumed by a typical BS can
be expressed as [11]:

Pper = Nio Py + AP,
Plecep = Nta:Psh
PDsleep = 07

0 < P, < P, (Active mode)
P, =0 (Light sleep mode)
Deep sleep mode,

Pini

)
where Ny, is the number of transceiver chains, P, is the
fixed no-load power consumption, A is the slope of the load-
dependent power consumption, P; is the maximum transmit
power, and Py is the sleep mode power consumption per
transceiver chain. We use APC and EE to evaluate energy
performance. The APC in Watts/m? is calculated as

APC = >\b [ a(PAct - Pleeep) + Pleeep] ) (3)

where p, is the fraction of all BSs that are active. In contrast,
EE depends on the network sum rate which is a sum of all the
capacity achieved by all users in the network. EE quantifies
the number of bits transmitted per unit power consumption as

B Network sum rate
)\bA [pa (PAct - Pleeep) + Pleeep]

EE [bits/Joule].

C))
Network sum rate depends on the sleep mode strategy and will
be analyzed later in the paper.

III. NETWORK PERFORMANCE ANALYSIS

In a 2-D PV tessellation, the distribution of cell sizes can
be approximated as [22], [34]

(KX)® -1 —xana
A) = b

fx(4) T(K)
where X is the cell size random variable, K = 3.575 is a
constant and I'(t) = [ «*~'e~*dx is the gamma function.
The number of users in a typical cell of area A is Poisson
distributed as ga(n) = 2«4 c=MA Hence, the probability
that a typical cell contains n users is expressed as

5)

P(N = n) = /OOO]P’[N = n|X = A]- fx(A)dA

(@ Ap(Kxp)* /°° K—1 -
) Zu Ant (Au+KXp)A dA
r(K)n! J, ¢

(WS4 K) ;
 T(K)n!( Ay + KXp)ntE? ©®
where (a) is solved using the identity [35, (3.381.4)].
Due to the independent distribution of BSs and users, some
cells may be idle (have no users). Hence, the probability of a
typical BS being active, denoted as p,, is expressed as

A K
pazl—]P)(Nzo):l—<1+IC/\b> . )

It is assumed that in each active BS, all downlink channels are
occupied which is a reasonable assumption for a homogeneous
network in a high density environment such as an urban area. If
any idle BSs exist in the network (i.e. p, < 1), then aggregate
interference reduces since idle BSs do not transmit. Slivnyak’s
theorem, which states that an independently thinned PPP is
also a PPP [30], is applied in subsequent analysis.

A. Average Rate Performance

1) Single User Connectivity Model: Some works assume
that each cell connects only one user who utilizes the whole
band; for instance [18], [27]. We denote this as the single user
connectivity model. In a cell with multiple users, one user
is chosen randomly and served by the BS. In other words,
the average number of served users is equal to the average
number of active BSs. Hence such a model requires a very high
BS density to achieve an acceptable blocking rate. Consider a
new measure called average connectivity ratio (ACR) which
is introduced in [22] and expresses the proportion of all users
that get a connection. It is expressed as [22]

e N A\
ACR(v) = SV [1 <1+ ICAb) . ®




where v = \p/\, is the BS-user density ratio. To guarantee
that a given blocking constraint y is always achieved, the
minimum BS density is determined as

ACR(v) = p—;’\b > 1 x;

(7

= parp > (L—x) Ay (9)

It is not possible to express (9) in closed form as a function
of A\p. However, x is always set as a small number in practice.
For further analysis, we approximate p, using the first three
terms of its binomial series as

oMl Au(KAL
Pa =730 » \ 2K )|

Thus, the required minimum BS density in closed form is

expressed as
K+1
M= — )\
’ < 2K >

As expected therefore, A, increases with A, but reduces when
the blocking constraint is relaxed. The exact value of A, in
(9) can be obtained using the bisection method [36].

To illustrate, consider xy = 0.1, A, = 10~*m~2 and
A =25km x 2.5km such that Ay > 6.4 x 10~*m~2. Then,
the average number of users and BSs are A\,|.A| = 625 and
Al Al = 4000 respectively. In this example, the exact BS
density is obtained using (9) as Ay = 6.98 X 10~*m~—2; hence,
this approximation gives a 9% difference but it allows a closed
form result. It is clear that the average number of required BSs
far outweighs the average number of connected users which
is unrealistic in practice.

The single-user connectivity approach has various limi-
tations especially with regard to energy consumption and
efficiency. It works under the assumption that the user density
is sufficiently high such that all BSs cover at least one user;
[27] uses this assumption. Then, average sum rate is deter-
mined by multiplying the average user rate and the number
of connected users (equivalent to the number of BSs). In a
realistic network however, user connectivity is influenced by
the user and BS densities and their spatial distribution. Since
some BSs remain idle while some users remain unconnected,
sum rate becomes difficult to determine under this approach.
It becomes necessary to develop a general user connectivity
framework that works under all possible combinations of BSs
and users to derive an accurate average sum rate. The multi-
user connectivity model facilitates a more realistic study of
the APC and EE performance under blocking constraints.

2) Multi-user Connectivity Model: Under this model, each
BS can connect multiple users depending on the available
number of channels. Assume that the system bandwidth B
Hz is subdivided into & channels, each of size Bs Hz. Then,
each BS can connect up to a maximum of N = ¢ users to
avoid intra-cell interference.

(10)

Y

Theorem 1. The ACR in the multi-user connectivity model is
expressed as [22]

ACR(v,8) = 22 x E[Cy),

. (12)

where Cy € {0,0} is the number of served users in the cell
and E[CY) is expressed as

P(N > 9), 0=1
E[Cy] = o=1 13
Rl SE(N > 0)+ S kB(N = k), 0>1. O
k=1
Proof. See Appendix A. m

Special Case 1. When 6 = 1, E[Cy] = p, which gives the
single connectivity model.

According to (12), the required BS density to achieve the
blocking constraint x must satisfy the expression A\yE[Cp] >
(1—x)Ay. To illustrate the importance of this model, we apply
the same constraint Y = 0.1 and consider the simple case of
6 = 2. Then,

A A\ Y
E[Cy{5=2) = 2pa — " (1 + ’C)\b> .

Using bisection method, the required BS density A, > 1.35 x
10~*m? such that \,|.A| > 844 BSs. This is in contrast to
the over 4000 BSs required in the single user connectivity
model. As J increases, the BS-user density ratio continues to
reduce and becomes evermore realistic. The ACR performance
of the network is affected by the applied sleep mode strategy
as discussed later in Section VI

We will now analyze the average rate performance of the
network. Allocating all available channels to the connected
users constitutes the upper bound on bandwidth utilization. For
each connected user, the density of interfering BSs, denoted
as P, Ap, includes all active BSs cxcept its parent BS b, i.c.
{Da Ao} = {Parb\bo}. Consider two scenarios:

1) If N < 6, the BS allocates all channels to the users
sequentially. Initially, each user is allocated 6, = [6/N |
channels and the remaining channels, equal to §,, = § —
0, N, are allocated to any §,- users chosen randomly from
the IV users. For example, if N =4 and § = 10, two of
the users get 3 channels and the other two get 2 channels.

2) If N > 6, the BS randomly selects § users and allocates
a single channel to each one.

Theorem 2. The average rate supported on a typical channel
is expressed as

2 (a3
Ren = §7r/\bE e~ (4B, (L) = = Fr (2 -1z

5 14
where Z[f(t, 2)] :th>00!z>0[f(tﬂz)]1d2dt and
(o) = (28 = 1) [0 1) 20 Traaredu.
Proof. See Appendix B. L]

Corollary 1. In an interference-limited network, average
channel rate R.p, simplifies to

— B 1
Ren(v) = — ——dt. (15)
¢ ( ) 4 t>0 1 +paC(t7a)
Proof. Let 02 = 0 in (14) and simplify the integral. [



Special Case 2. When \, > \y, b, ~ 1 and Ry further

simplifies to
— B [ 1
Ren, = — / —dt.
"0 Jiso L (1)

Hence, Ry, is invariant with the BS density which is consistent
with the result in [27, (16)].

(16)

Lemma 1. The average number of channels per connected
user is expressed as

Pad
E[Cy)
Proof. See Appendix C. m

a7

Corollary 2. The average rate of a typical user in the network
is expressed as

paB = | (14D, C(6a))z = (25— 1)2/2
v = ka: e b Do 6L, e Pl
E[Cy]
(13)

Proof. R, is determined from Theorem 2 and Lemma 1 as
Ru =W Rch- ]

When 02 = 0, the average user rate of the interference-
limited network simplifies to

ﬁu:@"ﬁch:

PoB / 1 dt 19
EC)] Joo Trpuctay 1Y

Average network sum rate 7 is determined from R, in (18)
and the connected users as

T =ACR X Ay X Ry = M E[Ch] Ry (20)
For the interference-limited case, 7 is determined accordingly

using (19).

B. Probability of Coverage

The coverage probability of a typical user in the network is
expressed as [27]

P. = 7T/\b/

J5>0

e~ (HBpTea)s R g o

where p(T,a) = T%* [[%,,, 7izdu and T is the SINR
coverage threshold. Unlike the analysis in [27], we consider
the possibility of idle BSs which thin the aggregate interfer-
ence.

In the interference-limited network, coverage probability P,
simplifies to
5 (a) 1 ®) 1
Pelo o) =g @)~ 1 o)

where (a) shows that P, is also heavily influenced by the
prevailing BS-user density ratio v. In addition, (b) describes
the special case of A\, < A, where p, =~ 1 such that P, is
independent of the BS density. This special case scenario is
analyzed in [27].

(22)

Lemma 2. When o> > 0 and « > 2 which is true for a

mobile environment, both coverage probability and average
user rate increase monotonically with the BS density and
transmit power.

Proof. See Appendix D. L]

IV. CONSTRAINED OPTIMIZATION FRAMEWORK

In the last section, we analyzed the PPP-based homogeneous
network in terms of its coverage and average rate performance.
We now consider two approaches to managing the network
energy performance: (a) In this section, we determine the
initial optimal deployment strategy of the network in terms
of its deployment factor [15]. In this case, the BS density
and transmit power in the network are jointly optimized to
determine what optimal combination minimizes the APC; (b)
Once the network is in existence, the sleep mode schemes
which are discussed in Section V are then applied to adapt
network power consumption to the prevailing user density
or traffic intensity. The idea is that even if the network is
initially deployed with optimal parameters, it still exists in
an environment of highly variable spatiotemporal distribution
of users or traffic and hence, there are more energy saving
opportunities.

In this paper, the deployment factor, expressed as H =
)\?/ 2Pt, is simply a mathematical expression that combines the
required BS density and associated transmit power that achieve
a given performance constraint. Therefore, the deployment fac-
tor H can be optimized to determine the specific combination
of BS density and transmit power that minimizes the APC,
which is this paper’s main objective. This joint optimization of
BS density and transmit power provides a flexible framework
where for instance BS density can be reduced if the transmit
power is increased by an appropriate determinable amount.

Both coverage probability and average user rate are consid-
ered as the performance constraints during network optimiza-
tion. Both constraints are necessary because satisfying one
does not automatically satisfy the other. For instance, (i) if
SINR is high (good coverage), average user rate may remain
low due to insufficient bandwidth; and (ii) if SINR is low
(poor coverage), average user rate may still be high due to
high bandwidth availability.

As more BSs are deployed in the network, aggregate in-
terference increases significantly and becomes dominant over
noise, making the interference-to-noise ratio (INR) high. In
this case, the network is essentially interference-limited, mak-
ing the effect of noise anywhere in the network negligible [27].
Therefore, the interference-limited network defines the upper
bound performance of coverage probability and average rate
of a general network. In this paper, we express the coverage
probability and average rate constraints as functions of their
respective upper bounds as follows:

P.=€eP, and R, =kRy, (23)
respectively, where € € (0,1] and s € (0,1] are the ratios
of the coverage probability and average user rate to their
respective upper bound values. The parameters € and & are
set by the operator based on the desired coverage and average
rate performance. It should be noted however that as € and
K increase, so does the BS density and/or transmit power
required to push P, and R, closer to their upper bound levels
P. and R, respectively.



A. Coverage Probability Constraint

Corollary 3. When 0% > 0, the coverage probability in (21)
can be approximated as

—=a/2
— To?
P~ P, 1—% : 24)
AP,
_ s+
where ’l/)(()é) = a2

Proof. See Appendix E. Fig. 1(a) shows a tight approximation
in a dense network. L]

Using (23) and (24) and Lemma 2, the coverage probability
constraint can be rewritten as
HY Tazw(a)

PO/  (1—e)

=0, (25)

where H} = )\?/ %P, is the deployment factor that satisfies the
coverage probability constraint.

In general, it is not possible to find a closed form expression
for ‘H} in (25) because P. is also a function of \,. To
find the optimal combination of A, and P; that minimizes
APC, we use different values of P; and then determine the
corresponding values of )\, using bisection method. Working
backwards, we then determine the APC for each combination
of P; and Ap. Over a wide range of P, values, we then
determine the combination of P; and ), that minimizes APC
and denote it as (A}, ). Although this approach is not
perfectly accurate, it allows us to obtain insights into a problem
that would otherwise be impossible to solve. This approach,
although rather involved, is reasonable since network planning
and optimization tasks are generally performed offline. It is
however possible to express the optimal deployment factor in
closed form in the following special scenario.

Special Case 3. When N\, < Ay, po ~ 1 and P, is
independent of \y. Hence (25) simplifies to
TU‘Q’IZJ((,V)—Q/Z
= 26

To minimize APC, H. is optimized as a bivariate problem
using the following framework:

minimize Ap(Ny Py + AF)

by P

/2 -5 @7
subject to NPy = Hy, P < P,

This problem can easily be converted into a single variable
problem and its solutions are

.. [ 2NuP, — i HE\
P :mln{ﬁ,ﬂ}; b,c:<F;) . (28)

B. Average User Rate Constraint

Corollary 4. When o > 0, the average user rate in (18) can
be approximated as

Bpa0'2¢(a)wr(t7 a)

Ru~TRy — =72
E(Cy NP,

; (29)

o
o
&
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Fig. 1. Exact and approximated (a) coverage probability and (b) average user
rate Ay = 1072m~2, a = 4, and T = 0dB).

@-1n ¢

where Yelt:0) = oo frp ctemn®

Proof. See Appendix F. Fig. 1(b) shows a tight approximation
in a dense network. L]

Combining (23), (29) and Lemma 2, the average user rate
constraint can be rewritten as

Hy
’¢r(t7 04)

where H) = Ag‘/ 2Pt is the optimal deployment factor that

o*1)(a)
(1-r)R

=0, (30)

. ~ . o 1 .
satisfies the rate constraint, and & = ft>0 Wdt is
the average spectral efficiency when 02 = 0 and § = 1

[27]. Similar to the coverage constraint, it is not possible to
find a closed form expression for H) in (30) because both
¥, (t, @) and R also depend on \y,. For further analysis, various
values of P, are used to determine corresponding values of \p.
The optimal configuration, denoted as {\}, P/}, is then the
combination of A\, and P; that minimizes APC.

Special Case 4. When Ny, < Ay, Ur(t,a) and R are
independent of \y. Hence (30) simplifies to
2o _ T (t0)
" 1-r)R
Therefore H,. is in closed form and the optimal BS density and
transmit power are determined by solving a similar bivariate
problem as in (27)-(28). The solutions are

ONLPy — Hr\ 2
———— P N.,.=|= . 32
A(O{ — 2)7 t (> b,r Pt* ( )
According to (28) and (32), P} is independent of both € and

+ and only depends on the BS power consumption parameters.
Hence, P} can be predetermined if the BS type is known.

€Y
P} = min {

C. Overall Solution

Coverage and average rate constraints are complementary
to each other because optimization based on one measure also
improves the other measure. Since P} is similar for both
constraints, the overall optimal BS density is the one that
satisfies both constraints simultaneously i.e.

Ay = max{\; ., \j .} (33)



V. SLEEP MODE STRATEGIES

Cellular subscribers are distributed unevenly within the
network in both space and time dimensions. For example,
urban areas have a high concentration of users during the day
but they move to suburban residential arcas at night. Similarly,
more traffic is originated during the mid-morning and evening
hours than late at night [12]. This causes significant traffic
load variation over each 24-hour day. According to [11] for
example, only 10-30% of subscribers are usually active during
the busy periods. Furthermore, a study of mature markets by
GreenTouch [37] shows that a typical traffic profile varies
between 20% and 140% of the average traffic load. This traffic
load profile can be arranged into a load-level step function
with five steps as shown in Fig. 2 [37]. This inevitable and
fairly predictable traffic variation provides a great opportunity
for saving energy by adapting the active BS density to the
prevailing traffic load level.

In this paper, we assume that the BS on/off switching is
based on a long term traffic profile as in [38]. Over each
traffic load-level segment, an appropriate active BS density is
determined to serve the prevailing active subscribers; all other
BSs are switched off (i.e. deep sleep mode) for the entire
duration of this segment. The active BSs provide coverage
over the entire network area, usually at the cost of slightly
increased transmit power to serve some distant users. However,
this approach is reasonable especially in dense urban scenarios
where the overall BS density is high and thus a typical user
will not be too far away from an active BS. Depending on the
varying spatial distribution of users within each traffic load
segment, it is still possible that some BSs can be idle some of
the time. In such a case, the network puts such BSs in light
sleep mode, waking them up quickly when required to respond
to short-term traffic variations.

The criteria followed in choosing BSs for sleep mode highly
impacts network performance. In this section, we propose a
new sleep mode scheme called centralized strategic scheme
and investigate its energy consumption performance. To ease
implementation of the strategic algorithm, we also propose
a distributed strategic sleep mode scheme and compare its
performance to that of its optimal centralized counterpart.
Two other sleep mode schemes from literature are used for
comparison purposes in this paper: (i) conventional sleep
mode which has already been discussed in section IV; and
(ii) random sleep mode which was introduced in [18]. All
schemes are analyzed in terms of their coverage, average rate
and energy performance.

A. Conventional Sleep Mode

This sleep mode approach only responds to real-time dis-
tribution of traffic and puts all idle BSs of density (1 —pa)Ap
to light sleep mode to save energy. No BSs are put in deep
sleep mode for a predefined period in response to the traffic
load profile of Fig. 2. Since all connected users maintain their
original parent BSs, they also maintain their original received
signal strength. However, aggregate interference is thinned out
by the BSs in light sleep mode which enhances average SINR
in the network. Under this scheme, the probability of active
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Fig. 2. Traffic profile for a dense urban area [37].

BS density is shown in (7) and the corresponding APC in (3).
All the preceding network analysis in Sections III and IV is
based on this scheme.

B. Random Sleep Mode

Although conventional sleep mode puts all idle BS to light
sleep mode, it may become necessary to switch off more BSs
to reduce energy consumption and enhance EE. In random
sleep mode, once the density of BSs required to satisfy a given
traffic load level has been determined, the available BS density
is independently thinned and the selected BSs are put in deep
sleep mode. Therefore, some users are forced to connect to
more distant BSs if their nearest (original parent) BSs are
switched off. The multi-user connectivity model facilitates the
thinned BS density to connect more users and maintain an
acceptable blocking rate.

If p, is the target proportion of available BSs for cell
association, then the density of BSs put in deep sleep mode is
(1—py-)Ap. Since the available BS density is p, Ay, random and
conventional sleep modes are equivalent only when p, = 1.
After cell association, there is a finite probability that some
BSs may still remain idle due to short-term traffic variations.
Such idle BSs are only put in light sleep mode as they may
will be required more regularly to respond to short-term traffic
variations. Therefore, the active BS probability with random
sleep mode is expressed as

Au/Dero\
paT:l_]P)(Nr:O):l_(l‘l'%) , (34)
where NV, is the number of users in a cell. Active BS density
is then p,, p,Ap and the density of idle BSs is (1 — pg, )prAp.
Hence, the APC of the network is determined as

APC = pr)\b [pa, (PAct - Pleeep) + Pleeep] . (35)

The analysis of random sleep mode is essentially similar to
that of conventional sleep mode, the only difference being their
available BS densities which are p.A, and A, respectively.
For example, comparing (7) and (34) shows the similarity
in their active BS probability. Due to space constraints, the
mathematical analysis of random sleep mode is not shown.



Unlike random sleep mode, practical schemes are likely
to consider the dynamic spatiotemporal distribution of users
in the network while selecting BSs for sleep mode. We now
propose a centralized strategic sleep algorithm which exploits
this spatiotemporal variation of traffic to enhance ecnergy
performance. A distributed implementation of the strategic
algorithm is also discussed.

C. Centralized Strategic Sleep Mode

In random sleep mode, the BSs put in deep sleep mode are
selected in a random manner and hence some BSs with many
users are also affected which results in a poor performance.
In centralized strategic sleep mode, a BS remains active de-
pending on its perceived degree of importance to the network.
In practice, the degree of importance of a typical BS can be
computed and updated over time by the network; for example,
it could be based on the average number of connections that
the BS maintains during the busy period. The scheme then
prioritizes BSs with the least degree of importance to the
network for sleep mode [22]. If the network is initially thinned
to psAp (ps is the fraction of all BSs that remain available for
cell association), then the density of BSs in deep sleep mode
is (1 —ps)Ap. The value of p, is set using any desired criteria;
for example it can be based on a requirement to serve a given
traffic load level as in Fig. 2. In addition, it can be set to keep
BSs with at least a given average number of connections; for
example, if BSs with N < n connections are to be put to
sleep, then p; is obtained using (6) as

n—1

Z AT (KA)KT (m + K)
T(K

P(N .
<n) Yl (g + KCry) K

ps=1-— (36)

Due to the mobility of users that causes short-term spa-
tiotemporal traffic variability, the number of connections per
active BS is not a constant over the entire period of each
load-level segment. To emulate this effect, we assume that a
density f, A, (where 0 < f, < 1) of users have their locations
changed in each simulation trial, while the rest are assumed
to be stationary. This means that the number of users per BS
is changing in each iteration. Furthermore, some BSs may
momentarily become idle depending on the values of ps, f,
and \A,. Those BSs are put in light sleep mode within that
iteration. Over time however, the strategic algorithm ensures
that the number of connected users is maximized for a given
active BS density compared to random sleep mode. Assuming
that the probability of a BS being idle after a density fy, A,
of users have changed locations is p,, then the instantaneous
active BS density is p,psA, while the BS density in light
sleep mode is (1 — Py )psAs. The APC of the network is then
expressed as

APC = ps)‘b[ﬁa PAct + (]— - ﬁa) Pleeep]- (37)

D. Distributed Strategic Sleep Mode

Although the centralized strategic scheme is optimal, it is
difficult to implement in very large networks. In the distributed
strategic scheme, the strategic algorithm is implemented in

smaller clusters all over the network. The network is subdi-
vided into a grid of N, equal-sized squares where each square
represents a cluster area. Cluster boundaries only determine
which cluster each BS belongs to for sleep mode optimization
and do not affect cell association since users still connect to
their nearest parent BSs. Therefore, BSs within each square
form a cluster and together with their associated users define
the cluster’s BS-user density ratio. Although this makes it
easier and more manageable to implement, it trades off some
of the performance of the centralized strategic scheme. If
N, =1, the centralized and distributed strategic sleep mode
schemes are identical.

If the ¢-th cluster has a BS density A, the respective BS
densities psAp, and (1 — ps)Ap, remain awake or go to deep
sleep mode respectively based on their degree of importance
to the network. For consistency, the change in locations of a
density f, A, of the users is done over the whole network and
not within each individual clusters. Similarly, there is a chance
that some of the remaining BSs can become idle; these are
put in light sleep mode. Hence, the BS densities in active and
light sleep mode are P, psAp, and (1 —pg, )psAp, respectively,
where p,, is the probability of a BS in the ¢-th cluster not
being idle. The network APC with distributed sleep mode is
then expressed as

N
APC = Zps/\b; [ﬁa,,v,PAct + (1 - ﬁa,y)Pleeep] .

i=1

(38)

It is important to investigate how the distributed strategic
scheme affects the performance of the strategic algorithm
compared to the centralized strategic scheme. In the central-
ized scheme, the optimal set of available BS, denoted as B,
contains the best BSs in terms of degree of importance. For the
distributed scheme, denote the set of available BSs in the -th
cluster as Bd = {ps/\b }oIF the overall set of available BSs is
denoted as Bd, then B = U7 le Due to the spatiotemporal
distribution of BSs and users, a given cluster may contain
many important BSs while another cluster has few such BSs.
Therefore, some clusters may be forced to leave out important
BSs while others contribute unimportant ones. This unwanted
outcome gets worse as the density of clusters increases. In
other words, we can conclude that B, # Bg. The suboptimal
composition of set By explains the suboptimal performance
of the distributed strategic scheme compared to its centralized
counterpart. However, results in Section VI show only a small
performance degradation.

VI. NUMERICAL RESULTS

This section discusses the performance of the PPP-based
homogeneous network with the default parameters shown in
Table II, unless otherwise stated.

As Fig. 3 shows, average channel rate R, depends on the
prevailing BS-user density ratio v. Coverage probability also
follows the same trend. There are two v-ranges of interest:

1) At low v (where A\, > \p), Ren in the interference-

limited network (“no-noise” scenario) is invariant with
the BS density since all BSs remain active. This is
consistent with the analysis in [27]. In addition, Ren
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SIMULATION PARAMETERS
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Network size A 5km x 5km
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System bandwidth B 20 MHz based on a LTE network
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BS transmit power P, = 21dBm
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Fig. 3. Average channel rate against v in a network using conventional sleep
mode (for Ay, = 1073 m—2).

increases with « because a higher « atlenuates inter-
ference signals (that originate further away) more than
the received signal and this increases the average SINR
in the network. In the presence of noise however, the
network is essentially noise-limited since interference
is very low due to a low BS density. Hence, R.p
is considerably lower than its upper bound R.,. In
contrast, R., now reduces as « increases because the
received power degrades more at a higher .

2) As v increases (or )\, increases), the gradual increase
in aggregate interference eventually makes the network
interference-limited and the “with-noise”” and “no-noise”
characteristics eventually merge. When v increases fur-
ther, idle BSs begin to appear and their thinning effect
on interference enhances the rate in both scenarios.

Fig. 4 shows that A} . and A} . increase with their respective
constraints € and  because the network requires more BSs to
get closer to its interference-limited state. In addition, A} .
increases with T because more BSs are required to enhance
coverage probability to a higher threshold 7". When T' = 0dB,

be = Ap - However, when T' > 0dB, Aj . > A} ,; conversely
whenT" < 0dB, A\j . < A .. Hence, it is necessary to consider
both coverage and rate constraints.

Furthermore, )\;; . and )‘l);m also vary in different network
environments as shown in Fig. 5. Generally, A; . and A}
increase with « since wireless signals degrade more rapidly
in high « environments. To investigate the effect of «, assume
that € = x and consider the case of T' = 0dB where both Aj .
and A} . are in the same range. When o < 4, A} . > A} . but

2 i i
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Fig. 4. Optimal BS density against coverage and average rate constraints for
Ay =1073m~2.
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Fig. 5. Effect of path loss exponent on the optimal BS density (A, =
1073m~2, T = 0dB).

when a >4, A\j . < Aj . This also emphasizes the necessity
of using both coverage and rate constraints.

The choice of sleep mode strategy has an important bearing
on the connectivity performance of the network as shown in
Fig. 6. Our multi-user connectivity approach has a better ACR
performance than single-user connectivity because it allows
multiple users to connect to a BS. The more the number of
channels, the higher the ACR value until it reaches its upper
bound where every user is connected. In general, conventional
sleep mode has the best ACR performance because it maintains
the largest BS density for user association. When the BS
density is low, the strategic and random sleep mode schemes
have comparable ACR performance because most BSs have
many more users than they can connect, irrespective of the
on/off switching criteria. However, as the BS density increases,
the on/off switching approach becomes important and the
strategic schemes begin to perform better and their ACR
performance eventually approaches that of the conventional
scheme. In this high BS density region, the random on/off
switching criterion of random sleep mode retains some BSs
that contain no users at all and therefore do not contribute
to the ACR performance. However, the strategic schemes
prioritise BSs with a high likelihood of having users and are
therefore able to improve their ACR performance.
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Fig. 6. ACR performance of the different sleep mode strategies, where ps; =
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Fig. 7. Active BS density using the different sleep mode schemes.

The coverage probability, average rate and energy consump-
tion of the network are influenced by the sleep mode scheme
implemented. Fig. 7 shows the active BS density for each
scheme. With both p; and p, equal to 1, all schemes are
identical to the conventional scheme and active BS density
is maximized as p,\,. Otherwise, centralized strategic sleep
mode enhances the density of active BSs which approaches its
upper bound (BS density of the conventional scheme) much
faster than in the case of random sleep mode. The active BS
densities of the distributed and centralized strategic schemes
are essentially equal.

Fig. 8 shows that sleep mode generally improves coverage
probability. The “no sleep” scenario is a special case which
assumes that A, > Ay (or p, &~ 1) and is discussed in [27].
In this case, all BSs are active which maximizes aggregate
interference in the network thus giving a lower bound on
coverage probability. Although switching off BSs increases the
average BS-user separation distances, it can lead to improved
average SINR if sleep mode is implemented in such a way as
to reduce average interference more than it reduces average
received signal. In the conventional scheme for example, all
users remain connected to their parent BSs which maintains
their received signal power but idle BSs are put in light
sleep mode which thins interference and consequently en-
hances SINR. In the centralized strategic scheme, the most
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Fig. 9. Average sum rate of a network with sleep mode mechanisms.

important BSs are maintained, meaning that a significant
portion of users are not gravely affected by sleep mode which
enhances average SINR and improves coverage probability. In
distributed strategic scheme, performance is essentially similar
to its centralized counterpart because of their comparable
BS densities. However, random sleep mode gives only slight
improvement of average SINR over the “no-sleep” scheme due
to its random criteria of choosing BSs for sleep mode.

Sleep mode schemes also impact the realizable average sum
rate of the network as shown in Fig. 9. Conventional sleep
mode has a constant average sum rate because it maintains the
same average active BS density of p, Ap. It also defines the up-
per bound of the average sum rate because of its superior active
BS density which maximizes both the number of connected
users and the bandwidth per connected user. Random sleep
mode has the worst average rate performance because of its
random selection of sleep mode BSs. In contrast, centralized
strategic sleep mode optimizes the selection process of sleep
mode BSs to enhance the average sum rate which approaches
its upper bound more rapidly than with random sleep mode.
In addition, the centralized strategic scheme gives a better
average sum rate than its distributed counterpart due to the
optimal selection BSs in set {B.} based on their degree of
importance to the network. To compare the strategic schemes
with random scheme, we can for instance consider their sum
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rate performance at 100 Mbps, where random sleep mode
requires 68% of BSs to be available, while the centralized
strategic scheme only needs 56%.

The benefit of sleep mode is to enhance network EE but
this is usually achieved at the expense of other performance
measures such as average sum rate of the network. However,
the best schemes have the ability to maximize the average
sum rate from the remaining active BSs. As shown in Fig.
10, the strategic schemes maximize the average rate of each
remaining active BS compared to the conventional and ran-
dom schemes. Therefore, the strategic schemes give a much
improved network EE as shown in Fig. 11. In other words,
although conventional sleep mode maximizes the average sum
rate as seen in Fig. 9, it does so at the expense of significantly
more energy consumption. Random sleep mode has the worst
EE performance due to its failure to enhance the average rate
from available BSs.

The traffic profile in Fig. 2 is used to evaluate the energy
saving potential of the sleep mode schemes. During network
planning, operators dimension their networks to meet the
peak traffic load requirement, represent by the 140% load
level segment. As the user density reduces in other segments,
appropriate BS densities are determined to support the reduced
traffic load. Fig. 12 shows the average power saved in the
network for the different sleep mode schemes. Conventional
sleep mode has the least energy saving because all BSs are
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Fig. 12. Power savings of the different sleep mode schemes.

considered for cell association and no BSs are put in deep sleep
mode irrespective of the load level. However, BSs of density
(1 — pg)Ap are idle and are put to light sleep mode to deliver
some energy savings. We assume that in the 140% segment,
all BSs are required to serve this high load i.e. ps = p, = 1
and all schemes resemble conventional sleep mode. As the
load reduces, random sleep mode saves more energy than
conventional sleep mode because it is able to put some BSs in
deep sleep mode. Over the 24-hour period, the random scheme
has a 75.5% energy saving gain over the conventional scheme.

Centralized strategic sleep mode maximizes energy savings
because it uses fewer BSs to meet the expected traffic level,
it achieves this by maximizing the average rate per active BS
as shown in Fig. 10. Over the 24-hour period, this scheme
has an energy saving gain of 97% over the conventional
scheme and 13% over the random scheme. The performance
of the distributed strategic scheme is slightly less than its
centralized counterpart because of its suboptimal nature. The
24-hour energy saving gains over conventional sleep mode are
92% and 91% for the the 8-cluster and 16-cluster topologies
respectively. Fewer clusters are less disruptive to the continuity
of the network but the performance gap is very negligible.
Furthermore, the strategic schemes only have a small advan-
tage over the random scheme in the 20% and 40% load level
segments. In these low-capacity segments, many BSs are put
in deep sleep mode in both scenarios and the few remaining
BSs are well loaded irrespective of their selection criteria.
However, as the capacity requirements increase and more BSs
remain awake, the strategic selection criteria gives a significant
benefit over the random selection approach.

VII. CONCLUSIONS

In this paper, we used the spatial PPP model to analyze
the coverage, rate and energy performance of a homogeneous
network. We formulated an APC-minimization framework to
determine an optimal deployment strategy of the network sub-
ject to appropriate coverage and rate constraints. Under special
network scenarios, the deployment parameters are expressed in
closed form. Analysis showed that optimal transmit power is
similar under both coverage and rate constraints. Furthermore,
we studied various sleep mode mechanisms to adapt energy



consumption to variations in traffic load. Results showed that
the criteria used in selecting candidate BSs for sleep mode is
a major determinant of the overall performance based on cov-
erage, rate and energy consumption. The proposed centralized
strategic scheme enhances resource utilization by maximizing
the average rate per active BS, which maximizes EE. Over
a 24 hour period, it gives a 97% energy saving gain over
conventional sleep mode. Distributing the strategic sleep mode
algorithm in clusters all over the network eases implementation
and maintains a tight performance approximation compared to
the centralized algorithm.

APPENDIX A

The average number of connected users is expressed as
ACR x \,,. This is also equivalent to A\, X E[C}], where E[C)]
is the average number of served users per cell. Hence, Cp = 0
if there are no users and § if it has the same or more users
than its allocated channels. Since C} takes on non-negative
integer values, its expectation is expressed as

5
E[Cy] = Z EP(Cy = k)

(39)
k=1
P(N =k), k<9
where P(Cy = k) ( ) k<
P(N >4¢), k=0.
Using different values of k£ in (39) shows that E[Cy] is

generally expressed as shown in (13).

For Special Case 1, each active BS serves one user. Hence,
the number of served users equals the number of active BSs
i.e. ACR x A\, = A\pp,. Hence, E[Cy] =

APPENDIX B

The average rate of a channel is expressed as R., =
Bs - E[logs(1 + SINR)]. Since rate is a non-negative random
variable, its expectation is expressed as E[X] = [,_ P(X >
t) dt. Following the proof of [27, Theorem 2], R.;, becomes

B

Ren / P(SINR > 2" — 1)dt
>0

?5[6_’”\” ’"ae%(zt_l)ﬁz,; (re(2' —

= 1))dt 27y rdr],
where L7, (r®(28 — 1)) = exp(—m{p, o 7%¢(t, ) is the
Laplace transform of the thinned interference power. Substi-
tuting z = r? gives the result.

APPENDIX C

Let Q = py,Apd denote the total number of channels in
the network. The average number of connected users N, =
ACR x A, = ME[Cy]. Hence w = /N, gives the result.
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APPENDIX D

To prove monotonicity with the BS density, consider two
BS densities Ap, and Ay, where Ay, > Ay, . The probability of
coverage corresponding to \p, is

o0
Pe(Av) = TAv, / e A O s (40)
0
where A = (1 + p(T,«a)) and C =
substitute in (40); then

Abl

Ab
.Let s = :rA'l and
- a/2
s, Az ‘Cz“/z(v>
Pe(Apy) = TAp, e 147 e 2 dz
0

(2) i ay:
/ emmAn AT =0 gy P (\)
0

> 7T>\b1
where (a) follows since ¢ > 0, @ > 2 and '\bl < 1.
Dependence of the average user rate on the BS densny is
proved in the same way.
To prove monotonicity with the transmit power, consider
two transmit power values P, and P, where P;, > P, . The
coverage probability corresponding to P, is

Pe(Py,) =7 /

Js>0

a1 a2
Ptl

(&

e~ *%ds,

(41)

To?

where a; = =7~ and a2 = 7\ (1 + p,p(T,cx)). For Py,, the
coverage probability is

Pu(PL) = 7h /

5>0

;1 S(x/Q
2

e e~ %2%ds. (42)

e e
Since a; >0 and P, > P;,, thene "2 >e "1 and hence

P.(Piy) > Pc(Py,). The dependence of the average user rate
on transmit power is proved in the same way.

APPENDIX E
Over a realistic SNR range, T0? < P;L and the second

To? a/2

exponentlal term in (21) can be approximated as e~ 1L °
1-— TU s®/2_ Substituting this into (21) gives

P~ ﬂ/\b/ e (145, p(T.0)s 4o _
>0

T
7T>\b 7

/2= (14D, p(T,0))s 4
HL/ e s

_p. o xl"(%—}—l)

tLmAs (L + Pap(T, o)) 2

The second integral is solved using identity [35, (3.381.4)].
Simplifying (43) gives the result.

(43)

APPENDIX F
o2 (ot a
Since 02 < P, in (18), e~ ix (2 =Dz
1)20‘/ 2. Hence, R, can be approximated as

02

zl—PtL

2 -

__ PaB = [p=mh (148, ¢ (1)) 2] _
Rux gag e |
2
W;bz = [(Qt _ 1)Za/ze—mb(lwaat,a))z] } . (44)
t

Evaluating both integrals gives the result. The second integral
is solved using [35, (3.381.4)].
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