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Abstract The overall purpose of the ‘Statistical Points and

Pitfalls’ series is to help readers and researchers alike in-

crease awareness of how to use statistics and why/how we

fall into inappropriate choices or interpretations. We hope to

help readers understand common misconceptions and give

clear guidance on how to avoid common pitfalls by offer-

ing simple tips to improve your reporting of quantitative re-

search findings. Each entry discusses a commonly encoun-

tered inappropriate practice and alternatives from a prag-

matic perspective with minimal mathematics involved. We

encourage readers to share comments on or suggestions for

this section on Twitter, using the hashtag: #mededstats

Using tools for statistical analysis that do not match with the

design of the study increases the chance that conclusions

drawn from that analysis are incorrect. Through a concise

example of how failing to account for study design char-

acteristics in the statistical analysis can result in incorrect

conclusions with regard to specific comparisons of interest,

this entry illustrates that key characteristics of the study

design should drive choices at the stage of analysis.

Example study

One area of study in educational research compares learn-

ing from examples with learning by solving problems [1, 2].
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A main research question in this area of study is whether

students learn more from solving problems, from study-

ing worked examples or from some combination thereof.

Suppose that some researchers randomly assign N = 140

medical students to four conditions (n = 35 participants per

condition): problem-problem, problem-example, example-

problem, example-example. As illustrated in Table 1, the

design of this study is a so-called two-way design: first task

(problem/example) and second task (problem/example). In

other words, first and second task constitute two factors in

a 2 by 2 factorial design [1, 3].

Participants in the problem-problem condition try to

solve two problems – problem A and problem B – that fol-

low the same structure and are of similar difficulty. In the

problem-example condition, participants first try to solve

problem A and then study a worked example of problem B.

In the example-problem condition, participants first study

a worked example of problem A and then try to solve

problem B. Finally, in the example-example condition,

participants study worked examples of both problems and

solve none of the problems by themselves. Subsequently,

participants in all four conditions complete the same post-

test, which comprises ten problems of the same structure as

problems A and B and are of similar difficulty. Each post-

test problem is scored ‘0’ whenever a participant provides

an incorrect solution and ‘1’ when that participant provides

a correct solution. Hence, a participant’s total score on the

post-test can range from 0 to 10. The researchers find an

average score of 4.79 (SD = 0.96) in the problem-problem

condition, 5.07 (SD = 1.05) in the problem-example condi-

tion, 5.20 (SD = 1.04) in the example-problem condition,

and 5.42 (SD = 0.96) in the example-example condition.

The findings from this simulated example study are similar

to those from an actual experiment with these conditions

published fairly recently [1].

http://crossmark.crossref.org/dialog/?doi=10.1007/s40037-017-0367-8&domain=pdf
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Commonly encountered analytic approaches in the

example study

Broadly speaking, researchers might consider three ana-

lytic approaches for the example study: (1) a statistical test

(i. e., t-test) for the difference in average score for each

pair of conditions; (2) one overall statistical test across the

four conditions (i. e., one-way analysis of variance, ANOVA

[4]); and (3) a two-way ANOVA in which three statisti-

cal tests are performed: the effect of first task, the effect

of second task, and their combined effect. As outlined in

the following, the first two approaches incorrectly treat the

data as from a one-way design: ‘first-and-only task’ with

four possibilities (e. g., method A, method B, method C or

method D). Consequently, these approaches fail to address

the question with regard to the effect of first task, the ef-

fect of second task, and their combined effect. The third

approach, two-way ANOVA, is the only approach that cor-

rectly treats the data as two-way and is therefore the only

appropriate approach for this type of data [1, 3].

Researchers who follow the first approach perform a t-

test for each pair of conditions. Given k conditions, there

are [k × (k – 1)]/2 pairs of conditions. Hence, three con-

ditions (k = 3) yields three pairs (i. e., 1-2, 1-3, 2-3) and

four conditions (k = 4) yields six pairs (i. e., 1-2, 1-3, 1-4,

2-3, 2-4, 3-4). Thus, in the example study, this approach

comes down to six t-tests in total, more than is needed for

the type of design in this study [1, 5]. Performing more sta-

tistical tests than is needed tends to elevate the number of

incorrect rejections of null hypotheses (i. e., Type I errors).

To understand the latter, consider the following example.

A fair die has six options – ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, and ‘6’ –

that each have the same chance of occurring. Hence, if we

throw one die, the chance of obtaining ‘6’ is 1/6 or nearly

0.17. However, if we throw two dice, there are 6 × 6 = 36

possible combinations of options, 11 of which yield a ‘6’ at

least once: ‘16’, ‘26’, ‘36’, ’46, ‘56’, ‘66’, ‘65’, ‘64’, ‘63’,

‘62’, and ‘61’. In the same way as each option has the same

chance of occurring with one die, all the combinations of

two dice also have the same chance of occurring.

Hence, the chance of obtaining ‘6’ at least once when

throwing two dice is as large as 11/36 � 0.31. Increasing

the number of dice, the chance of obtaining ‘6’ at least once

increases further. This reasoning also applies to statistical

testing. A statistical significance test is like the event of

throwing ‘6’ but with a lower chance, since the statistical

significance level is usually 0.05 not 1/6. With one test, the

Table 1 Design of the example

study: 2 by 2 (i. e., two-way)

factorial

Factor 2: Second task

Problem Example

Factor 1: First task Problem n = 35 participants n = 35 participants

Example n = 35 participants n = 35 participants

chance of rejecting a true null hypothesis is 5%; with two

tests the chance of rejecting at least one true null hypothesis

is almost 10%, and this chance increases further in the case

of more tests.

Researchers who follow the second approach perform

a one-way ANOVA to test for any differences between the

four conditions. If that overall test yields a statistically sig-

nificant outcome, they follow up with a post-hoc testing

procedure in which t-tests for all or a selected number of

pairs of conditions are carried out at a lower statistical sig-

nificance level to keep Type I error probability limited [4].

Performing one-way ANOVA on the reported findings in the

example study, we find p = 0.073. Since this outcome is not

statistically significant at the conventional 0.05 significance

level, there is no reason to follow up with the aforemen-

tioned post-hoc testing procedure. Although in this second

approach the chance of a Type I error is lower than in the

first approach, both approaches fail to address the questions

with regard to the effect of first task, the effect of second

task, and their combined effect (cf. Table 1), and are there-

fore inappropriate for this type of data (i. e., two-way data)

[1, 3].

Some researchers acknowledge that the design of the

example study is a two-way design. Fig. 1 correctly repre-

sents the four conditions as 2 by 2 in a two-way design (cf.

Table 1).

Given that this third approach is the correct one, we focus

on this approach in the remainder of this entry.

Different types of effects

Fig. 1 indicates that first and second task have so-called

additive effects or main effects [4] on post-test score: the

lines in the graph are more or less parallel. Participants

who started with an example on average performed a bit

better on the post-test than their peers whose first task was

to solve the problem by themselves (i. e., main effect of first

task). Additionally, participants whose second task was to

study an example performed better than their peers who had

to solve the problem by themselves (both lines are sloping

upwards). The more or less parallel lines indicate that the

beneficial effect of the first task being an example (i. e., the

effect of the first task) is the same regardless of whether

the second task is a problem or an example. Likewise, the

beneficial effect of the second task being an example (i. e.,
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Fig. 1 Graphical representation of the average scores of the four con-

ditions in two-way analysis

the effect of the second task) is not moderated by what

participants were asked to do in the first task.

If the lines in Fig. 1 had gone in clearly different direc-

tions (e. g., crossing lines), this would have indicated a so-

called combined effect or interaction effect of first and sec-

ond task. In that case, the effect of the first task would be

different for participants whose second task was an example

than for participants whose second task was to solve a prob-

lem. Likewise, the effect of the second task would then be

different for participants who started with an example than

for participants who started with a problem. A practical

example of such an interaction effect is the so-called exper-

tise reversal effect [6]: instructional support (e. g., studying

a worked example) that is beneficial for novice learners

is not effective or even negatively affects learning among

more advanced learners. Fig. 2 demonstrates an example of

this phenomenon.

To distinguish between interaction and main effects, we

need to represent the four conditions as 2 by 2 as in Table 1

and Fig. 1 and 2. Performing two-way ANOVA, we obtain

three tests, as displayed in Table 2.

Using p -values and testing at the conventional 0.05 sig-

nificance level, we see that only the main effect of first task

is statistically significant (p = 0.029). This information is

also provided by the 95% confidence intervals [7]: the in-

terval for the main effect of first task is the only one that

does not include zero. Using Bayes factors, which quan-

tify the strength of evidence against vs. in favour of a null

hypothesis (H0) [8, 9], we see that the only Bayes factor

that indicates a preference towards the alternative hypothe-

sis (H1: there is an effect) vs. the null hypothesis (H0: there

Fig. 2 Example of an interaction effect: the effect of study method

(i. e., solving problems vs. studying worked examples) depends on the

type of learner

is no effect) is that for the main effect of first task, be-

cause the Bayes factor for H1 vs. H0 (BF10) is larger than

1 (i. e., 1.649). This Bayes factor indicates some, though

weak (i. e., BF < 3.2), evidence in favour of H1 [9]. For

the main effect of second task, we find weak evidence in

favour of the null hypothesis (BF01 = 2.066). For the inter-

action effect, we find substantial evidence (i. e., 3.2 < BF <

10 [9]) in favour of the null hypothesis (BF01 = 5.209). To

conclude, with regard to the effects of first task, second

task, and their combined effect (cf. Table 1), it seems that

what matters most, if anything, is that the first task is an

example rather than a problem.

Maximising the probability of detecting effects of

interest

Apart from the fact that two-way analysis correctly accounts

for the study design, it is also more likely than the other

two previously discussed approaches to detect effects of in-

terest. Using G*Power [10], a program for statistical power

and required sample size calculations, we learn that a t-

test for the difference in average post-test score between

two conditions of n = 35 each has a statistical power of

about 0.54 using a significance level of 0.05 and assuming

a medium size (i. e., half a standard deviation) difference

between conditions. In other words, in about half of the tests

we would fail to detect a real difference (i. e., Type II error).

By comparison, a one-way ANOVA, under the given cir-

cumstances, has a statistical power of about 0.68 meaning

that one of every three tests would fail to detect a real dif-



268 J. Leppink et al.

Table 2 Outcomes of two-way

ANOVA: p -values, 95%

confidence intervals (CI), and

Bayes factors for the alternative

vs. the null (BF10) and for

the null vs. the alternative

hypothesis (BF01)

Effect p-value 95% CI a BF b

Lower bound Upper bound BF10 BF01

First task 0.029 0.039 0.709 1.649 0.606

Second task 0.140 –0.084 0.586 0.484 2.066

First-by-second 0.862 –0.729 0.611 0.192 5.209

a 95% CI of the difference: positive values indicate favour of example over problem
bBF01 = 1/BF10

ference. In fact, in the example study, the outcome of one-

way ANOVA is not statistically significant. Finally, two-

way ANOVA in this case has a statistical power of about

0.84 meaning that only about one of every six tests would

fail to detect a real difference.

The difference in statistical power can be explained in

an intuitive manner as follows. Keeping other factors the

same, statistical power increases with sample size. In the

example study, every pairwise t-test involves a comparison

of two conditions of n = 35 each, hence a sample of 70

in total. Although the one-way ANOVA does include the

full sample of N = 140, the conditions compared are still

of size n = 35; the question answered by one-way ANOVA

is whether there is ‘any difference’ between the four condi-

tions of n = 35 each. In two-way ANOVA, each test involves

a comparison of two groups vs. two other groups. The test

on the main effect of the first task pertains to the differ-

ence of starting with a problem (i. e., problem-problem or

problem-example: n = 35 + 35 = 70) vs. starting with an

example (i. e., example-problem or example-example: n =

35 + 35 = 70). The test on the main effect of the second task

is about the difference of the second task being a problem

(i. e., problem-problem or example-problem: n = 35 + 35 =

70) vs. the second task being an example (i. e., problem-

example or example-example: n = 35 + 35 = 70). Finally,

the interaction effect involves the third possible contrast:

problem-problem or example-example (n = 35 + 35 = 70)

vs. problem-example or example-problem (n = 35 + 35 =

70). Thus, with two-way ANOVA, the conditions compared

are of size n = 70.

When separate tests make sense and when they do

not

We have provided two reasons for favouring two-way

ANOVA over both t-tests and one-way ANOVA when

analysing data from a two-way design: accounting for the

characteristics of the study design and increasing statistical

power. However, in the two-way ANOVA approach, there

is one situation when following up with specific t-tests

tends to make sense and that is when we have sufficient

grounds to reject H0 of ‘no interaction’ [3, 5]. After all,

an interaction effect dictates that the effect of one factor

depends on the second factor. Had there been differences

such that the lines were non-parallel (e. g., had the pattern

in Fig. 1 been that of Fig. 2), one could perform a t-test

for the difference between problem-problem and example-

problem and another t-test for the difference between prob-

lem-example and example-example. Note, however, that

we are using t-tests only as a follow up on a significant

interaction effect and that we are doing two specific and

not all the possible (i. e., six) t-tests.

To conclude

Researchers should bear in mind a bridge between design

and analysis, such that study design characteristics drive

analytic choices and the analysis appropriately accounts for

the characteristics of the study design. If we perform one-

way analysis of two-way data, through pairwise t-tests or

one-way ANOVA, we fail to address questions with regard

to the three contrasts that matter in a two-way design: two

main effects and their interaction effect. Performing two-

way ANOVA, we directly test these three contrasts. Con-

sequently, compared to the pairwise t-tests approach, we

keep the chance of a Type I error limited by performing

three contrast tests instead of six pairwise t-tests. Simultane-

ously, compared with both the pairwise t-tests and one-way

ANOVA approach, two-way ANOVA comes with a lower

chance of Type II error (i. e., increased statistical power)

because the three contrast tests maximize the sample size

for each test.
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