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Cognitive load elevates discrimination thresholds of duration,
intensity, and f0 for a synthesized vowel

Faith Chiu,a) Lyndon L. Rakusen, and Sven L. Mattys
Department of Psychology, University of York, York, YO10 5DD, United Kingdom

(Received 3 May 2019; revised 25 June 2019; accepted 15 July 2019; published online 12 August 2019)

Dual-tasking negatively impacts on speech perception by raising cognitive load (CL). Previous

research has shown that CL increases reliance on lexical knowledge and decreases reliance on pho-

netic detail. Less is known about the effect of CL on the perception of acoustic dimensions below

the phonetic level. This study tested the effect of CL on the ability to discriminate differences in

duration, intensity, and fundamental frequency of a synthesized vowel. A psychophysical adaptive

procedure was used to obtain just noticeable differences (JNDs) on each dimension under load and

no load. Load was imposed by N-back tasks at two levels of difficulty (one-back, two-back) and

under two types of load (images, nonwords). Compared to a control condition with no CL, all

N-back conditions increased JNDs across the three dimensions. JNDs were also higher under two-

back than one-back load. Nonword load was marginally more detrimental than image load for

intensity and fundamental frequency discrimination. Overall, the decreased auditory acuity demon-

strates that the effect of CL on the listening experience can be traced to distortions in the perception

of core auditory dimensions.VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5120404

[DB] Pages: 1077–1084

I. INTRODUCTION

The growing interest in studying speech perception in

realistic environments has led to an abundance of research

conducted in sub-optimal listening conditions (for a review,

see Mattys et al., 2012). Conditions that affect the integrity

of the speech signal (e.g., noise) have been investigated

using primarily the concepts of energetic and informational

masking (e.g., Brungart, 2001; Durlach et al., 2003). Less is

known about conditions that do not create acoustic interfer-

ence to the speech signal itself, but place demands on cogni-

tive functions and deplete processing resources necessary for

speech perception (e.g., the effect of monitoring road traffic

on the ability to perceive and understand speech).

Prior research has demonstrated effects of cognitive

load (CL) on various levels of speech processing. At the sen-

tence level, speech intelligibility in quiet or noise drops

under divided attention (Best et al., 2010). At sub-sentential

levels, CL also modifies processing behavior. Whenever a

lexically viable option is compared against a nonword, par-

ticipants default to the lexical option under CL, down-

playing the contribution of acoustic detail. For instance, in

Mattys et al. (2009), participants had to decide which of two

words—mild or mile—they heard at the beginning of a

phrase like /maIld`pS@n/. The phrase varied in its realiza-

tion, from /maIld#`pS@n/ (mild#option) to /maIl#d`pS@n/

(mile#doption), via the manipulation of local coarticulation

and word-boundary cues. Under CL, there was an increase in

reporting the word that led to the lexically viable segmenta-

tion outcome (mild, leading to mild#option).

Evidence for a lexical drift was also found in phoneme

identification tasks. Mattys and Wiget (2011) constructed a

continuum between the word “gift” and the nonword “kift,”

varying the voice onset time (VOT) of the onset consonant in

several steps from 0ms to 48ms. When asked to report

whether they heard /g/ or /k/ at the beginning of those sylla-

bles, participants under CL reported /g/ more often, that is,

the sound compatible with the word—as opposed to non-

word—endpoint. Conversely, they reported more /k/ on a con-

tinuum from “kiss” to “giss,” showing again lexically biased

phoneme identification under CL. Thus, in tasks allowing

access to lexical representations, participants under CL often

default to lexically meaningful interpretations despite incon-

sistent acoustic cues. This may indicate lessened access to or

integration of acoustic information under CL.

At even lower levels of speech processing, CL interferes

with the listener’s ability to make fine acoustic-phonetic judge-

ments. For example, listeners showed reduced discriminability

between syllables along a /gI-kI/ continuum when they simulta-

neously engaged in a visual search task (Mattys and Wiget,

2011) or a face recognition memory task (Mitterer and Mattys,

2017). Likewise, Mattys et al. (2014) noted that phoneme resto-

ration, the illusion of hearing a phoneme when there is only

noise, increased linearly as a function of the secondary task.

Participants’ ability to discriminate between a noise-overlaid

phoneme and noise alone decreased under CL. This reveals that

participants perceived and represented the incoming signal with

less acoustic precision under load. Importantly, the effect was

not affected by whether the phoneme-carrying stimuli were

words or nonwords. This led the authors to conclude that CL

interferes with early, low-level speech perception processes.

A central question for this study is how early in the per-

ceptual system the effect of CL can be traced. There is some

evidence that CL might alter the perception of core auditory

dimensions. For instance, Casini et al. (2009) found a consis-

tent underestimation of speech stimulus duration under CL.a)Electronic mail: faith.chiu@york.ac.uk
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In their experiment, carried out in French, participants had

to judge which of two spoken words they heard while per-

forming a color-identification task as CL. The two words

differed primarily in the duration of their vowel. In French,

vowel length preceding a final obstruent is a cue to the

voicing status of that obstruent with a short vowel cueing a

voiceless obstruent (e.g., /S/) and a longer vowel cueing a

voiced one (e.g., /Z/). This phenomenon is known as pre-

fortis clipping (Kingston and Diehl, 1994). When pre-

sented with stimuli along a /kaS-kaZ/ continuum, partici-

pants reported more instances of the voiceless French word

cache (short vowel) than the voiced word cage (long

vowel) under CL than no CL. The authors interpreted their

results as evidence that divided attention leads to a reduc-

tion in the perceived duration of sounds. This interpreta-

tion is rooted in models proposing internal clocks and

prospective duration estimation (e.g., Treisman, 1963). In

these models, input pulses (or samples) accumulate during

a time-bound event, and the duration of the event is esti-

mated as the tallied duration of the accumulated pulses

(e.g., Gibbon et al., 1984; Block et al., 2010, for review).

Under divided attention, where attention is intermittently

diverted to a competing task, pulses are missed (Block and

Zakay, 1996; Zakay and Block, 1995), causing duration to

be underestimated.

The possibility that pulse-skipping is the general mecha-

nism by which CL disrupts sound perception is challenged

on several counts. First, CL-induced time-shrinkage effects

are not consistently found for all duration-based speech

cues. For example, using VOT as a cue to voicing (short, /g/;

long, /k/), Mattys and Wiget (2011) did not find a tendency

to report more /g/ than /k/ sounds under CL. Second, if CL

led to pulse-skipping and reduced perceived duration, CL

would be more likely to affect the perception of time-

dependent (e.g., phoneme duration) than time-independent

dimensions of speech (e.g., intensity and pitch). However,

there is evidence that CL can affect non-durational dimen-

sions. For example, Macdonald and Lavie (2011) showed

that participants failed to notice the presence of brief near-

threshold pure tones when they were simultaneously per-

forming a visual discrimination task. This was replicated at

the neuro-functional level by Molloy et al. (2015). Thus,

there is some evidence that CL can affect not only duration

perception but also intensity perception.

Despite these challenges, the hypothesis that pulse-

skipping is the mechanism by which CL disrupts sound

perception could be retained if we consider the broader impli-

cations of the claim. Psychoacoustic research on temporal

integration shows that the precision with which one can judge

the intensity and pitch of a tone is a function of the duration

of the presented stimulus, with longer presentations yielding

higher precision (e.g., Florentine, 1986; Florentine et al.,

1988; Moore, 1973; Plack and Carlyon, 1995). Improvement

at longer durations is thought to result from the ability to

compare and integrate more input samples and, hence, reduce

error variance (e.g., Viemeister and Wakefield, 1991). If CL

reduces the number of samples a listener is able to process, as

predicted by the pulse-skipping hypothesis, CL should not

only directly affect duration judgement but also indirectly

affect intensity and pitch judgements.

To test the above hypotheses within a single study, we

investigated the effect of CL on the discrimination of synthe-

sized vowel-like sounds (vocoids) manipulated in duration,

intensity, and f0. These manipulations correspond to three

basic perceptual dimensions of duration, loudness, and pitch.

For each dimension, we used a psychophysical adaptive pro-

cedure to determine the just noticeable difference (JND)

under no CL, perceptual load, low CL, and high CL. CL con-

sisted of a visual one-back task (low CL) or two-back task

(high CL). The perceptual load condition, which involved

presenting the N-back stimuli without the N-back task itself,

served as a baseline to delineate effects of perceptual load

(selective attention) and CL (divided attention). The contrast

between low and high CL directly assessed the effect of CL

within divided attention. Furthermore, to test the generaliz-

ability of the CL effect, we contrasted CL that requires

visual-only encoding (N-back task using images) and CL

that requires subvocal auditory encoding (N-back rhyme task

using nonwords; see Fig. 1 for an example).

If CL affects basic perceptual processes, it should ele-

vate JNDs (i.e., poorer discrimination) for at least some of

the dimensions tested. Of particular interest is whether CL

will increase only duration JNDs, as predicted by a strict

interpretation of the pulse-skipping hypothesis, or whether

CL will increase not only duration but also intensity and f0
JNDs, as predicted by a generalized version of the pulse-

skipping hypothesis. The contrast between image CL and

nonword CL will reveal whether the interference of CL on

auditory perception depends on the representational format

of CL. If it does, we expect that CL involving auditory repre-

sentations (nonwords) will be more detrimental than CL

involving visual representations (images).

II. METHOD

A. Participants

Ninety-six York-based university students participated

in this study. Participants were randomly assigned to one of

three groups: duration (n¼ 32, with 22 female; Mage, 21;

range, 18–36); intensity (n¼ 32, with 21 female; Mage,

20.84; range, 18–35), and f0 (n¼ 32, with 27 female; Mage,

19.78; range, 18–27). Participants were assessed for their

hearing using pure tone audiometry in accordance to the

2011 British Society of Audiology recommended proce-

dure. However, to keep testing time within reasonable lim-

its, only 500Hz, 1000Hz, 2000Hz, and 4000Hz were

tested. None of the participants exceeded a threshold of

20 dB hearing level (HL) at any of the four frequencies in

either ear.

All participants reported normal or corrected-to-normal

vision, and none reported any speech and/or hearing impair-

ments. All participants were native English speakers.

Relevant to methodological considerations described later,

none of them reported any proficiency of Chinese, Tamil,

Bengali, or Gujarati, or had parents, family members, or

partners with Chinese, Tamil, Bengali, or Gujarati knowl-

edge. All participants gave informed consent and were

1078 J. Acoust. Soc. Am. 146 (2), August 2019 Chiu et al.



compensated with monetary payment or course credit. The

study was approved by the University of York Departmental

Ethics Committee (identification number 2018-712).

B. Materials

1. Auditory stimuli for the JND task

To obtain JNDs for duration, intensity, and f0, 181 audio

files were synthesized. These consisted of a base stimulus

from which each of the 3 acoustic dimensions deviated in 60

steps. To create the base stimulus, a male monolingual British

English speaker was recorded in a sound-attenuated booth pro-

ducing several instances of the vowel /A/ with a flat pitch con-

tour. Recordings were made with a dynamic cardioid

microphone (SHURE SM58, Niles, IL) through an audio

interface recorder (USB Dual Pre, Applied Research and

Technology, Ontario, Canada) using Praat software (Boersma

and Weenink, 2018) at a sampling rate of 44.1 kHz. The best

exemplar, as judged by a trained phonetician, was selected to

provide reference formant values for the creation of the base

stimulus and the deviant stimuli. The base stimulus was a

Klatt-synthesized (Klatt and Klatt, 1990) vowel-like steady-

state token with the following parameters: F1 836Hz, F2

1152Hz, F3 2741Hz, f0 150Hz, 500ms, 60 dB sound pres-

sure level (SPL). Deviant stimuli differed from the base

stimulus in one dimension only (duration, intensity, or f0)

with all other acoustic parameters kept identical to the base.

Deviant duration stimuli ranged from 520 to 800ms in 60

steps of 5ms each. Deviant intensity stimuli ranged from 601
6

to 70 dB SPL in 60 steps of 1
6
dB each. Deviant f0 stimuli

ranged from 140.05 to 153.00Hz in 60 steps of 0.05Hz

each. 20-ms on and off ramps were applied to all sounds.

The presentation levels of the stimuli were established using

a Br€uel and Kjær (B&K, Nærum, Denmark) 4153 artificial

ear, a B&K 4189 1
2
inch microphone, a B&K 4767 preampli-

fier, and a B&K 2260 sound level meter.

2. Visual stimuli for the CL tasks

Two types of visual stimuli were used as CL: images and

written nonwords. All stimuli were in black against a white back-

ground. Image stimuli consisted of 27 4-stroke Chinese charac-

ters and 27 characters drawn from a mixture of Bengali,

Gujarati, and Tamil characters selected from Gennari et al.

(2018). Based on our participant selection criteria, all characters

were deemed unnameable and therefore only encodable visually.

Nonword stimuli were 54 written monosyllabic stimuli

modified from a combination of nonwords from Palmer and

Mattys (2016) and McQueen (1993). Nonword structure was

(C)CVC(C), where C stands for consonant, and V, vowel,

with optional segments in parentheses. Rhyming nonwords

for the one-back and two-back rhyme CL task included

orthographically similar (e.g., dird, chird) and orthographi-

cally dissimilar but phonologically similar (e.g., dird, vurd)

nonwords. The mixture of the two types of stimuli was

meant to encourage phonological processing during the

FIG. 1. Illustration of the CL task for

images (top) and nonwords (bottom).
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N-back tasks so that participants could not merely rely on

orthography to complete the task.

C. Design and procedure

Dimension (duration, intensity, f0) was a between-

participant factor. For each dimension, JNDs were obtained

under perceptual load, low CL (one-back), and high CL

(two-back). Each of these three conditions was presented

with one of two load types: images or nonwords. In the per-

ceptual load condition, the image and nonword stimuli were

meant to provide a sensory input equivalent to that of the CL

conditions, but no N-back task was required from them.

Participants performed all tasks in a sound-attenuated

booth. Data were gathered over two sessions, which were

separated by at least one day. In session 1, participants com-

pleted a pure tone audiometry test, the JND task under no

load (audio-only), the JND task under perceptual load, and

four short CL-only blocks (low CL image, low CL nonword,

high CL image, high CL nonword). The audio-only condi-

tion served as practice for the JND task. The perceptual load

condition, which served as a baseline for the CL conditions

in session 2, was administered before the CL conditions to

ensure that participants remained naive to the purpose of the

visual stimuli. The CL-only blocks allowed participants to

familiarise themselves with the CL tasks used in session 2.

In session 2, participants did the JND task under low CL

image, low CL nonword, high CL image, and high CL non-

word. The JND obtained for each of these four conditions

was the average of two paired adaptive tracks, one with the

deviant corresponding to the larger value on the manipulated

acoustic dimension (longer, louder, higher in pitch) and the

other with the deviant corresponding to the smaller value on

that dimension (shorter, softer, lower in pitch). The order of

the eight tracks (2 CL levels � 2 load types � 2 paired

tracks) was counterbalanced across sets of eight participants.

1. Auditory discrimination task for JNDs

JNDs were estimated based on a three-interval two-alter-

native forced-choice task (3I-2AFC). On each trial, partici-

pants heard three consecutive auditory stimuli. Using the “S”

and “D” keys on a computer keyboard, they had to decide

which of the second or third stimulus was the deviant on the

relevant dimension. Depending on which of the paired tracks

was played, the deviant could be longer or shorter (duration),

louder or softer (intensity), or lower or higher in pitch (f0).

Thus, the base stimulus was the stimulus corresponding to

either the first step on the continuum of the relevant dimen-

sion or the last one. Before each track, participants were

informed of the nature of the deviance they had to listen for.

The inter-stimulus interval was 500ms. Participants could

only respond after all three stimuli were heard.

A two-down/one-up adaptive track establishing the

70.7% discrimination threshold (Levitt, 1971) started with

the deviant stimulus as the furthest step from the standard

stimulus (e.g., step 60 relative to step 0). For example, the

participant in the duration condition performing the longer-

deviant track started with a 500-ms stimulus as the base and

a 800-ms stimulus as the deviant (500-500-800 or 500-800-

500). As the task progressed, the duration of the deviant was

reduced as a function of the participant’s response (500-500-

750 or 500-750-500). Step size corresponded to ten units of

the continuum until the first reversal (50ms, or 1.6 dB, or

0.5Hz), decreasing over the first three reversals to one unit

(5ms, or 0.16 dB, or 0.05Hz). The task ended after 16 rever-

sals or a maximum of 70 trials. The JND was estimated by

taking the mean value of the final 8 reversals or, if 70 trials

were necessary, the mean of all the reversals after the mini-

mum step size had been reached. A similar progression

applied to the paired track, with the 800-ms stimulus being

the standard and the 500-ms stimulus being the deviant.

2. Low CL and high CL tasks

Figure 1 illustrates the procedure for the CL one-back

and two-back tasks. Visual stimuli (images or nonwords) for

the N-back tasks were displayed for 750ms each with a

250ms inter-stimulus interval (a white screen). In the low-

and high-CL conditions, participants engaged in a one-back

and a two-back task, respectively. Similar to the procedure

described in Palmer and Mattys (2016), in the image condi-

tion, participants were instructed to press a key with their

non-dominant hand whenever they saw an image that

matched the one immediately preceding it (one-back) or the

image presented two images before (two-back). Repeated

images appeared either in an identical orientation or were

left-rotated by 90 degrees. In the nonword condition, images

were replaced with pronounceable nonwords. Participants

pressed a key whenever they saw a nonword that rhymed

with the one immediately preceding it (one-back) or the non-

word presented two nonwords before (two-back). After each

image repetition or rhyming nonword, there was a range of

2–4 intervening stimuli before the next repetition. The

stream of visual stimuli stopped at the end of the JND track.

Therefore, the total number of repetitions varied from track

to track. Participants were instructed to try and perform both

tasks equally well. Given the inter-tone-interval depended on

the participant’s response time, there was no systematic

alignment between tones and visual stimuli.

In the perceptual load condition, participants were shown

the same images or nonwords as in the CL conditions, but

there were no one-back or two-back repetitions. Participants

were instructed to pay attention to the visual stimuli but were

not given an active task. In the visual-only condition (no audi-

tory task), participants performed the 1-back and 2-back tasks

on a total of 30 pairs of matching stimuli (image or nonword).

III. RESULTS

This section describes two sets of analyses: (1) JNDs

across load conditions and (2) performance on the CL task and

its relation to JNDs. Figure 2 displays the results in both tasks.

A. JNDs

1. Duration

Average JNDs for the audio-only, perceptual load, low

CL, and high CL conditions are shown in Fig. 2.1 We first

aimed to answer whether there was a detrimental effect

1080 J. Acoust. Soc. Am. 146 (2), August 2019 Chiu et al.



caused by CL (averaged across low and high) on JNDs rela-

tive to the baseline perceptual load condition, a contrast

essentially pitting divided against selective attention. An

analysis of variance (ANOVA) of JNDs across attention type

(selective vs divided attention) and load type (image vs

nonword) indicated a main effect of attention type,

F(1,31)¼ 41.11, p< 0.001, gp2¼ 0.570 with higher JNDs

under divided attention [M¼ 131ms, standard deviation

(SD)¼ 51ms] than selective attention (M¼ 89ms,

SD¼ 39ms). Neither load type, F(1,31) < 1, nor the interac-

tion term, F(1,31) < 1, was significant. Thus, the smallest

perceptible difference in duration increased when partici-

pants had to divide their attention between the auditory task

and a visual CL task, and it did so regardless of the type of

encoding required by the CL task.

We then tested whether the magnitude of CL had a detri-

mental effect on JNDs within divided attention. An ANOVA

with CL level (low vs high) and load type (image vs non-

word) showed a main effect of CL level, F(1,31)¼ 16.56,

p< 0.001, gp2¼ 0.348, with higher JNDs under high CL

(M¼ 144ms, SD¼ 57ms) than low CL (M¼ 117ms,

SD¼ 52ms). There was no effect of load type, F(1,31) < 1,

or interaction, F(1,31) < 1.

In sum, duration discrimination was worsened not only

by divided attention, but also by the difficulty of the second-

ary task within divided attention. Whether CL required audi-

tory or visual encoding was inconsequential.

2. Intensity

Similar to duration JNDs, intensity JNDs were higher under

divided attention (M¼ 2.72 dB, SD¼ 1.65dB) than under selec-

tive attention (M¼ 1.55dB, SD¼ 0.84dB), F(1,31)¼ 25.20,

p< 0.001, gp2¼ 0.448. However, intensity JNDs were also

affected by load type, F(1,31)¼ 6.67 p¼ 0.015, gp2¼ 0.183,

with higher JNDs under nonword CL (M¼ 2.25dB,

SD¼ 1.25dB) than image CL (M¼ 2.02dB, SD¼ 1.06dB).

The interaction term was not significant, F(1,31)< 1.

A comparison between low and high CL revealed a main

effect of CL level, F(1,31)¼ 9.89, p¼ 0.004, gp2¼ 0.242, with

higher JNDs under high CL (M¼ 3.01dB, SD¼ 1.86dB) than

low CL (M¼ 2.43dB, SD¼ 1.59dB). There was also a mar-

ginal effect of load type, F(1,31)¼ 3.23, p¼ 0.082, gp2¼ 0.094,

showing higher JNDs under nonword CL (M¼ 2.87dB,

SD¼ 1.91dB) than image CL (M¼ 2.57dB, SD¼ 1.49dB).

The interaction term was not significant, F(1,31)< 1.

Thus, intensity discrimination was worse under divided

attention than selective attention and, within divided attention,

worse under high CL than low CL. This pattern is similar to

that for duration JNDs. Unlike duration JNDs, however, inten-

sity JNDs were higher when CL involved auditory encoding

(nonword CL task) than visual encoding (image CL tasks).

3. f0

JNDs for f0 were higher under divided attention

(M¼ 1.10Hz, SD¼ 0.66Hz) than selective attention

(M¼ 0.88Hz, SD¼ 0.53Hz), F(1,31)¼ 11.13, p¼ 0.002,

gp2¼ 0.264. The effect of load type was not significant,

F(1,31) < 1. An interaction between attention type and load

type, F(1,31)¼ 5.51, p¼ 0.02, gp2¼ 0.151, showed that the

effect of attention type was significant under nonword load,

F(1,31)¼ 14.52, p< 0.001, gp2¼ 0.319, and there was also

a marginal effect under image load, F(1,31)¼ 3.26, p¼ 0.08,

gp2¼ 0.095.

FIG. 2. JNDs in the audio-only, perceptual load (no secondary task), low

CL (one-back task), and high CL (two-back task) conditions for (a) duration,

(b) intensity, and (c) f0. Load type (images vs nonwords) is shown as sepa-

rate lines. Error bars indicate the standard error of the mean. The bar chart,

scaled on the right-hand y axis, shows CL performance (d0) as a function of

CL level (low vs high) and load type (images vs nonwords).

J. Acoust. Soc. Am. 146 (2), August 2019 Chiu et al. 1081



A comparison between low and high CL revealed a main

effect of CL level, F(1,31)¼ 7.15, p¼ 0.012, gp2¼ 0.187,

with higher JNDs under high CL (M¼ 1.16Hz, SD¼ 0.67Hz)

than low CL (M¼ 1.03Hz, SD¼ 0.69Hz). There was also a

significant effect of load type, F(1,31)¼ 6.60, p¼ 0.015,

gp2¼ 0.176, showing higher JNDs under nonword CL

(M¼ 1.16Hz, SD¼ 0.70Hz) than image CL (M¼ 1.04Hz,

SD¼ 0.65Hz). The interaction term was not significant,

F(1,31)¼ 1.83, p¼ 0.18.

In sum, although less pronounced than those for inten-

sity, the f0 JND patterns broadly aligned with intensity in

showing a detrimental effect of divided attention and CL

level on f0 discrimination, and greater interference from a

load requiring auditory encoding than visual encoding.

B. CL task performance

Performance on the visual task was measured as the

ability to discriminate between repeated images (or rhyming

nonwords) and non-repeated images (or non-rhyming non-

words), using the discriminability index d0 from signal detec-

tion theory (Green and Swets, 1966). For each condition, the

hit rate was calculated as the number of correct responses to

repeated/rhyming stimuli (one-back or two-back) divided by

the total number of repetitions/rhymes encountered during

that condition. The false alarm rate was calculated as the

total number of incorrect responses to non-repeated/rhyming

stimuli divided by the total number of non-repeated/rhyming

stimuli. Results are plotted as bars in Fig. 2.

An ANOVA with CL level (low vs high), load type

(image vs nonword), and dimension (duration, intensity, f0)

performed on d0 values showed a main effect of CL level,

with higher d0 for low CL than high CL, F(2,93)¼ 1018.69,

p< 0.001, gp2¼ 0.92, which confirms that the one-back task

was less demanding than the two-back task. However, the

CL level effect interacted with load type, F(2,93)¼ 9.06,

p¼ 0.003, gp2¼ 0.090: The difference between low and

high CL was more pronounced in the image than the non-

word condition. None of the other main effects or interac-

tions reached significance. In particular, the lack of a load

type effect, F(2,93) < 1, suggested that the image and non-

word CL tasks were broadly comparable in complexity

despite involving different encoding modalities.

C. Relation between JNDs and CL performance

Potential links between auditory discrimination (JNDs)

and performance on the CL task (d0) were assessed via

Pearson’s correlation coefficients with corrections for multi-

ple comparisons (Bonferroni) where appropriate. Of interest

was whether performance on the auditory task traded off

with performance on the CL task. JND values used in these

tests were absolute values without any subtraction of JNDs

from perceptual load. Correlations were first calculated

for each individual condition of the load level � load type

� dimension design (12 correlations in all). Within each

dimension, additional correlations were calculated with data

collapsed across either load level or load type, or across

both. None of these correlations reached significance (all

p> 0.05). In fact, a majority of them showed the opposite

valence, indicating that, if at all, participants who were better

at auditory discrimination (lower JND) performed better on

the concurrent CL task (higher d0). This result may be indica-

tive of the lack of resource-sharing between the two tasks, at

least within this particular group of participants.

We then investigated the link between JND and d0 in

terms of CL cost. We asked whether the cost of performing

the auditory task under CL was correlated with performance

in the CL task. JND cost was measured as the JND of each

CL condition of the design minus the JND from the relevant

perceptual load condition. JND cost was then correlated with

the corresponding d0. None of the correlations reached sig-

nificance. Thus, there was no trade-off between the cost of

performing the auditory task under CL and the ability to per-

form the CL task. Finally, we correlated the JND difference

between the low and high CL conditions with the d0 differ-

ence between the low and high CL conditions. Of interest

was whether listeners who showed a large d0 difference

between the low and high CL conditions would also show a

large JND difference between those two conditions. Such a

correlation would indicate that the added difficulty of per-

forming the two-back task compared to the one-back task

would be mirrored by a corresponding increase in JNDs.

Again, none of the correlations reached significance.

IV. DISCUSSION

Evidence has shown that CL disrupts various compo-

nents of the listening experience. In this study, we aimed to

find out if CL can also alter basic auditory processes below

the level of the phoneme. We measured the impact of CL on

the discrimination of synthesized vowels manipulated in

terms of their duration, intensity, or f0. For each dimension,

JNDs were estimated under three load levels (perceptual, low

CL, high CL) and two load types (N-back task on images vs

N-back rhyme task on nonwords). Of particular interest was

whether the detrimental effect of CL on JNDs, if present, was

limited to the duration dimension, as per a strict interpretation

of the pulse-skipping hypothesis (Block and Zakay, 1996;

Burle and Casini, 2001; Casini and Macar, 1997; Casini

et al., 2009; Zakay and Block, 1995), or whether it general-

ized across all three dimensions, as might be predicted by a

failure of temporal integration under CL (Florentine, 1986;

Moore, 1973; Viemeister and Wakefield, 1991).

We found that JNDs increased under divided attention

(averaged across low and high CL) compared to selective

attention (perceptual load) and under high CL compared to

low CL. Importantly, CL affected JNDs in all tested dimen-

sions, not only duration. This is inconsistent with a strict

interpretation of the pulse-skipping hypothesis, which posits

that a loss of input samples during divided attention should

affect primarily duration judgement. Therefore, we propose

that a loss of pulses disrupts the ability to judge not only

duration but also the detailed content of the remaining pulses

(e.g., intensity envelope and spectral information). This pos-

sibility is supported by evidence that intensity and f0 are

more difficult to estimate for stimuli played for short than

long durations (e.g., Florentine, 1986; Florentine et al.,

1988; Moore, 1973; Plack and Carlyon, 1995; Viemeister
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and Wakefield, 1991). Thus, increased JNDs under divided

attention could be explained by the reduced number of audi-

tory samples available in that condition. Similarly, increased

JNDs under high than low CL could be explained by the

larger number of attentional switches required by the high

than low CL stimuli and the consequently smaller number of

samples extracted from the auditory stimulus. We should

note, however, that a caveat for the temporal integration

interpretation is that the detrimental effect of short duration

on intensity and f0 estimation has been demonstrated mostly

for durations under 200ms (Plack and Carlyon, 1995), which

is shorter than the duration of our stimuli. We must therefore

assume that additional factors are likely to have contributed

to the effect of CL on those two dimensions.

We also found some evidence of an effect of load type

on intensity and f0 judgements but not on duration. Intensity

and f0 JNDs were higher when the load task involved proc-

essing nonwords than images. We propose that the detrimen-

tal effect of CL is larger when its representational format

competes with that of the auditory task. Since the CL rhyme

task requires phonological encoding of the nonwords, such

phonological representations would interfere with the proc-

essing of the auditory stimuli more than the stimuli in the

image task. This is consistent with a domain-specific view of

attentional allocation, which posits that attentional systems

are dedicated to specific modalities (Adcock et al., 2000;

Petersen and Posner, 2012; Woodruff et al., 1996). The same

reasoning would hold for f0 discrimination.

The fact that duration judgement was not affected by

load type can be explained if we assume that, unlike intensity

and pitch, the estimation of sound duration does not require

the encoding of either envelope or spectral properties of the

stimulus—detection of abrupt energy changes would suffice.

The potential for interference from auditorily encoded CL

would therefore be smaller in the case of duration estimation

than intensity and pitch estimation. Interestingly, this possibil-

ity is in line with the claim by Casini et al. (2009) that the

perceptual estimation of sound duration is governed by a gen-

eral timing system and not by a sound- or language-specific

system. Although speculative at this stage, it is possible that

the effect of CL found in all three auditory dimensions of our

design (duration, intensity, and f0) involved one mechanism

for duration discrimination and another for intensity and f0.

Duration discrimination could tap into a general timer system

that drops content-free pulses under CL, whereas, for inten-

sity and f0 discrimination, the dropped pulses would contain

acoustic information necessary for precise estimation of the

auditory signal.

In sum, this study demonstrated that CL affects auditory

perception at a lower level than has previously been shown,

and it does so across several core auditory dimensions. CL

effects were evident in duration, intensity, and f0 discrimina-

tion with only the latter two displaying an additional cost

under CL engaging auditory representations. The results can

be interpreted within a broader version of the pulse-skipping

hypothesis, in which loss of input samples under CL affects

not only duration judgement but also the accuracy with

which intensity and f0 are encoded.
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