

This is a repository copy of Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/149671/

Version: Accepted Version

Article:

Thornby, J, Verma, D, Cochrane, R et al. (4 more authors) (2019) Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature. SN Applied Sciences, 1 (7). ARTN: 695. ISSN 2523-3963

https://doi.org/10.1007/s42452-019-0696-9

© Springer Nature Switzerland AG 2019. This is a post-peer-review, pre-copyedit version of an article published in SN Applied Sciences. The final authenticated version is available online at: https://doi.org/10.1007/s42452-019-0696-9

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Figure 1. Optical micrographs revealing the cross-sectional grain morphologies of (a) Pure Mg, (b) Mg-0.25 v/v % CNT, (c) Mg-0.5 v/v % CNT, and (d) Mg-0.75 v/v % CNT. Arrows are added to (a) to show the mechanical twins present in pure Mg.

Figure 2. Scanning Electron Microscopy (SEM) images of Mg-0.5 v/v % CNT. The higher-magnification image reveals an individual CNT fiber, indicated with an arrow.

Figure 3. Energy dispersive X-ray spectroscopy (EDS) performed on Mg-0.5 v/v % CNT sample for confirmation of sample composition.

Figure 4. Load–displacement curves displaying loading, holding, and unloading portions at different strain rates (0.01-10 /s) for: (a) Pure Mg, (b) Mg–0.25 vol. % CNT, (c) Mg–0.5 vol. % CNT, and (d) Mg–0.75 vol. % CNT.

Mg: magnesium; CNT: carbon nanotube.

b

Figure 5. Indentation stress versus displacement curve for the strain rate of: (a) 0.01 /s, (b) 0.1 /s, (c) 1.0 /s, and (d) 10 /s. The Indentation Size Effect (ISE) phenomenon is observed in all tests. Mg: Magnesium; CNT: carbon nanotube; ISE: indentation size effect.

Figure 6. Variation of indentation hardness as a function of CNT loading over four strain rates: (a) 0.01 s^{-1} , (b) 0.1 s^{-1} , (c), 1 s^{-1} , and (d) 10 s^{-1} .

a

b

Figure 7. Creep displacement and creep rate versus hold time (500s) for pure Mg and Mg-CNT nanocomposites at four distinct strain rates: (a) 0.01 /s, (b) 0.1 /s, (c) 1.0 /s, and (d) 10 /s. Transient and steady-state creep are observed in all curves. Mg: Magnesium; CNT: carbon nanotube.

С

b

d

Figure 8. Creep rate versus hold time (500s) for all four samples at the four strain rates: (a) 0.01 /s, (b) 0.1 /s, (c), 1.0 /s, and (d) 10 /s.

Figure 9. Creep stress exponent (n) values for all strain rates tested.

Figure 10. Creep rate versus indentation depth for pure magnesium and the Mg-CNT nanocomposites at the strain rate of 10 /s.