

This is a repository copy of *Diffusion-weighted hyperpolarised gas MRI in idiopathic pulmonary fibrosis : reproducibility and clinical significance*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/149635/

Version: Accepted Version

Proceedings Paper:

Weatherley, N. orcid.org/0000-0001-5589-2219, Chan, F., Stewart, N. et al. (7 more authors) (2016) Diffusion-weighted hyperpolarised gas MRI in idiopathic pulmonary fibrosis : reproducibility and clinical significance. In: European Respiratory Journal - ERS International Congress 2016 abstracts. ERS International Congress 2016, 03-07 Sep 2016, London, UK. European Respiratory Society .

https://doi.org/10.1183/13993003.congress-2016.oa3504

© 2016 The Authors. This is an author-produced version of a paper subsequently published in European Respiratory Journal. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Diffusion-weighted hyperpolarised gas MRI in idiopathic pulmonary fibrosis: reproducibility and clinical significance

Background

Diffusion-weighted magnetic resonance imaging (DW-MRI) of the lung with hyperpolarised helium (³He) demonstrates increased intra-acinar Brownian gas diffusivity, related to micro-structural changes in emphysematous lungs (Swift AJ et al. Eur Radiol 2005;54:352-8.), but is relatively unexplored in idiopathic pulmonary fibrosis (IPF).

Aims

To investigate baseline reproducibility and clinical significance of ³He DW-MRI metrics in patients with IPF.

Methods

Seven participants with IPF underwent PFTs and two identical MRI protocols on the same day. 3-Dimensional ³He DW-MRI yielded coronal apparent diffusion coefficient (ADC) maps of the lungs and mean ADC for each participant.

Results

³He ADC maps showed elevated diffusivity in basal and peripheral lung regions, particularly in posterior coronal slices, which was in qualitative agreement with the distribution of fibrosis on CT.

[figure1]

Mean ADC correlated with PFTs, in particular KCO (r = -0.954; p < 0.001 and r = -0.952; p < 0.001, for the paired scans) and showed excellent inter-scan reproducibility (ICC kappa 0.954 (95% CI: 0.727 – 0.992)).

Conclusions

³He ADC MRI demonstrates reproducibility and correlation with anatomical and functional IPF features. These results indicate that alveolar microstructural changes

accompany interstitial thickening in IPF and that ADC may be a useful non-ionizing noninvasive regional marker of disease severity.