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United We Fall: All-or-None Forgetting of Complex Episodic Events

Bárður H. Joensen, M. Gareth Gaskell, and Aidan J. Horner
University of York

Do complex event representations fragment over time, or are they instead forgotten in an all-or-none

manner? For example, if we met a friend in a café and they gave us a present, do we forget the constituent

elements of this event (location, person, and object) independently, or would the whole event be

forgotten? Research suggests that item-based memories are forgotten in a fragmented manner. However,

we do not know how more complex episodic, event-based memories are forgotten. We assessed both

retrieval accuracy and dependency—the statistical association between the retrieval successes of different

elements from the same event—for complex events. Across 4 experiments, we show that retrieval

dependency is found both immediately after learning and following a 12-hr and 1-week delay. Further,

the amount of retrieval dependency after a delay is greater than that predicted by a model of independent

forgetting. This dependency was only seen for coherent “closed-loops,” where all pairwise associations

between locations, people, and objects were encoded. When “open-loops” were learned, where only 2 out

of the 3 possible associations were encoded, no dependency was seen immediately after learning or after

a delay. Finally, we also provide evidence for higher retention rates for closed-loops than for open-loops.

Therefore, closed-loops do not fragment as a function of forgetting and are retained for longer than are

open-loops. Our findings suggest that coherent episodic events are not only retrieved, but also forgotten,

in an all-or-none manner.
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How are complex episodic events forgotten? Research on for-

getting has primarily focused on the rate at which it occurs (Ebb-

inghaus, 1913; Rubin & Wenzel, 1996), and whether forgetting

occurs via interference or decay (McGeoch, 1932). However, the

question of how memory traces change as a function of forgetting

has received less attention. For example, are memory traces for-

gotten in an all-or-none, holistic manner, or do they instead frag-

ment over time, such that some aspects of the memory trace are

forgotten more quickly than others?

Early research on forgetting was dominated by a theoretical

debate concerning whether forgetting occurs as a function of

interference; where overlapping memory traces disrupt one an-

other, or decay; where memory traces decay over time (see

Wixted, 2004 for a review of the forgetting literature). Evidence of

greater forgetting of nonsense syllables when participants re-

mained awake, relative to when participants slept, between study

and test were taken as evidence for interference accounts (Jenkins

& Dallenbach, 1924), as decay was thought to lead to equal rates

of forgetting across wake and sleep. As more interfering material

would be encoded in the awake, relative to sleep, condition fol-

lowing learning, the greater rate of forgetting for participants who

remained awake was taken as evidence for retroactive interference.

Further evidence for the interference account was provided by

Underwood (1957). However, Underwood showed that the more

material learned prior to the critical test information, the greater

the subsequent forgetting. Thus, contrary to the Jenkins and Dal-

lenbach (1924) findings, forgetting appeared to occur predomi-

nantly as a function of proactive interference (see Postman, 1971

for a review of the interference literature).

More recently, the idea that forgetting is principally a function

of interference, and proactive interference in particular, has been
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questioned. For example, reviewing much of the traditional psy-

chological literature, Wixted (2004) proposed that forgetting is

predominantly a result of retroactive interference from mental

activity or new memory formation more generally, as opposed to

the specific interference that occurs from learning related/overlap-

ping material. Further, although initially rejected (McGeoch,

1932), the concept of memory decay has also been revived (Frank-

land, Köhler, & Josselyn, 2013; Hardt, Nader, & Nadel, 2013).

This account holds that some forgetting will be due to the deteri-

oration of the biological substrates of the memory trace itself.

Importantly, both proposals draw on our neuroscientific under-

standing of forgetting and the concept of consolidation; where new

memory traces are thought to stabilize over time, becoming less

susceptible to interference and/or decay (see Dudai, Karni, &

Born, 2015 for a review of the consolidation literature).

Despite this resurgent interest in forgetting, relatively little

research has focused on whether mnemonic representations change

as a function of forgetting. Although, dual-process memory mod-

els have proposed different rates of forgetting dependent on the

type of representations (Brainerd & Reyna, 2002; Reyna & Brain-

erd, 1995) or that different representations are more likely to be

forgotten via decay or interference (Sadeh, Ozubko, Winocur, &

Moscovitch, 2014), here we ask whether mnemonic representa-

tions change as a function of forgetting. Specifically, do mnemonic

representations fragment over time, or are they instead more likely

to be forgotten in an all-or-none manner?

Brady, Konkle, Alvarez, and Oliva (2013) recently used forget-

ting rates to infer the representational structure of item-based

memory traces. They found different forgetting rates for separate

aspects of an object (i.e., color and state). Specifically, the color of

an object was forgotten more rapidly than the state of the object

(i.e., its pose or configuration of parts). The results suggest that

item-based memories fragment over time, with some aspects of the

memory trace being forgotten more rapidly than others. They also

assessed retrieval dependency—the statistical relationship between

retrieval successes for the two aspects associated with the same

object. The presence of dependency has previously been used to

infer the coherence of the underlying mnemonic representation

(Horner & Burgess, 2013, 2014). Consistent with previous re-

search (Meiser & Bröder, 2002; Starns & Hicks, 2008), Brady et

al. (2013) saw evidence for dependency after initial encoding, but

importantly dependency decreased over time. This decrease in

dependency is consistent with a fragmentation of the memory trace

as a function of forgetting.

Here, we asked whether more complex event-based memories

also fragment over time. Whereas, item-based memories can be

supported by medial temporal lobe regions outside of the hip-

pocampus, such as the perirhinal cortex (Aggleton & Brown, 1999;

Diana, Yonelinas, & Ranganath, 2007), the hippocampus is critical

to the encoding and retrieval of event-based memories (Cohen &

Eichenbaum, 1993; O’Keefe & Nadel, 1978; Scoville & Milner,

1957; Squire & Zola-Morgan, 1991; Vargha-Khadem et al., 1997).

Thus, these two types of mnemonic representations rely on distinct

regions of the medial temporal lobe (though see Song, Wixted,

Hopkins, & Squire, 2011; Wais, Wixted, Hopkins, & Squire,

2006). This point is critical given the recent proposal that forget-

ting processes may differ between these two regions (Sadeh et al.,

2014). Indeed, recent research has suggested that whereas event-

based memories/recollection, supported by the hippocampus, are

more likely to be forgotten via decay processes; item-based mem-

ories/familiarity, supported by the perirhinal cortex, are more

likely to be forgotten via interference (Sadeh, Ozubko, Winocur, &

Moscovitch, 2016). Given these dissociations, it is possible that

event-based memories do not undergo the same fragmentation

process seen in Brady et al. (2013) but are instead forgotten in a

more all-or-none manner. In contrast to recent evidence showing

simultaneous reductions in overall accuracy and dependency as an

effect of negative valence items at encoding (Bisby, Horner, Bush,

& Burgess, 2018), a lack of a decrease in dependency, despite

reductions in accuracy, would be consistent with evidence showing

retained dependency for source features associated with words

despite decreases in overall accuracy as a function of dual task

load (Boywitt & Meiser, 2013).

We have previously shown that the encoding of overlapping

pairwise associations can result in retrieval dependency (Horner

& Burgess, 2014). For example, if a participant learns associ-

ations between kitchen and hammer, kitchen and Barack

Obama, and hammer and Barack Obama across three separate

encoding trials, retrieval dependency is seen for all constituent

elements of this separately encoded ‘event.’ If you are cued

with kitchen and successfully retrieve Barack Obama, you are

more likely to also successfully retrieve hammer when cued

with kitchen on a separate retrieval trial. This dependency is

similar to that seen when all three elements are encoded on a

single trial (Horner & Burgess, 2013, 2014), suggesting that

encoding all three pairwise associations forms a coherent event

engram similar in nature to that formed in a single spatiotem-

poral context. We have also provided fMRI evidence that these

elements are bound into coherent event engrams in the hip-

pocampus, allowing for the subsequent retrieval of all event

elements (Horner, Bisby, Bush, Lin, & Burgess, 2015). The

retrieval of all event elements is consistent with the idea that

recollection (as opposed to familiarity) is associated with all-

or-none, or holistic, retrieval (Yonelinas, 1994), and provides

evidence for all-or-none retrieval occurring via pattern comple-

tion; the complete retrieval of a representation (i.e., pattern) in

the presence of a partial or ambiguous cue (Gardner-Medwin,

1976; Hopfield, 1982; Marr, 1971; McClelland, McNaughton,

& O’Reilly, 1995; Treves & Rolls, 1992; for reviews, see

Horner & Doeller, 2017; Hunsaker & Kesner, 2013). Consistent

with this, Meiser, Sattler, & Weisser (2008) showed that de-

pendency for source details (i.e., location and size), associated

with words, is observed when participants report subjective

experiences of recollection, but not when reporting feelings of

familiarity.

Here, we define forgetting as decreases in accuracy between

retrieval time points, and remain theoretically agnostic as to

whether forgetting is a result of decreased accessibility for

intact memory traces, or a loss of the underlying trace itself

(Tulving & Pearlstone, 1966). Although any measure of forget-

ting will inevitably be derived from differences in the propor-

tion of memories retained between two retrieval time points,

here we ask, as these coherent events are forgotten (as measure

by retrieval accuracy), do we see decreases in retrieval depen-

dency? This would imply that the underlying memory traces are

fragmenting over time (see Figure 1C). However, if forgetting

occurs, but dependency is consistent over time, then this would

imply that coherent event-based memories are instead forgotten
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in an all-or-none manner (see Figure 1B), with event-based

memories being more likely to be either retained or forgotten in

their entirety.

We used a design similar to that developed by (Horner &

Burgess, 2014). Across all four experiments, at encoding, par-

ticipants learned a series of multielement events (see Figure 2).

Each event consisted of three elements (locations, famous peo-

ple and objects). Events were ‘built up’ over two/three separate,

spaced, encoding trials. Each trial consisted of the presentation

of one of the three possible pairwise associations from an event.

This allows us to build events with different structures of

overlapping pairs: closed-loops, where all the pairwise associ-

ations are encoded (e.g., kitchen–hammer, kitchen–Barack

Obama, hammer–Barack Obama) or open-loops, where only

two out of the three possible pairwise associations are encoded

(e.g., kitchen–hammer, kitchen–Barack Obama).

We have previously shown that dependency is seen for

closed-loops (and three element events learned on a single

encoding trial), but not for open-loops (Horner et al., 2015;

Horner & Burgess, 2013, 2014). The associative structure

formed for closed-loops is therefore similar in nature to a

coherent event engram formed in a single encoding trial. Given

these findings, we refer to closed-loop associative structures as

“events” but note that they are not single spatiotemporal events

as typically defined. Dependency is not seen for open-loops

and, as such, the open-loop condition serves as a control con-

dition where dependency is not expected, even when retrieval

shortly follows encoding. The inclusion of the open-loop con-

dition also allowed us to assess the further possibility that

overlapping associations may undergo a process of integration

over time, such that open-loops might show dependency after a

delay. This is in light of research showing that the ability to

infer the relationship between nonencoded B–C pairs (after

encoding A–B and A–C pairs) increases following a short nap

(Lau, Tucker, & Fishbein, 2010). Thus, sleep may play a role in

generalizing across related, but independently encoded, infor-

mation (Ellenbogen, Hu, Payne, Titone, & Walker, 2007; Wag-

ner, Gais, Haider, Verleger, & Born, 2004), as is the case for

open-loops.

At immediate and delayed retrieval, we tested the encoded

associations from half of the events in both directions (e.g., cue

location, retrieve the associated person; cue person, retrieve the

associated location) using cued six-alternative forced choice. In

Experiment 1, we tested immediately and following a delay of

12 hr. Forgetting was presumed to have occurred after 12 hr

relative to the immediate condition. Given the well-established

finding that sleep decreases forgetting (see Diekelmann &

Born, 2010 for a review), we also manipulated the extent of

forgetting by training in the morning or evening, such that half

the participants were awake between study and test and half

were asleep. The sleep manipulation also allowed us to assess

whether sleep played a role in integrating pairwise associations

encoded as open-loops (e.g., Lau et al., 2010).

Experiment 1 showed clear evidence for retained retrieval

dependency in the closed-loop condition after a 12-hr delay,

even in the awake condition where forgetting was high. Given

the dependency seen for closed-loops, we further assessed

dependency following a week (in Experiment 2 through 4).

Across all four experiments, we see variable rates of forgetting,

but no evidence for a change in dependency for closed-loops (or

open-loops). A lack of a decrease in dependency for closed-

loops, despite a decrease in overall memory performance,

shows that closed-loops retain their dependency after forgetting

has occurred, implying that forgetting is more likely to occur in

an all-on-none manner with closed-loops being either retained

or forgotten in their entirety.

Figure 1. Illustration of retrieval accuracy and dependency for three-element events immediately after

encoding and after all-or-none or independent forgetting has occurred. Panel A: After encoding. We assume that

some events are either not encoded or are forgotten between encoding and immediate test (represented by

transparent events). Retrieval is all-or-none for remembered events. All-or-none retrieval is reflected in values

of dependency significantly greater than 0. Panel B: After all-or-none forgetting. Events are forgotten in an

all-or-none manner. Despite decreases in retrieval accuracy, due to forgetting, dependency does not decrease

relative to dependency in Panel A. Panel C: After independent forgetting. Individual associations are remem-

bered and/or forgotten within the same event. Dependency decreases relative to dependency in Panel A, despite

the same decrease in accuracy as in Panel B. Associative structures illustrate three-element events.
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Experiment 1

Experiment 1 assessed retrieval accuracy and dependency im-

mediately after encoding and after a 12-hr delay. We manipulated

the time of encoding, such that half the participants encoded

pairwise associations in the morning and half encoded in the

evening. This meant that half the participants slept between study

and test (sleep condition), and half were awake between study and

test (awake condition). The inclusion of a sleep manipulation was

twofold: (1) to vary the amount of forgetting while controlling

for the interval between initial learning and subsequent testing and

(2) to assess whether sleep plays a role in the integration of two

overlapping pairwise associations (i.e., open-loops).

Lau et al. (2010) found that when participants learned over-

lapping A–B and A–C pairs (i.e., open-loops), their ability to

infer a relationship between B and C increased following a nap,

relative to an awake condition. However, B–C inference can

potentially occur via two means: (1) encoding generalization,

where prior to retrieval, A–B and A–C associations are inte-

grated into a generalized representation that potentially forms a

direct association between B and C (Shohamy & Wagner, 2008;

Zeithamova, Dominick, & Preston, 2012) or (2) retrieval gen-

eralization, where the relationship between B and C is inferred

“on-the-fly” at the point of retrieval (Banino, Koster, Hassabis,

& Kumaran, 2016; Kumaran & McClelland, 2012). Assessing

retrieval accuracy and dependency for open-loops allows us to

differentiate between these two possibilities, under the assump-

tion that if A–B and A–C pairs are integrated prior to retrieval,

behavioral dependency will be seen. Thus, if we see increases

in B–C inference as a function of sleep, with an associated

increase in dependency, this would support encoding (or non-

retrieval) based generalization. If B–C inference increases with-

out any increase in dependency, this would support retrieval-

based generalization. In the latter case, sleep might increase the

associative strength of the directly encoded A–B and A–C pairs,

and this might subsequently increase the probability of B–C

inference at retrieval.

Figure 2. General experimental design. Panels A and B: Encoding. Participants saw multiple pairwise

associations. They imagined each association interaction in “a meaningful way as vividly as possible” for 6 s.

Each association was preceded by a 500-ms fixation cross and followed by a 500-ms blank screen (Panel A)

Experiments 1 and 2. Participants encoded two or three overlapping pairwise associations depending on whether

they were allocated to the between-subjects open- versus closed-loop conditions, respectively. In the open-loop

condition, participants did not encode the third and final association (e.g., hammer–Obama and wallet–Beckham;

see Panel E). Panel B: Experiments 3 and 4. Participants encoded open- and closed-loop pairwise associations

in an intermixed manner. Solid and dotted lines were not presented but highlight closed- (solid lines) and

open-loops (dotted lines). Panel C: Test. Participants were presented with a single cue and required to retrieve

one of the other elements from the same event from among five foils (elements of the same type from other

events) in 6 s. Each cued-recognition trial was preceded by a 500-ms fixation cross and followed by a 500-ms

blank screen. Panel D: The associative structure of closed-loops with example encoding order for three pairwise

associations (numbers 1 through 3). Panel D: The associative structure of open-loops with example encoding

order for the two pairwise associations (numbers 1 and 2). The third and final associations (i.e., person-object

in this example) is not shown to the participants.
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Open-loops served as a control condition for closed-loops in

relation to assessing forgetting of coherent (closed-loop) event-

based memories. However, given evidence for the possible inte-

gration of open-loops as a result of sleep (Lau et al., 2010), we also

focused on potential increases in dependency in the open-loop

condition. In short, Experiment 1 asked (1) whether dependency

for closed-loops decreases over time (in relation to our core

question of whether coherent events fragment as a function of

forgetting) and (2) whether dependency for open-loops increases

over time (in relation to whether overlapping associations are

integrated as a function of sleep).

Method

Participants. From previous published work (Horner et al.,

2015; Horner & Burgess, 2013, 2014), with N � 177, we calcu-

lated an effect size of d � .62 on our ability to detect a significant

difference between the proportion of joint retrieval in the data and

independent model (see the following Modeling retrieval depen-

dency section). Using G�Power (Faul, Erdfelder, Buchner, &

Lang, 2009), we conducted a power analysis with d � .62 and ��

.05 and computed that we required a sample size of 26 to detect a

significant effect, if one is present, with a power of .85.

One hundred four participants (26 participants per condition,

across four between-subjects conditions) gave informed consent to

participate in Experiment 1. Participants were recruited from the

University of York student population and took part in exchange

for course credit or monetary compensation. Participants took part

in one of four conditions: 26 participants in the open-loop, awake

condition (23 female, M age � 19.88 years, age range � 18–28

years), 26 in the open-loop, sleep condition (19 female, M age �

19.68, age range � 18–23 years), 26 in the closed-loop, awake

condition (23 female, M age � 20.15 years, age range � 18–25),

and 26 in the closed-loop, sleep condition (20 female, M age �

20.65, age range � 18–28 years). All studies were approved by the

Department of Psychology Ethics Committee, University of York.

Materials. The stimuli consisted of 60 locations (e.g.,

kitchen), 60 famous people (e.g., Barack Obama), and 60 common

objects (e.g., hammer; available at http://osf.io/k495x/). From

these, 60 randomized location-person-object triplets were gener-

ated for each participant. Note, we use triplet to refer to the three

elements (location, person and object) that were assigned to the

same associative structure (closed- or open-loop). Triplets were

randomly assigned across the experimental conditions open- ver-

sus closed-loops. For closed-loops, all three possible pairwise

associations for a given triplet were encoded. For open-loops only

two out of the three pairwise associations were encoded. Triplets

were never presented all together at study or test. Only specific

pairwise associations were encoded and retrieved for each triplet,

dependent on whether they were open- or closed-loops. Triplets

were randomly assigned to the within-subject experimental condi-

tions tested (i.e., tested at Time 1 [T1]) versus not-tested (i.e., not

tested at T1; results are reported in the online supplemental ma-

terial).

Note, the open-loop condition is equated to the closed-loop

condition in the number of elements, but not in terms of the

number of associations. We have previously shown that a lack of

dependency for open-loops is seen when three overlapping asso-

ciations are encoded in an associative chain (e.g., kitchen–hammer,

kitchen–Barack Obama, Barack Obama–dog), controlling for the

number of associations (but not the number of elements) between

open- and closed-loops (Horner & Burgess, 2014). Any differ-

ences in dependency between the two conditions in the current

experiments are therefore unlikely to be driven by differences in

the number of associations. Although we control for the exposure

to each pairwise association across open- and closed-loops, two of

the individual elements in the open-loop condition are only pre-

sented once, whereas all elements are presented twice in the

closed-loop condition. Controlling for exposure to each element

would require repetition of pairwise associations in the open-loop

condition. We prefer to control for the number of exposures to

each pairwise association, given this is what is being tested at

retrieval, rather than the number of exposures to each individual

element. The open- and closed-loop structures are similar in nature

to the structures encoded to induce the fan effect, where RTs

increase and accuracy decreases in a cued recall task as the number

of elements (e.g., locations) associated with one element (e.g.,

person) is increased (Anderson, 1974). However, here we used

event-unique locations, people, and objects for both the closed-

and open-loop structures, minimizing the likelihood of inducing a

fan effect.

Procedure. The experiment consisted of a single encoding

session and two test sessions. Self-report ratings of alertness were

collected before encoding and the second test session using the

Stanford Sleepiness Scale (results reported in the online supple-

mental material). Session 1 (T1) took place between approximately

8 a.m. and 9 a.m. for participants in the awake condition (open-

loop: M � 8:31 a.m., range � 7:57–9:19 a.m.; closed-loop: M �

8:46 a.m., range � 8:04–9:31 a.m.) and approximately 8–9 p.m.

for participants in the sleep condition (open-loop: M � 8:52 p.m.,

range � 8:05–9:34 p.m.; closed-loop: M � 8:48 p.m., range �

7:48–9:34 p.m.). T1 consisted of a single study phase, and a test

phase (see details to follow). Participants in the awake conditions

spent the remainder of the day normally and returned approxi-

mately 12 hr later for session 2 (Time 2 [T2]; open-loop: M � 11

hr, 50 min, range � 11 hr, 40 min–12 hr, 7 min; closed-loop: M �

11 hr, 49 min, range � 11 hr, 28 min–12 hr, 3 min) at approxi-

mately 8 to 9 p.m. Participants in the post-encoding sleep condi-

tion returned to their own residence, slept overnight, and returned

approximately 12 hr later (open-loop: M � 11 hr, 51 min, range �

11 hr, 23 min–12 hr, 16 min; closed-loop: M � 11 hr, 53 min,

range � 11 hr, 44 min–12 hr, 13 min) at approximately 8 to 9 a.m.

A 2 � 2 (Loop � Sleep) between-subjects analysis of variance

(ANOVA), with the factors Loop referring to whether participants

encoded open- or closed-loops and Sleep referring to whether

encoding was followed by sleep or wakefulness, revealed no

significant difference in the duration of the interval between T1

and T2 across conditions (Fs � 2.00, ps � .16).

Participants in the sleep condition completed a sleep diary prior

to T1 and T2. Self-reported sleep durations were not collected

from three participants in the open-loop condition and one partic-

ipant in the closed-loop condition. Sleep quality ratings were not

collected from three participants in the open- and closed-loop

condition, respectively. We found no differences in self-reported

duration, t(46) � .22, p � .83, d � .06, or quality, t(44) � .54, p �

.59, d � .16, of sleep between T1 and T2 for participants in the

open versus closed-loop sleep conditions.

5ALL-OR-NONE FORGETTING OF COMPLEX EPISODIC EVENTS



Encoding (T1). During encoding, participants were presented

with specific pairwise associations for each of the 60 triplets.

Participants learned one pairwise association per trial. All pairwise

associations were presented on a computer screen as words, with

one item to the left and one to the right of fixation. The left/right

assignment was randomly chosen on each trial. The words re-

mained on screen for 6 s. Participants were instructed to imagine,

as vividly as possible, the items interacting in a meaningful way

for the full 6 s. For example, when presented with the words

Barack Obama and hammer, they might imagine Obama acci-

dently hitting his thumb with a hammer. Each word-pair presen-

tation was preceded by a 500-ms fixation cross and followed by a

500-ms blank screen. In the open-loop condition, participants

learned, for each triplet, two (out of the three possible) pairwise

associations, making a total of 120 encoding trials. For each triplet

in the closed-loop condition, participants learned all three pairwise

associations, making a total of 180 encoding trials.

The encoding phase consisted of two or three blocks, for the

open- and closed-loops respectively, of 60 trials with one pair from

each triplet being presented during each block (participants were

not made aware of this structure). A break of 20 s would follow

every 30 encoding trials. Within each block, the order of presen-

tation was randomized. Each open-loop consisted of a common

item (e.g., if the participants learned location-person and then

location-object, location would be the common item). Twenty

triplets were randomly assigned to each of the three possible

common items (i.e., locations, people or objects). The presentation

order for open-loops across the two blocks was (1) person-

location, location-object; (2) location-object, object-person; (3)

object-person, person-location. Closed-loops were randomly ro-

tated in the same manner. The presentation order for the closed-

loops across the three encoding blocks was: (1) person-location,

location-object, object-person; (2) location-object, object-person,

person-location; (3) object-person, person-location, location-

object.

Test (T1 and T2). During the test sessions, participants per-

formed a forced-choice cued-recognition task. On a given trial, the

cue and six possible targets were presented simultaneously on

screen. The cue was presented in the middle of the screen with six

possible targets; one target and five foils from the same category

(e.g., if the target word was hammer, the five foils would be other

randomly selected objects from other triplets), in two rows of three

below the cue. Participants had 6 s to respond with a key press and

were instructed to be as accurate as possible in the time given. The

location of the correct target item was randomly selected on each

retrieval trial. Missing responses (M � .05, SD � .07) were

counted as incorrect trials for both the accuracy and dependency

analyses. A 2 � 2 (Loop � Sleep) between-subjects ANOVA,

where the dependent variable was the proportion of nonresponses

(collapsed across T1 and T2), showed no significant effects (Fs �

2.5, ps � .11). Thus, any differences in dependency across con-

ditions are unlikely to be caused by assuming nonresponses would

have been incorrect. Note also that due to the 6-alternative forced

choice recognition test, the chance of guessing correctly was

relatively low (�16.7%).

For T1, 30 out of 60 triplets were tested. Each triplet was tested

with one of the cue–target associations (e.g., cue: person, target:

location) in both directions. For the open-loop condition, cue–

target associations were presented across four blocks (with a

single, randomly assigned, pairwise association from each triplet

tested in each block), making a total of 120 trials. Only the directly

encoded pairwise associations for open-loops were tested at T1

(i.e., no inference test was performed). For the closed-loop condi-

tion, the associations were presented across six blocks (i.e., three

pairwise associations, tested in both directions, randomly assigned

across blocks), making a total of 180 trials. A 20 s break would

follow every 30 trials. At T2, participants performed the same

cued-recognition task as during T1 with all the triplets tested,

making a total of 240 and 360 trials for the open- and closed-loop

condition, respectively.

For the open-loop condition, participants performed an addi-

tional inference test following the main cued-recognition task at

T2. For example, if a participant had encoded the pairwise asso-

ciations between Barack Obama and hammer and hammer and

kitchen, the nonencoded association between Barack Obama and

kitchen would be tested in both directions (i.e., cue: Barack

Obama, retrieve: kitchen; cue: kitchen, retrieve: Barack Obama)

during the inference task. For the inference task, the nonencoded

associations for each open-loop were tested, in each direction,

across two blocks, making a total of 120 trials. A 20 s break would

follow every 30 trials. Participants were not explicitly told that

these were inference trials and carried out the task in the same

manner as for directly encoded pairs.

In the main analysis comparing T1 versus T2, we only used

retrieval trials at T2 for triplets that were not tested at T1 in order

to control for possible testing effects. We include further analyses

that directly compare retrieval accuracy and dependency at T2 for

previously tested triplets versus triplets tested for the first time

(reported in the online supplemental material).

Modeling retrieval dependency. Six independent 2 � 2 con-

tingency tables for the observed data and independent model were

created for each participant in order to assess the dependency

between the retrieval of two items (e.g., person, object) when cued

by a common item (e.g., location) ABAC, and between the retrieval

of a common item (e.g., location) when cued by the other two

items (e.g., person, object) BABA. Once constructed, we calculated

the proportion of joint retrieval and joint nonretrieval in the data

and independent model for each contingency table separately, by

summing the leading diagonal cells and dividing by the total

number of events (i.e., the proportion of events where two over-

lapping pairwise associations within an event were both retrieved

either correctly or incorrectly). We then averaged this measure

across the six contingency tables to provide us with a single

measure of the proportion of joint retrieval and nonretrieval for the

data and independent model separately. For brevity, we refer to

this measure as the “proportion of joint retrieval,” but note that it

includes both the proportion of joint retrieval and joint nonre-

trieval.

The independent model assumes that pairwise associations for a

given event are retrieved independently of one another—that is, if

you retrieve one pairwise association from an event (un)success-

fully this does not predict your ability to (un)successfully re-

trieve another pairwise association from the same event. As

such, the independent model serves as a lower bound which we

can compare with the proportion of joint retrieval in the data.

Note, that the proportion of joint retrieval measure scales with

accuracy, and as such only comparisons between the data and
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independent model (i.e., the “dependency” measure reported in

the following text) are meaningful.

The 2 � 2 contingency tables for the data shows the number of

events that fall within the four cells (i.e., for the ABAC analysis,

both AB and AC correct; AB incorrect and AC correct; AB correct

and AC incorrect; and both AB and AC incorrect, where AB � cue

with location (A) and retrieve person (B) and similarly for AC,

where C stands for object). The table for the independent model

(see Table 1) shows the predicted proportion of events that fall in

the four cells, given a participant’s overall level of accuracy, if the

retrieval of within-event associations is assumed to be indepen-

dent. For a given participant, the proportion of correct retrievals

of, for instance, item B when cued by A is denoted by PAB (i.e.,

the mean performance for B when cued by A across all events).

For the independent model, when cued by A, the probability of

(1) correctly retrieving both B and C (across all events) is equal

to PABPAC; (2) correctly retrieving B but not C is equal to PAB

(1 � PAC); (3) correctly retrieving C but not B is equal to (1 –

PAB) PAC; and (4) incorrectly retrieving both B and C is equal

to (1 – PAB) � (1 – PAC).

Statistical analyses. For the main analysis of retrieval accu-

racy (proportion correct), we report a 2 � 2 � 2 (Session �

Loop � Sleep) mixed ANOVA with the within-subject factor

session referring to T1 (immediate) versus T2 (12-hr delay), the

between-subjects factor Loop referring to whether participants

encoded open- versus closed-loops, and the between-subjects fac-

tor Sleep referring to whether T1 was followed by sleep versus

wakefulness. The main analysis reports memory performance for

items at T2 that were not previously tested at T1. We also report

a 2 � 2 � 2 (Tested � Loop � Sleep) mixed ANOVA for memory

performance at T2 with the within-subject factor Tested referring

to whether the triplets had previously been tested at T1 or not

(reported in the online supplemental material).

For the main dependency analysis, we reported a 2 � 2 � 2

(Session � Loop � Sleep) mixed ANOVA where the dependent

variable refers to the difference between the proportion of joint

retrieval in the data and independent model (referred to as ‘depen-

dency’). We also report a 2 � 2 � 2 (Tested � Loop � Sleep)

mixed ANOVA of retrieval dependency at T2 with the within-

subject factor tested again referring to whether triplets had previ-

ously been tested at T1 or not (reported in the online supplemental

material). We also report t tests comparing proportion of joint

retrieval in the data with their respective independent models (data

vs. independent model).

Alpha was set to .05 (two-tailed) for all statistical tests. For each

ANOVA, we report a partial eta-squared effect size (	p
2). For t

tests, we report a Cohen’s d as the mean difference between the

condition divided by the pooled standard deviation across condi-

tions (Lakens, 2013) as an estimate of the between-subjects effect

size (regardless of whether the effect is within- or between-

subjects). For the sake of consistency, when any significant effect

is associated with a p value of � .04, or any nonsignificant effect

is associated with a p value of � .06, we note this regardless of

whether the effect is significant, nor whether the contrast is of

particular theoretical interest. All statistical analyses were con-

ducted using JASP (JASP Team, 2018).

Data availability. All second-level data (i.e., means per par-

ticipant and condition) across all experiments for retrieval accu-

racy and dependency are freely available at http://osf.io/k495x/.

Results

Retrieval accuracy. Mean proportion correct (and standard

deviations) across session, loop, and sleep are presented in Table

2, and mean proportion correct across loop and session (collapsed

across sleep) is presented in Figure 3. Figure 3 suggests retrieval

accuracy decreased over time, from T1 to T2, with perhaps more

forgetting for open- than closed-loops.

A 2 � 2 � 2 (Session � Loop � Sleep) ANOVA revealed a

significant effect of session, with accuracy decreasing from T1 to

T2, F(1, 100) � 352.02, p � .001, 	p
2 � .78. We also saw a

significant interaction between session and sleep, F(1, 100) �

59.06, p � .001, 	p
2 � .37, with significantly more forgetting

between T1 and T2 in the awake relative to sleep condition. Thus,

we see significant forgetting across sessions that is further modu-

lated by whether participants slept between T1 and T2. This

provides a high degree of variability in performance to assess

whether dependency changes as a function of forgetting, with

mean retrieval accuracy ranging from .51 to .73.

No further main effects were seen for loop, F(1, 100) � .16, p �

.69, 	p
2 � .01, and sleep, F(1, 100) � 3.88, p � .052, 	p

2 � .04

(though we note the borderline p value for the main effect of

sleep). A further interaction between session and loop was also

seen, F(1, 100) � 42.46, p � .001, 	p
2 � .30, revealing greater

forgetting for open- than closed-loops. This interaction appeared to

occur regardless of sleep, given there was no Session � Loop �

Sleep interaction, F(1, 100) � .15, p � .70, 	p
2 � .01. Thus,

forgetting between T1 and T2 was modulated independently by

both sleep and loop.

Retrieval dependency. Mean proportion of joint retrieval

(and standard deviations) for the data and independent model for

open- and closed-loops, collapsed across sleep and awake condi-

tions, are presented in Table 3 (for the means across all conditions,

the data are available at http://osf.io/k495x/). Figure 4 shows the

dependency across sessions and loop (collapsed across sleep and

awake conditions).

Consistent with previous research (Horner & Burgess, 2014),

we saw no evidence of dependency for open-loops at T1, t(51) �

1.63, p � .11, d � .09, but dependency was seen for closed-loops,

t(51) � 6.03, p � .001, d � .20, at T1. The critical question is what

occurs at T2 given a significant proportion of the pairwise asso-

ciations have been forgotten. Figure 4 shows that a similar pattern

of dependency is seen at T2, with closed-loops still showing

dependency, t(51) � 5.31, p � .001, d � .23, whereas significant

Table 1

Contingency Table for the Independent Model for Correct and

Incorrect Retrieval, Over N Events, for Elements B and C When

Cued by A

Retrieval of
Element C

Retrieval of Element B

Correct (PAB) Incorrect (1 – PAB)

Correct (PAC) �i�1
N PABi

PACi
�i�1

N PACi
�1 � PABi

�

Incorrect (1 � PAC) �i�1
N PABi

�1 � PACi
� �i�1

N �1 � PABi
��1 � PACi

�

Note. i � 1 to N.
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antidependency was seen for open-loops, t(51) � 2.48, p � .02,

d � .26.

Antidependency in the open-loops suggests that associations

interfere with each other. It is possible that antidependency

emerges during the retention period between T1 and T2 as anti-

dependency is not observed at T1. Although no significant anti-

dependency was seen at T1, we believe it is likely that the

associations already interfere with each other either at immediate

retrieval, or at the point of encoding, given that a lower proportion

of joint retrieval in the data, relative to the independent model, is

observed immediately after encoding. Consistent with this, the

main analysis showed that dependency did not change signifi-

cantly between T1 and T2 across the closed- and open-loop con-

ditions. Note, this antidependency effect is not replicated in Ex-

periments 2 through 4.

A 2 � 2 � 2 (Session � Loop � Sleep) ANOVA on the

dependency revealed a significant main effect of loop, F(1, 100) �

37.02, p � .001, 	p
2 � .27, confirming significantly greater depen-

dency for closed- than open-loops. We saw no evidence for

changes in dependency across session, F(1, 100) � .25, p � .62,

	p
2 � .01, nor did session interact with sleep, F(1, 100) � .16, p �

.70, 	p
2 � .01, or loop, F(1, 100) � .94, p � .34, 	p

2 � .01. Indeed,

no other significant effects or interactions were seen (Fs � 1.17,

ps � .28), beyond the main effect of loop. Thus, we found no

evidence to suggest that dependency was modulated by session or

sleep. In sum, despite large variation in retrieval performance at T2

relative to T1 as a function of sleep (and testing; see the online

supplemental material), dependency in the closed-loop and open-

loop condition remained consistent across all conditions.

Mnemonic integration during sleep? As outlined in the pre-

ceding text, we were also interested in assessing the possible role

that sleep plays in integrating overlapping information. For this

analysis, we focus solely on the open-loops as these are equivalent

to the A–B A–C structures encoded in Lau et al. (2010). The main

analysis in the preceding text found an overall effect of sleep on

accuracy (that did not interact with loop), but no effect on depen-

dency. Here, given our specific interest in whether sleep modulates

mnemonic inference, we only report analysis for the open-loop

condition (as no inference is possible for closed-loops).

For open-loop retrieval accuracy, a 2 � 2 (Session � Sleep)

ANOVA revealed a significant Session � Sleep interaction, F(1,

50) � 25.30, p � .001, 	p
2 � .34, confirming the preceding

analysis showing that sleep decreases forgetting for directly en-

coded pairs. We also assessed participants’ ability to infer nonen-

coded B–C pairs at T2 (see Table 4). Note, we did not assess B–C

inference at T1 because this may have increased participants’

awareness of the relationship between all overlapping pairs, bias-

ing us to finding increases in dependency for open-loops.

One participant in the sleep condition was excluded from this

analysis due to a failure to respond during the inference task

Figure 3. Mean proportion correct for open- and closed-loops at test sessions T1 and T2 for Experiments 1

through 4. For T2, only trials where participants retrieved events not previously tested at T1 are included. Error

bars represent 
/�1 standard error. Exp � Experiment. �� p � .01. ��� p � .001.

Table 2

Mean Proportion Correct (and Standard Deviations in

Parentheses) at Test Sessions at T1 and T2 for Experiments 1

Through 4

Experiment Loop

Session

T1 T2

Experiment 1
Sleep condition Open .73 (.16) .61 (.16)

Closed .72 (.25) .69 (.27)
Awake condition Open .73 (.14) .51 (.14)

Closed .68 (.21) .54 (.23)
Experiment 2 Open .71 (.17) .41 (.14)

Closed .74 (.17) .46 (.20)
Experiment 3 Open n/a .35 (.15)

Closed n/a .51 (.24)
Experiment 4 Open .69 (.18) .37 (.14)

Closed .73 (.18) .50 (.19)

Note. For T2, only trials where participants retrieved cue–target associ-
ations not previously tested at T1 are included. n/a � not applicable.
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(missing responses �.80). Accordingly, 51 participants (26 in the

awake condition, and 25 in the sleep condition) were included in

the analysis. Consistent with Lau et al. (2010), we saw greater B–C

inference performance in the sleep, relative to awake condition,

t(49) � 2.03, p � .048, d � .57 (though we note the borderline p

value). Importantly, a 2 � 2 (Session � Sleep) ANOVA failed to

show any evidence for a change in dependency for open-loops

between T1 and T2, F(1, 50) � .72, p � .40, 	p
2 � .01 (see Table

5), nor did session interact with sleep, F(1, 50) � .16, p � .70,

	p
2 � .01 Thus, we see evidence for increases in inference perfor-

mance, but no evidence for an increase in dependency, as a

function of sleep.

Discussion

Experiment 1 modulated retrieval accuracy by manipulating: (1)

the time between study and test, (2) whether participants slept

between study and test, and (3) whether pairwise associations were

previously tested or not (results reported in the online supplemen-

tal material). We saw evidence for effects of all three manipula-

tions on retrieval accuracy for pairwise associations, such that

across conditions we saw large variations in the amount of forget-

ting. Despite this, we saw no evidence for changes in dependency

in either open- or closed-loops. No dependency (or antidepen-

dency) was seen for open-loops, and dependency was consistently

seen for closed-loops. Experiment 1 therefore provides evidence

that dependency does not change over time—closed-loops retain

their dependency whereas open-loops do not show dependency.

We also saw no evidence for mnemonic integration during sleep

(as measured by retrieval dependency), suggesting that the role

sleep plays in increasing mnemonic inference is unlikely to be

driven by encoding generalization during sleep and is more likely

driven by “on-the-fly” processes at the point of retrieval; the

probability of which is increased due to less forgetting for directly

encoded pairs in the sleep than awake condition. Although we saw

no evidence for increases in dependency for open-loops following

sleep, participants were able to make the correct mnemonic infer-

ences at a level well above chance. Our task instructions were

ambiguous in relation to the inference task—that is, participants

were presented with inference trials as if they were retrieval trials.

Further work is needed to clarify whether participants were mak-

ing correct inferences based on false memories for nonencoded

pairs, or whether they were making informed inferences. However,

the lack of dependency following sleep suggests that this inference

process is likely to be occurring at the point of retrieval.

Experiment 2

Despite evidence for dependency in the closed-loop condition

after 12 hr in Experiment 1, we wondered whether increased

forgetting might lead to decreases in dependency. Specifically, we

speculated that the amount of forgetting in Experiment 1 was not

sufficient to produce fragmentation, and in turn, decreases in

dependency. In Experiments 2 through 4 we therefore tested par-

Table 3

Mean Proportion of Joint Retrieval (and Standard Deviations in

Parentheses) for the Data and Independent Model for Test

Sessions at T1 and T2 for Experiments 1 Through 4

Experiment Loop

T1 T2

Data Independent Data Independent

Experiment 1 Open .62 (.14) .64 (.12) .52 (.10) .55 (.06)
Closed .71 (.17) .68 (.18) .69 (.15) .66 (.17)

Experiment 2 Open .60 (.16) .61 (.15) .56 (.08) .55 (.08)
Closed .73 (.14) .67 (.16) .62 (.08) .58 (.09)

Experiment 3 Open n/a n/a .57 (.10) .58 (.08)
Closed n/a n/a .69 (.09) .61 (.11)

Experiment 4 Open .57 (.16) .59 (.12) .56 (.10) .56 (.08)
Closed .70 (.15) .66 (.16) .60 (.09) .57 (.07)

Note. For Experiment 1, the proportion of joint retrieval is collapsed
across the sleep and awake conditions. For T2, only trials where partici-
pants retrieved cue–target associations not previously tested at T1 are
included. n/a � not applicable.

Figure 4. Dependency for open- and closed-loops at test sessions T1 and T2 for Experiments 1 through 4. For

T2, only trials where participants retrieved events previously not tested at T1 are included. Error bars

represent 
/–1 standard error. Exp � Experiment. ns � not significant. �p � .05. �� p � .01. ��� p � .001.
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ticipants after a week, rather than a 12-hr delay. This extended

interval between T1 and T2 produced greater amounts of forget-

ting relative to Experiment 1, creating a sterner test for our

hypothesis that event-based representations are forgotten in an

all-or-none manner.

Method

Experiment 2 was identical to Experiment 1 with the following

exceptions. Experiment 2 equated to a 2 � 2 design, with the

factors session and loop. No factor of sleep was included, given the

interval between study and test was 1 week.

Participants. Fifty-two participants gave informed consent to

participate in Experiment 2. Participants were recruited from the

University of York student population. Participants took part in

exchange for course credit or monetary compensation. Participants

were allocated to one of two conditions. Twenty-six participants in

the open-loop condition (23 female, M age � 19.46 years, age

range � 18–23) and 26 participants in the closed-loop condition

(23 female, M age � 20.00 years, age range � 18–26).

Procedure. In order to increase the amount of forgetting rel-

ative to Experiment 1, the two sessions were separated by one

week. All sessions took place in the afternoon. Encoding and T1

took place between approximately 12 to 5 p.m. (open-loop: M �

2:31 p.m., range � 12:00–4:46 p.m.; closed-loop: M � 2:15 p.m.,

range � 11:58 a.m.–4:47 p.m.). T2 took place 1 week later

between approximately 12 to 5 p.m. (open-loop: M � 2:29 p.m.,

range � 11:51 a.m.–4:41 p.m.; closed-loop: M � 2:08 p.m.,

range � 11:58 a.m.–4:41 p.m.). Missing responses during test

(M � .04, SD � .04) were again treated as incorrect trials. There

was no difference in the proportion of missed responses (collapsed

across session) between open- and closed-loops, t(50) � .89, p �

.38, d � .25.

Results

Retrieval accuracy. Mean proportion correct across condi-

tions are shown in Table 2 and Figure 3. Retrieval accuracy was

.72 at T1 and .43 at T2. This is compared with retrieval accuracy

of .72 at T1 and .59 at T2 in Experiment 1. Thus, increasing the

interval between T1 and T2 to one week led to numerically greater

forgetting relative to a 12-hr interval. A 2 � 2 (Session � Loop)

ANOVA revealed a main effect of session, F(1, 50) � 318.83, p �

.001, 	p
2 � .86, confirming a significant decrease in performance at

T2 relative to T1. No further effects or interactions were seen

(Fs � 1.01, ps � .32). As such, Experiment 2 produced a signif-

icant amount of forgetting from T1 to T2, regardless of whether the

triplets were encoded as open- or closed-loops.

Retrieval dependency. Mean proportion of joint retrieval

(and standard deviations) for the data and independent model

across conditions are presented in Table 3. Figure 4 shows the

dependency across session and loop. As in Experiment 1, we saw

no evidence for dependency for open-loops at T1, t(25) � .67, p �

.51, d � .03, or T2, t(25) � .28, p � .78, d � .03, but significant

evidence for dependency for closed-loops at both T1, t(25) � 5.90,

p � .001, d � .42, and T2, t(25) � 5.31, p � .001, d � .51. A 2 �

2 (Session � Loop) ANOVA on dependency revealed a significant

effect of loop, F(1, 50) � 39.96, p � .001, 	p
2 � .44, confirming

that dependency was significantly greater in the closed- relative to

open-loop condition. No interaction between session and loop was

seen, F(1, 50) � 3.34, p � .07, 	p
2 � .06. In order to interrogate

this marginal interaction further, we performed a t test between

dependency at T1 and T2 separately for each loop type. Consistent

with the main analyses, we saw no evidence for a change in

dependency for either closed-, t(25) � 1.72, p � .10, d � .49, or

open-loops, t(25) � .733, p � .47, d � .20, between T1 and T2.

Critically, as shown in the preceding text, dependency was still

significant in the closed-loop condition at T2. As in Experiment 1,

despite high levels of forgetting between T1 and T2, we saw no

evidence for a decrease in dependency between T1 and T2 for

closed-loops.

Discussion

Experiment 2 produced greater amounts of forgetting following

an interval of 1 week between study and test, relative to Experi-

ment 1. Despite this increase in forgetting, as measured by re-

trieval accuracy, we again saw no decrease in dependency for

closed-loops, nor any increase in dependency for open-loops.

Experiment 1 and 2 showed that forgetting can be affected by

several post-encoding factors, such as the interval between study

and test, post-encoding sleep, and retrieval practice (see the online

supplemental material). However, across these factors, we find no

evidence for decreases in dependency for closed-loops.

Experiment 3

Retrieval accuracy is typically greater for closed- than open-

loops when both conditions are learned within-subject (i.e., each

participant learns both closed- and open-loops; Horner et al.,

Table 4

Mean Proportion Correct (and Standard Deviations in

Parentheses) for Encoded Cue–Target Associations at T1 and

T2, and Nonencoded Pairs at T2 for the Open-Loop Condition

in Experiment 1

Condition

Encoded Nonencoded

T1 T2 T2

Sleep .73 (.16) .61 (.16) .53 (.22)
Awake .73 (.14) .51 (.14) .42 (.29)

Note. For T2, only trials where participants retrieved cue–target associ-
ations not previously tested at T1 are included.

Table 5

Mean Proportion of Joint Retrieval (and Standard Deviations in

Parentheses) for the Data and Independent Model for Test

Sessions T1 and T2 for the Open-Loop Condition in

Experiment 1

Condition

T1 T2

Data Independent Data Independent

Sleep .62 (.14) .64 (.11) .54 (.10) .56 (.07)
Awake .62 (.15) .63 (.14) .51 (.09) .53 (.05)

Note. For T2, only trials where participants retrieved cue–target associ-
ations not previously tested at T1 are included.
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2015). In Experiment 1 and 2, we saw little evidence that retrieval

accuracy was higher for closed- than open-loops. In Experiment 3,

we aimed to assess whether the lack of difference in retrieval

accuracy between closed- and open-loops in Experiments 1 and 2

was a function of the between-subjects design. This is theoretically

important because if closed-loops are associated with higher ac-

curacy relative to open-loops in a within-subject, but not between-

subjects manipulation, it might suggest a possible competitive

mechanism between mnemonic representations (see General Dis-

cussion). In Experiment 3, participants learned both closed- and

open-loops at T1 and were tested in a single session (T2) after a

week. Note that no immediate test was performed as we wanted to

keep the overall number of triplets per condition consistent across

Experiments 1 through 3 (30 per condition). Experiment 3 also

provided a further opportunity to replicate the pattern of depen-

dency seen for closed- and open-loops across the course of a week.

Method

Experiment 3 was identical to Experiment 2 with the following

exceptions.

Participants. Twenty-six participants (22 female, M age �

19.35, age range � 18–23) gave informed consent to participate in

Experiment 3. Participants were recruited from the University of

York student population. Participants took part in exchange for

course credit or monetary compensation.

Materials. Sixty randomized location-person-objects triplets

were generated for each participant. Thirty triplets were randomly

assigned to the within-subject open- and closed-loop conditions,

respectively.

Procedure. The two sessions were separated by one week. All

sessions took place in the afternoon. Encoding took place between

approximately 12 to 5 p.m. (M � 2:24 p.m., range � 11:57

a.m.–4:41 p.m.). T2 took place one week later between approxi-

mately 12 to 5 p.m. (M � 2:23 p.m., range � 11:56 a.m.–4:39

p.m.).

Encoding. Participants were presented with specific pairwise

associations for each of the 60 triplets. For 30 out of the 60 triplets,

participants encoded all three possible pairwise associations form-

ing closed-loops. For the remaining 30 triplets, participants en-

coded two out of three possible pairwise associations forming

open-loops. The encoding phase consisted of three blocks of 30,

60, and 60 trials, making a total of 150 encoding trials. During the

first block, only pairwise associations for closed-loops were pre-

sented. This ensured that the duration between encoding of the last

pairwise association and T2 was consistent across closed- and

open-loops. In Blocks 2 and 3, the open- and closed-loops asso-

ciations were presented randomly in an intermixed manner.

Test. No immediate test followed encoding. This was done in

order to maintain consistency in the number of closed- and open-

loops tested at T2 across Experiments 2 and 3. At T2, all 60 triplets

were tested. Cue–target associations were presented across six

blocks, making a total of 300 trials. Note, none of these cue–target

associations had been tested previously at T1. As at encoding,

open- and closed-loops were presented randomly within each

block. As open-loops were formed of only two out of the three

possible pairwise associations, the four possible cue–target asso-

ciations per open-loop were randomly distributed across four out

of the six blocks. Note that this necessitates that the number of

trials per block can vary between participants. Missing responses

(M � .04, SD � .07) were treated as incorrect trials. There was no

difference between open- and closed-loops in the proportion of

missing responses, t(25) � 1.97, p � .06, d � .16 (though we note

the borderline p value).

Analysis. For retrieval accuracy, we report a paired samples t

test comparing performance for closed- versus open-loops. For

retrieval dependency, we report a paired samples t test comparing

the proportion of joint retrieval for the data and independent model

for closed- versus open-loops.

Results

Retrieval accuracy. Mean proportion correct for open- and

closed-loops are shown in Table 2 and Figure 3. Retrieval accuracy

at T2 was .43 (averaged across open- and closed-loops). This is

comparable to .43 in Experiment 2. Accordingly, we see numeri-

cally similar performance at T2 for Experiment 2 and 3. Impor-

tantly, accuracy for closed-loops (.51) was greater than open-loops

(.35) following a one week delay, t(25) � 6.31, p � .001, d � .84.

In contrast to Experiment 2, here we saw a significant difference

in performance between closed- and open-loops.

Retrieval dependency. Consistent with Experiment 1 and

Experiment 2, dependency was greater for closed- than open-

loops, t(25) � 5.35, p � .001, d � 1.33, with closed-loops again

showing significantly greater proportion of joint retrieval in the

data than in the independent model, t(25) � 6.40, p � .001, d �

.73, and open-loops showing no evidence for dependency, t(25) �

.56, p � .58, d � .08 (see Table 3 and Figure 4).

Discussion

Experiment 3 replicated the pattern of dependency seen in

Experiments 1 and 2. We saw no dependency for open-loops and

significant dependency for closed-loops. Presuming a significant

amount of forgetting has occurred in Experiment 3, as seen in

Experiments 1 and 2, we again showed that dependency for closed-

loops is resilient to forgetting. Interestingly, we saw a significant

difference in retrieval accuracy between closed- and open-loops; a

pattern we did not see in Experiment 2. The critical difference

between Experiments 2 and 3 is that the loop manipulation was a

between-subjects factor in Experiment 2 but a within-subject fac-

tor in Experiment 3.

However, Experiment 3 did not include an immediate test (in

contrast to Experiment 2). We do not know whether this difference

between closed- versus open-loops in a within-subject design

would also be present at T1. In other words, is the difference in

performance between closed- and open-loops in Experiment 3 a

result of high retrieval accuracy for closed- versus open-loops

(regardless of retention interval), or are closed-loops associated

with higher levels of retention over time? In Experiment 4, the

loop manipulation was again a within-subject factor, however we

also included an immediate, as well as delayed, test. Note, this

decreased the number of triplets per condition from 30 to 15.

Experiment 4

Experiment 4 included a test at both T1 and T2. This allowed us

to see if the difference in retrieval accuracy for closed- versus
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open-loops at T2 in Experiment 3 was also present at T1. It also

presented an opportunity to replicate the T2 retrieval accuracy

difference seen in Experiment 3. Finally, Experiment 4 offered an

opportunity to replicate the pattern of dependency for closed-loops

seen in Experiments 1 through 3.

Method

Experiment 4 was identical to Experiment 3 with the following

exceptions.

Participants. Twenty-seven participants gave informed con-

sent to participate in Experiment 4. Participants were recruited

from the University of York student population. Participants took

part in exchange for course credit or monetary compensation. One

participant was excluded due to a failure to respond at T2 (missing

responses � .50). Accordingly, 26 participants (25 female, M

age � 19.27, age range � 18–23) were included in the analysis.

Procedure. Encoding took place between approximately 12 to

5 p.m. (M � 2:26 p.m., range � 12:02–4:56 p.m.). T2 took place

one week later between approximately 12 to 5 p.m. (M � 2:26

p.m., range � 11:47 a.m.–16:48 p.m.). For T1, 30 out of 60 triplets

were tested. Triplets were randomly assigned to the within-subject

condition tested (i.e., tested at T1) versus not-tested (i.e., not tested

at T1; reported in the online supplemental material). This allowed

us to assess retrieval accuracy and dependency for 15 open-loops

and 15 closed-loops immediately after encoding. Cue–target asso-

ciations were presented across six blocks, making a total of 150

trials. A break of 20 s followed every 25 trials. At T2, all 60 triplets

were tested. Cue–target associations were presented across six

blocks, making a total of 300 trials. A 20 s break followed every

30 trials. Again, the four possible cue–target associations per

open-loop were randomly distributed across the six blocks. We

treated missing responses (M � .06, SD � .05) as incorrect trials.

There was no difference between open- and closed-loops (col-

lapsed across session) in the proportion of missing responses,

t(25) � 1.60, p � .12, d � .20.

Analysis. For the main analysis of accuracy, we report a 2 �

2 (Session � Loop) within-subject ANOVA. We also report a 2 �

2 (Tested � Loop) within-subject ANOVA for retrieval accuracy

at T2 (reported in the online supplemental material). For the

dependency analysis, we report a 2 � 2 (Session � Loop) within-

subject ANOVA where the dependent variable again refers to the

difference between the proportion of joint retrieval in the data and

independent model. We also report a 2 � 2 (Tested � Loop)

within-subject ANOVA where the within-subject factor Tested

refers to whether the triplets had previously been tested at T1 or

not (reported in the online supplemental material).

Results

Retrieval accuracy. Mean proportion correct across condi-

tions are shown in Table 2 and Figure 3. Retrieval accuracy was

.71 at T1 and .43 at T2. This is consistent with performance seen

in Experiments 2 and 3. A 2 � 2 (Session � Loop) ANOVA

revealed a main effect of session, F(1, 25) � 182.14, p � .001,

	p
2 � .88, in addition to a significant main effect of loop, F(1,

25) � 27.61, p � .001, 	p
2 � .53, with greater accuracy for closed-

relative to open-loops at both T1, t(25) � 2.86, p � .008, d � .26,

and T2, t(25) � 5.12, p � .001, d � .79. Interestingly, a significant

Session � Loop was also observed, F(1, 25) � 10.40, p � .01,

	p
2 � .29, with the difference between closed- and open-loops

increasing from T1 to T2. Thus, closed-loops show both higher

retrieval accuracy (regardless of retention interval) and higher

levels of retention relative to open-loops.

Retrieval dependency. Mean proportion of joint retrieval

(and standard deviations) for the data and independent model

across conditions are presented in Table 3. Dependency across

session and loop is shown in Figure 4. Consistent with Experi-

ments 1 through 3, we found no evidence for dependency for

open-loops at T1, t(25) � 1.39, p � .18, d � .16, and T2, t(25) �

.24, p � .81, d � .03. Similarly, we saw significant dependency for

closed-loops at both T1, t(25) � 3.29, p � .01, d � .25, and T2,

t(25) � 3.21, p � .01, d � .38. A 2 � 2 (Session � Loop)

within-subject ANOVA on dependency revealed a significant

main effect of Loop, F(1, 50) � 20.20, p � .001, 	p
2 � .45, with

significantly greater dependency for closed- than open-loops. No

other significant main effect or interaction was seen (Fs � 1.71,

ps � .20). Consistent with Experiments 1 through 3, closed-loops

retain their dependency despite high levels of forgetting.

Discussion

Experiment 4 replicated Experiments 1 through 3, showing

consistent dependency for closed-loops despite high levels of

forgetting. Experiment 4 showed higher retrieval accuracy for

closed- than open-loops at T2, consistent with Experiment 3. This

accuracy difference was present at T1 (consistent with the results

of Horner et al., 2015), however the effect was significantly greater

after a week. This presents evidence that the structure of overlap-

ping associations can affect long-term retention, but seemingly

only when structures are manipulated in a within-subject design

(as in Experiments 3 and 4, relative to Experiment 2). We return to

this finding in the General Discussion.

A Model of Independent Forgetting

Across four experiments we provide evidence for consistent

levels of retrieval dependency, despite varying levels of forgetting.

We consistently saw evidence for dependency for closed-loops at

both T1 and T2 and, importantly, we saw that dependency was

retained despite variable levels of forgetting. If complex events

fragment as a function of forgetting, such that some aspects of the

memory trace are forgotten more quickly than others (e.g., kitchen

is forgotten, but not hammer or Barack Obama), then we would

expect to see a decrease in dependency over time.

To ensure that the levels of dependency seen at T2 across

Experiments 1 through 4 were greater than expected if forgetting

was independent, we created a new model of independent forget-

ting. The independent model used in the main analyses predicts the

level of dependency if the retrieval of associations for a given

event are independent. It takes into account each participant’s

retrieval accuracy at each time point (separately) but does not take

into account the amount of forgetting for each participant. Accord-

ingly, we created a model that predicted the level of dependency at

T2, given a participant’s retrieval accuracy and rate of forgetting

between T1 and T2. The model can therefore be thought of as a

model of independent forgetting, as opposed to a model of inde-

pendent retrieval. It predicts the level of dependency expected at

T2 if events are forgotten in an independent manner.
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We simulated individuals’ retrieval data across all events and

pairwise associations at T2 based on their performance at T1 and

their overall level of forgetting (i.e., the difference in retrieval

accuracy between T1 and T2). Note, the model includes a single

forgetting parameter, such that the mean rate of forgetting is (on

average) uniform across all events and element-types. The simu-

lated data was based on the assumption of independent forgetting,

such that forgetting of one pairwise association for an event was

not predictive of forgetting for any other pairwise association for

that event. Specifically, we took performance for each T1 retrieval

trial, across all cue-test pairs, which resulted in a 6 � N matrix

(with six cue-test pairs, and N events) where each trial was either

correct or incorrect. We then simulated performance at T2 by

converting correct trials to incorrect trials randomly until mean

performance for the 6 � N matrix was equated to observed

performance at T2. Importantly, each correct trial at T1 had a

probability of being simulated as incorrect at T2 based on the mean

level of forgetting for that participant. We then calculated the level

of retrieval dependency for this simulated data set. This gives us

the level of dependency for an individual participant at T2 under

the assumption of independent forgetting. If the dependency seen

in the observed data is greater than the simulated data, then this

provides positive evidence that forgetting of the pairwise associ-

ations for a complex event does not occur in an independent

manner. For each participant, we simulated 100 data sets, and

present the mean dependency from across these simulations. Be-

cause Experiment 3 did not include an immediate test, we could

only assess independent forgetting in Experiments 1, 2, and 4. We

focused our modeling solely on closed-loops, given this is the

condition that shows dependency at T1 and T2.

Results

Mean proportion of joint retrieval (and standard deviations) for

the data and independent model for the simulated and observed

data at T2 are presented in Table 6. We first asked whether

dependency for closed-loops in the simulated data at T2 showed a

decrease relative to observed dependency at T1. In other words, if

forgetting was independent, does our model predict a decrease in

dependency between T1 and T2?

We first report a 2 � 3 (Session � Experiment) ANOVA where

the within-subject factor Session refers to the observed depen-

dency at T1 versus the simulated dependency at T2 and the

between-subjects factor Experiment refers to Experiment 1, 2, and

4. This ANOVA revealed a significant main effect of Session, F(1,

101) � 61.91, p � .001, 	p
2 � .38, with dependency decreasing

between T1 and T2. A Session � Experiment interaction was also

seen, F(2, 101) � 11.77, p � .001, 	p
2 � .19, with a significantly

greater decrease in dependency between T1 and T2 in Experiment

2 relative to Experiment 1, t(25) � 3.52, p � .01, d � 1.09, and

Experiment 4, t(25) � 2.18, p � .04, d � .71. Our model of

independent forgetting therefore predicts a significant decrease in

dependency between T1 and T2 for closed-loops. No such de-

crease was seen in the observed dependency in Experiments 1, 2,

and 4.

We also performed a Bayesian pairwise t test comparing ob-

served dependency at T1 with simulated dependency at T2 across

all participants from Experiments 1, 2, and 4 (N � 104). The Bayes

factor was �1,000 in favor of the hypothesis that dependency

should decrease as a function of independent forgetting (ex-

ceedance probability � .99; prior Cauchy distribution r � .707,

centered at 0; null hypothesis � no decrease in dependency be-

tween T1 and T2). This provides strong evidence that dependency

should decrease if closed-loops fragment as a function of forget-

ting.

We next asked whether we saw greater dependency for closed-

loops in the observed data at T2 relative to the simulated data at

T2. This analysis tells us whether the observed dependency at T2

is greater than that predicted by the independent model of forget-

ting. We report a 2 � 3 (Model � Experiment) ANOVA with the

within-subject factor Model referring to observed dependency at

T2 versus the simulated dependency at T2. Here we saw a signif-

icant main effect of Model, F(1, 101) � 10.43, p � .01, 	p
2 � .09,

with greater dependency in the observed relative to the simulated

data.

Finally, we performed a Bayesian pairwise t test comparing

observed dependency at T1 with observed dependency at T2

across all participants from Experiments 1, 2, and 4 (N � 104).

The Bayes factor � 5.41 in favor of the null hypothesis that

dependency does not decrease as a function of forgetting (ex-

ceedance probability � .84; prior Cauchy distribution r � .707,

centered at 0; null hypothesis � no decrease in dependency be-

tween T1 and T2), provides positive evidence that dependency

does not decrease over time.

Discussion

The independent forgetting model estimates dependency at T2

under the assumption that cue–target associations within an event

are independently forgotten. Compared with the observed depen-

dency, we show that independent forgetting of individual event

elements predicts a significant decrease in dependency between T1

and T2, implying a fragmentation of the underlying memory trace.

Critically, we also saw significantly greater dependency in the

observed data at T2 relative to the simulated data. A Bayesian

analysis also provided positive evidence that the observed depen-

dency does not decrease as a function of forgetting for closed-

loops.

General Discussion

Across four experiments, we provide consistent evidence for

retrieval dependency for closed-loops after a delay, despite vari-

Table 6

Mean Proportion of Joint Retrieval (and Standard Deviations in

Parentheses) for the Data and Independent Model at T2 for the

Simulated and Observed Data for Experiments 1, 2, and 4

Experiment

Simulated Observed

Data Independent Data Independent

Experiment 1 .68 (.16) .65 (.17) .69 (.15) .66 (.17)
Experiment 2 .61 (.08) .60 (.09) .62 (.08) .58 (.09)
Experiment 4 .58 (.08) .57 (.07) .60 (.09) .57 (.07)

Note. For Experiment 1, the proportion of joint retrieval is collapsed
across the sleep and awake condition. Only trials, where participants
retrieved cue–target associations not previously tested at T1 are included.
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able levels of forgetting. We also show that retrieval dependency

does not change for open-loops; they do not show retrieval depen-

dency immediately after encoding, nor after a delay. Further, we

developed a model of independent forgetting, providing evidence

for levels of dependency for closed-loops that are greater than that

predicted under an assumption of independent forgetting. To-

gether, we take these findings to support our hypothesis that

coherent (closed-loop) event representations tend to be forgotten in

an all-or-none manner, with closed-loops being more likely to

either be retained or forgotten in their entirety.

In Experiment 1, we showed that dependency for closed-loops is

retained across a 12-hr interval, irrespective of whether T1 is

followed by sleep or wakefulness. Consistent with previous find-

ings (e.g., Barrett & Ekstrand, 1972; Gais, Lucas, & Born, 2006;

Jenkins & Dallenbach, 1924; Lahl, Wispel, Willigens, & Pi-

etrowsky, 2008; Plihal & Born, 1997; Tucker et al., 2006), we

showed that sleep reduces forgetting, but does not change the form

that forgetting takes. Experiment 1 also provided an opportunity to

directly assess the extent to which sleep (relative to being awake)

supports the integration of overlapping information (Lau et al.,

2010). We found no evidence that sleep promotes integration of

open-loops, but it does appear to improve our ability to make

inferences between related information (i.e., inferring that B–C

items are related after directly encoding A–B and A–C pairs).

In Experiment 2, we increased the interval between study and

test to 1 week, increasing overall levels of forgetting. Despite this

increase in forgetting, we saw no evidence for changes in depen-

dency for closed- or open-loops. Experiments 3 and 4 replicated

Experiment 2, providing further evidence for dependency for

closed-loops when the interval between study and test was 1 week.

We therefore provide consistent evidence that forgetting is not

associated with decreases in dependency for closed-loop events.

Experiments 3 and 4 also showed that the structure of the

underlying mnemonic representation can support both immediate

and long-term retention. Retrieval accuracy was higher for closed-

than open-loops, a difference that increased significantly over the

course of a week. Interestingly, this effect was only seen in a

within-subject design where each participant learned both closed-

and open-loops (in Experiments 3 and 4), but not in a between-

subjects design where each participant either learned closed- or

open-loops (in Experiment 2).

The results presented here have implications for (1) how coher-

ent event representations are forgotten, (2) whether sleep promotes

the integration of overlapping information, and (3) how associative

structure can boost retention of information in the long-term. We

discuss each of these topics in the following text.

Forgetting of Coherent Event Representations

Despite a long-standing interest in forgetting, little research has

focused on how memory representations change as a function of

forgetting. Here we used the presence of dependency to infer the

coherence of an underlying memory trace and asked how depen-

dency changes as a function of forgetting. A similar approach was

used by Brady et al. (2013), where they assessed dependency for

specific properties of an object (i.e., “exemplar” and “state”). They

found that dependency decreased over time, such that the exemplar

(e.g., shape of a glass) and state (e.g., contents of the glass) of an

object were forgotten independently. Thus, object- or item-based

representations appear to fragment over time. This result appears at

odds with the current results where we see no evidence for a

decrease in dependency for closed-loops over time. However, here

we were specifically interested in forgetting of coherent episodic

events that require the multimodal binding of three distinct ele-

ments or items—that is, a location, person, and object. Thus,

whereas Brady et al. (2013) focused on item-based representations,

specifically multiple aspects of an individual item, we were inter-

ested in event-based representations, specifically associations be-

tween multiple distinct items or elements.

Neuropsychology and neuroimaging studies have demonstrated

a functional dissociation between regions of the medial temporal

lobe, with the perirhinal cortex supporting item-based representa-

tions and the hippocampus supporting event-based representations

(Barense et al., 2005; Davachi, Mitchell, & Wagner, 2003; Diana,

Yonelinas, & Ranganath, 2010; Lee et al., 2005; Ranganath et al.,

2004). Although the perirhinal cortex has been implicated in

certain associative processes (Mayes et al., 2004; Mayes, Mon-

taldi, & Migo, 2007) and conjunctive representations (Barense,

Gaffan, & Graham, 2007; Bussey & Saksida, 2007) of items/

objects, such regions are not thought to support associations be-

tween multimodal representations (Diana et al., 2007; Eichen-

baum, Yonelinas, & Ranganath, 2007). Instead, it is the

hippocampus that has been implicated in the multimodal binding

that is required to form more complex event representations (Co-

hen et al., 1999; Damasio, 1989; Davachi, 2006; Eichenbaum et

al., 2007; Horner et al., 2012). The imagery task and memoranda

used here were designed to require cross-modal binding (Horner et

al., 2015; Horner & Burgess, 2013, 2014) given that the hippocam-

pus has been shown to act as a convergence zone (Backus, Bosch,

Ekman, Grabovetsky, & Doeller, 2016) binding multimodal infor-

mation into coherent event representations (Damasio, 1989; Marr,

1971; Teyler & DiScenna, 1986). Thus, it is possible that the

differences in forgetting seen between the present studies and

Brady et al. (2013) relate to this dissociation between item-based

perirhinal representations and event-based hippocampal represen-

tations.

This dissociation is also apparent in the psychological literature

in relation to retrieval dependency. First, although Brady et al.

(2013) saw dependency between the retrieval successes of exem-

plar and state information immediately after encoding, they pro-

vided evidence that such dependency might be primarily driven by

encoding-related factors. Horner and Burgess (2014) provided

evidence against an encoding-based explanation of dependency for

more complex events by separating out the encoding of pairwise

associations for three element events—presenting each pairwise

association in separate encoding trials (as in the present studies).

No difference in dependency was seen between this ‘separated’

encoding condition relative to when all three elements were en-

coded on a single trial (Horner & Burgess, 2014). This suggests

that, even when tested immediately after encoding, the dependency

seen for item-based and event-based representations might be

driven by different factors. In the case of item-based representa-

tions; encoding-related factors such as attention, and in the case of

event-based representations; perhaps a retrieval-related process

that allows for holistic retrieval.

Evidence from the long-term source-memory literature also

suggests that there is a degree of asymmetry in relation to how

source details are bound to items, with information about color and
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location being directly, but independently, bound to item informa-

tion, but not each other (Starns & Hicks, 2005, 2008; see Hicks &

Starns, 2015 for a review). This lack of coherency and symmetry

in item-based representations might underlie the decreases in de-

pendency seen over time in Brady et al. (2013). As distinct aspects

of an item are stored in a relatively independent manner, they are

likely to also be forgotten in a similarly independent manner. In

contrast, event-based representations are more coherent and sym-

metrical in nature (Horner et al., 2015; Horner & Burgess, 2013)

and as such the forgetting of elements from a given event are more

likely to be related. Interestingly, Sekeres and colleagues (2016)

recently showed that ‘peripheral’ details from event-based mem-

ories are forgotten more rapidly than central details. We believe

that this difference in forgetting rates for peripheral and central

details might relate to the differences in the pattern of forgetting

for event- and item-based memories observed here and in Brady et

al. (2013), with central details of event-based memories (e.g.,

Barack Obama in the kitchen with a hammer) being more likely to

be forgotten in an all-or-none manner, and peripheral/item-based

details of event-based memories (e.g., the color vs. shape of

Barack Obama’s tie) being forgotten in an independent manner.

It has recently been proposed that item-based representations

that rely on the perirhinal cortex are more likely to be forgotten as

a result of interference (as opposed to decay; Sadeh et al., 2014).

This is because the neural representations for items in the perirhi-

nal cortex are likely distributed and overlapping in nature. Thus,

encoding similar objects results in interference due to their repre-

sentational overlap. However, event-based representations are

thought to be encoded in the hippocampus, where a pattern sepa-

ration process supported by the dentate gyrus (Bakker, Kirwan,

Miller, & Stark, 2008; Berron et al., 2016; Leutgeb, Leutgeb,

Moser, & Moser, 2007; Neunuebel & Knierim, 2014) and more

sparse representations (Barnes, McNaughton, Mizumori, Leonard,

& Lin, 1990; Viskontas, Knowlton, Steinmetz, & Fried, 2006) are

likely to reduce representational overlap between similar events.

This decrease in representational overlap decreases the likelihood

of interference (McClelland et al., 1995). Instead, forgetting for

hippocampal event-based representations is thought to be a result

of decay (Hardt et al., 2013).

Sadeh et al. (2016) provided behavioral evidence for this pro-

posed dissociation, showing that whereas recollection (a process

supported by hippocampal representations) decreased as a function

of time between study and test (consistent with forgetting via

decay), familiarity (a process supported by perirhinal representa-

tions) decreased as a function of experimentally induced interfer-

ence. Recent evidence using “precision” measures for assessing

object-color memory has shown that encoding similarly colored

objects causes interference, leading to a decrease in precision—

that is, participants can still remember the color, but with less

specificity than previously (Sun et al., 2017). This again supports

the notion that forgetting for item-based representations is more

likely driven by interference than decay.

The lack of a decrease in dependency can be taken as support for

the hypothesis that coherent (closed-loop) events tend to be for-

gotten in an all-or-none manner. If hippocampal event-based rep-

resentations were forgotten by a process of decay, as proposed by

Sadeh et al. (2014), this would suggest that decay is relatively

uniform across the separate elements of an event. Although there

is variation in the amount of decay across events, there would be

less variation within an event. An alternative decay account would

predict that variation is present in the rate of decay within an event,

however the process of retrieval compensates for this variation.

We have previously shown that closed-loops are supported by the

hippocampus, and retrieved by a process of pattern completion

(Horner et al., 2015; see Horner & Doeller, 2017 for a review).

Pattern completion allows for the retrieval of a complete memory

trace (i.e., pattern) in the presence of a partial or ambiguous input

(Gardner-Medwin, 1976; Hopfield, 1982; Marr, 1971; McClelland

et al., 1995; Treves & Rolls, 1992, 1994). Here, activation of a

single event element (e.g., a location) triggers the reactivation of

all other elements for that event (i.e., a person and an object).

Under such an account, decay could be nonuniform within an

event, but pattern completion in hippocampal subfield CA3 (Hop-

field, 1982; Treves & Rolls, 1992), or more widespread recurrency

within the hippocampal complex (Kumaran & McClelland, 2012),

would lead to the presence of dependency as long as the associa-

tions between some elements are sufficiently strong. However,

when decay is sufficient, the remaining associations may no longer

be able to support retrieval, meaning that the entire trace cannot be

retrieved. In other words, although decay might be nonuniform

within an event, pattern completion produces the appearance of

uniformity at retrieval, driving behavioral dependency. This same

mechanism has been used to account for retrieval generalization on

paired-associate tasks (e.g., where participants make inference

judgments about two overlapping associations; Banino et al.,

2016).

Our results do not rule out the possibility that interference (not

decay) is the primary driver of forgetting for event-based repre-

sentations, although this is at odds with recent theoretical and

empirical work (Sadeh et al., 2014, 2016). If so, interference would

need to be uniform in manner. For example, if you encoded two

events that share a common location; for example, “kitchen–

Obama–hammer” and “kitchen-Beckham-telephone,” the encod-

ing of the second event involving David Beckham would have to

interfere with not only retrieval success for the kitchen–Obama

and kitchen–hammer associations, but also the Obama–hammer

association—otherwise a decrease in dependency would likely be

seen. Though we cannot rule out an interference account, it is not

immediately clear how such uniformity could be achieved.

Although the precise mechanism that underlies the pattern of

forgetting seen in the present studies is unclear, the results (taken

alongside those of Brady et al. (2013)) suggest that forgetting for

event-based representations is driven by a different mechanism

than for item-based representations. We believe this is likely to be

hippocampal-based and supported by the known recurrent circuitry

in this region that has been shown to support the computational

process of pattern completion. Further, this is most likely a result

of decay, perhaps driven by neurogenesis of hippocampal granule

cells (Frankland et al., 2013), or more active regulatory changes

(Hardt et al., 2013). Note that the argument here is that forgetting

occurs due to a failure in pattern completion (Frankland et al.,

2013), rather than an erasure of memory per se. It is entirely

possible that aspects of some events, or entire events, can sponta-

neously recover and be brought to mind at some later point

(Tulving & Pearlstone, 1966), or could even be recovered via

optogenetic induction (Roy et al., 2016).
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Sleep and Mnemonic Integration

Sleep is thought to not only play an active role in the strength-

ening of memory traces, but also in the integration of overlapping

information (Lewis & Durrant, 2011; Stickgold & Walker, 2013).

For example, Lau et al. (2010) presented evidence for an increase

in participant’s ability to infer the relationship between A–C pairs

following a nap after directly encoding A–B and B–C pairs. This

increase in inference ability postnap was taken as evidence for

sleep playing an active role in the integration of A–B and B–C

pairs, similar to the evidence for integration seen during repeated

presentations of such pairs (Zeithamova et al., 2012). However, it

has recently been suggested that A–C inference can readily be

supported by retrieval-related processes, supported by the recur-

rent connections in the hippocampus (Kumaran & McClelland,

2012). Here, the relationship between A and C is generated “on-

the-fly,” via the retrieval of A–B and then B–C. Under this

account, the probability of successful inference increases via in-

creases in the associative strength of the directly encoded A–B and

B–C pairs.

Here we used retrieval dependency to distinguish between these

two accounts. In Experiment 1, participants learned open-loops

(A–B, B–C associative structures). After sleep, we tested retrieval

performance for the directly encoded pairs, and inference for the

A–C nonencoded pairs. Consistent with Lau et al. (2010), we

found evidence that sleep increased performance on an A–C in-

ference task (though the effect was relatively small). However, we

saw no increase in dependency as a function of sleep for open-

loops. We also saw no evidence for increases in dependency for

open-loops after a 1-week delay (Experiments 2 through 4), that

included multiple sleep–wake cycles. If sleep does play a role in

mnemonic inference, this effect is likely to be primarily driven by

increases in associative strength for directly encoded pairs that

allows for inference at the point of retrieval, rather than a more

active sleep-related integration process.

For both open- and closed-loops, sleep decreased forgetting

relative to wakefulness across a 12-hr delay (Experiment 1). Sleep

appears to decrease forgetting but does not change the form that

forgetting takes. This is consistent with existing models of con-

solidation (Frankland & Bontempi, 2005; McClelland et al., 1995;

Nadel & Moscovitch, 1997; Squire & Alvarez, 1995) where sleep

reduces forgetting by stabilizing existing connections between the

hippocampus and neocortex, perhaps counteracting memory decay

within the hippocampus (Frankland et al., 2013). However, this

process appears to occur without altering the form that forgetting

takes. Interestingly, we also showed that retrieval practice dimin-

ished the effect of sleep on memory (see the online supplemental

material), in line with the recent proposal that retrieval practice

might drive a rapid on-line consolidation process (Antony, Fer-

reira, Norman, & Wimber, 2017), mitigating the role of sleep

(Kornell, Bjork, & Garcia, 2011).

Closed-Loops as a Mnemonic Aid?

In Experiments 3 and 4, we saw greater retrieval accuracy for

closed- than open-loops, a difference that increased over time.

Indeed, after a week the difference in memory performance was

substantial (.16 in Experiment 3 and .13 in Experiment 4; com-

pared with .04 at T1 in Experiment 4). Thus, the associative

structure formed across separate encoding trials appears to signif-

icantly modulate the extent of forgetting over the course of a week.

This raises the possibility that learning associations between three

elements in a closed-loop structure might aid long-term retention

of such associations. Could associative structure at encoding be

used as an educational tool, similar in nature to known mnemonic

techniques such as retrieval practice (Roediger & Karpicke, 2006)

and the spacing effect (Ebbinghaus, 1913)?

This proposal would be premature, given the differences seen

between closed- and open-loops were only seen in Experiments 3

and 4. No difference in retrieval accuracy between closed- and

open-loops was seen after a week in Experiment 2. The key

difference between these experiments is the between- versus

within-subject experimental design. Whereas in Experiment 2 par-

ticipants either learned closed- or open-loops, in Experiments 3

and 4 participants learned both closed- and open-loops. Impor-

tantly, overall retrieval accuracy after a week (averaged across

closed- and open-loops) in Experiments 3 (.43) and 4 (.44) was

similar to Experiment 2 (.43). Thus, overall forgetting rates were

comparable, but learning both closed- and open-loop biased for-

getting such that open-loops were more likely to be forgotten than

closed-loops.

One possible explanation for this effect is a competitive model

of forgetting, where multiple associative structures compete for

survival. Closed-loops are already associated with significantly

higher retrieval accuracy at immediate test (though the numerical

size of the effect is relatively small). If this higher retrieval

accuracy relates to greater associative strength, then perhaps this

allows closed-loops to “out-compete” open-loops to survive. An-

other possibility is that the coherent nature of closed-loops, that

allows for pattern completion at retrieval, increases the probability

that such representations are replayed during offline consolidation

processes (Lewis & Durrant, 2011), increasing retrieval accuracy

relative to those nonreplayed representations (i.e., open-loops).

Note that these explanations are not mutually exclusive. Impor-

tantly, Poulton (1982) has argued that within-subject designs, in

contrast to between-subjects designs, can bias performance (in

unknown ways) due to asymmetries in encoding and/or retrieval

strategies when conditions are interleaved randomly. Accordingly,

the difference in retrieval accuracy between closed- and open-

loops observed here could be due to the transfer of a particular

strategy that is appropriate in one condition, but not in the other.

Further work is needed to determine the precise experimental

conditions under which closed-loops are more likely to be retained.

However, if one accepts that some amount of forgetting is inevi-

table in any educational setting, learning a certain amount of

information in a ‘closed-loop’ format might promote long-term

retention of important information. Critically, if such a technique

were to be used as an educational ‘tool’ to increase long-term

retention, similar effects would need to be shown in developmental

populations, given the protracted development of the hippocampus

in childhood (Olson & Newcombe, 2013).

Conclusion

Across four experiments, we provide consistent evidence that

retrieval dependency does not change over time, despite variation

in the overall amount of forgetting: The associative structure

formed at encoding has a consistent, lasting, impact on the coher-

ency of retrieval. In relation to closed-loops, the results support our
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hypothesis that coherent event representations tend to be forgotten

in an all-or-none manner, such that events are more likely to be

either forgotten or retained in their entirety. Consistent with this,

we provide evidence against the notion that coherent event repre-

sentations fragment as a function of forgetting by the creation of an

independent model of forgetting (as opposed to the independent

model of retrieval used in previous studies (Horner & Burgess,

2013, 2014). We also saw evidence that the associative structure at

encoding can, under specific conditions, modulate the overall

amount of forgetting. When participants learned closed- and open-

loops, forgetting rates were significantly lower for closed-loops

(this was not the case when participants learned either closed-loops

or open-loops). Thus, we also provide evidence that retrieval

accuracy and dependency can be modulated by the associative

structure at encoding.
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