
This is a repository copy of Time domain analysis of structures with hysteretic vibration 
suppression systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/149420/

Version: Published Version

Article:

Deastra, P. orcid.org/0000-0002-1709-4686, Wagg, D.J. and Sims, N.D. (2019) Time 
domain analysis of structures with hysteretic vibration suppression systems. Journal of 
Physics: Conference Series, 1264. ISSN 1742-6588 

https://doi.org/10.1088/1742-6596/1264/1/012032

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Time domain analysis of structures with hysteretic vibration suppression
systems
To cite this article: Predaricka Deastra et al 2019 J. Phys.: Conf. Ser. 1264 012032

 

View the article online for updates and enhancements.

This content was downloaded from IP address 143.167.29.34 on 08/08/2019 at 12:29

https://doi.org/10.1088/1742-6596/1264/1/012032
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/662957556/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012032

IOP Publishing

doi:10.1088/1742-6596/1264/1/012032

1

Time domain analysis of structures with hysteretic

vibration suppression systems

Predaricka Deastra1, D J Wagg2, N D Sims3

Department of Mechanical Engineering, The University of Sheffield, Sheffield S1 3JD, UK

E-mail: pdeastra1@sheffield.ac.uk

Abstract. The use of viscous damping terms to simplify the damping of a vibrating system
has been well established for decades. For solid materials whose energy dissipated per cycle
is frequency-independent, an equivalent viscous damping has often been used. However, this
may give inaccurate results, especially at higher excitation frequencies. Alternatively, a complex
stiffness term can be used. In this case, a challenge arises for the time domain analysis due to
the unstable poles in the resulting model. Several methods have been proposed to deal with this
issue. The use of an analytic signal along with Hilbert transform and a time reversal technique
is one of the first introduced methods. In this paper, we extend the method so that it can
be used for solving the system equations of motion using the numerical integration algorithm
solvers that are available in MATLAB. We also present the application of this extended method
to simulate a multi-degree-of-freedom (MDOF) structure with supplemental passive vibration
suppression systems using linear hysteretic damping in the time domain.

1. Introduction

In civil engineering applications, solid materials, such as rubber, are one of the most widely
used materials for dampers and base isolations. In this regards, most of the linear analyses in
the literature modeled the damping of these materials in the form of viscous damping. However
this is not strictly an accurate representation due to the fact that these types of solid materials
exhibit a hysteresis in their force-displacement behavior. It has also been shown experimentally
that the energy dissipated by a solid material is frequency-independent [1]. On the other hand,
energy dissipated by viscous damping is linearly proportional to the excitation frequency. To
represent more realistic physical behavior, a complex stiffness model can be used. However, the
time domain analysis of this type of damping is challenging due to its non-causality.

Some methods have been proposed to solve the equation of motion of a system with hysteretic
damping in the time domain. One of the first was introduced by Inaudi and Makris [2]. In
this method, the hysteretic characteristic of the material damping in the equation of motion
is modelled by using the Hilbert transform. Using the state space formulation, the equation
of motion can be solved by using time-reversal technique to avoid the instability problems
associated with the unstable pole. Some improvement of this method were given by Bae et al.
[3, 4]. The application of this method to a free and transient response of a hysteretic damping
system was presented in [5, 6, 7].

In general these previous works were limited to forced vibration cases, where the external force
is applied to the mass of the structure. For civil engineering application, it is also important to
study the system subjected to ground motion. In this scenario it becomes even more important



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012032

IOP Publishing

doi:10.1088/1742-6596/1264/1/012032

2

to consider the role of hysteretic damping, because such systems frequently possess vibration
absorbers or isolators that incorporate hysteretic damping components such as laminated rubber
bearing base isolation [8] and hysteretic dynamic vibration absorber (HDVA) [9].

In this paper, an extended method is developed for analysis of structures with a hysteretic
vibration absorber in the time domain. This extended method makes it possible to solve the
system equation of motions in the time domain using numerical integration algorithm solvers
that are available in MATLAB.

2. Description of the technique

A generalized n-DOF structure subjected to base excitation r(t) is given in Figure 1. The
structure is separated into three parts: bottom storey, i = 1 ; middle storeys, ith, where
i ∈ [2 : n− 1]; and top storey, i = n.

Figure 1. n-DOF structure with hysteretic damping

The equation of motion of the above structure can be written using analytic functions, given
that xia(t) = xi(t) + jH[xi(t)], the equations can be written as follows:







































m1ẍ1a(t) + k0,1(1 + jη0,1)(x1a(t)− ra(t))− k1,2(1 + jη1,2)(x2a(t)− x1a(t)) = 0

...

miẍia(t) + ki−1,i(1 + jηi−1,i)(xia(t)− x(i−1)a
(t))− ki,i+1(1 + jηi,i+1)(x(i+1)a

(t)− xia(t)) = 0

...

mnẍna(t) + kn−1,n(1 + jηn−1,n)(xna(t)− x(n−1)a
(t)) = 0

(1)
where mi and xi(t) represent the mass concentrated on the ith storey and its displacement
response; H[xi(t)] is the Hilbert transform of xi(t); ki−1,i and shi−1,i

, i ∈ [1 : n] represent the
stiffness and a parameter with unit of stiffness characterising the damping between storeys i− 1
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and i; ηi−1,i is the loss factor of the linear hysteretic damping between storey i− 1 and i, given

by ηi−1,i =
shi−1,i

ki−1,i
; r(t) represents ground displacement input signal; subscript a denotes an

analytic signal; and j =
√
−1. In state-space formulation, Equation 1 can be expressed as:

ẋa(t) = Axa(t) +Bra(t) (2)

where

xa(t) =















x1a(t)
ẋ1a(t)

...
xna(t)
ẋna(t)















; A =















a1,1 a1,2 . . . a1,n−1 a1,n
a2,1 a2,2 . . . a2,n−1 a2,n
...

...
...

...
...

an−1,1 an−1,2 . . . an−1,n−1 an−1,n

an,1 an,2 . . . an,n−1 an,n















; B =















B1

B2
...

Bn−1

Bn















(3)

The eigenvalues of A are given by sz, where z = 1, 2, ..., n− 1, n. Note also that

sz = szre + szimj (4)

Here, im stands for “imaginary” and re for “real”. Defining the analytic modal coordinates
qza(t)

ẋa(t) = Φ















q1a(t)
q2a(t)

...
q(n−1)a

(t)

qna(t)















; Φ =















φ1,1 φ1,2 . . . φ1,n−1 φ1,n

φ2,1 φ2,2 . . . φ2,n−1 φ2,n
...

...
...

...
...

φn−1,1 φn−1,2 . . . φn−1,n−1 φn−1,n

φn,1 φn,2 . . . φn,n−1 φn,n















(5)

where Φ is the modal matrix, and φl,z = φl,zre +φl,zimj, where l = 1, 2, ..., n−1, n. Now we have

Φ















q̇1a(t)
q̇2a(t)

...
q̇(n−1)a

(t)

q̇na(t)















= AΦ















q1a(t)
q2a(t)

...
q(n−1)a

(t)

qna(t)















+Bra(t) (6)

Using

Φ−1AΦ =

















s1 . . . . . . . . . 0
... s2

...
...

. . .
...

... sn−1
...

0 . . . . . . . . . sn

















; Φ−1B =















B1

B2
...

Bn−1

Bn















(7)

where
Bz = Bzre +Bzimj (8)

we obtain


































q̇1a(t) = s1q1a(t) +B1ra(t)

q̇2a(t) = s2q2a(t) +B2ra(t)

...

q̇(n−1)a
(t) = sn−1q(n−1)a

(t) +Bn−1ra(t)

q̇na(t) = snqna(t) +Bnra(t)

(9)
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In [2], a similar form of Equation (9) was solved by using zero-order hold method which
subsequently required a special integration formula. In this paper, this equation is separated
into real and imaginary parts, so that qza(t) = qz(t) + jH[qz(t)] and B1 = B1re + B1imj.
A similar technique was introduced in [6] for single-degree-of-freedom (SDOF) structures for
force excitation problems. Here, we extend the technique for multi-degree-of-freedom (MDOF)
structures subjected to base displacement and show that it can be easily implemented by using
various ode-family options available in MATLAB (i.e. ode45). Note that the forcing function
r(t) is treated in its real value only. Separating Equation (9) into real and imaginary parts, we
have











































































q̇1(t) = s1req1(t)− s1imH[q1(t)] +B1rer(t)

H[q̇1(t)] = s1reH[q1(t)] + s1imq1(t) +B1imr(t)

q̇2(t) = s2req2(t)− s2imH[q2(t)] +B2rer(t)

H[q̇2(t)] = s2reH[q2(t)] + s2imq2(t) +B2imr(t)

...

q̇n−1(t) = s(n−1)re
qn−1(t)− s(n−1)im

H[qn−1(t)] +B(n−1)re
r(t)

H[q̇n−1(t)] = s(n−1)re
H[qn−1(t)] + s(n−1)im

qn−1(t) +B(n−1)im
r(t)

q̇n(t) = snreqn(t)− snim
H[qn(t)] +Bnrer(t)

H[q̇n(t)] = snreH[qn(t)] + snim
qn(t) +Bnim

r(t)

(10)

Equation (10) can be solved using a standard differential equation solver that is available in
MATLAB or other standard computational software packages (i.e. ode45). The equations
containing unstable poles can be solved by integrating the equations backward in time [2]. From
Equation (5), ẋa(t) can be written as:

ẋa(t) =















φ1,1 φ1,2 . . . φ1,n−1 φ1,n

φ2,1 φ2,2 . . . φ2,n−1 φ2,n
...

...
...

...
...

φn−1,1φn−1,2. . .φn−1,n−1φn−1,n

φn,1 φn,2 . . . φn,n−1 φn,n





























q1a(t)
q2a(t)

...
q(n−1)a

(t)

qna(t)















(11)

Separating the real and imaginary parts, this equation now can be solved using:











x1(t)
ẋ1(t)
...

xn(t)
ẋn(t)











=













φ(1,1)re
φ(1,2)re

. . . φ(1,n−1)re
φ(1,n)re

φ(2,1)re
φ(2,2)re

. . . φ(2,n−1)re
φ(2,n)re

...
...

...
...

...
φ(n−1,1)re

φ(n−1,2)re
. . .φ(n−1,n−1)re

φ(n−1,n)re
φ(n,1)re

φ(n,2)re
. . . φ(n,n−1)re

φ(n,n)re























q1(t)
q2(t)
...

qn−1(t)
qn(t)











+













φ(1,1)im
φ(1,2)im

. . . φ(1,n−1)im
φ(1,n)im

φ(2,1)im
φ(2,2)im

. . . φ(2,n−1)im
φ(2,n)im

...
...

...
...

...
φ(n−1,1)im

φ(n−1,2)im
. . .φ(n−1,n−1)im

φ(n−1,n)im
φ(n,1)im

φ(n,2)im
. . . φ(n,n−1)im

φ(n,n)im























H[q1(t)]
H[q2(t)]

...
H[qn−1(t)]
H[qn(t)]











(12)
where qz(t) and H[qz(t)] were obtained from Equation (10).

Figure 2 (a) shows an example of a 2-storey structure with linear hysteretic damping on
each storey. Note that in this case, as the system is relatively simple, a comparison can be
made between the numerical method proposed in this paper and the analytical solution. The
two methods are in very close agreement as can be seen in Figure 2 (b), and therefore we have
confidence in using the method on more complex examples.

3. Numerical examples

To the authors’ knowledge, the application of the above method for passive vibration suppression
systems in civil structures has never been investigated. Therefore in this paper, we use the
method for time domain analysis of MDOF structures with passive vibration suppression systems
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Figure 2. (a) 2-storey structure with hysteretic damping and (b) its top storey transmissibility
when the structure is subjected to base displacement r(t)

containing a hysteretic damping element. Two devices are considered, namely a tuned-mass-
hysteretic-damper (TMhD) and a tuned-inerter-hysteretic-damper (TIhD), as shown in Figure
3. The host structure is considered to be undamped with m1 = m2 = m3 = 1kNs2/m and
k0,1 = k1,2 = k2,3 = 1500kN/m.

(a) (b)

Figure 3. 3-storey structure with (a) a TMhD at the top storey (b) a TIhD at the base storey

3.1. Example 1: Tuned-mass-hysteretic-damper (TMhD)
Many strategies have been introduced for protecting structures from unwanted vibrations. Using
the tuned-mass-damper (TMD) is one of the established strategies that has been used in many
structures. Wong [9] has investigated the TMD with hysteretic damping and showed how the
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tuning procedure based on fixed-point theory in the frequency domain can be used. However,
its time-domain analysis has not yet been presented. In the present study, a 3-storey undamped
structure is equipped with a TMhD at the top storey subjected to base displacement as shown
in Figure 3(a), and is then investigated in the time-domain. The optimum parameters of the
TMhD are found to be md = 0.102kNs2/m, kd = 27.6kN/m and η = sh/kd = 0.2336. md and
kd represent the mass and stiffness of the TMhD, and η is the loss factor of the linear hysteretic
damping of the TMhD. The equation of motions of the system can be written as:



















































ẍ1a(t) =
−(k0,1 + k1,2)x1a(t) + k1,2x2a(t) + k0,1ra(t)

m1

ẍ2a =
−(k1,2 + k2,3)x2a(t) + k2,3x3a(t) + k1,2x1a(t)

m2

ẍ3a =
−(k2,3 + kd(1 + jη)x3a(t)) + k2,3x2a(t) + kd(1 + jη)ya(t)

m3

ÿa(t) =
−kd(1 + jη)(ya(t)− x3a(t))

md

(13)

Figure 4(a) shows the performance of the structure with a TMhD on the top storey in the
frequency domain by assuming the base displacement input is harmonic. A further novelty of
the method is, for example, that the top storey response of the structure can also be considered
when subjected to other time domain signals as shown in Figure 5. Three different input signals
were considered: sine wave (Figure 5(a)), white noise (Figure 5(c)), and El Centro 1940 (Figure
5(e), its acceleration data were taken from https://strongmotioncenter.org).

3.2. Example 2: Tuned-inerter-hysteretic-damper (TIhD)
The tuned-inerter-damper (TID) has been introduced in [10] and has been shown to be a better
alternative of the TMD in certain circumstances. With its inerter element, not only is a smaller
mass required for a large mass-ratio, but also its optimum location is at the base of a structure.
Both of these features are often beneficial compared to the TMD.

Despite its promising performance, the TID is still an idealised concept that requires further
studies. A more realistic concept of the TID has been studied in [11] by considering the
nonlinearities of its damping and inerter elements. In this paper, we introduce the use of a linear
hysteretic damping to replace the viscous damping element of the TID. This new device is called
the tuned-inerter-hysteretic-damper (TIhD) and is considered in detail in [12]. In this section,
the extended method previously discussed was used to solve the system equation of motion of
a MDOF structure with a TIhD as shown in Figure 3(b) subjected to base displacement in the
time domain.

Considering the same 3-storey structure from the previous example, the optimum parameters
of the TIhD are found to be bd = 0.48kNs2/m, kd = 138.6kN/m and η = sh/kd = 0.306. bd
and kd represent the inertance and stiffness of the TIhD, and η is the loss factor of the linear
hysteretic damping of the TIhD. The equation of motions of the system can be written as:














































ÿa(t) = −
k0,1
m1

(x1a(t)− ra(t))− (
kd
m1

+ j
sh
m1

+
kd
bd

+ j
sh
bd

)(ya(t)− ra(t)) +
k1,2
m1

(x2a(t)− x1a(t))

ẍ1a(t) = −
k0,1
m1

(x1a(t)− ra(t))− (
kd
m1

+ j
sh
m1

)(ya(t)− ra(t)) +
k1,2
m1

(x2a(t)− x1a(t))

ẍ2a = −
k1,2
m2

(x2a(t)− x1a(t)) +
k2,3
m2

(x3a(t)− x2a(t))

ẍ3a = −
k2,3
m3

(x3a(t)− x2a(t))

(14)



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012032

IOP Publishing

doi:10.1088/1742-6596/1264/1/012032

7

Figure 4(b) illustrates the frequency response of the considered structure with a TIhD at the
base storey. Although the response around the first vibration mode is similar to the TMhD,
the structural responses at the higher vibration modes are much better. It is in line with the
conclusion discussed in [10] when comparing the TMD and the TID.
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-60
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-20

0

20

40
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(a)
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-60

-40

-20

0
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(b)

Figure 4. Frequency response of the MDOF system with (a) TMhD and (b) TIhD subjected
to base displacement

The time domain responses obtained by using the previous presented method are shown in
Figure 5. Similar to the previous example, three different scenarios were considered: sine wave
(Figure 5(b)), white noise (Figure 5(d)), and El Centro 1940 (Figure 5(f)).

4. Conclusions

This paper presents an extended technique for solving equation of motions of structures with
linear hysteretic damping in the time domain. This extended technique makes it possible for the
equations to be easily solved using the ordinary differential equation solvers that are available
in MATLAB subject to the constraint that the hysteretic damping parameter is small. For
illustration, two numerical examples are given for a 3-storey structure with supplemental passive
vibration suppression systems, namely the TMhD and the TIhD. Three different type of input
signals were considered: sine wave, white noise, and earthquake base displacement.
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