
cancers

Article

Predicting Visual Acuity Deterioration and
Radiation-Induced Toxicities after Brachytherapy for
Choroidal Melanomas

Charlotte A. Espensen 1,2, Ane L. Appelt 3 , Lotte S. Fog 4, Anita B. Gothelf 1,
Juliette Thariat 5,6,7 and Jens F. Kiilgaard 2,*

1 Department of Oncology, Section of Radiotherapy, Copenhagen University Hospital, Rigshospitalet,
2100 Copenhagen, Denmark

2 Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet,
2100 Copenhagen, Denmark

3 Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK
4 Department of Physical Sciences, The Peter MacCallum Cancer Centre, Melbourne 3000, Australia
5 Department of Radiation Oncology, Centre Francois Baclesse, 14000 Caen, France
6 Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN, 14000 Caen, France
7 Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534, Unicaen–Normandy University,

14000 Caen, France
* Correspondence: jens.folke.kiilgaard@regionh.dk

Received: 28 June 2019; Accepted: 29 July 2019; Published: 6 August 2019
����������
�������

Abstract: Ruthenium-106 (Ru-106) brachytherapy is an established modality for eye-preserving
treatment of choroidal melanoma. To achieve optimal treatment outcomes, there should be a balance
between tumour control and the risk of healthy tissue toxicity. In this retrospective study, we examined
normal tissue complication probability (NTCP) for visual acuity deterioration and late complications
to aid the understanding of dose-dependence after Ru-106 treatments. We considered consecutive
patients diagnosed with choroidal melanoma and primarily treated at a single institution from
2005–2014. Treatment plans were retrospectively recreated using dedicated software and image
guidance to contour the tumour and determine the actual plaque position. Dose distributions
were extracted from each plan for all relevant anatomical structures. We considered visual acuity
deterioration and late complications (maculopathy, optic neuropathy, ocular hypertension, vascular
obliteration, cataract and retinal detachment). Lasso statistics were used to select the most important
variables for each analysis. Outcomes were related to dose and clinical characteristics using
multivariate Cox regressions analysis. In total, 227 patients were considered and 226 of those were
eligible for analysis. Median potential follow-up time was 5.0 years (95% CI: 4.5–6.0). Visual acuity
deterioration was related to optic disc-tumour distance and dose metrics from the retina and the
macula, with retina V10Gy showing the strongest correlation. Macula V10Gy was the only dose metric
impacting risk of maculopathy, while optic disc-tumour distance also proved important. Optic disc
V50Gy had the largest impact on optic neuropathy along with optic disc-tumour distance. Optic disc
V20Gy was the only variable associated with vascular obliteration. Lens D2% had the largest impact
on the risk of cataract along with older age and the largest base dimension. We found no variables
associated with the risk of ocular hypertension and retinal detachment. Visual acuity deterioration
and most late complications demonstrated dependence on dose delivered to healthy structures in the
eye after Ru-106 brachytherapy for choroidal melanomas.
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1. Introduction

Ruthenium-106 (Ru-106) brachytherapy is an established eye-preserving treatment modality for
choroidal melanoma, with good local tumour control rates [1,2]. However, an optimal treatment
strategy has to balance tumour control and the risk of healthy tissue toxicity, especially when a major
treatment aim is to preserve normal function. We established a dose–response relationship for
tumour control probability (TCP) after ruthenium-106 (Ru-106) brachytherapy in a previous work [3],
but corresponding models for normal tissue complication probabilities (NTCP) are required in order to
decide on treatment modality and optimise treatment at an individual patient level. We examined
the relationship between radiation dose to healthy tissues and the risk of visual acuity deterioration
and radiation-induced toxicity for a large cohort of patients with choroidal melanoma treated with
Ru-106 brachytherapy.

2. Methods and Materials

2.1. Patient Material

In this retrospective study, we considered consecutive patients diagnosed with primary choroidal
melanoma and treated with Ru-106 brachytherapy from January 2005 to December 2014 at a single
tertiary referral institution. Baseline patient, tumour, and treatment characteristics were prospectively
registered for all the patients in a local database. Clinical outcome data were retrospectively reviewed
from patient records along with evaluation based on imaging material. The acquired data were stored
in a dedicated database approved by the Danish Data Protection Agency (ref 2016-41-4897) and the
Danish Health Authority (ref 3-3013-980/1/). Patients were excluded from the analysis if treatment
records and follow-up records or continuously recorded retinographies were unavailable. The patient
selection process is illustrated in Figure 1.
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2.2. The Treatment Procedure

Non-invasive examination of the retina was performed before treatment recommendations were
made. Ophthalmoscopy, fluorescein angiography, and/or optical coherence tomography (OCT) was
used along with ultrasound B-scans to assess tumour extension. Patients were referred to brachytherapy
if they had locally confined disease and the tumour dimensions were within the limits treatable with
Ru-106 plaques (5 mm in height) [4]. Each treatment was performed in the operating theatre, and the
Ru-106 plaque was surgically sutured onto the sclera adjacent to the tumour. Ru-106 plaques were
manufactured and provided by Eckert and Ziegler (BEBIG GmbH, Berlin, Germany). Plaques with
different sizes and shapes were available (CCA, CCB, CCC, and COB), and the most suitable was
chosen according to tumour location within the eye and the size of the tumour. A margin of 2 mm
from the tumour to the plaque borders was preferred, but an eccentrically located plaque was used
for some cases [5]. Correct positioning of the plaque was ensured with ultrasound directly after
plaque placement and one day post-surgery. Three experienced onco-ophthalmologists performed
the treatments over the 10-year period. Tumour height and base dimensions were measured using
ultrasound as part of the treatment procedure. An apical dose of 100 Gy was prescribed for all
the treatments, and the treatment times were calculated using an in-house developed spreadsheet
accounting for the activity of the plaque at the insertion time and height of the tumour.

2.3. Regular Assessment

Patients were followed regularly by an onco-ophthalmologist consultant every third month during
the first year, every sixth months during the second year, and annually thereafter for at least five years,
if possible. Clinical outcomes including visual acuity and radiation-induced toxicities were evaluated
at each visit.

2.4. Dose Distribution Analysis

Each treatment was retrospectively recreated using the three-dimensional (3D) image-guided
treatment planning software Plaque Simulator (version 6.5.9, EyePhysics, LLC, Los Alamitos, CA, USA).
The tumour volume was based on contouring of the tumour base on pre-treatment retinographies
and using the ultrasound measure for tumour height. The plaque location was estimated from the
radiation scar on post-treatment retinographies, or alternatively based on the surgery note from the
patient record. Identification of the macula and the optic disc on the retinography was done manually,
and was crucial to correctly calibrate the image to map the eye model. They were both contoured as
circular structures with diameters of 1.5 mm and 2 mm, respectively. A standard eye size was used with
anterior–posterior diameter of 26.2 mm and an equatorial diameter of 24.0 mm. The lens was outlined
as a volume of size 10 × 4 mm (diameter × thickness), while the retina was outlined as a structure from
the posterior pole to the limbus with a 1-mm inset from the outer surface of the sclera [6]. Each plan
was recreated in close collaboration with an experienced onco-ophthalmology consultant. Full 3D dose
distributions were calculated based on information regarding the insertion and removal times of the
plaque. Complete dose area histograms were extracted for the macula, the retina, and the optic disc,
while dose volume histograms were extracted for the globe and the lens.

2.5. Definition of Outcomes

Table 1 lists the clinical findings and equipment used in the examination of each of the late complications.
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Table 1. List of the considered late complications, the clinical findings for each, and the equipment
used in the examination. OCT: optical coherence tomography, logMAR: the logarithm of minimum
angle of resolution.

Late Complication Clinical Findings Important Examination

Visual acuity deterioration Increase of minimum 0.3 logMAR
from the pre-treatment measure

Snellen’s chart (converted to logMAR
for statistical purposes)

Maculopathy
Micro aneurysms, ischemia,

oedema, and/or atrophy in the
macular region [7]

Ophthalmoscopy, retinography, OCT
and/or fluorescein angiography.

Optic neuropathy Swelling, ischemia, atrophy and/or
pallor occurring optic disc [8]

Ophthalmoscopy, retinography
and/or OCT

Ocular hypertension
Intraocular pressure ≥21 mm Hg

(at least three months
post-treatment)

Tonometry

Vascular obliteration Narrow and obliterated blood
vessels on the retina Ophthalmoscopy

Cataract
Lens opacities along with

gradually deterioration of the
visual acuity

Slit lamp examination or
ophthalmoscopy

Retinal detachment Fluttering membrane Ophthalmoscopy

We performed two visual acuity analyses: the first including the full cohort (group 1), and the second
including solely patients with a pre-treatment visual acuity ≤0.5 logMAR (logarithm of minimum angle of
resolution) (the limit for public blindness and the minimum driving license requirement, group 2).

2.6. Data Analysis

For each late complication, a consultant ophthalmologist with several years’ experience in ocular
oncology pre-specified clinical factors as well as relevant normal tissue structures for which to extract
dose metrics. This resulted in more than 30 potential variables per late complication to include in the
analysis. See details in the analysis plan in the supplementary material (Table S1), including all the
explanatory factors considered for each endpoint.

Variable selection was performed using Lasso statistics to identify and eliminate non-informative
variables with poor association with the specific late complication. Ten-fold cross-validation was used
to estimate the optimal shrinkage parameter (λ). The optimal value of λ was the value that minimised
the prediction error from the cross-validation; however, it had numerous redundant predictors. Thus,
to achieve the simplest model, we used a larger value of λ, where the error remained within one
standard error of the minimum.

Dose–response relationships were evaluated from Cox proportional hazards regression. The time
to event was measured from the start of treatment to whichever occurred first: late complication,
re-treatment (due to recurrence), censoring (due to competing events), death, or end of follow-up
(May 2019). For maculopathy, tumours located under the macula at diagnosis were accounted for
in the baseline characteristics, whereas tumour growth involving the macular region at any time
during follow-up was censored at first presentation. Additionally, for optic neuropathy, tumours
partly overlapping the optic disc at diagnosis were accounted for in the baseline characteristics,
whereas tumour growth overlapping the optic disc at any time during follow-up was censored
at first presentation. The Danish Health care system did not reimburse preventive treatment of
ocular complications; therefore, patients only received treatment for late complications after the
complications occurred. Consequently, the time-to-event was not affected. In few cases with lens
removal during primary surgery, the patients were censored at that time. See the analysis plan in the
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Supplementary Materials (Figure S1) for details on competing events for each specific late complication.
The reverse Kaplan–Meier method was used to estimate the potential follow-up time [9].

Visualisation of the dose–response relationship was conducted by plotting the Cox regression
five-year risk estimates as a function of dose with all the other model variables kept at a constant value
(typically the median value of the cohort, e.g., median tumour height).

We assessed model performance using the concordance index and the Brier score. Furthermore,
Schoenfeld residuals were used to evaluate the proportional hazard assumption on the time independency
of the variables.

For explorative purposes, we conducted additional logistic regression analyses for visual acuity
loss, with follow-up time as an explanatory variable. See details in the Supplementary Materials
(Figures S3–S4 and Table S2).

3. Results

In total, 227 patients were treated during the 10-year period. One died immediately after treatment
before any follow-up routines were performed, and was therefore excluded from the study; thus, 226
were considered for analysis. Median potential follow-up time for the remaining cohort was five years
(95% CI: 4.5–6.0). Patient and tumour characteristics are listed in Table 2. In total, 50 recurrences were
observed, and the overall five-year local control estimate was 78%. Overall estimates of five-year
freedom from toxicity were done using Kaplan–Meier and listed in Table 2. Kaplan–Meier curves for
all the complications are illustrated in the supplementary material (Figure S5).

Table 2. Descriptive statistics of study participants (n = 226): Patient, tumour, and treatment characteristics,
and list of late complications with raw incidence and five-year probability (based on Kaplan–Meier
estimates) including 95% confidence interval (CI). logMAR: the logarithm of minimum angle of resolution.
VA: Visual acuity. Median (IQR: interquartile range).

Patient Characteristics Value (Median (IQR))

Age (years) 62 (53–69)
Gender male/female 118/108

Eye left/right 117/109
Follow-up (years) 5 (95% CI: 4.5–6.0)

Pre-treatment VA (logMAR) 0.3 (0.0–0.6)
Pre-treatment VA ≤0.5 logMAR (y/n) 165/61

Last VA (logMAR) 0.9 (0.3–3.0) (NA = 4)
Last VA ≤0.5 logMAR (y/n) 82/140 (NA = 4)

Tumour characteristics
Largest basal dimension (mm) 11.4 (9.0–13.3)

Height (mm) 3.9 (2.8–5.8)
Optic disc–tumour distance (mm) 2.4 (0.4–4.9)

Macula–tumour distance (mm) 2.5 (0.1–5.0)

Treatment characteristics
Treatment (time hours) 120 (74–191)

Plaque type CCA/CCB/CCC/COB 53/101/12/60

Late complication Number
(%)

5-year probability of freedom from toxicity
(95% CI)

Loss of pre-treatment visual acuity 101 (66) 29 (22–38)
Visual acuity deterioration 136 (62) 35 (29–43)

Maculopathy 64 (29) 45 (36–56)
Optic neuropathy 62 (28) 68 (62–76)

Ocular hypertension 26 (12) 87 (82–92)
Vascular obliteration 63 (28) 70 (63–77)

Cataract 103 (46) 52 (45–61)
Retinal detachment 15 (7) 94 (91–97)
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3.1. Visual Acuity Analysis

The optimal model for visual acuity deterioration (group 1) included optic disc–tumour distance,
the area of the retina receiving 10 Gy (retina A10Gy), and two macula dose metrics (macula A20Gy and
A80Gy). The hazard ratios indicated a strong dependency of retina A10Gy (see Table 3). The relationship
is illustrated in Figure 2A. Poor pre-treatment visual acuity and close proximity to the optic disc–tumour
distance was also associated with an increased risk of visual acuity deterioration. The dose–response
model divided into pre-treatment visual acuity of 0.2 logMAR and 1.8 logMAR is illustrated in Figure 2B.

The concordance index and Brier score showed good correlation between the observed and
predicted five-year visual acuity loss; thus, the performance of the model was acceptable, as illustrated
in the Supplementary Materials (Table S3 and Figure S6).

None of the variables considered demonstrated an association with the risk of loss of pre-treatment
visual acuity (group 2).

The results from the logistic regression analyses based on pre-treatment and last visual acuity
deterioration are provided in the Supplementary Materials (Figures S3–S4 and Table S2).
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Figure 2. (A) Dose–response of visual acuity deterioration as a function of the area of the retina receiving
10 Gy (retina A10Gy). The model adjusts for optic disc–tumour distance (2.4 mm), pre-treatment visual acuity
(0.3 logMAR), macula V20Gy (89%), and macula A80Gy (8%). The shaded area indicates the 95% confidence
intervals. (B) Dose–response of visual acuity deterioration as a function of retina A10Gy for two pre-treatment
visual acuity measures (0.2 and 1.8 logMAR); all the other factors were kept as for Figure 2A.

Table 3. Hazard ratios (HR) with 95% confidence intervals (CI) for each of the late complications.
logMAR: the logarithm of minimum angle of resolution. VA: Visual acuity. VA: Visual acuity.

Visual Acuity Deterioration Hazard Ratio (95% CI)

Optic disc-tumour distance + 0.91 (0.85–0.97)
Pre-treatment VA (1 logMAR increase) 0.59 (0.44–0.80)

Retina A10Gy * 1.22 (1.03–1.44)
Macula A20Gy * 1.04 (0.98–1.10)
Macula A80Gy * 0.92 (0.62–1.38)

Loss of pre-treatment visual acuity No variables selected

Maculopathy
Optic disc–tumour distance + 0.87 (0.79–0.96)

Macula A10Gy * 1.15 (1.05–1.26)

Optic neuropathy
Optic disc–tumour distance + 0.75 (0.63–0.89)

Optic disc A50Gy * 1.11 (1.02–1.22)
Optic disc A20Gy * 1.08 (0.98–1.18)
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Table 3. Cont.

Visual Acuity Deterioration Hazard Ratio (95% CI)

Ocular hypertension (post-treatment) No variables selected

Vascular obliteration
Optic disc A20Gy * 1.17 (1.11–1.25)

Cataract
Age at treatment (10 years increase) 1.38 (1.17–1.62)

Largest base dimension + 1.08 (1.01–1.16)
Lens D2% (10 Gy increase) 1.04 (1.01–1.07)

Retinal detachment (post-treatment) No variables selected

* 10%-point increase, + 1-mm increase.

3.2. Late Complications

The hazard ratios (HRs) from Cox regression analyses for each of the late complications are listed
in Table 3. The selection procedure did not find any relevant factors related to late toxicity for ocular
hypertension or retinal detachment.

The area of macula receiving 10 Gy (macula A10Gy) had the largest HR for maculopathy and
a considerable impact on the risk of developing this late complication. The dose–response relationship
is illustrated in Figure 3A.
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Figure 3. (A) Dose–response of maculopathy as a function of the area of macula receiving 10 Gy (macula
A10Gy). The model adjusts for optic disc–tumour distance (2.4 mm). (B) Dose–response of optic neuropathy
as a function of optic disc A50Gy. The model adjusts for optic disc–tumour distance and optic disc A50Gy
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as a function of lens D2%. The model adjusts for age at treatment (62 years) and largest base dimension
(11.3 mm). The shaded areas represent the 95% confidence interval of the risk estimates.
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Decreased optic disc–tumour distance demonstrated a considerable risk for developing optic
neuropathy. Furthermore, the area of the optic disc receiving 50 Gy (optic disc A50Gy) had a considerable
impact on the risk. This dose–response relationship is illustrated in Figure 3B.

The development of vascular obliteration was strongly associated with optic disc A20Gy as the
only variable. This relationship is illustration in Figure 3C.

The near-maximum dose delivered to the lens (lens D2%) was the only dose metric associated
with cataracts, although with a relatively weak correlation. The dose–response for this relationship is
illustrated in Figure 3D. Age and largest base dimension were associated with the largest HRs for the
risk of developing cataracts.

The concordance indices and Brier scores indicated good performance for all the above models.
See the Supplementary Materials for details (Table S3 and Figure S6). Median dose area/volume
histograms for each structure are illustrated in the supplementary material (Figure S7).

4. Discussion

In this retrospective analysis, we demonstrated clear relationships between specific dose metrics
for healthy tissues and the risk of late complications following Ru-106 brachytherapy. Radiation dose
dependence was found for some of the endpoints (visual acuity deterioration, maculopathy, optic
neuropathy, vascular obliteration, and cataracts) but not for others (ocular hypertension and retinal
detachment). Clinical factors (optic disc–tumour distance, age at treatment, largest base dimension,
and pre-treatment visual acuity) also correlated with outcome for some endpoints. Detailed dose
analyses were performed, utilising full dose area/volume histograms extracted from retrospectively
recreated treatment plans with 3D image guidance.

We found a strong correlation between the risk of visual acuity deterioration and the area of retina
receiving 10 Gy (retina A10Gy), with a 50% risk of visual acuity deterioration when 20% of the retina received
10 Gy. Furthermore, the risk correlated with various macula dose metrics (macula A20Gy and macula
A80Gy). These findings were in accordance with those of Aziz et al., who demonstrated total fovea dose
as the most significant variable associated with an increased risk of visual acuity loss in 311 patients [10].
Additionally, Heilemann et al. investigated visual acuity loss in 45 patients and found retina D2% as the
main risk factor [11]. However, neither of them systematically explored a wide range of dose metrics.

Previous works have identified specific clinical variables as predictors for visual acuity loss,
but reports are diverse and possibly contradictory, emphasising the complex mechanisms of visual
acuity deterioration following Ru-106 treatments. Thus, the specific underlying causes remain not
fully understood, and radiation-induced visual acuity deterioration might originate from several
discrete pathophysiologies. Isager et al. investigated visual outcomes for 55 patients, and found
tumour height and the largest base dimension as the most important risk factors for visual acuity
deterioration, but they did not perform multivariate analyses, nor did they include dose in their
analysis [12]. According to Bergman et al., initial visual acuity was main risk factor along with the
distance from the tumour to the fovea in a study with 579 patients. However, they did not consider
dose either [13]. Additionally, Damato et al. reported on 458 patients and also found initial visual
acuity and tumour location as risk factors for visual acuity deterioration [5]. These findings were
in line with the present study, in which optic disc–tumour distance and pre-treatment visual acuity
were important clinical predictors for visual acuity deterioration. However, dose was, contrary to our
results, not significant in the multivariate analysis by Damato et al.

Risk factors for specific late complications have also been previously reported. Tagliaferri et al. recently
found tumour location as the strongest risk factor for radiation-induced maculopathy based on a study with
197 patients [14]. They did not find any significance of dose in multivariate analysis. However, the location
of the tumour might be strongly correlated with the macular dose, and thereby have worked as a surrogate
for the effect of dose in the multivariate analysis. Summanen et al. found a 30% five-year risk of developing
radiation-induced maculopathy after Ru-106 treatments based on 100 patients [15], while Naseripour et al.
reported a five-year risk of maculopathy of 20% based on 51 patients [16]. This is slightly less than the 45%
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five-year risk found in our work. This could possibly be explained by a lack of consensus in the reporting of
maculopathy. Finger et al. have established guidelines for general strategies in the reporting of retinopathy [17].
Extension to other radiation-induced late complications remains highly needed.

The reported risk of radiation-induced optic neuropathy varies considerable throughout the
literature. According to Naseripour et al., the five-year risk was 40% (compared to 32% in our series),
but no variables were significantly associated with the risk of developing optic neuropathy in their
multivariate analysis. Summanen et al. reported a five-year risk of 12% and according to their study,
the optic disc–tumour distance was the strongest predictor in radiation-induced optic neuropathy.
This corresponds to the findings in our study. Furthermore, we found various optic disc metrics (optic
disc V50Gy and V20Gy) as important risk factors for radiation-induced optic neuropathy.

Post-treatment vascular obliteration is to some extent expected after treatments with brachytherapy,
especially for vessels near the tumour and thus near the plaque. However, only a limited number of
studies describe predictors for vascular obliteration. Rouberol et al. found that the risk decreased with
age and anterior location, but they used a prescription scheme that deviated from current standard
regimens [18]. We found optic disc V20Gy as the only variable associated with increased risk.

Summanen et al. reported a five-year risk of radiation induced cataract of 37% [15]. They found
tumour height as the strongest risk predictor. Naseripour et al. demonstrated a five-year risk of
38%, but did not report any prognostic factors [16]. The lens has previously been reported as a fairly
radiosensitive structure [19]. However, it should be kept in mind that cataracts are often a treatable
condition, and sparing of the lens is thus less essential in the treatment optimisation.

The effect of dose on post-treatment retinal detachment has been demonstrated in a recent study
by Heilemann et al. They found a strong correlation with both retina D2% and Dmean. However,
our study did not find any support for this. Retinal detachment was the least frequent late complication
in our series. Several patients had retinal detachment at the time of diagnosis as a result of tumour
exudation. While exudation diminishes as the tumour shrinkages due to Ru-106 brachytherapy [20],
the retina fastens accordingly.

Published data elucidating the effect, if any, of dose rate on tumour control probability and late
complications after Ru-106 brachytherapy is limited. According to Naseripour et al., a low dose rate
did not have any significant negative effect on local tumour control [16]. Furthermore, Fili et al. found
that dose rate was not associated with the risk of secondary enucleation. However, they suggested
that longer treatment times (and thus a lower dose rate) might be associated with increased ocular
irritation [21]. According to Mossböck et al., a high dose rate (as seen with shorter treatment times)
might furthermore be associated with increased late complications and visual acuity deterioration [22].
We included overall treatment time in the selection process to account for any dose rate effect, but we
found no association with any of the late complications.

We only examined a single plaque source in the current study. However, compared to iodine-125
(I-125), Ru-106 generally causes fewer late complications [23,24]. Miguel et al. found the type of plaque
to be an important risk factor for optic neuropathy after I-125 brachytherapy, along with age, the largest
base dimension of the tumour, and dose to the optic nerve [25]. Furthermore, they found a 43%
five-year risk of retinal detachment, with patient age at treatment and size of the plaque as important
risk factors. Thus, plaque types utilising different isotopes might see different dose dependence than
what has been observed here.

We estimated the dose delivered to the specific structures based on full dose area/volume
histograms extracted from retrospectively recreated treatment plans. This approach used post-treatment
retinographies to assess the actual plaque position (and hence the actually delivered dose) rather than
an ideal pre-treatment plan. To the best of our knowledge, no previous studies have used 3D image
guidance along with relevant clinical variables to perform normal tissue complication probabilities for
choroidal melanoma patients.

Lasso statistics were used for variable selection, allowing for the consideration of a wide range
of possible predictors; non-informative variables were excluded, while the appropriate predictors
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associated with the risk of each specific endpoint were included in the subsequent Cox regression
analysis. This is a well-established method to manage large numbers of potential explanatory variables,
but it is important to recognise that it tends to have difficulties when factors are strongly correlated [26].
Even though the cohort size was relatively large, some of the late toxicities had a limited number of
events (retinal detachment and ocular hypertension). This could potentially explain why the selection
process was unsuccessful for these late complications. Furthermore, it is important to recognise that the
retrospective nature of the treatment planning and the toxicity scoring could potentially introduce bias.

Prescription procedures for Ru-106 treatments remain controversial [20]. Some centres use
an apical prescribed dose of 85 Gy [1,24], some use 100 Gy to the apex [2,13], while others use at least
130 Gy to the apex along with restricted tumour base doses of at least 700 Gy [27]. Eccentrically located
plaques are also reported frequently in the literature, and studies have indicated that this strategy can
spare healthy tissue in some cases [5]. Further studies have suggested that eccentric positioning can
lead to underdosage of the tumour [28]. We recently reported that the minimum dose to the tumour is
crucial for local control (Espensen et al., submitted manuscript(companion paper)), and compromises
on tumour coverage should be made with caution and assessed relative to the potential benefits of
visual acuity preservation and reduced probability for late complications.

5. Conclusions

This study demonstrates the presence of dose–response relationships for late complications
after Ru-106 brachytherapy for choroidal melanoma. Specific dose metrics were important for
distinctive late complications. Dose–response models were established for each late complication,
thereby enabling potential for optimising clinical outcomes by personalising dose prescriptions and
conducting treatment optimisation.
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Median dose area histograms, Table S1: Analysis plan, Table S2: Odds ratios from logistic regression analyses for
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scores for each late complication.
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