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Abstract 

Adsorption of proteins on solid surfaces has been widely studied because of its importance in various 

biotechnological, medical and technical applications, such as medical implants or biosensors. One of 

the main problems is the adsorption-induced conformational changes because they often modify the 

biological activity of the proteins, which is believed to be a key factor on the subsequent cellular 

adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human 

serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used 

to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue 

development and bone regeneration among others. The study was done through the analysis of the 

adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the 

zeta potential ;ɺͿ͘ From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-

on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, 

allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins 

remain constant when the monolayer is formed. The study also extends the analysis of both 

adsorption behaviour and ɺ potential characterization factors to the influence of the substrate 

hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light 

(UV-C) without changes on its chemical composition[1,2].Differences at low protein concentrations 

were found for both isotherms and zeta-potential values. 

Keywords: Ti6Al4VPowder; Adsorption Isotherms; Proteins; Zeta Potential; Hydrophobicity; 

Pulvimetallurgy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1. Introduction 

Ti6Al4V is the metallic material most commonly used for manufacturing prostheses because of its 

acceptable bioinertness ,mechanical properties[1]. Prostheses used to be built by turning extruded 

bars of the alloy but nowadays there is an increasing interest on implementing 3D printing 

techniques to this purpose. Additive manufacturing with powdered alloy allows fabrication of 

custom-made prostheses but also the design of scaffolds that combine a very well designed 

geometry but maintaining properties of the alloy. In this sense, an important advantage of metallic 

scaffolds against ceramic or polymeric scaffolds is their utmost mechanical properties, which is of 

paramount interest for repairing large bone defects. Despite a melting process among metallic 

powders allows the building of the construct, its external surface exposes the last layer of the 

powder particles used in printing to the physiological media. 

In general, the final properties of any alloy as Ti6Al4V are highly conditioned by its fabrication 

procedure. For instance, temperature reached in the extrusion process, rate of cooling and diameter 

of the produced bar and atmosphere, among others factors, are able to alter the microstructure and 

the surface features of the alloy by modification of the oxides proportion and/or its surface 

microcrystallinity[2,3]. Since metallic powders are generally prepared by a very fast solidification 

process of melted droplets of the alloy produced in a gas or aqueous ambient, it is expected that the 

surface properties of the atomized Ti6Al4V powder would be different to those of the alloy obtained 

by extrusion or others procedures. Considering that the most external surface of the biomedical 

devices will come into contact with the physiological media, a good knowledge of their surface 

properties is needed.  

The first event which occurs by contacting prostheses with physiological fluids is the formation of a 

precursor layer of adsorbed proteins on its surface[4]. The characteristics of that layer are crucial for 

the adequate behavior of the material of the implanted devices.  This layer modifies the properties of 

the underlying material, making the surface friendlier to the biological surrounding. One of those 

properties is the surface electric charge, which is considered one of the main factors involved in the 

biological evolution of tissues around an implant[5] and that is modified accordingly by the 

adsorption of proteins. Because of the difficulties of measuring surface charge, the zeta potential, ɺ, 

that indicates the potential between the Stern layer and the diffuse layer and that can be 

determined by several methods such as electrophoresis or streaming potential[6,7], is the most 

widely referenced property used to characterize such evolution.  

Two of the most widely found proteins in human plasma are fibrinogen (Fg) and albumin (HSA). 

Fibrinogen is a soluble structural protein. It is present in blood plasma at an approximate 

concentration of 4.2 mg ml-1. The fibrinogen molecule (340 kDa)[8] is highly anisotropic, with a ratio 

length/width greater than10[9], and shows a geometry that is depending on its degree of folding. 

Fibrinogen is precursor of fibrin[10] and fundamental in blood coagulation.  Albumin (67 kDa)[11] is 

the most abundant protein in human blood. The total amount present in an adult is being 

approximately 300 g, nearly over 60% of the total protein content[12], at an approximate 

concentration of 35-54 mg ml-1. Its structure, relatively simple, is defined as a blend of three 

homologous domains acquiring a heart shape, and in turn this assembly tends to form dimmers with 

each other[13]. Albumin plays an important role in the transport of fatty acids, hormones, 

metabolites and multiple drugs to several parts of the human body[12] and in keeping the osmotic 

pressure. Thus, how these two proteins behave when they are adsorbed on any biomaterial is of 



 

 

great importance. In this line, there are several studies of fibrinogen and albumin adsorption on 

Ti6Al4V obtained from extruded bars[14,15], on Tic.p. as well as on TiO2[16ʹ20]. 

IŶ ƉƌĞǀŝŽƵƐ ǁŽƌŬƐ ǁĞ ƉƌŽǀĞĚ ƚŚĂƚ ĂĨƚĞƌ ŝƌƌĂĚŝĂƚŝŽŶ ǁŝƚŚ ĂŶ UV-C ƐŽƵƌĐĞ͕ TŝϲAůϰV ĚŝƐĐƐ ƚĂŬĞŶ ĨƌŽŵ ĂŶ 
ĞǆƚƌƵĚĞĚ ďĂƌ ĐŚĂŶŐĞƐ ĐŽŶƐŝĚĞƌĂďůǇ ŝƚƐ ƐƵƌĨĂĐĞ ĨƌĞĞ ĞŶĞƌŐǇ ΀Ϯ͕Ϯϭ΁ ĂŶĚ ĂůƐŽ ŵŽĚŝĨŝĞƐ ƚŚĞ ďĂĐƚĞƌŝĂů 
ĂĚŚĞƐŝŽŶ ƌĂƚĞ ĂŶĚ ǀŝĂďŝůŝƚǇ ŽŶ ƚŚĞ ĂůůŽǇ ΀Ϯϭ͕ϮϮ΁͘ TŚŝƐ ǀĂůƵĂďůĞ ƉƌŽƉĞƌƚǇ ĂĨĨĞĐƚƐ ƚŚĞ ŚǇĚƌŽƉŚŽďŝĐŝƚǇ ŽĨ 
ƚŚĞ ƐƵƌĨĂĐĞ ƚŚĂƚ ǁŽƵůĚ ŵŽĚŝĨǇ ƚŚĞ ŝŶƚĞƌĂĐƚŝŽŶ ŽĨ ƚŚĞ ƐƵƌĨĂĐĞ ǁŝƚŚ ƚŚĞ ƐƵƌƌŽƵŶĚŝŶŐ ƉƌŽƚĞŝŶƐ ĂŶĚ ŝŶ 
ƚƵƌŶ ƚŚĞŝƌ ĂĚƐŽƌƉƚŝŽŶ ďĞŚĂǀŝŽƌ΀Ϯϯ΁͘ 

TŚĞƌĞĨŽƌĞ͕ ǁĞ ĂƌĞ ĂŝŵĞĚ ŝŶ ƚŚŝƐ ƉĂƉĞƌ ƚŽ ƚŚĞ ĂŶĂůǇƐŝƐ ŽĨ ƚŚĞ ĂĚƐŽƌƉƚŝŽŶ ŽĨ ŚƵŵĂŶ ĨŝďƌŝŶŽŐĞŶ ĂŶĚ 
ĂůďƵŵŝŶ ŽŶ ƚŚĞ ƐƵƌĨĂĐĞ ŽĨ ŵŝĐƌŽŶ ƐŝǌĞĚ ƐƉŚĞƌŝĐĂů ƉĂƌƚŝĐůĞƐ ŽĨ TŝϲAůϰV ƵƐĞĚ ĨŽƌ ĂĚĚŝƚŝǀĞ ŵĂŶƵĨĂĐƚƵƌŝŶŐ 
ŽĨ ŝŵƉůĂŶƚƐ͕ ŽŶ ƚŚĞ ďĂƐĞ ŽĨ ƚŚĞŝƌ ĂĚƐŽƌƉƚŝŽŶ ŝƐŽƚŚĞƌŵƐ ĂŶĚ ƚŚĞ ǌĞƚĂ ƉŽƚĞŶƚŝĂů ĞǀŽůƵƚŝŽŶ͘ AůƐŽ͕ ǁĞ ǁŝůů 
ĐŽŶƐŝĚĞƌ ĂƐ Ă ŬĞǇ ƉĂƌĂŵĞƚĞƌ ĨŽƌ ƚŚĞ ƐƚƵĚǇ ƚŚĞ ĐŚĂŶŐĞ ŽĨ ƚŚĞ ŚǇĚƌŽƉŚŽďŝĐŝƚŝǇ ƉƌŽĚƵĐĞĚ ďǇ ƚŚĞ 
ŝƌƌĂĚŝĂƚŝŽŶ ǁŝƚŚ UV͘   

2. Materials and methods 

2.1. Substrate characterization 

Spherical powder of Ti6Al4V (Goodfellow Cambridge Limited) was selected as adsorbent. According 

to manufacturer, these particles were processed by atomization in liquid state and then air-cooled 

for solidification. Also discs of Ti6Al4V cut from bars produced by extrusion were kindly provided by 

Surgival, Spain, and purchased to DKSH, Switzerland . 

Surface composition was analyzed by X-ray Photoelectron Spectroscopy (XPS), with a K-Alpha 

(Thermo, UK), using an Al-Kɲ monochromatic X-ray source, with a spot size of 300 ʅŵ͘ The atomic 

percentages of elements were calculated using software and atomic sensitivity factors included with 

the instrument data system. Table 1 summarizes the values for the most relevant elements in 

powder and flat discs of Ti6Al4V. Residual traces of other elements were located, but in all cases at a 

rate < 2%. Also, relative values of aluminium and vanadium in respect to titanium, Al/Ti, V/Ti, and 

between aluminium and vanadium, Al/V, have been included in Table 1 to compare powder and discs 

surface composition. The XPS analysis revealed that the surface of the Ti6Al4V is mainly composed by 

Ti in the form of oxides, probably as TiO2. It is noticeable the high percentage of Al for Ti6Al4V 

powder sample in respect to discs samples. This distinctive feature is clearly shown by the relative 

values of aluminium respect to titanium, Al/Ti, and to vanadium, Al/V, that are  more than four times 

higher for powder than for flat samples, verifying the differences in surface composition between 

powdered and extruded samples.  

Specific surface area, Asp, was obtained by nitrogen adsorption isotherms at 77 K with an Autosorb 

AS-1 Series, (Quantachrome Instruments). Prior to the assays, the sample (0.5 g) was out-gassed 

during 12 hours at 300 °C. The average specific area obtained using the Brunauer, Emmet and Teller 

(BET) equation was 0.37 ± 0.05 m2 g-1, after three independent determinations. 

The morphology of the Ti6Al4V particles was determined by Scanning Electron Microscopy (SEM) 

(Quanta 3D FEG, FEI Company, EE.UU.) using a secondary electron detector at 5 kV as accelerating 

potential. SEM image (Fig. 1) shows perfectly spherical non-porous particles. 



 

 

Particle size distribution analysis was carried out with a laser diffraction particle size analyzer 

(Mastersizer 3000, Malvern Instruments Ltd, UK). Measurements were done for Ti6Al4V particles 

dispersed in PBS, in PBS solution of human plasma fibrinogen and PBS solution of human plasma 

albumin (800 ʅŐͼŵů-1). The granulometric curves obtained are shown on Fig 2. Particle size ranges 

from 3 ʅŵ to 70 ʅŵ͕ being the most probable value around 30 ʅŵ͘ Powder with adsorbed proteins 

aggregates in a certain small amount given place to aggregates of an average diameter of 350 ʅŵ͘ 

2.1.1. Substrate hydrophilization 

To induce the hydrophilization of surfaces, samples were exposed to an UV-C source for 15 h. This 

period was sufficient to guarantee a complete hydrophilization of the Ti6Al4V-particles surface [1]. 

To this purpose, a couple of TUV TL-D 15 W SLV lamps, kindly provided by Philips (Philips Ibérica, 

SAU, Madrid, Spain), emitting predominantly at a wavelength of 257.7 nm were used for UV-C 

irradiation of the particles, widely spread on polypropylene plates transparent to UV light. The lamp 

glass has filtering to avoid the production of ozone, which is produced by wavelengths lower than 

200 nm. Plates were positioned exactly at 10 cm from each lamp receiving an intensity of 2.5mWcm-

2, during fixed time intervals. The whole irradiation system was situated inside an opaque wood 

chamber to avoid interferences from room or day light and any damage to users. 

Immediately after the exposure to UV-C radiation the adsorption experiments were run to obtain the 

corresponding adsorption isotherms. The hydrophilized samples were referenced as Ti6Al4V-UV. 

2.2. Protein adsorption 

Protein adsorption experiments were carried out by incubation of 0.006-0.012 g of Ti6Al4V powder 

at 37 °C for 1 and 12 h in fibrinogen (Fg, Human Plasma Fibrinogen, fraction I, type I, 97% clottable, 

Sigma-Aldrich, USA) and albumin (HSA, Human Plasma Albumin, 97% clottable, Sigma-Aldrich, USA) 

solutions prepared in phosphate buffered saline solution (PBS, 8.7 g L-1 K2HPO4, 6.8 g L-1 KH2PO4 and 

8.76 g L-1NaCl, pH 7.4) in concentration range from 0 to 1400 ʅŐ mL-1. Adsorption was performed in 

polypropylene tubes (1.5 ml, Eppendorf, Germany) that were placed in a vertical rotary mixer at 15 

rpm. 

After incubation, the mixtures were centrifuged and the residual protein concentration in the 

supernatant was determined spectrophotometrically at 337nm (Cary Eclipse, Varian Inc. Pty. Ltd., 

Australia,) by excitation at 280 nm. To evaluate the suitability of these measurements, several 

adsorption tests were done with labelled proteins (Human Plasma Fibrinogen, Alexia Fluor 488, 

Molecular Probes Inc., USA) and measured at 520 nm. There were not found any remarkable 

difference in the measured adsorbed amount for the whole concentration range studied between 

labelled and non-labelled proteins, thus all reported results herein were obtained from non-labelled 

proteins. 

2.2.1. Adsorption isotherms 

The amount of adsorbed proteins ;ȳͿ was calculated using the relation (Eq.1): 

ȳ = [(Co-Ce) · V]/(m · Asp) (1) 



 

 

Where Co is the protein concentration before adsorption, Ce is the protein concentration measured in 

the supernatant after the adsorption, V is the solution volume, m is the amount of Ti6Al4V exposed 

to the protein solutions and Asp is the specific surface area of the Ti6Al4V powder. 

Correction was made for protein adsorption to tube surfaces, pipettes, etc. by parallel incubation 

and handling of protein solutions. All determinations were carried out in triplicate, at least. 

2.2.2. Zeta potential measurements 

Zeta potential ;ɺͿ measurements were carried out using an electrokinetic analyzer (EKA, Anton Paar 

KG, Graz, Austria) and analyzed as described previously for metallic samples[26]. Samples (1 g 

approximately) were introduced on a cylindrical screw powder cell (Powder Cell, Anton Paar KG, 

Graz, Austria) to keep the sample compacted between two nylon, 0.45 µm, microporous filter 

membranes (Merck Millipore, Germany). We checked that nylon membranes do not affect to the 

zeta potential measurements onto different control materials. This cell was inserted on a higher one 

(Cylindrical Cell, Anton Paar KG, Graz, Austria) which allows a close contact with the electrodes at 

both flanks and provide the electrolyte flow. The device was operated in an alternating pressure 

ramp form, applying a maximum pressure of 600 mbar. Each measurement was the average of 4 

cycles. The external pH and conductivity sensors were always placed in the corresponding PBS 

reservoir. All measurements were carried out at least three times. 

3. Results and discussion 

A previous set of experiments were done to test the time needed to ensure the adsorption 

equilibrium. Despite the accommodation of proteins to the surface takes some time, it is only 

needed within 10-30 min, depending on the protein and the substrate, to obtain a film with a 

stationary concentration adsorbed [27-31]. However, to ensure conditions of equilibrium, adsorption 

experiments were conducted for one and twelve hours of contact. Within the experimental 

uncertainty, both isotherms were coincident for both proteins (data no shown). Therefore, one hour 

of contact between the powder and the chosen protein solutions was assumed as enough to ensure 

that the adsorption equilibrium was fulfilled. 

Fig. 3 shows the adsorption isotherm of Fg on Ti6Al4V powder after 1 h of incubation time. The 

isotherm shows clearly two different behaviours. At the lowest Ce values, up to a coverage valued of 

6 mg m-2 , the isotherm has a high slope,  it suggests a strong adsorbent-protein interaction at the 

initial stages of the process. However, at the highest equilibrium concentrations, isotherm tends to a 

constant value of the retained amount. Transition from one to other section takes place through an 

elbow centered at the equilibrium concentration of 150 mg ml-1. This behaviour is close to the 

reported adsorption onto titanium dioxide by F. Höök et al.[27]and M. Pegueroles et al.[23]. Also, 

accordingly to its shape, the isotherm can be fitted into the L2 type of the Giles´s classification, which 

is associated to a moderate adsorbent-adsorbate affinity, aimed the formation of an adsorbed 

monolayer. 

Despite the limited application of the Langmuir model to our systems, experimental data fit 

adequately to Langmuir equation (Eq. 2) (r2=0.89), where gamma, ȳL, is the surface coverage at an 

equilibrium concentration, Ce, and a, b and c are fitting parameters related to the adsorption energy. 

ȳL = (a· b · Ce
1-c)/(1 + b · Ce

1-c) (2) 



 

 

The values obtained in our system were b = 0.022 mg ml-1 and ȳL = 11 mg m-2 as monolayer capacity, 

or, taking into account the molecular weight of Fg, 1.84·10-2 molecules nm-2, which corresponds to an 

occupied area per molecule (AL) of 55 nm2 molecule-1. 

Fg molecule is not symmetric nor homogeneous, but a very anisotropic molecule (length/width ratio 

greater than 10), so that depending on its orientation, its interaction with the alloy surface can take 

place through different domains of the molecule. Also, because of its anisotropy the projected 

exclusion area on the adsorbent surface is different depending on its orientation. Assuming a 

minimum separation between molecules of 0.5 nm[31] and from the protein dimensions, the 

projected area is given by 48 nm x 7 nm, i.e. 336 nm2, or 7 nm x 7 nm, i.e. 49 nm2, for a flat or a 

perpendicular orientation on the surface, respectively. Consequently, the monolayer value obtained, 

55 nm2 molecule-1, suggests a vertically oriented molecular layer on the surface (49 nm2/molecule), 

probably with a certain degree of inclination to the surface or even hydrated. 

Electrostatic interactions are important for protein adsorption to a given surface and the change of 

zeta potential with the evolution of the adsorption process can give valuable information about the 

progress of the adsorption[13,14]. The measured zeta potential values of the protein-covered 

surface were plotted in Fig. 3 as open squares (right axis) against the amount adsorbed of Fg. The 

zeta potential value of pristine Ti6Al4V powder was -13.75 ± 0.76 mV. Taking into account that zeta 

potential was measured at pH 7.4 and that the isoelectric point (IEP) of Fg is 5.5[32] both Fg and 

Ti6Al4V are negatively charged, therefore repulsion might be expected. However, Fg reorientation 

may overcome the repulsion, allowing adsorption by different functional groups looking at its 

electrical distribution. Adsorption progress reduces the electric absolute charge of the Ti6Al4V 

particles up to an approximated value of -6 mV, just from the early stages, at the lowest equilibrium 

concentration tested. Following progression in the adsorption, it is shown that the higher the 

concentration exposed, the lower the charge of the sample until a stable value of -4.0 mV, 

approximately. That value, within the experimental errors, is reached and maintained from the 

equilibrium concentration at which the plateau begins (400 µg ml-1), so once the monolayer is 

formed, the zeta potential remains constant. 

Fig. 4 shows the adsorption isotherm for Fg on hydrophilized Ti6Al4V powder. The analysis of the 

adsorption results indicates some interesting features. First, the shape of the isotherm of the 

hydrophilized alloy differs from that obtained for non hydrophilized sample. The initial slope of the 

isotherm is slightly lower than for the non-irradiated, i.e. the substrate hydrophilization causes a 

decrease on the affinity substrate-protein compared to that observed in the hydrophobic alloy, so 

that the new isotherm does not fit into the L2 subtype at Giles´s classification. From equilibrium 

concentrations around 70 mg ml-1 the isotherm adopts a convex shape, indicating the presence of a 

barrier in the adsorption process. In our previous study on the modification of the hydrophobicity by 

UV irradiation of Ti6Al4V [1], it was found the presence of more strongly adsorbed water on 

hydrophilic UV treated surface than on the non-treated Ti6Al4V. It could be expected that this water 

layer on the alloy surface may represent a barrier for the protein adsorption. However, this barrier is 

overcome with the progression of the adsorption, probably by cooperation with previously adsorbed 

molecules, as it is suggested for the high slope in this range of the adsorption isotherm; afterward 

the system reaches the same coverage than the hydrophobic surface.   



 

 

It is also worth to mention that the retained amounts at higher equilibrium concentrations for both 

hydrophobic and hydrophilic surfaces are similar, i.e. the surface saturation is reached in both cases 

under the same conditions, with the surface coated by molecules mainly vertically oriented, 

regardless of the surface hydrophobicity. Therefore, this result indicates that from a certain 

concentration of ca. 500 mg ml-1, the accumulation of proteins in both situations drives to a similar 

adsorption behaviour, guided almost exclusively by protein-protein interactions and independent on 

substrate hydrophobicity. 

Comparisons of the measured zeta potential between hydrophobic and hydrophilic samples confirm 

the obtained results from the adsorption isotherm.  There are no differences between irradiated and 

non-irradiated samples from the equilibrium concentration of 400 µg ml-1 in advance, However, the 

analysis that points to as the mayor presence of water at the interface, the lower the amount of 

adsorbed proteins, is consistent with the slightly lower zeta potential values obtained in this range 

for the irradiated alloy. 

Fig. 5 shows the adsorption isotherm of HSA on Ti6Al4V powder. The slope in the concentration 

range 0 ʹ 50 µg ml-1of the HSA isotherm, 0.10 ͼ 10-3 m, seems to be relatively slightly lower than the 

obtained for Fg , 0.14 ͼ 10-3 m. However, the highest adsorption coverage (in mg m-2) of HSA is nearly 

four times the obtained for Fg, which may be due to a more effective packing of the molecules of 

HSA because of its smaller size as compared with Fg. 

Dimensions of HSA, with a molecular mass of 67 kDa[11], are 8 nm in length and 3 nm in width and in 

depth[33], so it can be modeled as rectangular equilateral triangle[34]. Admitting as for Fg a 

minimum separation between molecules of 0.5 nm, an exclusion zone of 32 nm2, 30 nm2 or 12 

nm2can be associated to its projected area depending on which triangle surface is exposed to the 

solid: the equilateral triangle area (8.5 x (ξ͵Ȁʹ) x 8.5 nm2), the rectangular area defined between the 

equilateral triangles (8.5 x 3.5 nm2) or simply the end corresponding to the contact of two 

rectangular surfaces assuming a certain degree of deformation to support the joint (3.5 x 3.5 nm2).  

Shape of the isotherm of HSA on Ti6Al4V suggests that adsorption takes place according two 

different mechanisms depending on the concentration range. Isotherm has a nearly vertical behavior 

(see inset in Fig. 5) up to a concentration of about 75 µg ml-1 where a small step appears. This 

tendency can be interpreted as the result of a very favorable protein-surface interaction, leading to 

an occupied area per molecule of 15 nm2 molecule-1. This value may correspond with the formation 

of a bilayer of HSA molecules, which would be consistent with the high trend of this protein to form 

dimers[35], each of them projecting an occupied area on the solid of 30 nm2. 

After that point, the adsorption rate slightly decreases up to a concentration of 180 µg ml-1 where a 

small plateau appears, corresponding to an area per molecule of 7 nm2 molecule-1. Adsorption 

progresses from this stage with a change in the tendency, as it were taken place over the previously 

adsorbed layer. This process continues up to a second plateau at 50 mg m-2, which corresponds with 

an increase of almost 35 mg m-2 on the retained amount over the assumed dimer layer. The highest 

value corresponds to an occupation of ca. 2.5 nm2 molecule-1, which is compatible with a double 

bilayer of HSA dimers on the surface. These values are higher than those obtained by F. Höök et 

al.[27], M. Pegueroles et al. [23] and F.Y. Olivia et al.[36] on titanium dioxide, so HSA adsorbs thought 

a more efficient arrangement on Ti6Al4V than on TiO2. 



 

 

The zeta potential values of the protein-covered surface were plotted against the adsorbed amount 

of HSA on Fig. 5 together with the adsorption isotherm. For HSA, whose isoelectric point (IEP) is 

settled at 4.7[37], repulsion forces between protein and Ti6Al4V surface are present. As for Fg, the 

isotherm suggested that these forces are overcome by the orientation of the protein on the surface 

to its more favorable disposition. 

Identically as Fg, the zeta potential rises toward ca. -7.0 mV when the first HSA monolayer of dimers 

is completed, being nearly constant afterward. This value is slightly more negative than the obtained 

for Fg (-4.0 mV). These could be a consequence of the difference between the IEP of both proteins 

may be supported because HSA is more negative than Fg at pH 7.4. 

Fig. 6 shows the adsorption isotherm for HSA on Ti6Al4V powder previously hydrophilized by with 

UV. Except at the lowest coverages (see inset in Fig. 6), the adsorbed amount at any given 

equilibrium concentration is lower for the hydrophilic condition. Up to coverages of ca. 5 mg m-2 

both isotherms are coincident. This value corresponds to the beginning of the region where 

adsorption seems to progress by dimeric arrangements on the surface in the isotherm of the 

hydrophobic Ti6Al4V.  This suggests that the high hydrophilicity of the substrate hampers the stable 

arrangements of dimers, which were favored by the hydrophobic interactions with the substrate of 

the former adsorbed molecule of the dimer. It should be noted that the whole isotherm for the 

hydrophilic surface is substantially continuous, with no clearly singular behaviour. This fact suggests, 

beside the absence of the possible dimeric rearrangement at the hydrophobic surface, that 

adsorption on the hydrophilic Ti6Al4V surface seems to progress continuously but with a worse 

packing of the HSA molecules, that can justify the lower coverages attained in the hydrophilic solid as 

compared with the hydrophobic. 

Analysis of the zeta potential values reveals only slightly differences located at the lower protein 

concentrations between the hydrophobic and hydrophilic samples, identically as for Fg. Furthermore 

it is also worth mention that HSA produce a more gradually neutralization of the Ti6Al4V 

hydrophilized surface than Fg. As can be observed, the initial slope of these zeta potential values is 

not as pronounced as for the corresponding for Fg adsorption. This difference could be due to a 

slightly more negative nature of HAS, as justified before and, probably more important, to it lower 

size which allows better arrangements on the surface. 

4. Conclusions 

It has been explored the feasibility of powdered Ti6Al4V as a material to produce biomaterials such 

as scaffolds. Both Human Fibrinogen and Albumin absorption isotherms have been obtained 

accompanied with an electric characterization of the formed systems. 

Despite the fact that both proteins are able to overcome the electrostatic repulsion with the powder 

surface, fibrinogen seems to form a saturated interface with molecules preferably vertically oriented, 

while albumin adsorption moves sequentially over the surface of the Ti6Al4V particles trough 

dimmer formation, progressing adsorption over this initial bilayer.  

On the other hand, Ti6Al4V powder hydrophilization has been revealed as a hinder parameter for 

both proteins adsorption but in a different manner.  The fibrinogen saturation degree is limited at 



 

 

early absorption stages while this limitation affects the whole range studied for albumin. Zeta-

potential values are in agreement with both facts. 

The possibility of using powdered Ti6Al4V as adsorbent has allowed getting a deeper and detailed 

knowledge on the interaction of Fg and HSA with both hydrophobic and hydrophilic alloy, together 

with a valuable information about powdered material for its use in prosthesis fabrication. Despite 

both proteins are able to overcome the electrostatic repulsion with the powder surface, fibrinogen is 

adsorbed on the Ti6Al4V powder forming a saturated interface with molecules preferably vertically 

oriented, while albumin adsorption moves sequentially over the surface of the Ti6Al4V particles 

trough dimmer formation, progressing adsorption over this initial bilayer.  

On the other hand, Ti6Al4V powder hydrophilization hinders both proteins adsorption.  In the case of 

Fg, the saturation degree of the surface is not altered respect with the hydrophobic surface, but for 

albumin limits the total amount retained. Zeta-potential values are in agreement with both facts. 
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Figure Captions 

 

Fig. 1. Scanning electron micrograph of Ti6Al4V particles. 

 

Fig. 2. Particle size distribution curves for water dispersions of i) Ti6Al4V particles, ii) Ti6Al4V particles 

in the presence of HSA and iii) Ti6Al4V particles in the presence of Fg obtained by laser diffraction. 

 

Fig. 3. Adsorption isotherm of Fg on Ti6Al4V powder (black circles) in PBS after 1 h of incubation time 

and its  potential (open squares) dependence with the equilibrium concentration Ce. The patterned 

area represents the average error for the isotherm. 

 

Fig. 4. Adsorption isotherm of Fg on Ti6Al4V powder previously hydrophilized by UV-C irradiation 

(black circles) in PBS after 1 h of incubation time and its  potential (open squares) dependence with 

the equilibrium concentration Ce. The patterned area represents the average error for the isotherm. 

 

Fig. 5. Adsorption isotherm of HSA on Ti6Al4V powder (black circles) in PBS after 1 h of incubation 

time and its  potential (open squares) dependence with the equilibrium concentration Ce. The 

patterned area represents the average error for the isotherm. The inset show magnificated region to 

facilitate the appreciation of the progressively adsorption process. 

 

Fig. 6. Adsorption isotherm of HSA on Ti6Al4V powder previously hydrophilized by UV-C irradiation 

(black circles) in PBS after 1 h of incubation time and its  potential (open squares) dependence with 

the equilibrium concentration Ce. The patterned area represents the average error for the isotherm. 

The inset show magnificated region to facilitate the appreciation of the progressively adsorption 

process. 

 

 

 

Table 1. Percentage composition of the samples surface from XPS. Residual traces of other elements 

at a rate < 2% are not included. Relative values of percentages between Ti2p, Al2p and V2p3 are 

included. 

 

 
 
 


