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1 Introduction and summary

Studying dense matter in QCD has turned out to be a hard problem with many unresolved

questions remaining [1]. The main theoretical tool, perturbation theory, applies only to

asymptotically high densities where QCD becomes a free theory [2]. Effective methods such

as chiral perturbation theory are useful to describe nuclear matter at low densities [3, 4].

But the ranges where these methods can be trusted leave a wide gap at intermediate
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densities where reliable and accurate approaches are not available. Moreover, first principles

lattice field theory methods only work at small values of the baryon chemical potential

due to the famous sign problem, and cannot be used to study properties of cold QCD

matter. Consequently, even basic observables such as the equation of state of cold matter

have significant uncertainties after applying known theoretical and experimental constraints

(see, e.g., [5, 6]). The intermediate densities, where uncertainties are at their largest, are

physically relevant: they contain the phase transition (or possibly a crossover, or several

transitions) between the nuclear matter and quark matter phases, and the densities of

neutron star cores are known to lie within this region.

In the absence of applicable first-principles methods, model computations can give

useful information about the properties of strongly interacting QCD matter in the regime

of the transition between the baryon and quark matter phases. In this article, we will study

this regime by using gauge/gravity duality. One of the weaknesses in this approach is that

no exact gravity dual for QCD is known, and typically the models available in the literature

have similar features as QCD but fail to reproduce in detail the thermodynamics of QCD,

for example. However, recently progress towards more realistic and reliable modeling of

QCD has been made, which motivates us to apply these models to cold and dense QCD

matter. We will use one of the most realistic holographic models available (V-QCD).

V-QCD is a class of holographic models for QCD, obtained through a fusion [7] of two

frameworks: improved holographic QCD (IHQCD) [8–12] for the gluon sector, and a setup

based on Sen-like tachyonic Dirac-Born-Infeld (DBI) actions for the quark sector [13, 14].

The former framework is inspired by five dimensional noncritical string theory, and the

latter is obtained by introducing a pair of space filling branes in this background. In the

Veneziano limit where one takes both the number of colors and number of flavors to infinity

keeping their ratio xf ≡ Nf/Nc fixed, the two sectors are fully backreacted as one expects

for ordinary QCD (with three colors and 2–3 light flavors). The model is not derived

from string theory strictly: in the end one switches to bottom-up approach because on

the one hand the results do not match precisely with known QCD phenomenology, and on

the other hand the stringy derivation cannot be made exact (in particular due to working

in the Veneziano limit). Therefore one generalizes the action to contain certain potential

functions, which are then chosen to agree with qualitative QCD features and/or fitted to

lattice and experimental data, in a rough analogy to effective field theory.

The thermodynamics of V-QCD has been studied in earlier work [15–17] and shown

to agree qualitatively with several known properties of QCD, such as the main features of

the phase diagram as a function of temperature and chemical potential. After comparison

with lattice data for the equation of state at small chemical potential, the model was shown

to produce an equation of state for cold and dense quark matter which agrees with known

experimental and theoretical constraints for QCD [18]. A remaining major task in order

to establish a model including the basic features of cold QCD is the inclusion of baryon

physics in V-QCD. In this article, we will take the first steps in this direction.

Baryons are introduced as solitonic configurations in holographic models for large-

Nc QCD. In top-down construction, a D-brane joining Nc open strings gives a baryon

vertex [19, 20] and provides a baryon number through Chern-Simons (CS) terms. Following
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this notion, baryons have been considered in effective holographic theories, especially in

the Witten-Sakai-Sugimoto (WSS) model [21–23]. First, an approximation by a small size

instanton was used to introduce a baryon [24–28], and then this has been generalized to

include contributions beyond the instanton approximation [29–32]. A baryon solution has

been constructed also as in bottom-up AdS/QCD [33, 34]. Multi-baryon solutions are

also studied in the WSS model [35–39]. For dense baryonic matter in the QCD phase

diagram, homogeneous approximations have been utilized in the WSS model [40–44] as

well as another approach based on probe branes [45, 46]. With these approximations,

baryonic matter phases can be realized in the low temperature high-density region in the

phase diagram.

In this article, we carry out the first study of baryons in V-QCD. We restrict to

approximations where the baryon configurations are homogeneous in spatial directions and

which hence simplifies the analysis considerably. We work in an isospin symmetric setup

and also neglect the effects due to light quark masses. We adopt two approaches:

• The first, given in section 3, is to introduce a nondynamical thin layer of baryons

localized in the holographic coordinate. This approach is essentially equivalent to

treating the baryons as point-like sources, which is the picture arising in the WSS

model at large coupling [40, 41].

• The second, slightly more advanced method given in section 4, employs a homoge-

neous ansatz with SU(2) flavor symmetry for the spatial components of the non-

Abelian flavor gauge field, sourcing baryon density through the CS coupling. The

region where the solution is highly inhomogeneous in the bulk is modeled as a dis-

continuity of the homogeneous baryon field.

We summarize the main results from both these approaches in the following. The main

message is that the first method works unsatisfactorily, but the second one provides rea-

sonable results.

First, we consider the approach with a thin layer of baryons of section 3. We also

include the full backreaction of this layer to the five dimensional gravitational background.

We make the following observations:

• Stabilizing the layer of baryon matter turns out to be hard as it has the tendency

of decaying by falling in the IR (deep in the bulk) where the approximations made

in this approach also break down. We can choose the potentials such that the layer

stays near the boundary of the five dimensional space, but as it turns out, this leads

to another problem: the obtained phase diagram (even in the absence of baryons) is

at odds with QCD phenomenology. In particular, confinement can be obtained only

at very small chemical potentials.

• If we choose the action so that the baryons are present, baryonic phases appear in

the expected region of the phase diagram: at low temperatures and intermediate

chemical potentials. Consequently, we obtain phases where the charge is sourced

in part by the baryons and in part by quark matter. We, however, also obtain a
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chirally symmetric baryonic phase which looks exotic from a QCD intuition. The

phase structure obtained in this approach is summarized in figure 1.

It is apparent that the problems observed within this approach are weaknesses of the ap-

proach rather than the V-QCD model. This motivates us to consider an improved method.

We discuss the setup with a homogeneous non-Abelian bulk field in section 4, and

demonstrate that this indeed improves the results of section 3 in several ways. We consider

this baryon ansatz in the probe limit, i.e., on top of a fixed gravitational background.

The main results from this approach, and therefore the main results of this article, are

the following:

• The approach is seen to capture the coupling of the baryons to another bulk field

(the tachyon) which is dual to the q̄q operator and therefore controls chiral symmetry

and its breaking. It is the coupling to the tachyon, which was missing in the simpler

approach of section 3, that prevents the baryons from falling in the IR.

• The phase diagram has the expected structure: baryons dominate at low temper-

atures and intermediate chemical potentials, between the confined vacuum phase

(dominant at low chemical potentials) and deconfined quark gluon plasma (QGP)

phase (dominant at high chemical potentials). All phase transitions between these

phases are of first order. The phase diagram for this approach is shown in figure 2.

Notice that the thermodynamics in the vacuum and in the baryon phase is indepen-

dent of the temperature, but nontrivial temperature dependence is included in the

QGP phase.

• As the density is increased, the equation of state in the baryonic phase becomes stiff,

and the speed of sound rises well above the conformal value cs = 1/
√

3. This is

interesting because with stiff equations of state it is easier to pass the constraints

set by observations of masses and deformability of neutron stars. The basic picture

is therefore the following: the nuclear (quark) matter has a stiff (soft) equation of

state, and the latent heat at the baryon to QGP transition is sizable. This agrees

with the earlier analysis in V-QCD [18] where polytropic interpolations were used to

model the baryonic phase.

Readers interested in these main results can safely skip section 3, as the discussion of

section 4 can be followed independently.

Another important result arises as a by-product of the problem found in section 3.

Namely, having the correct confinement properties of the phase diagram sets a previously

unknown constraint to the V-QCD models. This constraint is actually completely indepen-

dent of baryon physics. That is, the coupling of the gauge fields in the DBI action of the

flavor sector (function w(λ) defined below) is constrained to agree (up to small corrections)

the IR behavior predicted by string theory, which complements similar results for the other

coupling functions of the model found in the literature [7–9, 47–49]. This is discussed in

detail in appendix A.
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The paper is organized as follows. First, in section 2, we introduce the V-QCD model.

In particular, we work out the CS terms, which are essential for computing the baryon

physics. In sections 3 and 4, we consider the thin layer and homogeneous non-Abelian

approaches for the baryons, respectively. Discussion and outlook are given in section 5.

Additional details on the computations are given in the appendices.

2 V-QCD and setup for baryon physics

2.1 The holographic action

We start by reviewing the two basic building blocks of V-QCD. First, improved holo-

graphic QCD [8–12] gives the description of the dynamics of gluons. It is a bottom-up

model for pure Yang-Mills motivated by noncritical string theory. Second, the flavor sec-

tor is introduced through a tachyonic DBI action, inspired by a space filling D4 − D4

configuration [13, 14]. The two sectors are fully backreacted in the Veneziano limit:

Nc →∞ , Nf →∞ , Nf/Nc ≡ xf fixed , g2Nc fixed . (2.1)

Such backreacted models (V-QCD) were constructed in [7], and these are the models we

discuss in this article. A similar setup was considered in the probe limit in [50, 51].

The relevant part of the dictionary is the following:

• The dilaton field λ = eφ is dual to the Tr F 2 operator and therefore sources the ’t

Hooft coupling in Yang-Mills theory. This is the only field from the IHQCD sector

which we will consider in this article.

• The tachyon field T ij is dual1 to the quark bilinear q̄iqj and sources the quark mass

matrix. It arises from the strings stretching between the D4 and D4 branes.

• The left and right handed gauge fields
(
AµL/R

)ij
living on the branes are dual to the

left and right handed currents q̄iγµ(1± γ5)qj/2.

The action of the full model consist of several terms:2

SV-QCD = Sglue + SDBI + SCS , (2.2)

where the first term is the action of IHQCD and the other two terms describe the dynamics

of the flavor branes. We will first discuss the first two terms, and the relevant pieces of the

CS action SCS will be given in section 2.4.

The action for the gluon dynamics is given by

Sglue = M3N2
c

∫
d5x

√
−det g

[
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

]
, (2.3)

1More precisely, the duality is defined through the boundary Lagrangian ∝ q̄T (1 + γ5)q/2 + q̄T †(1 −
γ5)q/2 [49].

2For finite temperature studies one must also include the appropriate Gibbons-Hawking term which will

be specified below.
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where M is the five dimensional Planck mass. The dilaton potential will be chosen appro-

priately to mimic the physics of QCD.

The full flavored DBI action of the model reads

SDBI = −1

2
M3Nc Tr

∫
d5x

(
Vf (λ, T †T )

√
− det A(L) + Vf (λ, TT †)

√
− det A(R)

)
, (2.4)

with the radicands defined through

A
(L)
MN = gMN + w(λ, T )F

(L)
MN +

κ(λ, T )

2

[
(DMT )†(DNT ) + (DNT )†(DMT )

]
,

A
(R)
MN = gMN + w(λ, T )F

(R)
MN +

κ(λ, T )

2

[
(DMT )(DNT )† + (DNT )(DMT )†

]
, (2.5)

and the covariant derivative given by

DMT = ∂MT + iTALM − iARMT . (2.6)

Our convention for the field strengths is such that

F (L/R) = dAL/R − iAL/R ∧AL/R . (2.7)

The fields AL, AR and T are Nf×Nf matrices in the flavor space, and Tr denotes the trace

over flavor indices. Notice that the full non-Abelian DBI action is not known, and typically

a symmetrized trace prescription [52] is assumed. The first few corrections as a series in F

are know precisely [53–56]. In this article we will only consider non-Abelian configurations

using the first nontrivial term in the expansion on top of an Abelian background, in which

case ambiguities in the prescription are absent, and it is enough to use a standard trace

in (2.4). Under the left and right U(Nf ) gauge transformations the fields transform as

AL → VLAL V
†
L − idVL V

†
L , AR → VRAR V

†
R − idVR V

†
R ,

T → VR T V
†
L , T † → VL T

† V †R , (2.8)

with VL V
†
L = INf = VR V

†
R.

We will make the simplifying assumption that the couplings w and κ depend on λ only.

Moreover we consider backgrounds where the tachyon is flavor independent:

T = τ(r) INf , (2.9)

and use a Sen-like tachyon potential

Vf (λ, TT †) = Vf0(λ)e−aτ
2
, (2.10)

where we take a to be a constant. Its value can be absorbed into the normalization of the

tachyon, so we will set a = 1 from now on. As for the metric, our ansatz reads

ds2 = e2A(r)(−f(r)dt2 + dx2 + f(r)−1dr2) . (2.11)

– 6 –
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In order to determine the model completely, one needs to also specify the potential

functions Vg(λ), Vf0(λ), κ(λ), and w(λ). The general idea is the following: the asymp-

totics of most of these functions both in the UV (λ → 0) and in the IR (λ → ∞) are

tightly constrained by agreement with QCD. In more detail, constraints, e.g., from con-

finement [8, 9], consistency of the backgrounds, linear glueball/meson trajectories [7, 9, 48],

and regularity of the model at finite θ-angle [49] set the power and in some cases the sub-

leading logarithmic term of the IR behavior for the functions (for example Vg ∼ λ4/3
√

log λ

as λ→∞).

In the UV, i.e., in the weak coupling regime, holographic models are generally not

reliable. However, to set the best boundary conditions for the IR physics, we choose the

UV behavior of the functions to agree with QCD perturbation theory: as usual we require

that the correct UV dimensions of the various operators are reproduced, but in addition

we require agreement with asymptotic freedom [8, 9], with RG flow of the quark mass [7],

and behavior at large quark mass [57]. Interestingly, this is obtained if all the functions go

to constants in the UV with perturbative corrections in λ.

In the intermediate region, λ = O(1), the remaining degrees of freedom in the potentials

need to be fitted to QCD data from experiments and from lattice computations. This has

been considered for IHQCD in [12] and started for full V-QCD in [18].

For the baryon physics a particularly important choice is that of the function w(λ).

We will discuss the choice in more detail below. The explicit choices of potentials which

we use in this article are given in appendix B.

2.2 Thermodynamics in the absence of baryons

We first discuss the physics and the phase diagram in the absence of baryons. Then we

only have a vectorial flavor singlet gauge field AL = AR = INfΦ(r)dt giving nonzero charge

density and chemical potential. Inserting the expressions for the fields and the potentials

the DBI action evaluates to

S
(0)
DBI = −M3NcNf

∫
d5xVf0(λ)e−τ

2√− det g
√

1 + e−2Afκ(λ)(τ ′)2 − e−4Aw(λ)2(Φ′)2 .

(2.12)

The thermodynamics of IHQCD has been studied in [10, 11], and thermodynamics in the

V-QCD setup has been discussed at zero µ in [15, 17] and at nonzero µ in [16, 18] at zero

quark mass. Quark mass effects have been considered in [57]. The V-QCD action has

two classes of solutions which either have a horizon or not. The “thermal gas” solutions

without a horizon extend from the UV boundary to the IR singularity which is of the “good”

kind [58]. They have trivial thermodynamics: the pressure is zero, whereas the pressure is

nontrivial and O(N2
c ) for the black hole solutions with a horizon. The different scalings of

the pressure with N2
c can be interpreted as an order parameter for confinement [15, 17].

Both thermal gas (TG) and black hole (BH) solutions have two further variants which

either have or do not have a scalar tachyon hair, i.e., nonzero bulk condensate of the field

τ . The (non)existence of tachyon hair determines through the dictionary whether chiral

symmetry is broken or not. Therefore there are in total four phases. Studies with choices

of the potentials Vg, Vf , κ, and w that reproduce various features of QCD [15, 16, 18] have

– 7 –
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shown that three of these solutions may be dominant for values of xf = O (1) relevant for

ordinary QCD:

• The tachyonic thermal gas solution, which is identified as the description of the

confined and chirally broken phase in QCD. This phase appears at low values of

the temperature and chemical potential, i.e., for T . Λ and µ . Λ where Λ is

the characteristic energy scale of the model which we will define precisely below in

section 3.2.

• The tachyonless black hole solutions, which are identified as the chirally symmetric

deconfined quark matter phase in QCD. This phase dominates for large values of

temperature or the chemical potential.

• Tachyonic black hole solutions, which describe an intermediate deconfined but chirally

broken phase. Depending on the precise choice of the potentials this phase may

or may not be present in the phase diagram. As it turns out, fits to lattice data

disfavor its existence [18]. For the potentials which will be used in this article,

it is subdominant for all values of T and µ and therefore does not appear in the

phase diagram.

The confinement/deconfinement phase transition, which is realized as a Hawking-Page

phase transition is always first order. It is possible that stringy loop corrections, which we

shall not consider in this article, turn the first order transition into a higher order transition

or a crossover at low values of µ [17]. The chiral transition may also be of second order, if

the intermediate phase exists so that it is separated from the confinement/deconfinement

transition, but otherwise it is of first order. A rather similar phase structure has been

found also in models based on a D3/D7 brane system, see [59, 60].

As it turns out, requiring the phase diagram to have the desired phase structure leads

to a new nontrivial constraint for the potentials. More precisely, requiring that the TG

phase extends to nonzero µ constrains the IR asymptotics of the function w(λ). We discuss

this in detail in appendix A. The result is that in the IR asymptotics, w(λ) ∼ λ−wp as

λ → ∞, we must have wp ≥ 4/3. Consideration of the meson spectra (in particular the

splitting between vector and axial vector mesons) sets wp ≤ 4/3 [48], which pins down

wp = 4/3 as the only remaining possibility. This choice was indeed used in [16, 18].

The result complements earlier findings for the leading IR asymptotics as follows: Results

on confinement and on glueball trajectories fix Vg ∼ λ4/3 [8, 9]. Meson trajectories and

regularity of chirally broken solutions set κ ∼ λ−4/3 [48]. Regularity of solutions with chiral

symmetry and at finite θ-angle, and agreement with QCD phase diagram as a function of

xf = Nf/Nc require 4/3 ≤ vp ≤ 10/3 in Vf0 ∼ λvp . Moreover, complete regular solutions

could be found numerically only for vp . 3 [7, 49]. These results hold up to logarithmic

terms in λ (which are also fixed for Vg and κ [8, 9, 48]). Interestingly, after including the

result of appendix A, the power laws for Vg, κ, and w, determined by matching with QCD

agree with expectation from noncritical string theory in the Einstein frame (even though

this was not required in the fit), see [48]. In addition, the string theory result vp = 7/3

also lies in the acceptable range.

– 8 –
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The detailed comparison of the full V-QCD model with lattice data was initiated

in [18]. This was done by fitting the thermodynamics of the model in the deconfined,

chirally symmetric phase to lattice data near µ = 0 in full QCD with 2+1 flavors. One

of the main results after the fit was, that the intermediate phase with deconfinement and

broken chiral symmetry, was absent (as we already mentioned above). Another important

result was that the extrapolated equation of state (EoS) in the deconfined QGP phase from

µ = 0 and finite T to T = 0 and finite µ was typically in agreement with theoretical and

observational bounds. The backgrounds resulting from this fit will be the starting point

for this article, on top of which the baryon dynamics will be added. Extrapolated EoSs for

QCD on the (µ, T )-plane have also been considered earlier using holography [61–64] and

field theory [65–67].

2.3 DBI action for small non-Abelian gauge fields

Then we include the baryonic terms assuming that the amplitude of the soliton is so small

that it can be treated as a small perturbation on top of the background. That is, with

slight abuse of notation, we replace AL/R → INfΦdt+AL/R and treat AL and AR (but not

Φ) as small perturbations. We will specify below what exactly are the leading nontrivial

terms in the expansion that we will consider.

This division of the gauge field into Φ and the flavor singlet part of AL+AR is however

not well-defined for generic baryon fields AL/R. For our purposes it is enough to fix this

by requiring that the soliton part satisfies∫
d4xTr

(
F

(L)
rt + F

(R)
rt

)
= 0 . (2.13)

We go on developing (2.4) as a series at small gauge fields. We note that

A
(L)
MN = gMN + κ(λ)δrMδ

r
N (τ ′)2 + w(λ)(δrMδ

t
N − δtMδrN )Φ′ + w(λ)F

(L)
MN

+
κ(λ)τ2

2
(AMAN +ANAM ) , (2.14)

where A = AL−AR. A similar identity holds for A(R). The last two terms in (2.14) capture

the contribution from the soliton and are treated as small perturbations. We define the

effective metric as

g̃MN ≡ gMN + κ(λ)δrMδ
r
N (τ ′)2 + w(λ)(δrMδ

t
N − δtMδrN )Φ′ (2.15)

so that(
g̃−1
)MP

A
(L)
PN = δMN + w(λ)

(
g̃−1
)MP

F
(L)
PN +

κ(λ)τ2

2

(
g̃−1
)MP

(APAN +ANAP ) . (2.16)

Taking the determinant and rearranging the terms, we find√
−detA(L)'

√
−det g̃

[
1+

w(λ)

2

(
g̃−1
)MN

F
(L)
NM+

κ(λ)τ2

4

(
g̃−1
)MN

(ANAM+AMAN )

+
w(λ)2

8

((
g̃−1
)MN

F
(L)
NM

)2
−w(λ)2

4

(
g̃−1
)MN

F
(L)
NP

(
g̃−1
)PQ

F
(L)
QM

]
(2.17)
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where we only included the terms up to quadratic order in F (L/R), corresponding to the

expansion in α′, and the leading nontrivial additional term appearing due to the presence

of the background tachyon field. We further notice that(
g̃−1
)MN

F
(L)
NM = 2Ξ−1e−4Aw(λ)Φ′F

(L)
rt , (2.18)

where

Ξ =
det g̃

det g
= 1 + e−2Afκ(λ)(τ ′)2 − e−4Aw(λ)2(Φ′)2 (2.19)

since only the antisymmetric terms in g̃−1 contribute. Let us denote by (g̃−1)s the remain-

ing diagonal and symmetric terms:

(g̃−1)s = e−2A diag
(
−f−1Ξ−1(1 + e−2Afκ(λ)(τ ′)2), 1, 1, 1, fΞ−1

)
, (2.20)

where the indexes are ordered as in the expressions for the metric above: (t, x1, x2, x3, r).

In the last two terms of (2.17) the contributions from the antisymmetric terms exactly

cancel. Putting these observations together,

√
− det A(L) '

√
− det g̃

[
1 + Ξ−1e−4Aw(λ)2Φ′F

(L)
rt +

κ(λ)τ2

2

(
g̃−1
)MN

s
AMAN

− w(λ)2

4

(
g̃−1
)MN

s
F

(L)
NP

(
g̃−1
)PQ
s

F
(L)
QM

]
. (2.21)

We are now ready to write down the leading term of the DBI action in the flavored

gauge fields:

S
(1)
DBI = −M3Nc

∫
d5xVf0(λ)e−τ

2√− det g
√

Ξ

[
κ(λ)τ2

2

(
g̃−1
)MN

s
TrAMAN

− w(λ)2

8

(
g̃−1
)MN

s

(
g̃−1
)PQ
s

Tr
(
F

(L)
NPF

(L)
QM + F

(R)
NPF

(R)
QM

)]
, (2.22)

where we also included the terms arising from A(R) and used (2.13). Notice that up to

quadratic order in the gauge fields the DBI action is unambiguous: the result is independent

of the order of the (non-Abelian) fields. For higher order terms a specific prescription (e.g.,

the symmetrized trace) would need to be chosen.

2.4 Chern-Simons terms

The CS terms determine how the solitons source baryonic charge. These terms depend on

a CP-odd potential Va(λ, τ) [49] which must satisfy certain requirements: the normaliza-

tion in the UV (λ = 0 = τ) must reproduce the correct axial anomaly and perturbative

corrections in λ must vanish due to the perturbative nonrenormalization of the anomaly.

In principle we could work with a generic CP-odd potential Va(λ, τ) but we choose the

string motivated ansatz Va(λ, τ) = e−bτ
2
. The inclusion of the constant b reflects the find-

ings of [49]: in order for the model to have regular IR solutions in the presence of a finite
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θ-angle, the contributions from the CS terms had to vanish faster than those coming from

the DBI. The easiest way to arrange this is to take b > 1 in the CS action. In this section

we will set b = 1 for notational simplicity. It will be reintroduced later by rescaling τ .

We compute here explicitly the coupling of Φ to the instanton density arising from

these terms. The relevant CS term is given by [14]

SCS =
iNc

4π2

∫
Ω5 , (2.23)

where

Ω5 =
1

6
Tre−τ

2

{
−iAL∧F (L)∧F (L)+

1

2
AL∧AL∧AL∧F (L)+

i

10
AL∧AL∧AL∧AL∧AL

+iAR∧F (R)∧F (R)− 1

2
AR∧AR∧AR∧F (R)− i

10
AR∧AR∧AR∧AR∧AR

+τ2
[
iAL∧F (R)∧F (R)−iAR∧F (L)∧F (L)+

i

2
(AL−AR)∧(F (L)∧F (R)+F (R)∧F (L))

+
1

2
AL∧AL∧AL∧F (L)− 1

2
AR∧AR∧AR∧F (R)+

i

10
AL∧AL∧AL∧AL∧AL

− i

10
AR∧AR∧AR∧AR∧AR

]
+iτ3 dτ∧

[
(AL∧AR−AR∧AL)∧(F (L)+F (R))+iAL∧AL∧AL∧AR

− i
2
AL∧AR∧AL∧AR+iAL∧AR∧AR∧AR

]
+
i

20
τ4(AL−AR)∧(AL−AR)∧(AL−AR)∧(AL−AR)∧(AL−AR)

}
(2.24)

with the understanding that the contributions from the Abelian field Φ are included in

the gauge fields here. The normalization of this term is consistent with the QCD flavor

anomalies [14].

In order to extract the coupling between the solitonic components and Φ explicitly, we

substituting AL/R → Φdt+AL/R in (2.24) and collect the coupling terms. Recall however

that Ω5 is well defined only up to total derivatives. As it turns out, it is convenient to first

modify the definition of Ω5 by adding the following total derivative terms

12Ω̃5 = 12Ω5+iTrd
[
e−τ

2
Φdt∧(4AL∧F (L)+iAL∧AL∧AL−4AR∧F (R)

−iAR∧AR∧AR)
]
+iTrd

[
e−τ

2
τ2Φdt∧(−2AL∧F (L)−6AL∧F (R)

+iAL∧AL∧AL+6AR∧F (L)+2AR∧F (R)−iAR∧AR∧AR)
]
. (2.25)

Then we find that

Ω̃5 = Ω5

∣∣
Φ=0

+
1

6
Φdt ∧H(Φ)

4 , (2.26)

where

eτ
2
H

(Φ)
4 =Tr

[
−3iF (L)∧F (L)+3iF (R)∧F (R)+6iτdτ∧(AL−AR)∧(F (L)+F (R))

+3τ2(AL−AR)∧(AL−AR)∧(F (L)−F (R))

+τ3dτ∧(−4iAL∧F (R)+4iAR∧F (L)+2AR∧AL∧AL
−2AR∧AR∧AL−2AL∧AL∧AL+2AR∧AR∧AR)

]
, (2.27)
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and we have used the fact that dτ ∧ dΦ = 0 since both fields are assumed to depend on r

only. We note that H
(Φ)
4 is closed, dH

(Φ)
4 = 0, and exact:

H
(Φ)
4 =Trd

[
e−τ

2(−3iAL∧F (L)+3iAR∧F (R)+AL∧AL∧AL−AR∧AR∧AR

+τ2(AL−AR)∧(AL−AR)∧(AL−AR)+3iτdτ∧(AL∧AR−AR∧AL)

−2iτ3dτ∧(AL∧AR−AR∧AL)
)]
. (2.28)

The total charge density is defined as

% = −
δSV−QCD

δΦ′

∣∣∣∣
bdry

=

∫
dr
δSV−QCD

δΦ
, (2.29)

where we used the Φ equation of motion. Therefore the baryon charge is given by the

coupling to Φ in the CS action:

NcNb =

∫
drd3x

δSCS

δΦ
=

iNc

24π2

∫
H

(Φ)
4 , (2.30)

where Nb is the total baryon number. We will compute this explicitly below within the

approaches considered in this article.

3 Baryons as a thin layer of noninteracting bulk matter

The first approach we consider is to include baryons as a layer of noninteracting solitons.

The layer is located in equilibrium at a finite nonzero value of the bulk and assumed to

have a zero width in the holographic direction. This setup is similar to the approach in

the WSS model where the baryons were treated as point-like sources in the limit of large

coupling [40, 41]. When comparing to the WSS model it is useful to recall that the dynamics

of chiral symmetry breaking can be discussed in terms of tachyon condensation as we did

for V-QCD in section 2 [68–71]. Notice however that in our model there will not be a limit

(similar to the large coupling limit in the WSS model) in which the sizes of the solitons

are suppressed. Since our approach in this section requires the extent of the baryons to

be zero in the holographic direction, it should be considered as a rough approximation.

Notice however that as we are neglecting the interactions between the solitons and our

background solution is independent of the spacetime coordinates, the sizes of the solitons

in spatial directions are irrelevant. The easiest approach is to consider the solitons to be of

zero size in this direction also. We will consider another approach in section 4 which will

take the effects due to the finite size and interactions into account at least partially.

3.1 Setup

In order to establish the thermodynamics in the setup, we need to compute the mass of a

single soliton (integral of the expanded DBI action). As discussed above, we will essentially

treat the soliton as point-like. We first consider the simplest approach, where the tachyon

field τ is completely ignored — this is a good approximation if the soliton is located very

– 12 –
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close to the boundary. We will argue how the tachyon effects can be taken into account

later. In this approximation, we obtain

S
(1)
DBI =

M3Nc

8

∫
d5xVf0(λ)w(λ)2

√
− det g

√
Ξ
(
g̃−1
)MN

s

(
g̃−1
)PQ
s

× Tr
(
F

(L)
NPF

(L)
QM + F

(R)
NPF

(R)
QM

)
,

SCS =
Nc

8π2

∫
Φdt ∧ Tr

[
F (L) ∧ F (L) − F (R) ∧ F (R)

]
. (3.1)

Notice that the DBI action still involves the nontrivial effective metric
(
g̃−1
)
s
. In order to

simplify the analysis, we can rescale the coordinates and the gauge fields. Since the soliton

is localized in r and spatial coordinates we may rescale them but not the time. We define

xi =
√

Ξx̂i , AiL/R =
1√
Ξ
ÂiL/R , t = t̂ , AtL/R =

√
f
√

1 + e−2Afκ(λ)(τ ′)2ÂtL/R ,

r =
√
f r̂ , ArL/R =

1√
f
ÂrL/R . (3.2)

These rescalings were chosen such that the CS term remains invariant and the factors of(
g̃−1
)
s

can be absorbed in the determinant of the rescaled metric:

S
(1)
DBI = −M

3Nc

8

∫
d5x̂ Vf0(λ)w(λ)2

√
f
√
− det ĝ Tr

[
F̃

(L)
MN F̃

(L)MN + F̃
(R)
MN F̃

(R)MN
]
,

SCS =
Nc

8π2

∫
Φdt ∧ Tr

[
F̃ (L) ∧ F̃ (L) − F̃ (R) ∧ F̃ (R)

]
(3.3)

where the metric ĝ is conformally flat,

ds2 = e2A(r)(−dt̂2 + dx̂2 + dr̂2) . (3.4)

The result is similar in form to what has been found in probe brane models. Because the

soliton is assumed to be localized in the r-direction, the result boils down to the Yang-Mills

action in flat space where the solution (the BPST instanton) is known. The action may be

evaluated as

S
(1)
DBI = −2M3Ncπ

2

∫
dt Vf0(λ)w(λ)2

√
feA

∣∣∣
r=rb

, SCS = Nc

∫
dtΦ(rb) , (3.5)

where we reinstated the unrescaled coordinate r. The location of the baryon rb will be

determined by minimizing the action as we will show below. For a soliton corresponding

to an antibaryon the sign of the CS term is opposite.

There is however no obvious reason (as we shall demonstrate below) why the soliton

should stabilize very close to the UV boundary in our model. Therefore the tachyon

dependence should not be discarded. We will discuss how they affect the computation

starting with the CS term.

In the CS action the tachyon dependent terms are given in (2.27) and (2.28). For a

soliton localized in the r-direction the CS term can be written as

SCS '
iNc

24π2
Φ(rb)

∫
dt ∧H(Φ)

4 . (3.6)
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We expect that the integral here is quantized in units of 24π2i also when the soliton is not

close to the boundary, and the result therefore is the same as in (3.5). Since the integral

couples simply to Φ(rb) this is consistent with the baryons carrying a fixed charge. Indeed

as the form H
(Φ)
4 is exact, the integral becomes a boundary term, which suggests that the

quantization can be read off by inserting the asymptotic form of the soliton solution in this

expression. However, in the absence of an explicit soliton solution which would take into

account the coupling to the tachyon, we have not been able to prove this.

This result implies in particular that the integrals over the various terms in (2.27) on

the soliton solution will need to grow large in order to compensate the factor e−τ
2

in the

expression of this form if the soliton is located deep in the IR. That is, the amplitude and/or

size of the soliton needs to grow large. Therefore, it is essential that for the approximations

done in this section to work, the baryon is not located very deep in the IR.

Without better control of the soliton solution, it is hard to evaluate its contribution to

the DBI action, i.e., the soliton mass, in the presence of the tachyon corrections. The main

addition due to the tachyon is the factor e−τ
2

in the potential of the DBI term, see (2.22).

The quantization argument of the CS term suggests that the contribution of the soliton

grows if it is moved towards the IR such that it roughly cancels this term. Therefore our

best guess for the effects of the tachyon is that they are absent at least when the soliton

is not too deep in the IR, that is, we will also use the expressions in (3.5) in the presence

of the coupling to the tachyon. We remind that we will consider a different approach in

section 4 which will capture the coupling to the tachyon.

In the WSS model the baryon action is obtained through a D4 action, with the brane

wrapping the S4 of the geometry, or equivalently by considering an expansion of the D8

actions at small gauge fields [22, 41]. Doing a simple minded mapping of this approach

to our model, the solitonic solutions should correspond roughly to adding a D0 brane in

the configuration. Indeed, noticing that
√
feA =

√
−gtt, the first term in (3.5) takes the

form of an action for a D0 brane sitting at the location of the baryon (with a certain λ

dependent potential).

The final action for a baryon gas with constant density is then obtained by a “convo-

lution” which amounts to integrating the above actions
∫
d3xnb to the actions in (3.5):

S
(1)
DBI = −2M3Ncπ

2

∫
d4xnb Vf0(λ)w(λ)2

√
feA

∣∣∣
r=rb

, SCS = Nc

∫
d4xnb Φ(rb) .

(3.7)

3.2 Equations of motion and boundary conditions

The complete action of the model is given by the sum of the terms in (2.3), (2.12), and (3.7)

in the current approach. We define the bulk charge density as

ρ = −
δS

(0)
DBI

δΦ′
= −

M3NcNfVf0(λ)e−τ
2
eAw(λ)2Φ′√

1 + e−2Afκ(λ)(τ ′)2 − e−4Aw(λ)2(Φ′)2
. (3.8)

The equation of motion for Φ implies

ρ′(r) = −Ncnbδ(r − rb) . (3.9)
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The thermal gas solutions extend form r = 0 (UV boundary) to r = ∞ (IR singularity).3

For these configurations all the charge originates from the baryons, and therefore ρ(r) = 0

for r > rb. Consequently, ρ(r) = Ncnb ≡ ρb for 0 < r < rb. The black hole solutions extend

from the boundary (r = 0) to a horizon at some value r = rh of the bulk coordinate. For

them, part of the charge may be hidden behind the horizon. Then ρ is nonzero everywhere,

and constant except for the discontinuity at the baryon location: ρ(r) = ρh for rb < r < rh
and ρ(r) = ρh + ρb ≡ % for 0 < r < rb.

The gauge field is obtained by inverting (3.8),

Φ′ = − ρ̂

Vf0(λ)e−τ2w(λ)2eA
G√

1 +K
, (3.10)

where

G =
√

1 + e−2Afκ(λ)(τ ′)2 , K =
ρ̂2

(e3AVf (λ, τ)w(λ))2 , (3.11)

and integrating over r. Here we defined the normalized density as ρ = M3NcNf ρ̂. We will

discuss below how the constant of integration is fixed.

When r 6= rb, the other equations of motion are

d

dr

[
e3Af

√
1 +Kκ(λ)Vf (λ, τ)τ ′

G

]
=
e5AG ∂

∂τ Vf (λ, τ)
√

1 +K
, (3.12)

12fA′2 + 3f ′A′ − 4fλ′2

3λ2
− e2AV (λ) +

xfe
2A
√

1 +KVf (λ, τ)

G
= 0 , (3.13)

6fA′′ + 6fA′2 + 3f ′A′ +
4fλ′2

3λ2
− e2AV (λ) + xfe

2AG
√

1 +KVf (λ, τ) = 0 , (3.14)

f ′′ + 3f ′A′ − xfe2A GK√
1 +K

Vf (λ, τ) = 0 , (3.15)

where we already inserted the solution for Φ′ from (3.10). For the thermal gas solutions,

f = const. for r > rb. At r = rb we will also need the junction conditions for the various

functions which are derived in appendix C.

The solutions satisfy the following boundary conditions in the UV:

A(r) ≈ − log r, f(r) ≈ 1, λ(r) ≈ − 1

b0 log(rΛ)
, τ(r) ≈ mqr(− log(rΛ))−γ0/b0 ,

(3.16)

with b0 = 1
24π2 (11− 2xf ) and γ0 = 3

16π2 . The boundary condition for λ can here be taken

as the definition of Λ. Dimensionful quantities are computed relative to the energy scale

defined by Λ, and putting Λ to a physically reasonable value, one can match with QCD.

In all numerical examples considered in this article, we set the quark mass mq to zero.

In the IR, if a black hole is present, the solutions satisfy regularity conditions on the

horizon. The thermal gas solution, which has no black hole, is obtained by taking a black

hole solution and letting the horizon area approach zero. This is in accordance with the

requirement that the IR singularity should be of the “good” type, i.e. it should be possible

to clock the singularity with a horizon of infinitesimal area.

3Actually, for the choice of action for which we carry out numerical analysis below, the TG solutions

turn out to be subdominant.
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3.3 Location of the baryon

In order to determine the location of the baryon, because each baryon carries a fixed charge,

we need to study the system in canonical ensemble [40, 41]. The Legendre transformed

zeroth order action reads

S̃
(0)
DBI =S

(0)
DBI−

∫
d4xΦ(0)ρ+SCS =S

(0)
DBI+

∫
d5xρΦ′

=−M3NcNf

∫
d5xVf0(λ)e−τ

2
e5A
√

1+e−2Afκ(λ)(τ ′)2

√
1+

(
ρ̂

e3Aw(λ)Vf0(λ)e−τ2

)2

=−M3NcNf

∫
d5xVf0(λ)e−τ

2
e5AG

√
1+K , (3.17)

where the integrand has a discontinuity at r = rb and we also included the CS contribution.

In order to determine rb, we need to minimize the full action

S̃DBI = S̃
(0)
DBI + S

(1)
DBI = −M3NcNf

∫
d5xVf0(λ)e−τ

2
e5AG

√
1 +K

− 2M3Ncπ
2

∫
d4xVf0(λ)w(λ)2

√
feAnb

∣∣∣
r=rb

(3.18)

varying rb. As we keep all sources fixed it is enough to evaluate the derivative with respect

to the explicit dependence on rb. After the Legendre transformation, this appears in the

source term and through the discontinuity of ρ̂. Taking the derivative gives the condition

(see appendix C)

Vf0(λ)e−τ
2
e5A 1

G(r+
b )

[√
1 +K(r+

b ) +G(r+
b )2(K(r−b )−K(r+

b ))−
√

1 +K(r+
b )

]
r=rb

= −2π2M3ρ̂b
√
feA

{
〈λ′〉 d

dλ

[
Vf0(λ)w(λ)2

]
+ Vf0(λ)w(λ)2

[
〈f ′〉
2f

+ 〈A′〉
]}

r=rb

, (3.19)

where g(r±b ) ≡ limε→0+ g(r±ε) and the averaged derivatives are defined by 〈g′〉 ≡ (g′(r+
b )+

g′(r−b ))/2 = limε→0+(g′(rb + ε) + g′(rb − ε))/2.

In the limit ρ̂ → 0 the first term in (3.19) vanishes as ∝ ρ̂2, f tends to one, and the

derivatives become continuous. Therefore, the condition becomes

d

dr

[
Vf0(λ)w(λ)2eA

]
r=rb

= 0 , (ρ̂→ 0) . (3.20)

That is, the term defining the soliton mass in (3.5) should have a minimum in the bulk,

and the minimum should be quite close to the boundary: otherwise the baryon will fall

deep in the IR in the regime where the coupling of the soliton to the tachyon field be-

comes important. Our approximation, where the tachyon is essentially neglected will fail

in this region.

In order to realize the minimum of the baryon mass at finite r we need to choose the

potential w(λ) differently from earlier literature (see [18, 48, 49]). The easiest way4 to

4In principle one may find nontrivial solutions to (3.20) without this property, but numerical studies

show that one needs to introduce potentials (e.g. w(λ)) with peculiar structures, which are likely to cause

other issues.
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guarantee a minimum is to require that the combination in the square brackets of (3.20)

diverges in the IR (because it does diverge in the UV). If Vf0 ∼ λvp and w ∼ λ−wp , this

means that

wp ≤
vp
2
− 1

3
. (3.21)

Because we need to choose vp ≤ 10/3 [48] we have that wp ≤ 4/3. In practice, however,

the bound is tighter: we have not been able to construct numerically regular backgrounds

for potentials with vp & 3. Here we use vp = 2, so that wp ≤ 2/3. We will present some

results from the numerical analysis of the model for such potentials with wp = 2/3 below.

However, as we discussed in section 2.2 and in appendix A, the phase diagram for

this choice of wp has an undesired structure even in the absence of baryons: the thermal

gas phase, which is identified as the confined chirally broken phase in QCD, becomes

subdominant and is replaced by a phase with “tiny” black hole solutions. The requirement

of the TG phase to be dominant leads to wp ≥ 4/3 which is in contradiction with (3.21)

(inserting vp . 3 which is in turn required for regular backgrounds).

This is, however, a problem with the approximations done in this section rather than a

problem in the model: in section 4 we will demonstrate that the coupling of the soliton to

the tachyon (which is basically not included in the thin layer approximation scheme) will

prevent the soliton from falling in the IR. Therefore, after the coupling to the tachyon has

been added, it is actually possible to choose w(λ) in the same way as in earlier literature

and as required by the analysis of appendix A. Then a physically reasonable phase diagram

with both baryons and a TG phase can be obtained.

3.4 Thermodynamics

The grand potential is given by

Ω = −
[
Sglue + S

(0)
DBI + SGH + Ssource

]
on−shell

, (3.22)

where the source term is

Ssource = −2M3NcNfπ
2

∫
d4xVf0(λ)w(λ)2

√
feAM3ρ̂b

∣∣∣
r=rb

+M3NcNf

∫
d4xΦρ̂b

∣∣∣
r=rb

,

(3.23)

the Gibbons-Hawking term SGH is given in appendix C, and the minus sign in (3.22)

appears because we wrote our actions in Lorentzian signature.

In order to establish the thermodynamics of the system and check its consistency, we

need to determine the integration constant in the definition of µ. We reproduce here the

basic arguments and delegate details to appendix C.

As it turns out, if we choose a gauge where µ = Φ(0), we need to require that the

source term vanishes on-shell by setting

Φ(rb) = 2M3π2Vf0(λ)w(λ)2
√
feA

∣∣∣
r=rb
≡ µc . (3.24)

This fixes the integration constant and ensures that the variation of the free energy follows

the first law: if the source vanishes, its variation vanishes as well, and then the variation

of the bulk term gives the first law by the standard calculation.
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For black hole solutions, (3.24) can also be derived as the equilibrium condition for

moving charge from the baryons to behind the horizon. In order to see this, consider the

variation of the Legendre transformed action (3.18) with respect to the charge behind the

horizon ρ̂h such that the total charge %̂ = ρ̂h + ρ̂b is fixed. This gives

1

M3NcNf

δS̃DBI

δρ̂h
= −

∫
d4x

∫ rh

rb

dr
Vfe

5AG√
1 +K

K

ρ̂h
+ 2M3π2

∫
d4x Vf0w

2
√
feA

∣∣∣
r=rb

= V4

[
−Φ(r) + 2M3π2Vf0w

2
√
feA

]
r=rb

(3.25)

where we used the EoM (3.8) on the second line. Therefore, requiring the variation to

vanish results in (3.24).

Naively one might think that the discontinuities in the bulk profile induced by the

point like source may also lead to nonzero terms at r = rb which could violate the first

law. However, by replacing the delta distribution of the source by a smooth approxima-

tion, we see that no such terms can arise: the variation of the Lagrangian is still a total

derivative and only boundary terms at r = 0 are generated. In the point-like limit the

junction conditions for the bulk fields at r = rb, which are given above, guarantee that

all contributions from r = rb in the variation of the grand potential cancel. We show this

explicitly in appendix C.

By using (3.8), for the thermal gas solution the chemical potential is then given by

µ = Φ(rb)−
∫ rb

0
drΦ′(r) = µc +

∫ rb

0
dr

ρ̂

Vf0(λ)e−τ2w(λ)2eA
G√

1 +K
. (3.26)

For black hole solutions, (3.24) sets another constraint which will fix the ratio of the charge

of the baryons to the total charge. For the black holes we simply have the formula

µ =

∫ rh

0
dr

ρ̂

Vf0(λ)e−τ2w(λ)2eA
G√

1 +K
. (3.27)

The free energy in each phase can then be obtained by integrating

dΩ = −%dµ− sdT (3.28)

where % is the boundary value of the charge density, % = ρ(0), for the TG solutions the

entropy vanishes, and for the BH solutions the entropy and the temperature are given by

standard BH thermodynamics (see also [15, 16]).

3.5 Phase diagram

Using the results of the previous sections, we can compute the phase diagram. The non-

baryonic solutions are constructed as in [15–17]. The baryonic solutions are constructed

in the same way, i.e. by shooting from the horizon, with the difference that when it is

encountered that equation (3.19) is satisfied, a discontinuity is inserted in accordance with

the junction conditions derived in appendix C.1. We choose xf = 1 and only consider

solutions with vanishing quark mass. Both the non-baryonic and the baryonic solutions

are then used to integrate the first law as described in section 3.4.
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This procedure allows one to compute the phase diagram given a set of potentials.

The potentials which are used in the following are given in appendix B. They have been

obtained by fitting to lattice data in the vicinity of µ = 0 [18]. Note that in the thin

layer approximation, we need to satisfy the bound (3.21) in order to have stable baryon

matter. Consequently we choose a w-function with the asymptotics w ∼ λ−2/3 in the IR.

The explicit choice is given in (B.7).5 Also note that the w-potential was, by tuning the

stabilization point, used to set the baryon mass (given by −S(1)
DBI in (3.5)) to roughly the

correct value.

As we pointed out in section 2.2 and in section 3.3, the choice for (B.7) also has an

unintended consequence. Denoting w ∼ λ−wp for the power wp of the w-potential in the

IR, one can show that the thermal gas phase is always subdominant at nonzero values of

the chemical potential unless wp ≥ 4/3. This means that a limitation of this approximation

is that it is incompatible with having a thermal gas phase at small but nonzero T and µ.6

The reason for this is discussed in more detail in appendix A. We will use the w-potential

given by (B.7) despite the issue with the TG phase, because for this approximation to yield

a non-trivial result, we need to have stable baryons.

Moreover this choice of w-function destroys the Silver Blaze property of QCD (see [72]):

the pressure is no longer independent of the chemical potential at zero temperature and at

nonzero chemical potentials up to a critical value. This happens because the thermal gas

depends nontrivially on the chemical potential. It also means that, because the thermal gas

phase is replaced by a small black hole, confinement properties are altered. In holography

one can investigate confinement properties from the behavior of a string suspended from

two points on the boundary. In particular, one can calculate the Wilson loop by computing

the on-shell action of such a string [73–76]. In this work, we define a phase as confining

if the Wilson loop one computes in this way has a branch exhibiting an area law. The

crucial difference between the confinement properties of a thermal gas and the confinement

properties of the solutions one obtains in this section is that even if the Wilson loop has such

a branch, these can correspond to string solutions which are unstable and subdominant

to disconnected strings extending to the black hole from the boundary. Note that this

instability is a separate effect from the “usual” breaking of the string in QCD due to a

pair creation of light quarks. This pair creation effect is not included in the classical string

computation we discuss here. Therefore the instability which we observe here is indeed

undesirable for QCD. For a more detailed discussion of confinement in a similar geometry,

we refer to [77]. Note that thermodynamic properties like the equation of state are much

less affected by this change in geometry, as they do not probe the deep IR.

There are three order parameters by which we label the phases in the phase diagram:

• Chiral symmetry: If the chiral condensate 〈q̄q〉 is zero, a phase displays chiral sym-

metry. If it is nonzero, chiral symmetry is broken.

5Note that in appendix B, there are two sets of potentials where the most significant difference between

the two choices for w(λ) in (B.7) and in (B.11) is given by the IR asymptotics. We will use the second set

later on.
6Note that exactly at µ = 0, these potentials still display a thermal gas phase, because as µ → 0, the

size of the black hole shrinks to zero and the geometry approaches that of the thermal gas solution.
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Figure 1. The phase diagram for the thin layer approximation in the (µ, T )-plane. It can be seen

that we have two phases in which baryon number charge is located outside the black hole. Note

that due to numerical accuracy the phase transitions cannot be accurately continued to the µ-axis,

but they do all reach it.

• Appearance of baryons: If the U(1) charge associated to quark number7 is all located

behind a black hole horizon, that phase does not have baryons. If, however, a part of

the baryon number charge is located at some point in the bulk, we say that a phase

is baryonic. Note that even with some of the charge located outside the black hole,

part of the charge always remains behind the black hole, making the baryonic phases

a sort of mixture of baryons and quark matter.

• Confinement: A phase is called confining if the Wilson loop exhibits an area law.

As was discussed before, this does not imply confinement in the usual sense. In-

stead, more weakly, it implies that the properties one usually associate with confine-

ment, like a mass gap and the inability to pull apart two quarks, are only approxi-

mately satisfied.

By comparing these properties, there are in principle 8 phases we can have in the phase

diagram. Of these, 5 are realized by the model. These are the 4 possibilities for deconfined

phases, plus a confined, chirally broken nonbaryonic phase. Comparing free energies of

these 5 phases, one obtains the phase diagram in figure 1. Note that as one expects at

µ = 0, there is a first order phase transition between a chirally symmetric, deconfined QGP

phase, and a chirally broken confined phase. As µ is increased at fixed T , the chirally broken

phase becomes deconfined as well. Since the geometry changes smoothly as confinement

7Note that quark number is equal to baryon number divided by the number of colors.
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is lost, the transition is a crossover. Also note that the first order transition extending

from µ = 0 ends in a critical point, turning into a second order phase transition just before

the baryonic phases appear. Another critical point can be found between the chirally

symmetric deconfined QGP phase and the chirally symmetric deconfined baryonic phase.

Now let us discuss the baryonic phases. The most important observation is their

location in the phase diagram. In particular, note that the chirally broken baryonic phase

appears at roughly µ = 270 MeV. This number should be roughly equal to the baryon

mass over the number of flavors, which for QCD is (up to the binding energy of nuclear

matter) mproton/3 ≈ 313 MeV. This, while not quantitatively the same, is qualitatively

in the right range. In particular, one can note that while the potentials were chosen to

reproduce the correct baryon mass, the fact that the location of the transition indeed

appears in the appropriate location is a non-trivial observation. Another thing to note is

that the baryonic phases disappear above a finite value of µ.8 A last observation is that

the properties of the chirally symmetric baryonic phase seem somewhat contradictory. On

the one hand, chiral symmetry is exact, meaning that there is no mechanism by which the

quarks can gain mass. On the other hand, these massless quarks form bound states in

the form of baryons. This phase could perhaps be studied in future work by studying the

excitations of the theory in that region of the phase diagram.

It is clear that this approximation has its shortcomings, the most serious of which is

that from QCD we expect the confined solutions to be described by a thermal gas, while

in this approximation we obtain a phase which is not confining in the usual sense. In the

next section, we take a different approach, in which these problems are not present.

4 Baryons from a homogeneous bulk gauge field

The approximation considered in the previous section obviously has some shortcomings, as

we already pointed out. There is no reason to expect the baryonic soliton to be small in

V-QCD, unlike in the WSS model where the size of the soliton ∼ 1/
√
λ goes to zero in the

limit of strong coupling. Moreover, we basically neglected the tachyon, forcing us to choose

a specific kind of potentials which keep the soliton close to the UV boundary where the

tachyon is small. This choice of potentials was seen to cause problems with confinement

properties. Furthermore, as it turns out, such potentials are slightly disfavored by the fit

to lattice data [18]. When the baryon is no longer close to the boundary, the amplitude

and/or size of the soliton must actually grow in order to account for the suppression due to

the exponential factor e−τ
2

in order to keep the baryon charge fixed (see (3.6) and (2.27)).

If the soliton becomes sizable in the IR, configurations with a high density of solitons,

dual to dense baryonic matter in QCD, may be described better by a homogeneous non-

Abelian gauge field configuration than separate solitons. This is what we will attempt here.

8The first order transition between the chirally symmetric baryonic phase and the chirally symmetric

nonbaryonic phase has a large numerical uncertainty. However, the chirally symmetric baryonic solutions

stop existing altogether at a finite value of µ, so even if we cannot pinpoint to great accuracy where the

chirally symmetric baryonic phase becomes thermodynamically disfavored, we can say with certainty that

this will happen at some finite value of µ.
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Interestingly, as it turns out, the approach will closely resemble the approximation with a

thin noninteracting layer carried out above even though the starting point is completely

different. A similar approach has been suggested in the context of the WSS model in [41]

and further developed in [43] (see also [44] for a slightly different setup). We will treat

the baryons as probe on top of the TG background in this section. This makes sense as

the DBI action discussed above is known precisely only to leading nontrivial order in the

non-Abelian field strengths of the solitons.

The basic idea of the setup is as follows. We consider a system with a high density

of baryons (comparable to the saturation density on the QCD side) on top of the TG

background and divide the space in to three regions in the r-direction:

1. Region close to the boundary, r � rc, where rc is roughly the location of the soliton

“centers”. At high density, the configuration in this region is assumed to be well

approximated by a homogeneous baryon field.

2. The region in the middle, r ∼ rc. In this region, the configuration is highly inhomo-

geneous and nontrivial.

3. The region in the IR, r � rc. In this region the baryon field is again taken to be

homogeneous.

The idea is then that when the baryon density is high, the second, inhomogeneous region

is not important for the main features of the phase diagram, and may be ignored. Its

effect on the solutions is modeled through a discontinuity of the baryon field, as we shall

discuss below. This is an uncontrolled approximation, but as we shall see, the results

are encouraging.

4.1 Setup

We will only consider SU(2) solitons in the thermal gas background here. We will use the

first order series approximation to the DBI action rather than the full DBI (which is not

known for non-Abelian fields). Our ansatz

AiL = −AiR = h(r)σi (4.1)

respects chiral symmetry and parity [33, 78].

The ansatz (4.1) immediately leads to an issue which has also been observed in the

WSS model [41]. Namely inserting it in the expression of the baryon charge gives∫
dt ∧H(Φ)

4 = 48i

∫
d5x

d

dr

[
e−b τ(r)2h(r)3(1− 2b τ(r)2)

]
, (4.2)

where we reinstated the coefficient b. If h(r) is a smooth function this evaluates to a

boundary term. Both the UV and IR contributions however vanish: the diverging tachyon

sets the action to zero in the IR, and the baryon field h(r) vanishes in the UV due to

boundary conditions. Therefore the baryon density is zero.
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A nonzero baryon density can however arise from a discontinuity of the function h(r).

As discussed above, we use such an abrupt discontinuity of the function h(r) to model the

intermediate inhomogeneous regime, which then gives rise to a nonzero baryon density.

We then work out the action for the homogeneous ansatz. The DBI term in (2.22)

simplifies to

S
(1)
DBI = −12M3Nc

∫
d5xVf0(λ)e−τ

2
e5A
√

Ξ

[
κ(λ)τ2e−2Ah2 + w(λ)2e−4Ah4

+
1

4
w(λ)2e−4AfΞ−1

(
h′
)2 ]

(4.3)

with Ξ given in (2.19). Since the charge is only sourced by the baryons, which are treated

as probes, we could also work with only the leading perturbation due to the charge in Ξ.

We choose however to keep the nonlinear dependence on the charge here.

Importantly, the homogeneous ansatz satisfies the consistency condition (2.13).

Putting this expression together with the DBI action in the absence of solitons and the CS

term then gives the total action

Sh = S
(0)
DBI + S

(1)
DBI + SCS = −2M3Nc

∫
d5xVf0(λ)e−τ

2
e5A
√

Ξ

[
1 + 6κ(λ)τ2e−2Ah2

+ 6w(λ)2e−4Ah4 +
3

2
w(λ)2e−4AfΞ−1

(
h′
)2 ]

− 2Nc

π2

∫
d5xΦ

d

dr

[
e−b τ

2
h3(1− 2b τ2)

]
(4.4)

As we argued above, this action should be only trusted away from the vicinity of r = rc
where h is discontinuous. In particular we ignore the singular contributions which arise

form the derivative of the discontinuities.9 In general, the prescription which we will use,

amounts to interpreting the integrals as∫ ∞
0

dr 7→

(∫ r−c

0
+

∫ ∞
r+c

)
dr ≡ lim

ε→0+

(∫ rc−ε

0
+

∫ ∞
rc+ε

)
dr . (4.5)

From the action (4.4), which depends on Φ′ through Ξ, we derive the charge density

ρ = −δSh
δΦ′

(4.6)

= − Vρ√
Ξ

[
1 + 6κ(λ)τ2e−2Ah2 + 6w(λ)2e−4Ah4 − 3

2
w(λ)2e−4AfΞ−1

(
h′
)2]

w(λ)2e−4AΦ′

where we abbreviated

Vρ = 2M3NcVf0(λ)e−τ
2
e5A . (4.7)

The Φ equation of motion implies

ρ′ = − d

dr

δSh
δΦ′

= −δSh
δΦ

=
2Nc

π2

d

dr

[
e−b τ

2
h3(1− 2b τ2)

]
(4.8)

9For example, for the CS term, this means effectively adding the term SDisc = 2Nc
π2

∫
d4xΦ e−b τ

2

(1 −
2b τ2) Disch3

∣∣
r=rc

which cancels the singular contribution.
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except for r = rc where h is discontinuous. Our prescription stipulates that there are no

δ-function contributions at this point, so ρ is continuous. We obtain that

ρ =

{
%+ 2Nc

π2 e
−b τ2h3(1− 2b τ2) , (r < rc)

2Nc
π2 e

−b τ2h3(1− 2b τ2) , (r > rc)
(4.9)

where % is the density at the boundary, i.e., the physical baryon density. The continuity of

ρ implies that it is given in terms of the discontinuity of h as

% =
2Nc

π2
e−b τ(rc)2(1− 2b τ(rc)

2) Disch3(rc) , (4.10)

where the discontinuity is defined as Disc g(r) ≡ limε→0+ (g(r + ε)− g(r − ε)).

4.2 Location of solitons and consistency of thermodynamics

In this subsection we discuss the minimization of the action in particular to determine the

location of the discontinuity rc. Before going to the precise analysis, we point out how the

main features arise from the action we wrote down above. First, as in section 3 we need

to work at fixed baryonic charge, rather than chemical potential. Therefore, % in (4.10) is

kept fixed. This means that Disc h3 must diverge if rc is taken to deep in the IR (where

the tachyon diverges) and also at the point where 2b τ(rc)
2 = 1. This necessarily means

that the DBI action and consequently also the free energy diverge at these values of rc. In

particular, the coupling to the tachyon therefore prevents the baryon from falling in the IR.

Moreover, since (4.10) gives roughly % ∼ h3, we expect that the free energy behaves

as F ∼ h2 ∼ %2/3 at small % and as F ∼ h4 ∼ %4/3 at larger %. Taking the derivative

with respect to %, we obtain that µ ∼ %−1/3 at small % and µ ∼ %1/3 at larger %. This

indicates that µ has a minimum and there is a first order phase transition between the

empty TG phase and the baryonic phase. Moreover, in the stable phase (larger %) the zero

temperature speed of sound obeys c2
s = d log %/d log µ ≈ 1/3, i.e., it is roughly given by

the conformal value. We will confirm numerically below that the transition is of first order

and that the speed of sound is close to the conformal value.

We then move on to the precise analysis. In order to study the system at fixed charge,

we perform a Legendre transformation

S̃h = Sh −
∫
d4xΦ(0)ρ(0) = Sh +

∫
d5x

d

dr
[Φρ] . (4.11)

Notice that (using our prescription at r = rc)

SCS =

∫
d5xΦρ′ . (4.12)

Therefore

S̃h = SDBI +

∫
d5xΦ′ρ . (4.13)

In order to write down the final expression for the Legendre transformed action we

need to eliminate Φ′ from the Lagrangian density by inverting (4.6). When doing this
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one should recall that we are working in an expansion of the original DBI action at small

amplitudes of F (L/R), i.e., at small α′. Therefore we will consistently ignore all such terms

(typically higher powers of h) which correspond to higher order terms in the expansion of

the DBI action. Doing this gives us the expression

Φ′=− Gρ

Vρw2e−4A

√
1+ρ2 (Vρwe−2A)−2

[
1− 6κτ2e−2Ah2+6w2e−4Ah4

1+ρ2 (Vρwe−2A)−2 +
3

2

w2e−4Af(h′)2

G2

]
(4.14)

and allows us to cast the final action in a relatively simple form:

S̃h = −
∫
d5xVρG

√
1 +

ρ2

(Vρwe−2A)2

[
1 +

6w2e−4Ah4 + 6κτ2e−2Ah2

1 + ρ2 (Vρwe−2A)−2 +
3

2

w2e−4Af(h′)2

G2

]
,

(4.15)

where

G =

√
1 + fκe−2A (τ ′)2 . (4.16)

In order to find the value of rc, we need to minimize S̃h at fixed %. In the numerical

analysis carried out below, we will simply do this by numerically minimizing of the action

(which is finite for our ansatz so that no regularization is needed) rather than by using the

equilibrium conditions explicitly. It is however instructive to compute the conditions.

There are two contributions to the equilibrium condition for rc. The first one arises

from the variation of h which is necessary as the relation (4.10) needs to remain satisfied.

The second one arises from the discontinuity of the Lagrangian density.10 The variation of

the action due to changing rc at the discontinuity needs to vanish. The condition can be

written as

Disc
δh

δrc

∂L̃h
∂h′

= Disc L̃h (4.17)

evaluated on-shell at r = rc, i.e., substituting the regular solution for h. Here L̃h is the

Lagrangian density of the Legendre transformed action S̃h. This condition is the analogue

of the stability condition (3.19) in the thin layer approximation.

The remaining condition is the analogue of the condition (3.24) and therefore should fix

the normalization of the Abelian gauge field Φ. Similarly as in the case of (3.24), there are

two ways to derive it. First, we may require that there are only boundary contributions

to the variation of the action. Second, we may replace the thermal gas geometry by a

tiny black hole and require that the baryon charges behind the horizon and at r = rc are

at equilibrium.

We discuss first the variation of the action. We may keep rc fixed because assum-

ing (4.17) its variation does not contribute. After this, the solution only depends on the

parameter %. It appears explicitly in the solution (4.9) and affects indirectly the profile of h.

10Recall that due to our prescription that delta functions at r = rc are neglected the two pieces of the

Lagrangian for r < rc and for r > rc need to be treated independently.
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The explicit dependence on % evaluates to an integral of Φ′ after using the relation (4.6).

The variation due to the change in h also gives a localized term. We obtain

δS̃h = −µ δ%+ Φ(rc) δ%+ Disc δh
∂L̃h
∂h′

. (4.18)

The extra terms in this differential vanish if

Φ(rc) = −Disc
δh

δ%

∂Lh
∂h′

= 6M3NcVf0(λ)w(λ)2e−τ
2
feAG−1

√
1 +

ρ2

(Vρwe−2A)2 Disc
δh

δ%
h′ .

(4.19)

We then consider the second condition. Taking the amount of charge behind the

horizon to be ρh, the solution (4.9) is modified to read

ρ =

{
%+ 2Nc

π2 e
−b τ2h3(1− 2b τ2) , (r < rc)

ρh + 2Nc
π2 e

−b τ2h3(1− 2b τ2) , (r > rc)
(4.20)

with

%− ρh =
2Nc

π2
e−b τ(rc)2(1− 2b τ(rc)

2) Disch3(rc) . (4.21)

We then require the variation of the action with respect to ρh near ρh = 0 to vanish. The

contribution due to the explicit dependence on ρh again evaluates to an integral of Φ′.

We obtain

Φ(rc) = Disc
δh

δρh

∂L̃h
∂h′

= −6M3NcVf0(λ)w(λ)2e−τ
2
feAG−1

√
1 +

ρ2

(Vρwe−2A)2 Disc
δh

δρh
h′ . (4.22)

The condition is therefore very similar to (4.19), but the sign is opposite. We notice that

it is the difference %−ρh which sources the discontinuity of h. In the limit of small density,

ρ can be neglected in the equation of motion of h and then h depends on the density only

through the discontinuity. Therefore. in this limit, the variations of % and ρh have exactly

opposite effect on h. Consequently, the two conditions are equivalent.

At finite density, it appears that the conditions (4.19) and (4.22) differ. In the cur-

rent setup we simply choose to satisfy the first condition, as we are anyhow neglecting

backreaction of the charge and higher order corrections in h which are important at larger

charge densities. Therefore, within the range of consistency of our approach, the conditions

are equivalent, and we will simply ignore the disagreement at high density. Alternatively,

the system could be stabilized toward exchanging charge between the bulk and r =∞ by

adding some extra charge at r = rc (and naturally also by adding it at r =∞).

4.3 Asymptotic behavior

We then discuss the asymptotics of the field h. It is straightforward to solve the asymptotics

in the UV. After inserting the standard UV behavior in the action (4.15) and solving for
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h, we find the asymptotics typical for gauge fields: h ' C1 + C2r
2. We require that

non-Abelian sources vanish, and therefore C1 = 0, but C2 remains as a free parameter.

The IR behavior is more complicated. First, we notice that for b > 1 in (4.9) and

because the tachyon diverges faster than r in the IR, the factor ρ/(Vρwe
−2A) tends to zero

in the IR unless h diverges exponentially fast. We will assume that this is the case and

analyze the resulting EoM, which is obtained after neglecting the terms involving ρ2 in

the action:

1

GfVρw2e−4A

d

dr

(
fVρw

2e−4Ah′

G

)
=

4h

fw2e−2A

(
2h2w2e−2A + κτ2

)
. (4.23)

First of all, h = 0 is an exact solution to the full action. There is also a family of regu-

lar solutions

h ∼ h0 exp
[
−Cττ(r)2/r2

]
, (4.24)

which vanish in the IR. Here Cτ is a positive constant which can be expressed in terms of

the IR expansion parameters of the potentials. One may check numerically that there are

no other asymptotic solutions (for which tachyon would diverge so fast that the condition

of ρ/(Vρwe
−2A) vanishing in the IR would be violated).

The IR solutions in principle bring in one more parameter h0 which also needs to be

determined by minimizing the action. We have however checked that in the numerical

analysis below the value of h0 at the minimum is consistent with zero, i.e., in practice the

solution in the IR region (r > rc) simply vanishes.

4.4 Phase diagram and the equation of state

We work in the probe limit: we first construct the TG background solutions [7] in the

absence of baryons, setting the quark mass to zero. The equations of motion and boundary

conditions for the background fields A, f , λ and τ are the same as those described in

section 3.2. We then insert the background in (4.15) and solve the resulting equations of

motion for the baryon field. We explicitly integrate (4.15) to obtain the free energy in the

canonical ensemble, where we subtract S̃h evaluated for h = 0.11 We then need to minimize

this free energy over the free parameter that we left as boundary condition, namely C2 as

defined in the previous subsection. Subsequently, we do a Legendre transform to obtain

the grand potential, which is used to compute the phase diagram, and which is equal to

minus the pressure. Note that in all the subsequent results, we set Nc = 3.

The precise choice of the various potential functions which we use in this section is given

in appendix B. Notice in particular that we choose the asymptotics of the w-function such

that w ∼ λ−4/3 in the IR, with the explicit choice of the function given in (B.11). As we

pointed out above in section 3.3 and proved in appendix A, we must choose the asymptotics

w ∼ λ−wp with wp ≥ 4/3 in order to have a stable TG phase at small, nonzero T and µ,

which is in turn necessary for the approach of this section to work. Moreover notice that

in practice it is impossible to use the same sets of potentials in the two approximation

11This subtraction makes sure that the grand potential is exactly equal to the Legendre transform of the

free energy, not just up to an additive constant.
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Figure 2. Phase diagram on the (µ, T )-plane for the homogeneous ansatz.

schemes considered in this article: in the thin layer approximation of section 3 we were

forced to use w ∼ λ−wp with wp ≤ 2/3 in order to stabilize the baryon phases.

In the final results, we also compare the free energy of the TG and baryonic TG phases

to the chirally symmetric, baryonless BH solutions at xf = 1, which are constructed as

in [16]. The latter solutions therefore model the QGP, and the equation of state in this

phase is that anchored to lattice data in [18] since the choice of potentials is the same. The

comparison of the free energies between the baryonic and QGP phases however comes with

uncertainties, which mostly arise from the normalization of the baryonic free energy. This

is due to the approximations done in this section and the fact that the baryonic ansatz

assumes SU(2) flavor symmetry whereas the QGP equation of state was fitted to data with

2+1 dynamical quarks. In particular our result for the pressure in the baryonic phase may

be somewhat low because of the simple approach.

The phase diagram one obtains is shown in figure 2. It features the following three

phases, corresponding to the three kinds of numerical solutions we discussed above:

• A confining phase with broken chiral symmetry. In contrast to the confining phase

obtained in the thin layer approximation, this phase is a thermal gas phase, which

implies that, for instance, glueballs are absolutely stable, not just long-lived like they

were in the thin layer approximation.

• A confining phase with broken chiral symmetry and condensed baryons, i.e., the new

ingredient from the approach of this section.

• A deconfined QGP phase with chiral symmetry.

The pressure in the first phase in our approach is constant [16], and it is independent of

the temperature also in the baryonic phase. Therefore the baryon-vacuum transition line
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Figure 3. Pressure at T = 0 using the homogeneous ansatz for the baryon phase. Metastable

branches are denoted by dashed lines.

is exactly vertical. Temperature dependence in these phases would arise from stringy loop

effects [17]. In the QGP phase, nontrivial temperature effects are included, and the result

for the pressure can be seen as an extrapolation from the fit to lattice data around µ = 0

as we have explained above [16, 18].

The location of this transition depends on the parameter b described above. In the

results described in this section, b = 10 was chosen to have the transition at approximately

µ = 313 MeV ≈ mproton/3 (where we ignored the small binding energy of nuclear mat-

ter). Another thing to note is that, unlike within a similar approximation in the WSS

model12 [43], the baryonic phase does not survive to arbitrarily large values of the chemical

potential. Lastly, because in the thermal gas phase temperature dependence is suppressed,

the baryonic phase transition does not end at a critical point, but instead continues until

the QGP phase becomes dominant.

In figure 3, the pressure at T = 0 is plotted. The phase transitions are clearly visible.

The latent heat at the vacuum to nuclear matter transition is ∆ε ≈ 51 MeV fm−3, and at the

nuclear matter to quark matter transition ∆ε ≈ 687 MeV fm−3. In principle, this pressure

could be used as an equation of state to solve the Tolman-Oppenheimer-Volkov equations,

thereby obtaining a mass-radius relation for neutron stars. (See, for instance, [79, 80] for

the application in the WSS model.) We leave this for future work.

The quark number density is shown in figure 4. From the fact that the number density

jumps across the phase transitions, one can clearly see that the phase transitions are indeed

first order. The baryon number density (which is obtained from the quark number density

by dividing by Nc = 3) at the end of the transition from the vacuum to nuclear matter is

nb ≈ 0.056 fm−3, i.e., nb ≈ 0.35ns where ns ≈ 0.16 fm−3 is the nuclear saturation density.

12A phase transition at a large value of the chemical potential is obtained in the WSS model in approaches

using interacting solitons [39, 43].
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Figure 4. Quark number density at T = 0 using the homogeneous ansatz for the baryon phase.

This indicates that the nuclear matter number densities and pressures as a function of the

chemical potential lie below the band of nuclear matter EoS (obtained by extrapolating

the low density equations of state to higher densities [5, 81]). This may be at least in part

due to the uncertainties in the normalization of the baryon action (4.15) and in the rough

approximations done in this section. We comment more on this in section 5. We also note

that the baryon to quark matter transition is strongly first order: the density jumps at the

transition roughly by a factor 4.5.

Figure 5 shows the location of the discontinuity in the bulk. The soliton stays roughly

in the same place for different values of the chemical potential. Also, in units of ΛQCD, rc
is roughly O(1), as one would expect.

The isothermal speed of sound is shown in figure 6. The vacuum (TG) phase does not

have a speed of sound, as it has no pressure and no energy density. At the vacuum to baryon

matter transition the speed of sound immediately jumps to a value, which is larger than

expected for nuclear matter in this regime. Such a deviation is not surprising because the

homogeneous approximation used here is expected to be reliable only at higher densities.

The change of the speed of sound at the baryon to quark matter transition is relatively

large, indicating a jump from a hard to soft equation of state at the strongly first order

transition. Noteworthy is that the speed of sound is above the conformal value c2
s = 1/3

in two intervals of the chemical potentials. For large values of the chemical potential, it

approaches the conformal value from above. Notice that it is likely that speeds of sound

above the conformal value are necessary in order to pass the astrophysical constraints

from observations of neutron stars and their mergers (see, e.g., [82, 83]). Interestingly, the

baryonic equation of state in the WSS model has been seen to also violate the conformal

bound clearly [39]. For other work towards realizing stiff phases in holographic models for

dense QCD see [84, 85].
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Figure 6. Speed of sound at T = 0. The dashed horizontal line denotes the conformal value.

Lastly, the adiabatic index, which is defined as Γ = d log p/d log n, is plotted in figure 7.

Similarly as the speed of sound, this quantity measures the stiffness of the equation of state,

and a piecewise constant Γ is often used in polytropic realizations of the equation of state.

Its order of magnitude in the baryonic phase is comparable with what is expected from

nuclear matter models (see, for example, [81, 86]).
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Figure 7. Adiabatic index at T = 0.

5 Discussion and outlook

In this work, we explored how baryonic physics can be included in the V-QCD model.

Baryons play a large role in the cold dense matter region of the QCD phase diagram.

Neutron stars consist of matter located in this region of the phase diagram, which is one of

the main motivations for this work. In holography, baryons are dual to solitons sitting in the

bulk. Ideally, one would obtain these solitons explicitly. This is unfortunately challenging

especially in bottom-up models with potentials that are phenomenologically matched to

QCD. In this work, we tried to get around this problem by two different approximations:

one in which the baryons are approximated as a thin layer of noninteracting solitons, and

one in which they are described by a homogeneous non-Abelian gauge field configuration.

These approximations are rough, and likely to miss some features of real baryon dynamics,

but still we obtained several encouraging results.

Let us first discuss the thin layer approximation studied in section 3. This approxima-

tion has baryonic matter appearing in roughly the expected region in the phase diagram

in figure 1. Also, at large values of the chemical potential, the baryonic matter eventually

makes way for a non-baryonic deconfined phase. However, this approximation also has

some unrealistic aspects, such as the appearance of a chirally symmetric baryonic phase.

The most serious of these issues is the stability of the location of the solitons. In particular,

the solitons fall into the deep IR unless in the asymptotic IR behavior of w ∼ λ−wp , we

choose wp ≤ 2/3. Such a power law has other consequences though, the most important

of which is that at finite chemical potential the thermal gas is replaced by a small black

hole phase which approaches a thermal gas solution as µ → 0. This means that at finite

chemical potential, the theory is only confining up to a certain distance scale, and that

glueballs are no longer stable, but instead have a very long lifetime.
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This issue is not present in the other approach we studied in section 4, namely the

homogeneous approximation. In this approach, the solitons naturally stabilize at a coor-

dinate distance from the boundary of order O(1). In fact, as we discussed in section 2.2,

in order to satisfy phenomenological constraints the power law in the w asymptotics has

to be exactly equal to −4/3.

In the homogeneous approximation, the phase diagram (see figure 2) is qualitatively

similar to what one would expect (within the limitations of the approach). For small

temperatures and small chemical potentials, there is a thermal gas phase, which displays

confinement, a linear glueball spectrum and broken chiral symmetry. At larger tempera-

tures, there is a phase transition to a deconfined phase where chiral symmetry is restored. If

instead of increasing the temperature one increases chemical potential, a phase of non-zero

baryon density appears, which is still confining and has broken chiral symmetry. Increas-

ing the chemical potential further, the baryonic phase gives way to a deconfined chirally

symmetric plasma phase.

There is a hint that there is something going on in that region: at large chemical

potential, as one takes T → 0, the geometry becomes asymptotically AdS2. This can

be understood as a signal of a quantum critical regime [16], which may be subject to

instabilities. In this region the entropy is finite even at zero temperature. This could

indicate that there is an operator missing in our bulk effective field theory, and the end

point of the instability induced by this operator is another phase not included in the

present analysis. It is tempting to interpret this as an instability towards an exotic, i.e.,

color superconducting phase in QCD. It would be interesting to understand if there are

connections to the recent work on color superconductivity in other models [87–89].

In addition to the phase diagram, we computed several thermodynamical observables.

The most striking aspect of these is that the speed of sound clearly exceeds the value of

conformal theories. This result thus joins the list of examples where this happens [84, 85,

90]. From the point of view of neutron star physics, this result is not unexpected though,

since experimental evidence seems to indicate that speeds of sound above the conformal

value are necessary [82, 83].

For future work, it would be very interesting to apply our results to neutron star

physics, following the ideas of [18, 91, 92]. In particular, one could use the equation of state

as input for the Tolman-Oppenheimer-Volkov equations to obtain a mass-radius relation for

non-rotating neutron stars. Also, one could use the equation of state to simulate neutron

star mergers. Interestingly, our equation of state includes a first order transition between

the baryon and quark matter phases at low densities which could be easily reachable in

merger events. Actually, the densities which we obtained in this model are even too low

to be consistent with extrapolations of equations of state from nuclear matter and the

bound of the maximal neutron star mass from Shapiro delay measurements, as we pointed

out in section 4.4. This value is affected, among other things, by the normalization of the

baryon action (4.15). This normalization contains uncertainties due to the inhomogeneities

neglected in section 4, and because we restricted to the ansatz with SU(2) flavor symmetry

which is also a rough model in the Veneziano limit. Improving on these issues may increase

the pressure in the baryonic phase pushing the transition from baryons to quarks to higher
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chemical potentials. Note that such a change is also likely to make the excess over the

conformal value for the speed of sound more drastic, see figure 6. We could also simply

treat the normalization of the action (3.18) as an additional fit parameter that could be

determined e.g. by comparing to the nuclear saturation density as discussed in section 4.4.

Adding such an extra parameter is enough to make the EoS of the model compatible with

all known constraints — this will be discussed in more detail in future publications.

In light of neutron stars, it would also be interesting to expand the model to study

the equation of state for neutron stars in more detail. Currently, the V-QCD model that

we are considering has a flavor sector consisting of Nf identical massless quarks, all with

charge +1. In the interior of neutron stars, however, the number of neutrons is expected to

be greater than the number of protons. In principle, in the V-QCD model one could also

differentiate between different quark species, giving each a different mass and couplings to

external gauge fields.13 This would then allow to set the charges of the different species

appropriately, as well as to introduce an isospin chemical potential, which could force an

imbalance between the quark species to mimic that in a neutron star.

One could also, since neutron stars are known to have strong magnetic fields, study

the effect of a magnetic field on the baryonic matter. Note that in [93–95], the effects of

a magnetic field on the plasma phase was already studied. One could in principle then

do a similar analysis as was done in this work to include the effect of the magnetic field

on the baryonic matter too. This has been studied in the WSS model in [96]. Another

interesting extension would be to study the transport properties [97, 98] of dense nuclear

matter. Dissipation plays a role even in isolated neutron stars, and (at least) bulk viscosity

is expected to be relevant in neutron star mergers [99].

Another thing that would be interesting is to explore different choices for the CP-odd

potential. In this work, we chose Va(λ, τ) = exp(−bτ2) with b = 10, but in principle one

could even choose a different functional form entirely, possibly including dependence on λ.

This will require establishing the CS terms of section 2.4 for the more general choice of

potential. It would be interesting to study the effects of different choices on the baryon

physics. One could then try to match the potential to match nuclear matter models, or

even the properties of neutron stars once more astronomical observations become available.

Another possible improvement to the approximations employed in this work would be

to try to include the effect of backreaction of the homogeneous bulk gauge field h onto the

geometry. This is in principle possible, but it complicates the numerical analysis, therefore

we leave this for future work. A similar possible improvement would be to include more

terms in the DBI expansion using the results in the literature [53–56]. The full non-

Abelian DBI action is not known, but one may use the action in (2.4) with the standard

trace or by using the symmetrized trace prescription. Moreover, one could check whether

the related approximation scheme suggested in [44], which is essentially based on applying

the homogeneous assumption directly to the field strengths F rather than the gauge fields,

leads to any relevant changes in the results. It will be interesting to see whether these

13Note that to incorporate the effect of multiple quark species onto the plasma phase, one would have to

include the backreaction of each quark species. This would require that for each species i, there are Nf,i
identical copies.
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improvements remove the tension between the nuclear matter EoS predicted by V-QCD

and current bounds on the EoS from effective field theory for nuclear matter and from

observations of neutron stars.

A final thing that would be interesting, if it can be done, is to attempt to obtain the

soliton solutions explicitly. This would certainly be worthwhile, for the following reason.

As was mentioned in the beginning of section 4, the homogeneous approximation implicitly

assumes a high density of baryons. This means that the approximation is not well suited

to the low densities one expects near the vacuum to nuclear matter phase transition. In

this regime description in terms of weakly interacting solitons could be more appropriate.

If soliton interactions can be taken into account, they can then describe both low densities

and high densities equally well.
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A Asymptotics of w(λ) and the phase structure

As it turns out the IR asymptotics of the coupling function w(λ) of the gauge field may

affect drastically the phase diagram of the model, which leads to a constraint for the IR

behavior of this function which is completely independent of the presence of baryons. The

solutions to analyze in order to see this are the small temperature near-extremal tachyonic

black holes. In particular, as it turns out, it is important to compute what is the chemical

potential in such backgrounds in the limit of small black holes. In this limit the chemical

potential may either tend to zero or to infinity. The former option means that tachyonic

black holes exist at arbitrary small chemical potentials and temperatures, and they will

also dominate over the thermal gas solutions (which do not have a black hole horizon).

Therefore the phase diagram has an undesired structure where the thermal gas phase

(identified as the chirally broken confined phase of QCD in [15, 16]) is subdominant for

all positive µ. The dominant black holes are very small (as we shall see below) and the

backgrounds are close to the thermal gas, so that the change in thermodynamics with

respect to the thermal gas solution is tiny. However, the dominance of the black holes

mean also that the Silver Blaze property of QCD (see [72]) is lost. As the result differs

qualitatively from that obtained from QCD, the dominance of the black holes at small T

and µ is clearly disfavored.
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We shall then analyze for which potentials this phenomenon occurs. Many of the

details will be based on numerical analysis, and we will not present rigorous proofs. We

assume that the IR behavior of the potentials is

Vg ∼ λ4/3 , Vf0 ∼ λvp , κ ∼ λ−4/3 , w ∼ λ−wp , (A.1)

up to logarithmic corrections in λ. The parameters must satisfy the following constraints:

4/3 ≤ vp ≤ 10/3 and wp ≤ 4/3 [7, 48]. Further we will take the logarithmic corrections to

Vg and κ to be those singled out in [7–9, 48]. After this, our potentials satisfy all qualitative

IR constraints established in earlier work. The potentials used in the numerical analysis of

this article (given in appendix B) belong to this class of potentials.

Let us first recall what is the “standard” behavior of the background in the IR in

the absence of charge and black hole horizon, i.e., for the thermal gas solutions, for the

specified potentials. The IR behavior in the gluon sector is given by [8, 9]

log λ ∼ 3

2
r2 , A ∼ −r2 ,

( r
Λ
� 1

)
. (A.2)

For the tachyon we have

τ ∼ rCτ (A.3)

where Cτ > 1 is a known constant.

As we shall show, the structure of the relevant small BH backgrounds has the following

scaling regimes:

• For rΛ� 1, the background follows the “standard” UV behavior established in [7–9].

The UV regime will be irrelevant for the thermodynamics.

• For r∗Λ � rΛ � 1, where r∗ will be specified below, the background follows the

“standard” IR behavior.

• For rh � r � r∗, the metric will follow the standard IR behavior but the tachyon

will be frozen. Here rh is the value of r at the horizon.

The UV regime will be irrelevant for our analysis, so we restrict to the IR regime r/Λ� 1.

The backreaction of the flavor to the glue is determined by the effective potential [7, 16]:

Veff(λ, τ) = Vg(λ)− xVf0(λ)e−τ
2√

1 +K (A.4)

where

K =

(
ρ̂

e3AVf0(λ)e−τ2w(λ)

)2

. (A.5)

For the relevant solutions the charge ρ̂/Λ3 will be tiny so that for r ∼ 1/Λ the charge is

decoupled, i.e., K � 1. Therefore we will be considering the limit ρ̂→ 0. As r grows, the

solution behaves as the thermal gas and follows the asymptotics given in (A.2) and in (A.3).

In particular the growth of the tachyon decouples the flavor from the glue. Because of the

exponential dependence of K on the tachyon, its growth will result in K being of the order
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of one at some location, which we mark by r∗. Since the tachyon dependence dominates in

K, we have roughly ρ̂ ∼ e−τ(r∗)2 . Consequently,

r∗ ∼ (− log(ρ̂))1/(2Cτ ) . (A.6)

As r grows further, K will also grow. This is seen as follows. At large K the tachyon EoM

in (3.12) becomes
d

dr

[
fκ(λ)τ ′

w(λ)G

]
' 0 , (A.7)

so that the term in the square brackets is a constant. We note that fκ(λ)/w(λ) is sup-

pressed in the IR: this is clear for wp < 4/3, and must also hold for wp = 4/3 for the

spectrum to agree with QCD [48]. But τ ′/G is bounded in no matter how fast the tachyon

grows. Therefore the constant must be zero, and the regular solution for the tachyon is

simply the constant solution. Then using the asymptotics (A.2), K grows towards the IR

if wp > vp − 2. This equation is satisfied for the potentials we used in this article, and we

will also assume this in the analysis below.14

When K � 1, the effective potential reads

Veff(λ, τ) ' Vg(λ)− xρ̂

e3Aw(λ)
. (A.8)

Since wp > vp − 2 > −2/3, the second term will grow towards the IR and eventually

become comparable to Vg. This marks the regime where the regular solution must develop

a horizon: we may verify numerically that solutions with horizon at even higher values of

r do not exist. The solution in the vicinity of the horizon is not analytically tractable,

and consequently we cannot estimate the temperature of the solutions analytically, but we

may check numerically that as rh approaches its highest value T/Λ tends to zero. From

the requirement of the vanishing of (A.8) we obtain that

ρ̂

e3Ah
∼ λ4/3−wp

h , ρ̂ ∼ λ−2/3−wp
h , rh ∼

√
− log ρ̂

wp + 2/3
. (A.9)

This shows that we have the hierarchy assumed above, rh/Λ � r∗/Λ � 1, in the

limit ρ̂→ 0.

It remains to check the behavior of the chemical potential for these solutions. It is

given by

µ = −
∫ rh

0
drΦ′(r) =

∫ rh

0
dr

ρ̂

Vf0(λ)e−τ2w(λ)2eA
G√

1 +K
. (A.10)

The integrand −Φ′(r) increases fast with r in the regime r∗Λ� rΛ� 1 due to the tachyon

dependence. When rh � r � r∗ we find that

− Φ′(r) ∼ Ge2A

w(λ)
∼ λwp−4/3 , (A.11)

14Our results will be valid also when this inequality is not satisfied, but the analysis will be more com-

plicated.
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where we used the fact that for the potentials and tachyon asymptotics specified above,

G has mild dependence on r which we ignore here. For wp < 4/3 we find that −Φ′(r)

decreases with r in this region. Therefore the integral (A.10) is dominated at r ∼ r∗, and

we find

µ ∼ λ(r∗)
wp−4/3 (A.12)

up to subdominant multiplicative corrections. For wp < 4/3 (but not for wp = 4/3) and

given (A.6), we therefore find that µ → 0 as ρ̂ → 0. Combining this with the numerical

observation that these black hole solutions may also have an arbitrarily small tempera-

ture, we conclude that tiny tachyonic and charged black holes exist at arbitrarily small

temperatures and chemical potentials.

Since r∗ → ∞ as ρ̂ → 0, the background approaches the thermal gas background

pointwise in this limit. As the IR contributions to the grand potential are suppressed by

the behavior of the metric and/or the tachyon, the value of grand potential for the black

holes approaches that of the thermal gas. As ρ̂ > 0 from the first law of thermodynamics

it immediately follows that the black holes are dominant over the thermal gas solutions

when wp < 4/3 (as was also seen numerically in figure 1).

Therefore we conclude that a reasonable phase diagram can only be obtained for wp =

4/3: whether µ tends to zero or infinity in the zero charge limit depends on subleading

corrections to (A.12). Numerically we have verified in this article and in [16] that for

wp = 4/3 there are indeed choices of potentials which give the desired phase structure (i.e.,

no tachyonic black holes at small T and µ).

B Choice of potentials in the V-QCD action

We used two sets of potentials in this article, one set for the thin layer approximation

in section 3, and another for the homogeneous baryons of section 4. Notice that due

to the constraints for the asymptotics of w(λ) explained in section 3.3, we cannot use

the same set of potentials with both approaches. The sets of potentials were chosen to

satisfy various asymptotic constraints (see, e.g., [48, 49]) and fitted to lattice data for QCD

thermodynamics as explained in [18]. The latter set equals the set 7a in [18] up to small

changes in the potential κ(λ) which leave the thermodynamics of the deconfined phase

unaffected. For the former set, where we chose the function w to have the asymptotics

w ∼ λ−2/3 as we discussed in the main text, the fit is somewhat worse than for the latter

set. That is, the lattice data favors the asymptotics w ∼ λ−4/3.

Notice that while the number of free parameters is high, the fit to lattice data is

“stiff”: after fixing the asymptotic behavior of the potentials, observables mostly depend

very mildly on the details of the potentials in the regime λ = O(1). It is in this regime where

most of the remaining freedom is, and it is controlled by the fit parameters discussed here.

For the potentials Vg, Vf0, and κ we used the following ansatz in both cases:

Vg(λ) = 12

[
1 + V1λ+

V2λ
2

1 + λ/λ0
+ VIRe

−λ0/λ(λ/λ0)4/3
√

log(1 + λ/λ0)

]
, (B.1)
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Vf0(λ) = W0 +W1λ+
W2λ

2

1 + λ/λ0
+WIRe

−λ0/λ(λ/λ0)2 , (B.2)

1

κ(λ)
= κ0

[
1 + κ1λ+ κ̄0

(
1 +

κ̄1λ0

λ

)
e−λ0/λ

(λ/λ0)4/3√
log(1 + λ/λ0)

]
. (B.3)

Here the UV parameters were given by

V1 =
11

27π2
, V2 =

4619

46656π4
, (B.4)

κ0 =
3

2
− W0

8
, W1 =

8 + 3W0

9π2
, W2 =

6488 + 999W0

15552π4
, (B.5)

where we set xf = Nf/Nc = 1, and chose W0 = 0 for the first set (thin layer of noninter-

acting baryons) and W0 = 2.5 for the second set (homogeneous field). The parameters for

the glue potentials were chosen to be

λ0 = 8π2/3 , VIR = 2.05 (B.6)

for both sets of potentials. They were obtained by fitting the lattice data [100] for the

thermodynamics of pure Yang-Mills theory [17, 18].

The remaining parameters (mostly governing the potentials in the IR) and the function

w(λ) are different for the two potential sets.

The first set, used in section 3, has the following ansatz for w(λ)

1

w(λ)
= w0

[√
λ/λ0 +

w1(λ/λ0)3/2

1 + λ/λ0
+ w̄0(λ/λ̂0)2/3

(
1 +

w̄1λ̂0

λ

)
e−λ̂0/λ

]
, (B.7)

where the UV behavior was chosen to produce qualitatively correct thermodynamics at

large T and small µ/T [18], and the IR asymptotics w ∼ λ−2/3 was chosen such that

the baryon remains close to the UV boundary. The full set of UV and/or normalization

parameters is

κ1 =
1

3π2
, W0 = 0 , w0 = 0.93, w1 = 0.75 , M3 = 1.12

1 + 7/4

45π2
. (B.8)

Moreover, when W0 = 0 the AdS radius ` = 1. The IR parameters are

WIR = 0.8 , κ̄0 = 1.5 , κ̄1 = −0.7 , (B.9)

λ̂0 = 8π2 , w̄0 = 0.6 , w̄1 = 5.8 . (B.10)

These parameters were chosen such that the EoS at µ = 0 and its first nonzero cumulant

compare relatively well with the lattice data. As we remarked above, due to the requirement

w ∼ λ−2/3, the fit is a bit worse than for the potentials considered in [18] (and therefore

also worse than for the other set given below).

The other set, used in section 4, is the “potentials 7a” constructed in [18] up to

small modifications in the choice of κ(λ) which do not affect the thermodynamics of the

deconfined quark matter phase. We choose

1

w(λ)
= w0

[
1 + w̄0e

−λ̂0/λ (λ/λ̂0)4/3

log(1 + λ/λ̂0)

]
. (B.11)
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The UV parameters are given by

κ1 =
11

24π2
, W0 = 2.5 , w0 = 1.28 , M3 = 1.32

1 + 7/4

45π2`3
(B.12)

with the AdS radius ` = (1− 2.5/12)−1/2. The IR parameters are

WIR = 0.9 , κ̄0 = 1.8 , κ̄1 = −0.23 , (B.13)

λ̂0 = 8π2/1.18 , w̄0 = 18 . (B.14)

C Discontinuities and junction conditions for the thin layer approxima-

tion

In this appendix we consider several technical details of the thin layer approximation of

section 3.

C.1 Junction conditions

As we are backreacting the baryons to the metric, we need the Israel junction conditions

for the bulk fields at the location of the baryon. We will consider here the general case

where part of the charge sits behind the horizon and there is additional charge due to the

baryon. That is, ρ̂ = ρ̂h for r > rb and ρ̂ = ρ̂h + ρ̂b for 0 < r < rb. Since the source is

independent of the tachyon, its junction condition is obtained by requiring the continuity

of the term in the square brackets in (3.12). Denoting f(r±b ) = limr→rb± f(r), we find

τ ′(r−b ) =
τ ′(r+

b )
√

1 +K(r+
b )√

1 +K(r+
b ) +G(r+

b )2(K(r−b )−K(r+
b ))

, (C.1)

where K(r−b ) = (ρ̂h + ρ̂b)
2K(r+

b )/ρ̂2
h. The source term however does depend on the metric

and the dilaton, so its contribution to the Einstein equations needs to be considered. We

notice that the dependence on the metric is through the factor
√
−gtt =

√
feA. Conse-

quently, the constraint equation (3.13) is unchanged, but source terms are generated in the

other equations:

6fA′′ + 6fA′2 + 3f ′A′ +
4fλ′2

3λ2
− e2AV (λ) + xe2AG

√
1 +KVf (λ, τ)

= −(2π2M3ρ̂b)xVf0(λ)w(λ)2
√
fe−2Aδ(r − rb) , (C.2)

f ′′ + 3f ′A′ − xe2A GK√
1 +K

Vf (λ, τ)

= (2π2M3ρ̂b)xVf0(λ)w(λ)2
√
fe−2Aδ(r − rb) . (C.3)

These equations imply the following discontinuities of the derivatives

A′ = − 1

6f
N θ(r − rb) + continuous , f ′ = N θ(r − rb) + continuous , (C.4)
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where

N = (2π2M3ρ̂b)xVf0(λ)w(λ)2
√
fe−2A

∣∣∣
r=rb

. (C.5)

The discontinuity of λ can be read from its second order equation, which reads

fλ′′

λ2
+ regular =

3

8
Ñ δ(r − rb) , (C.6)

where

Ñ = (2π2M3ρ̂b)x
√
fe−2A d

dλ

[
Vf0(λ)w(λ)2

]
r=rb

. (C.7)

This implies that

λ′ =
3λ2

8f
Ñ θ(r − rb) + continuous . (C.8)

C.2 Baryon location

Having solved the discontinuities we then derive the equilibrium condition (3.19). In order

to compute the variation of the first term in (3.18), we first need to analyze the discontinuity

of the tachyon more carefully. For clarity we replace the δ function by a continuous estimate

δε(r − rb) and a continuous step function satisfying θ′ε(r − rb) = δε(r − rb). Then we can

write that

K =
(ρ̂h + ρ̂b θε(rb − r))2

(e3AVf (λ, τ)w(λ))2 . (C.9)

However, the only property of K that we will need below is the fact that near the discon-

tinuity
∂K

∂rb
' −∂K

∂r
(C.10)

since the terms where the derivative operates on the step function dominate.

The tachyon behavior near the discontinuity becomes

τ ′(r) '
τ ′(r+

b )
√

1 +K(r+
b )√

1 +K(r+
b ) +G(r+

b )2(K(r)−K(r+
b ))

, (C.11)

G(r) ' G(r+
b )

√
1 +K(r)√

1 +K(r+
b ) +G(r+

b )2(K(r)−K(r+
b ))

. (C.12)

The discontinuous behavior in the (derivative of the) first term of (3.18) is included in

G(r)
d

drb

√
1 +K(r) ' −1

2

G(r)√
1 +K(r)

∂K

∂r

' −1

2

G(r+
b )√

1 +K(r+
b ) +G(r+

b )2(K(r)−K(r+
b ))

∂K

∂r
. (C.13)

Notice that the discontinuity of the tachyon in G(r) is a reaction to the explicit rb de-

pendence of the charge density and the derivative should not act in this discontinuity.
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Integrating over r yields∫
dr G(r)

d

drb

√
1 +K(r)

' 1

G(r+
b )

(√
1 +K(r+

b )−
√

1 +K(r+
b ) +G(r+

b )2(K(r−b )−K(r+
b ))

)
. (C.14)

The second term in (3.18) can be treated in a more straightforward way, noticing first

that the continuous estimates for the discontinuities of λ′, A′, and f ′ are simply obtained

by replacing δ 7→ δε (which is the case because the coefficients of the δ-functions in (C.2)

and (C.3) are continuous). After partial integration, the contribution from the second

term is∫
dr δε(r − rb)

d

dr

[
Vf0(λ)w(λ)2

√
feA

]
=

∫
dr δε(r − rb)

√
feA

[
λ′
d

dλ
Vf0(λ)w(λ)2 + Vf0(λ)w(λ)2

(
A′ +

f ′

2f

)]
. (C.15)

Taking into account the ε regularization, one immediately obtains the expression in (3.19)

as the r-integral leads to the averages of the derivatives over the discontinuity.

As a consistency check, we show that the equilibrium condition follows from the consis-

tency of the equations of motion. Namely, the constraint equation (3.13) can be written as

12fA′2 + 3f ′A′ − 4fλ′2

3λ2
+
xe2A

√
1 +KVf (λ, τ)

G
= continuous , (C.16)

where
√

1 +K

G
'

√
1 +K(r+

b ) +G(r+
b )2(K(r)−K(r+

b ))

G(r+
b )

. (C.17)

Moreover, using

A′(r±b ) = 〈A′〉 ∓ N
12f

, f ′(r±b ) = 〈f ′〉 ± N
2
, λ′(r±b ) = 〈λ′〉 ± 3λ2Ñ

16f
(C.18)

when evaluating the discontinuity of the left hand side in (C.16), we obtain

0 =−〈A′〉N− 1

2f
〈f ′〉N−〈λ′〉Ñ

+xe2AVf (λ,τ)
1

G(r+
b )

[√
1+K(r+

b )−
√

1+K(r+
b )+G(r+

b )2(K(r−b )−K(r+
b ))

]
, (C.19)

which is the same condition as (3.19).

C.3 Variation of the on-shell action

Finally, we check explicitly that the contributions to the first law of thermodynamics from

r = rb are absent. To this end we consider a generic variation of the on-shell action around a

saddle-point configuration. As we already pointed out, the source term does not contribute
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to the variation thanks to the condition (3.24). As usual, the variation of the bulk term

becomes a total derivative. In our case, the relevant variation terms read

δSbulk = M3N2
c

∫
d5x

d

dr

[√
−detg

(
gµνδΓrνµ − gµrδΓννµ

)]
+

∫
d5x

d

dr

[
∂Lglue

∂λ′
δλ

]
+

∫
d5x

d

dr

[
∂L(0)

DBI

∂Φ′
δΦ

]
(C.20)

= −M3N2
c

∫
d5x

d

dr

[
e3A

(
5A′δf + 8fδA′ + δf ′ +

8fλ′δλ

3λ2

)
+ xρ̂δΦ

]
, (C.21)

where we readily ignored the tachyon term which will not contribute at r = rb. In order

to make the variation of the gravitational action well-behaved we also need to add the

Gibbons-Hawking term

SGH = M3N2
c

∫
d5x

d

dr

[
e3A

(
8fA′ + f ′

)]
. (C.22)

Adding the variation of this term, the result reads

δSdisc = M3N2
c

∫
d5x

d

dr

[
e3A

(
24fA′δA+ 3f ′δA+ 3A′δf − 8fλ′δλ

3λ2

)
− xρ̂δΦ

]
, (C.23)

where the subscript “disc” refers to the fact that we are only keeping the terms which are

potentially discontinuous at r = rb.

It suffices to show that the expression in the square brackets of (C.23) is in fact

continuous at r = rb. To do this, we need to consider the variation of (3.24). This leads

to two kind of contributions: one due to the variation of rb and the other due to the

variation of the fields. The former was actually already computed above in section C.2

using the Legendre transformed action. In order to see this explicitly, we again consider

a continuous estimate of the delta function, so that the variation of the left hand side

of (3.24) is interpreted as (omitting the trivial factor δrb)∫
drδε(r − rb)Φ′(r) . (C.24)

Inserting here the solution of Φ′ from (3.8) and G(r) from (C.11) we find that∫
drδε(r − rb)Φ′(r) '

1

2ρ̂b

∫
dr

e5AVfG(r+
b )

w(λ)
√

1 +K(r+
b ) +G(r+

b )2(K(r)−K(r+
b ))

(C.25)

=
e5AVf (λ, τ)

ρ̂bG(r+
b )

(√
1 +K(r+

b )−
√

1 +K(r+
b ) +G(r+

b )2(K(r−b )−K(r+
b ))

)
. (C.26)

The variation of the right hand side of (3.24) is computed as in (C.15) so the variations

of rb cancel after imposing (3.19). Therefore we are left with the variations of the fields

in (3.24), which lead to

e−3Axρ̂bδΦ = N
(
δA+

δf

2f

)
+ Ñ δλ

∣∣∣∣
r=rb

. (C.27)
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We then find for the discontinuity in (C.23)

Disc

[(
24fA′δA+ 3f ′δA+ 3A′δf − 8fλ′δλ

3λ2

)
− e−3Axρ̂δΦ

]
r=rb

=−N δA−N δf

2f
− Ñ δλ+ e−3Axρ̂bδΦ = 0 . (C.28)

Collecting the results, we have shown that the variation of the on-shell action only receives

contributions at the boundary.

As a final remark, we notice that the Gibbons-Hawking term

SGH = M3N2
c

∫
d4x

[
−LGH(r = 0) + LGH(r−b )− LGH(r+

b )
]
,

LGH = e3A
(
8fA′ + f ′

)
,

(C.29)

also contains a term localized at r = rb as LGH is discontinuous at this point.
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