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1 Introduction

Air pollution poses one of the biggest environmental risks to health according to a
report by the World Health Organization (WHO) [38|. The health issues poor air
quality can cause range from headache [46], lung and cardiovascular diseases [4, 20]
to cancer [40]. However, air pollution has even been linked to infant mortality [32],
autism [24| and decreased cognitive performance [51|. Indoor and outdoor air pol-

lution is estimated to have caused the death of around 7 million people in 2012 [45].

Air pollutants in general are substances in the air that can have harmful effects
on humans and the environment. The most harmful ambient air pollutants are
gases such as NO,, Oz and SO, and particulate matter (PM). Gaseous pollutants
are either directly or indirectly emitted from combustion [37], whereas particulate
matter consists of respirable particles such as sulphate, nitrates, ammonia, black
carbon and mineral dust [3]. PM is also likely to contain micro plastics and their
concentration is expected to increase in the next decades [39]. PM is often discussed
with respect to the size of the diameter of the particle (in micrometers). For example
PM, 5 and PM, refer to particles that are respectively no greater than 2.5 and 10

micrometers in size.

Indications of Air Quality

For improving monitoring on the amounts of air pollution, air quality standards and
air quality indexes have been developed. This section goes through their purposes,

and the differences between the two.

Air Quality Standards

To help protect public health against polluted air on a global scale, WHO has
released guidelines (Table 1) for the amounts of ambient air pollution that may cause
health issues [37]. Similar air quality standards have been set by every country to
support public health, but they are not bound to the WHO guidelines. Air quality
standards specify threshold values for each pollutant that should not be exceeded,
usually separately for short and long-time period. As an example the air quality
standards of China! and Finland are shown in Table 1. All thresholds except NO,

!The air quality standards in China are divided into two classes. This is class 2 corresponding

to standards in urban and industrial areas. Class 1 applies to special areas, such as national parks.



Table 1: Guidelines of exposures for different air pollutants by the World Health
Organization [37] and the air quality standards of Finland [6] and China [36].

Air quality standards for each pollutant (png/m?3) | WHO FIN CHN
annual mean 10 25 35
PM, 5
24-h mean 25 NA 75
annual mean 20 40 70
PM;y,
24-h mean 50 50 150
Ozone (O3) 8-h mean 100 100 160
) o annual mean 40 40 40
Nitrogen dioxide (NO,)
1-h mean 200 200 200
24-h mean 20 125 150
Sulphur dioxide (SO,) 1-h mean NA 350 500
10-min mean 500 NA NA

differ between the two countries, and many of them are greater than the guidelines
set by WHO. This implies that falling below the national threshold values does not

necessarily guarantee an equally healthy environment to live in.

Air Quality Indexes

Compared to the threshold value of an air quality standard, a more fine grained way
to indicate the amount of pollutants is to use an air quality index, which in Finland
is set by the Helsinki Region Environmental Services Authority and the National
Institute for Health and Welfare (shown in Table 2). Air quality indexes are values
indicating air quality level by giving descriptive name to pollutant values that can
be used to easily classify the air quality on a discrete scale, such as from good to bad.
Similarly to air quality standards, air quality indexes vary between countries. For
example, the PM component of the air quality indexes of Finland and China can be
seen in Table 3. The differences in air quality of these two countries are extreme. In
case of PM, 5, lightly polluted in China corresponds to very poor in Finland, and the
highest category of China goes beyond the highest values in the Finnish index. Air
quality index is far from being well defined, as it might be defined individually on a
national level, by a company, or even by a single study [10], but the idea is universal
— to have different quality levels, such as from good to bad, where each level and
pollutant have a defined concentration range. Air quality level is usually defined

by the maximum concentration for a single pollutant yielding the worst level from



Table 2: Index values of different compounds (ng/m?) in Finnish Air Quality Index
by the Helsinki Region Environmental Services Authority and the National Institute
for Health and Welfare [28|.

Index classification SO, NO, PM,, | PMy; O4 CcO
Good 0-20 0-40 0-20 0-10 0-60 0-4000
Satisfactory 20-80 40-70 20-50 | 10-25 | 60-100 | 4000-8000
Fair 80-250 | 70-150 | 50-100 | 25-50 | 100-140 | 8000-20000
Poor 250-300 | 150-200 | 100-200 | 50-75 | 140-180 | 20000-30000
Very poor >300 >200 >200 >75 >180 >30000

Table 3: Comparison of PM values (pg/m?®) from the air quality indexes of Fin-
land [28] and China [17].

Pollutant Finland China
Good 0-10 Excellent 0-35
Satisfactory 10-25 Good 35-75
PM, ., Fair 25-50 Lightly Polluted  75-115
’ Poor 50-75 Unhealthy 115-150

Very Poor > 75 Very Unhealthy 150-250
- - Severely Polluted 250-500

Good 0-20 Excellent 0-50

Satisfactory 20-50 Good 50-150
PM,, Fair 50-100 | Lightly Polluted  150-250

Poor 100-200 | Unhealthy 250-350

Very Poor > 200 Very Unhealthy  350-420
= = Severely Polluted 420-600

the index. Providing such information about air quality from different locations can
help reduce exposure to polluted air, since exposures of an hour or even less can be

harmful, as shown in Table 1.

Current Air Quality Monitoring Regulations

To provide a standard level of surveillance for air quality, the European Union (EU)
has set a minimum number of monitoring stations in Europe to protect people, and
vegetation of the member countries [3]. The Air Quality Directive 2008/50/EC im-
posed in 2008, states that the minimum number of monitoring stations in cities is
1 station/ 1M people [3, appendix V|. For some pollutants (SO,, NO,, PM, 5 and
PM,,) the number of stations outside cities is set to 1 station/20,000 km? [3, ap-
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pendix V|, where as for some (O3) the requirement is lower, 1 station/ 100,000 km? |3,
appendix IX]. The minimum amount of measuring stations set by the EU results in
sparse monitoring of air quality. The problem is that sparse air quality monitoring
is not capable of capturing hotspots of polluted air that can exist in a very small
area [13, 41, 44]. This may result in high differences in pollution exposure of inhab-
itants [14], which is alarming since health impacts of short term exposures of highly
polluted air are still unknown [30]. For example, PM, 5 has exhibited a large spatial
variability on a scale of tens of meters [44], which encourages measuring air quality

spatially more densely than what is currently required.

Air Quality Monitors

Air quality is monitored due to various reasons, which is why accuracy and price
between air quality monitors vary. For example there are scientific interests of im-
proving understanding of air pollutants, and commodity devices used by consumers.
Unfortunately the trade-off between accuracy and price seems to follow the air qual-

ity monitors.

Most expensive ones are professional-grade air quality monitoring stations with the
price over 1M euros. An example of such a station can be seen in Figure 1 (top-
left). On top of being expensive to acquire, they also require constant calibration and
maintenance, that alone causes additional costs that can rise to levels of hundreds
of thousands of euros [16, 27]. However, their advantage is that they offer reliable
information about the surrounding environmental and pollution conditions. Stations
of this level are often used for scientific and governmental purposes, but there are
also some companies that offer weather services based on these stations, for example

Foreca?.

Monetary costs are not the only problem with professional-grade air quality mon-
itoring stations, but also the fact that they fail to provide information on places
where air quality might vary suddenly for example due to infrastructural reasons.
Smaller devices have been developed to monitor air quality from locations where
professional-grade stations have not existed. They respond to the challenge of mea-
suring air quality spatially more densely. An example of such a device is the Vaisala
AQT420 (in Figure 1 top-right). It measures surrounding meteorological condi-

tions (temperature, humidity and pressure), pollution gases (NOy, O3, SOy and CO)

2https://corporate.foreca.com



Figure 1: Top-left: an accurate SMEAR tower monitoring station located in
Kumpula, Helsinki. Top-right: a Vaisala AQT420 mid-range air quality monitor
attached to an external power source. Bottom: the low-cost sensor used in this

research.

and particulate matter (PM, 5 and PMj,) in the air. Although being significantly
more affordable than the air quality monitoring stations, these semi-accurate moni-
tors usually cost some thousands of euros (the Vaisala AQT420 costs approximately
5,000 euros). This makes them more an industrial product than a commodity device,
limiting their availability for the masses and denser spatial air quality monitoring.
In addition, sensors of this price point already suffer from decreasing accuracy of

measurements |7, 31].

With decreasing price, there are air quality sensors designed for individual con-
sumers. These sensors use low-cost components, which enable low production cost
and selling price. Monitoring stations of this grade usually cost hundreds of euros
making them available for a large consumer base. The benefit of these sensors is

the high spatial frequency of measuring air quality they enable. They can be fit to



6

places previously unreachable to air quality monitoring stations, for example among
pedestrians to measure daily exposures to air pollution. Unfortunately, low-cost air
quality monitors are sensitive to environmental conditions [34] and pollutant cross-
sensitivities [12] making their readings unreliable. Therefore special attention must

be paid to the data, obtained from these devices.

Towards Denser Air Quality Monitoring

As current technology enables building reliable and accurate air quality monitor-
ing stations, in practice, accurate monitoring stations are very expensive and not
portable. This is why they are not suitable for dense air quality monitoring, and
so cannot be used for determining air pollution hotspots. Low-cost sensors provide
a solution to the economical and portability limitation that accurate air quality
monitoring stations face, and they can be used for denser deployments required
for detecting pollution hotspots. Unfortunately, low-cost sensors are sensitive to
weather conditions [34], and their accuracy is worse than that of air quality mon-
itoring stations [7]. Big measurement errors caused by decreased sensor accuracy
report incorrect air quality conditions. Relying on inaccurate measurements can ex-

pose people to poor air quality causing several types of health issues [4, 20, 40, 46].

To acquire more accurate measurements, either low-cost sensors need technological
advancement or more expensive sensors have to be used. One option for improving
current level low-cost sensors is to calibrate them periodically in a laboratory by
a calibration authority service® to ensure higher level of accuracy. However, the
periodic use of calibration authority services becomes unfeasible when using a large
number of low-cost sensors such as what is required to measure air quality densely.
To perform on-site calibration to low-cost sensors, machine learning methods can be
applied to learn the required data corrections. This thesis focuses on the application

of machine learning methods to improve the accuracy of low-cost sensors.

Low-cost air quality sensor calibration has been studied extensively with success-
ful applications of techniques such as Artificial Neural Network [9, 10, 43, 48] and
Random Forest [8, 53|, where the calibration models have shown to improve the
accuracy of low-cost sensor measurements. This work will apply these techniques
that have shown to be successful in the past with an intention to reduce the er-

ror between measurements of a low-cost air quality sensor and measurements of a

3https: //www.mikes.fi/en/calibrations



professional-grade air quality monitoring station.

Research Questions

In most works [8, 10, 15, 43, 53|, reference concentration values are assumed to
be available when determining a calibration model. After a calibration model has
been defined, low-cost sensors are assumed to provide reliable measurements. If the
sensor cannot provide reliable measurements without comparison with a reference
instrument, it has little utility. Therefore, the calibration model must be trusted
to perform as required. To gain confidence on the performance, the calibration
model must be adequately validated. In past studies of low-cost air quality sensor
calibration, evaluation phase has been carried out lightly without considering vastly

varying conditions in pollution levels nor in meteorological conditions.

In this thesis state-of-the-art calibration techniques are applied to low-cost sensor
measurements, and the results are evaluated considering multiple changes in the
surroundings i.e., pollution level and meteorological changes. Through extensive

evaluation this thesis answers the following research questions.

RQ1 How well do current state-of-the-art calibration techniques generalize?

RQ2 How can calibration data be selected in a way that better generalizes?
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2 Calibration of Sensors

Calibration in measurement technology refers to comparison of measurements be-
tween a test device and a reference device [1]. Determining the difference between
the two devices allows adjusting test device’s measurements to be closer to those
of the reference device. Information about the differences can be used to create
a predictive model that infers adjustments also for unseen measurements. Such a

model is called a calibration model in this thesis.

Obtaining a calibration model requires example data, where the information about
possible adjustments can be extracted. This is similar to what is called training in
machine learning, where data is used to create as descriptive mapping as possible

between input and output pairs.

Machine Learning

Machine learning can be characterized broadly as any computer program that im-
proves its performance at some task through experience [35]. The process of machine
learning, which humans consider as learning, is actually an algorithm minimizing
an objective function by changing certain parameters. The information on how the

parameters should be updated is extracted from observations.

When training data consists of inputs and corresponding target values, the machine
learning task is known as a supervised learning problem. The goal of supervised
learning is to learn a model that, given an input, is able to produce an estimation
close to the actual value. When the target is a categorical or a discrete value, then
the task is called a classification problem. When the target values are continuous,

the task is called a regression problem. A classic supervised learning classification
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task is digit recognition where the input vector represents values of each pixel in
an image, and the target value corresponds to the digit shown in the image. An
example of a supervised regression task is predicting the income of a person based

on level of education, job title, living place and marital status.

The other main type of machine learning is called unsupervised learning. In unsu-
pervised learning there are no corresponding target values for the input vectors. The
goal then is to learn something essential to the data, such as discovering clusters
that are formed by similar data points, or essential properties in the data that allow
projecting it to small number of dimensions for better visualisation. An example
of clustering task would be a task to find different customer groups based on their
shopping behaviour. If shopping behaviour is observed through several parameters,
for example time of purchase, total bill, number of items purchased, categories of
purchased items and payment method, then visualizing data points w.r.t. all di-
mensions in two dimensions would correspond to projecting high-dimensional data

into lower dimensions.

Important part of supervised machine learning algorithms is a part called model
fitting or training. In training, a model is given part of the data available, often
called training data, and the goal of the algorithm is to minimize its internal error
by optimizing parameters. The training data is fed as an input to the model and
the output values with initialized parameters are computed. The model estimates
its internal error by computing the difference between its current outputs and the
target values. By updating model parameters, internal error is minimized. This is
essentially the phase that allows the model to improve its performance on a given

task, in other words to learn.

In terms of machine learning, calibrating a low-cost sensor’s measurements with a
professional-grade monitoring station is a supervised learning regression task. The
low-cost sensor’s readings are treated as model inputs and the professional-grade
monitoring station’s readings are considered as targets. Several machine learning

models were implemented to investigate their performance in context of this work.

Linear Regression

Linear regression is one of the simplest supervised learning approaches, which as-
sumes that there is a linear relationship between two variables X and Y; ie. Y is

dependent on X and only the relationship needs to be defined. In the simplest case,
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Figure 2: A simple linear regression with coefficients wg = 2, w; = 0.5.

where X and Y are one-dimensional, linear regression is defined as
y=Y WX =wy+ wx,

where the coefficients W define the slope and the intercept of the regression. The
value of y approximates the true value as closely as possible, but the predicted
output values do not match corresponding target values exactly. More precisely,
the model outputs a prediction g, that is defined by y = wg + wyx. The difference
between a prediction y and a target value y is called error, or residual, and noted

often with e.

Before linear regression model can be used for prediction, the coefficients W must
be determined. To do this, the model is first trained with data consisting of n
input-output pairs (zg, 4o), - - -, (Zn,yn) with the objective of finding coefficients W
that best describe the data. The best description is a line that minimizes error e for
each data point. There is no way for all data to be on the regression line defined by
the input data and the coefficients, so the best description is a line that minimizes
the sum of all the errors such as in Figure 2. Since the direction of the error plays

no role in the error, sum of squared errors (SSE) is normally selected as the error
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function:
n

SSEW) =" (yi — (wo + wiz;))*

=1

for n data points. This approach is called (ordinary) least-squares principle [29].

Linear regression looks the relationship between two variables, however often there
are more variables that the target variable is dependent on. A multiple linear re-
gression is a slightly modified version, where instead of looking for a one-to-one
relationship, multiple variables are used to output an estimation. The definition of
the multiple linear regression is similar to the one dimensional case, only instead X

now has j dimensions, and the definition of Y is

Y= WX =wy+wizo+ -+ wjp17;.

The advantage of a multiple linear regression versus the basic version is to include
many features to explain the target variable and to benefit from more complex

dependencies.

Decision Trees and Random Forest

A decision tree is a tree-like model, where the idea is to create a model that predicts
the value of a target variable based on several input variables. The goal of a decision
tree is to split data according to comparisons it makes. As the model is a tree, it
has interior nodes that each represent a comparison that is made based on a feature
of the data. After a single comparison, the data flows to the next level, where
another comparison follows. After going through all the interior nodes, the leaves of
a decision tree represent values to which the data points are mapped. Figure 3 shows,
how a decision tree might be constructed in the problem of calibrating the values of
a low-cost air quality sensor. A decision tree can be used for both classification and
regression tasks. If the problem type is classification, the leaves represent classes.

In regression tasks, the leaves represent real values.

Decision trees are prone to overfitting training data, resulting in poor generalization.
One method to improve the generalizability is simplification of a decision tree, called
pruning [29]. The goal of tree pruning is to reduce the number of interior nodes
by minimizing the validation error through cross-validation. After pruning, decision
trees have fewer interior nodes, meaning fewer comparisons, but the ones that remain

are the essential ones for separating the data.



12

temperature = 0

humidity
<01
temperature
=25
25,67
numidity
=08
wind speed
<2
micro sensor's
PM = 5000
humidity wind speed 65,67
=03 =25
14,41
66,23
713 18,11 606 583
67.9

Figure 3: An example of how a decision tree might look like with the data used in

this work.

Random Forest is an ensemble method that uses many low-accuracy decision trees to
build a strong predictive model. The individual decision trees usually consist of small
number of interior nodes. The strength of Random Forest lies in combining these
decision trees. Each decision tree is created using randomly selected features. Given
the randomly selected features, the decision tree tries to split the data according to

those features to improve generality and accuracy.

Artificial Neural Network

Artificial neural network (ANN) is a computational method originating from biology,
where it was inspired by how learning happens in brains [21]. The term network
comes from having multiple functions combined to a single model so that they form
a layered network structure. The core idea is to learn a mapping from input values
to corresponding output values through a large number of simple modules called
neurons. A network is said to be fully connected if there is a connection from each

neuron to all neurons in the next layer. A representation of a simple fully connected
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input hidden output
layer layer layer

Figure 4: A simple ANN with an input layer, one hidden layer and an output layer.

The input in the image consists of four features and the output is a single value.

neural network can be seen in Figure 4.

In a neural network model the input values flow through the network until they
reach the final output layer. More specifically, for each data point, the input values
form the first layer of the network, called the input layer. Each layer is assigned
weights that are used to multiply the values of the neurons. Weights can be thought
of as indicators telling how much should we scale the value of each neuron. After
multiplying the input values with the weights, the products are passed through an
activation function. The outcomes of the activation function form a hidden layer
that can be thought as new input values for the next layer. The procedure can be
repeated many times, and the number of layers in the architecture defines the depth

of the network. If there are many hidden layers the network is said to be deep.

In case of an architecture such as in Figure 4 the input values are first multiplied by
weights W7, and passed on to activation function f;. The outputs of the activation
function f; form the second layer of neurons in the network. This layer is the first
hidden layer. Next, the values of the first hidden layer are multiplied by weights
W5 and passed through activation function f5. After the second hidden layer, the
values are multiplied by weights and passed through activation function f,,;. This

produces a single output, noted ¢, that is the model’s prediction. So in case of a
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structure like in Figure 4, an artificial neural network f* is defined as

" == fout (W2h) = fout (W2fl (W1X>> 1

Since the procedure is done for each data point that has a corresponding target
value, the magnitude of the error can be computed with a chosen error function.
The required corrections to the weights are computed using an algorithm called
backpropagation |21, p. 200]. The weights are updated to reduce the error between
all the predictions and the targets. The weighs can be thought to transmit the
importance of each neuron in order to produce a certain output. This iterative
process is continued until a determined condition fulfills, such as the number of

iterations is reached, or the error no longer reduces.

One strength of neural netowrks lies in the activation functions. On top of linear
functions, they can be chosen to be non-linear, such as the Rectified linear unit
(RELU), sigmoid function or hyperbolic tangent function, which enable to create
non-linear mapping from input values to output values. This is something a multiple
linear regression for example, is not capable of doing. In addition, neural networks
are universal approximators [26], so they can asymptotically approximate any target

function as the number of neurons goes to infinity.

Neural networks often perform well since the model can be extremely flexible. By
increasing the number of hidden layers and neurons in each hidden layer, it is possible
to create a near-perfect depiction of training data. There are however issues related
to the generalizability of such models, since a model that perfectly fits training
data most likely performs much worse on unseen data due to overfitting. There are
different techniques that can be used in the network’s training phase to improve

generalizability, such as early stopping and dropout.

ANN use also has downsides, such as the amount of data needed for the training.
To learn how to adjust the weights properly, the network needs to see lots of data.
Sometimes there might not be sufficient data for the ANN, resulting in an overly
simplified model. In comparison, a linear regression can be used with a fraction of
the data usually needed to train an ANN. Another weakness of ANN is the long
training time of the models. Predictions can be computed rapidly, but if the model

needs periodical retraining, then the computational cost might be intolerable.
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Machine Learning Based Calibration

Both, calibration and machine learning models, use information about historical data
to adjust new observations. Usually having a coherent dataset helps in determining
the mapping between inputs and outputs. This means invalid data, for example
caused by measurement errors, needs to be preprocessed to reduce its effect when

determining the mapping. Preprocessing of data is often called data cleaning.

Pre-Calibration Data Cleaning

Studies rarely consider the first phase of cleaning sensor’s output values, instead
data that has already undergone transformations such as outlier removal, is some-
times referred as the raw data. Making data cleaning more transparent is vital for
reproducibility of results since data cleaning incorporates important procedures be-
fore data can reasonably be considered as input data. To approach calibration of a
low-cost sensor with reference sensor, the data must be first carefully examined, for
example by plotting, to notice any obvious abnormalities that need to be cleaned to

have a consistent dataset.

Values from both sensors must be considered reasonable. For example negative
PM values are not reasonable given the units of the measurements are png/m?® and
pieces/l in this thesis. However, negative values might carry important information
about the characteristics of the data; mainly about the true increasing or decreasing

of concentration where the scaling is simply off.

Missing values are another common problem, since they appear frequently due to
abnormal value removal and various sensing and communication issues. The most
robust way to handle missing values is to drop the point containing missing values
in some feature. This way data contains only values that are actually measured by
the sensor. However, this might be problematic, if the measurements contain many
features, and many times one of the features is missing. This approach may easily
result in significantly lower amount of data available. It might also bias the dataset
to only contain certain type of data, for example if one of the sensors stops working

in low temperature.

Interpolation is an alternative method for handling missing values. A linear inter-
polation can be applied, if the missing periods are short. Problems occur when
missing value periods become long, since replacing long missing periods could cause

high errors. In case longer missing periods are encountered, data from that period
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should be discarded. Another application of interpolation is to match the time fre-
quencies of the two sensors to have a correct number of input-output pairs with

same timestamp of measurement.
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3 Evaluation of Calibration Techniques

Low-cost sensors enable measuring air quality spatially more densely from an en-
vironment, which can increase the awareness of polluted areas. Low-cost sensors
are however more sensitive to surrounding environmental conditions [34], which is
why they might produce irrational values. Since the accuracy of low-cost sensors
can be improved by calibration, many studies have investigated air quality sensor
calibration [8, 10, 15, 47]. To rely on calibrated measurements, model verification
must be done thoroughly in varying meteorological conditions and levels of pollution
concentration that are known to affect sensor functionality, and also required by the

regulatory air quality standards [2].

Sensor Calibration Techniques

The calibration of gases measured with low-cost sensors has been extensively re-
searched [15, 23, 43, 47, 48, 53]. This is due to the fact that gases strongly react to
different meteorological conditions, and strong domain knowledge can be applied.
In previous studies Artificial Neural Networks (ANN) are found to give the best
calibration results [15, 43, 48|. The reason why a linear regression is not able to
perform well is that the relationship between a low-cost sensor and a reference sta-
tion is often complex and non-linear. Using multiple features is common and one
motivator for using an ANN. Another motivating reason for using an ANN |10, 48]
is the ability to use a non-linear relationship between the low-cost sensors and the
reference measurements, which can provide a better explanation of the complex re-
lationship. There are also some studies focusing on calibration of particulate matter
(PM) measurements from low-cost sensors [9, 10, 18, 19]. Many of them use some

version of ANN possibly combined with another technique [9, 10, 19].

Although ANN seems to be the most commonly applied technique in low-cost sen-
sor calibration, other machine learning techniques have been used too. Most promi-
nently Random Forest (RF) regression has been applied in calibration due to its abil-

ity to take into account the cross-sensitivities between different pollutants [8, 11, 53].

As ANN and RF have shown to yield the best performance level in past studies
on calibration of low-cost air quality sensors, they are considered as state-of-the-art
calibration techniques in this thesis. To improve a low-cost sensor’s accuracy their

performance will be tested in this Thesis.
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Evaluation of Calibration Models

The quality of training data plays an important role in machine learning tasks, since
the parameters of the model are optimized only w.r.t. seen instances (Section 2).
Optimally the calibration model would be fed a vast amount of continuous air qual-
ity data covering different weather types that the model would learn to recognize.
However, the problem of this approach is that training data would contain uneven
distribution of occurring weather phenomena and pollution concentrations. Cer-
tain events that strongly affect particulate matter (PM), might occur very rarely,
whereas others with little or no effect on PM might be more frequent. For exam-
ple, the model might learn dependencies between PM values and variables through
spurious correlation. Alternatively, model having mainly seen low-level air pollu-
tion concentrations, might struggle predicting high concentration values. In other
words, the confidence over the performance of a calibration model comes down to

the model’s ability to generalize in different environments.

In previous research, a common way of evaluating performance of a calibration tech-
nique is to train the model with a continuous period and compare the calibrated val-
ues to reference concentrations over another continuous period of time |9, 10, 15, 43].
Some have considered the effect of humidity by evaluating calibration models in dif-
ferent humidity levels [49], but other factors such as the effect of temperature, air
pressure or wind speed have been neglected. Therefore, the effect of diverse environ-
mental conditions is often overlooked. Continuous evaluation is also problematic,
since data points close in time are not statistically independent and this has an
effect when evaluating the performance of a model [22]. A solid method of selecting
training data has been shown to not only improve the performance of the model,

but also to increase the robustness and the generalizability of the model [25].

Regulatory standards for air quality monitoring require sufficient correspondence
between measurement devices under different environmental conditions [2|. Cur-
rent evaluations of low-cost air quality monitoring techniques have largely ignored
these standards by simply concentrating on consecutive measurement periods with-
out considering the diversity of environmental conditions. To ensure that low-cost
calibration techniques can be evaluated fairly and in-line with necessary regulatory
frameworks, a novel evaluation approach is proposed in this thesis for low-cost air

quality monitoring technology.

To further motivate the need for improved evaluation, Figure 5 shows autocorrela-

tion in the reference station’s air quality data w.r.t. different environmental features.
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Figure 5: Autocorrelation of PM, 5, PM;, temperature, humidity, wind speed and
air pressure in the reference data. The y-axis represents correlation, and the x-axis

time lag.
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It can be observed from the figures that the oscillation pattern, although slightly
weaker than in the PM measurements, is similar for all images except for pres-
sure. In other words, knowing the meteorological and pollutant situation at certain
timestamp has a clear effect on calibrating consecutive values when the effect of
autocorrelation persists. Using a single continuous period that has been split to
train and test part gives an overly optimistic impression about the performance of
a calibration technique, since the datasets are likely to be very similar in terms
of environmental conditions. Therefore, to thoroughly evaluate calibration model’s

performance another way of selecting training and validation data is needed.

Selecting Diverse Data for Calibration Models

The use of diverse training data has shown to greatly boost the performance of
machine learning models in the past [50]. To create a calibration model that gener-
alizes well, good training data is needed, but in practice the available training data
is often limited in time. It is possible that the data does not thoroughly depict the
dependency between meteorological features and pollutants, since not all weather
phenomena are equally likely to occur across the seasons. Rather than selecting ar-
bitrary continuous period of time, where some meteorological phenomena might or
might not occur, a novel method of selecting data that considers multiple environ-
mental features to properly cover different pollution levels and weather conditions is
introduced in this thesis. Temperature, relative humidity, air pressure, wind speed
and air pollutants are selected as features to form various datasets in order to seek

their impact in the calibration of a low-cost sensor.

Algorithms 1 and 2 select periods from available data, when the value of a feature
is high or low. Using these algorithms the distribution of different meteorological
phenomena or pollution levels can be balanced, and the training data covers as
diverse conditions as possible. Algorithm 3 combines the two previously mentioned

techniques by directly creating a collection that contains both high and low periods.
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Algorithm 1: construct-high-dataset
input :d,w , whered > dy,...,d, and w € N

output: indexes

begin
indexes = ()

while True do

N 1, whenn <w
S=U> -1 diznK(n) where K=
i=1 0, otherwise
i = argmax;(S \ {—o0})
if i = () then
| break
end

indexes.push(d;, ..., d; 1)

di,...,dier = —Q
end

end

Algorithm 2: construct-low-dataset
input :d,w , whered > dy,...,d, and w € N

output: indexes

begin
indexes = ()

while True do

N 1, whenn <w
S=U> -1 diznK(n) where K=
i=1 0, otherwise
i = argmin;(S \ {oo})
if i = () then
break
end

indexes.push(d;, ..., d; 1)

di,...,dier = 0
end

end
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To select meaningful data for training and validation, Algorithms 1 and 2 were
executed for target pollutant data resulting in high and low concentration datasets.
After selecting only the first 10 windows to ensure diversity between the two sets,
the remaining data was used to create training sets w.r.t. meteorological factors.
The same algorithms were executed again this time individually for each of the
meteorological factors. In addition, Algorithm 3 was used to create a diverse dataset

from each of the meteorological factors.

Algorithm 3: construct-diverse-dataset
input :d,w , whered > dy,...,d, and w € N

output: indexes
begin
indexes = ()

while True do

N o 1, whenn <w
S=U> -1 diznK(n) where K=

i=1 0, otherwise
i = argmax;(S \ {—o0,0})
dia"‘7di+w = -

N 1, whenn <w
S= U _1djnK(n) where K=

j=1 0, otherwise

j = argming (5 {—00,00})

if i =0 orj =0 then
| break

end
indexes.push(d;, ..., ;1)
indexes.push(dj, ..., dj1)

dj ...,dj+w:OO

end

end
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4 Experiment Setup

The data used in this work was collected from beginning of March 2018 to end
of December 2018 using two devices. To expose the sensors to same surrounding
environmental conditions, a low-cost sensor was installed at similar altitude as close
to the reference station as possible. The used location is within 50m from the
reference station. As pollutant gas levels of our deployment site are constantly
very low, the investigation of pollutants was limited to particulate matter (PM)
that showed signs of variability in concentration levels. Also, previous studies have

shown low-cost sensors to struggle more with PM than gases [7].

Sensor Deployment

The two devices used for collecting the data are shown in Figure 1. The reference
device, Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) (shown in
top-left in Figure 1) provides accurate information about many atmospheric features,
including both PM;5 and PM, 5. We consider the PM values from SMEAR as target
values in the calibration. The other device is a low-cost micro sensor device built
by a research group in the University of Helsinki (shown in Figure 1 bottom). It
has sensors for temperature, relative humidity, NO,, CO, CO,, Oy and PM. PM is
measured by a Shinyei PPD42NS dust sensor?, which has been lab tested [5] and also
used in previous studies [10, 19]. The manufacturer states that it detects particles

sizing down to 1pg/m?.

As can be seen from Figure 1, these two ways of measuring air quality are clearly of
different scale. By its size, the smear tower is approximately 50 meters tall, whereas
the micro sensor is approximately the size of a small shoe box. The SMEAR sensor

costs in excess of 1M euros, and the micro sensor costs around 250 euros.

Calibration Models

In Section 3, past studies of low-cost air quality sensor calibration were found to
benefit from using information about meteorological conditions while calibrating air
pollutants. For this reason a multi-feature approach is selected for this thesis. In
addition to information about pollution level, calibration models will have temper-

ature, relative humidity and wind speed as inputs.

4https:/ /www.seeedstudio.com /Grove-Dust-Sensor-PPD42NS.html
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A multiple linear regression will act as baseline calibration model to show that
a linear model is not capable of capturing the relationship between the two PM
sensors. Two other calibration techniques, a Random Forest and an Artificial neural
network(ANN) are compared against the baseline. Two different versions of ANN
will be compared in this thesis. The other one will be a baseline model consisting of
input layer, one hidden layer and an output layer. A similar architecture has been
used in low-cost air quality sensor calibration in the past [48|. The hidden layer will
have the same number of neurons as the number of input features. The other ANN
is the model used in [9]: two hidden layers with 512 neurons on each layer. Both

ANN models use ReLLU activation function in all layers.

Evaluation Procedure and Baseline

The method of selecting diverse data presented in this thesis (Section 3) is used to
create multiple subsets from the available data each one corresponding to extreme
conditions of pollution level (PM;, and PM, 5), temperature, humidity, air pressure
or wind speed. These subsets of extreme conditions, i.e. sets of high and low
level, were created to highlight model generality in different training and testing
environments. In addition, diverse subsets were created by levels of meteorological
conditions to improve the robustness of calibration models. Calibration models are
then evaluated in different environments and compared to a continuous evaluation
used in previous studies |15, 43, 48| to prove that continuous training and testing

results in optimistic impression about capabilities of a calibration model.

Data Cleaning

As explained in Section 2, pre-calibration procedures are required for the data before
the low-cost sensor can be calibrated with the reference station. In this thesis neg-
ative PM values smaller than -1 are replaced with missing due to their irrationality
(Figure 6). After that linear interpolation is selected to handle missing data as the
missing gaps in the data are at most few hours (Figure 7). Also, the frequency of
the reference measurements are matched with the frequency of the low-cost sensor,

as it requires less interpretation and assumptions on the low-cost sensor’s data’.

5The micro sensor collects data approximately every 5 minutes, reference station collects data

every minute.
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Figure 6: Reference measurements of PM, 5 and PM;, from 2018. Large negative

values have been removed from the data, but missing values still occur in the data.
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Figure 7: Examples of two types of interpolation scenarios in the SMEAR data.

Left: moderate interpolation, where original negative values are greater than -2.

Right: extreme interpolation case, where original negative values are close to -120.
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Starting point accuracy

The low-cost sensor uses a different particle detection method from the method used
in the reference station, therefore the range of values is different, as can be seen on
the left in Figure 8. To visualize the correspondence of the values between the
sensors, Min-Max scaling® is applied to both values separately. The scaled image
is shown on the right in the same figure. The scaled version of the micro sensor’s
PM measurements shows that the correlation with the reference PM measurements
is small or at least not obvious. Indeed the resemblance of the visualized PM data

of the two sensors is close to none.

12000 1.0 : e SMEAR PM10
e SMEAR PM10 . , P SMEAR PM2.5
10000 SMEAR PM2.5 r_:u 08 W : ® Micro sensor PM
o e Micro sensor PM > {‘
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. .
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3 R e W e ""'"’:m/'*""" i b e 204
— e w <))
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%,0":'0\’ %,03'& %,03‘0 %,03'06 %,039 %,03‘0 %,o"fo %,03"'0 %,03"'0 %,03"'0 %,0'5’0 %,0'5’0
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Figure 8: PM concentration is measured in pcs/1 by the micro sensor, but in pug/m?
by the reference station. Left: Original scale of values. Right: The min-max scaled

version of the image on the left.

The starting point accuracy between the sensors can be investigated through cor-
relation. If the sensors react similarly to some measured substance, the correlation
between the two should be strong. Correlations between the micro sensor and the
reference station are computed for all available clean data, and are shown in Table 4.
As can be seen from the table temperature and relative humidity values correlate
strongly between the two sensors, which indicates that the micro sensor reacts rather
accurately to those and that the measurement locations are comparable. The PM
detection sensor from the micro sensor on the other hand is not showing any sign of
correlation with neither of the reference station’s PM sensors. This indicates that
before calibration the micro sensor’s capability of detecting PM concentrations is

poor.

Shttps://scikit-learn.org/stable/modules/generated /sklearn.preprocessing. MinMaxScaler.html
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Table 4: Correlations between the SMEAR (S) reference station and the micro

sensor(M) (t=temperature, rh=relative humidity, p=pressure, ws=wind speed).

| t(S) rh(S) p(S) ws(S) PMys(S) PMye(S) | t(M) rh(M) PM(M)

t(S) 1 -041 0,01 -0,04 0,03 0,12 0,94  -0,36 -0,01

rh(S) -0,41 1 -0,19  -0,03 0,09 -0,25 -0,46 0,85 0,04

p(S) 0,01 -0,19 1 -0,18 0,12 0,23 0,01 -0,14 -0,01

ws(S) -0,04 -0,03 -0,18 1 -0,2 -0,18 -0,04 0,05 -0,07
PM,(S) 0,03 0,09 0,12 -0,2 1 0,71 0,03 0,04 0,04
PMyo(S) 0,12 -0,25 0,23 -0,18 0,71 1 0,14  -0,26 0,01

t(M) 0,94 -046 0,01 -0,04 0.03 0.14 1 -0.53 -0.04
rh(M) -036 085 -0,14 0,05 0.04 -0.26 -0.53 1 0.03
PM(M) -0.01 0.04 -0,01 -0,07 0.04 0.01 -0.04  0.03 1

5 Results

The calibration techniques explained in Section 2 and further discussed in Section 3
were applied to the micro sensor’s measurements. The predictions produced by the
calibration models were then compared against the reference values. The calibra-
tion techniques compared were multiple linear regression (MLR), Random Forest
regressor (RF), a baseline Artificial Neural Network (ANN (BL)) and an Artificial
Neural Network (ANN), as explained in Section 4.

As explained in Section 3, to ensure that low-cost sensor calibration techniques
can be evaluated fairly the evaluation must be carried out in diverse conditions
and the effect of autocorrelation must be take into consideration i.e. not use a
single continuous period for training and evaluation. This is why we trained the
calibration models in various environmental conditions and against different levels
of pollution to consider the level of generality achieved with specific kind of training
and testing data. The data selecting method proposed in this thesis (Section 3),
was compared with a more traditional method of selecting data. All model trainings
and evaluations were done for the two types of particulate matter (PM, 5 and PM,)

separately.

Continuous Training and Evaluation Datasets

Evaluation of a calibration model in diverse conditions is compared to an evaluation
method, where a model is trained using part of a continuous dataset and the remain-
ing part is used for evaluation of the model as used in previous works [9, 10, 15, 43].

As explained in Section 3, such evaluation might give an overly optimistic impression
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Table 5: The errors of continuous training and evaluation periods.

PM, 5 PM;,
error metric | MAE RMSE || MAE RMSE
MLR 3.54 4.62 9.01 11.36
RF 3.73 5.05 9.31 12.45
ANN (BL) | 4.55 6.59 7.56  10.32
ANN 3.77 5.21 8.44 11.46

about the performance of a calibration technique due to the strong autocorrelation
of environmental features (Section 3, Figure 5). Results from such a way of training
and evaluating the models are shown in Table 5. The continuous period covering
28,800 data points in 5 minute intervals was chosen arbitrarily, and was not tweaked
after selecting it for the first time. The training and testing periods were formed
by splitting data into two equal sized sets without shuffling. The datasets in the
evaluations contained the same amount of data points (14,400) each, unless other is

mentioned.

Impact of pollution concentration

We first consider the performance of calibration techniques when concentration levels
of particulate matter (PM) differ greatly. A high concentration dataset was selected
with a method depicted in Algorithm 1 (Section 3), and a low concentration dataset
with Algorithm 2, both with a window of 5 days (1,440 data points). The outputs of
the algorithms are datasets containing several continuous time periods corresponding
to a certain selection criteria. As the algorithms work by sorting the maximum
number of 5-day sequences, only the first 10 windows were selected to ensure that
the high and low sets remained as different as possible and it was confirmed that no

overlap occurred between the sets.

To verify the difference between the sets, a Kolmogorov-Smirnov (KS) two sample
test was applied for the high and low set. The KS test evaluates whether two
underlying one-dimensional probability distributions differ i.e. whether the two
datasets come from the same distribution. The difference between the distributions
is confirmed by rejecting a null hypothesis, when a p-value falls below a certain
threshold. The computed p-value was close to zero verifying the difference of the

datasets. The mean and standard deviation of both sets were computed to explore
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Table 6: The errors between true concentrations and predictions from models trained
with data selected considering the level of PM. Values from Table 5 have been added

to the table’s rightmost column for comparison purposes.
calibration target — PM, 5

train: low high high low continuous
test: low high low high continuous
error metric | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 1.38 1.98 4.95 6.78 9.28 9.58 8.58 10.62 || 3.54  4.62

RF 1.5 2.16 6.31 8.36 | 11.68 12.5 8.62 10.71 || 3.73  5.05
ANN (BL) | 1.39 1.97 5.0 6.83 | 10.23 10.55 | 10.21 12.02 || 4.55  6.59
ANN 14 2.01 4.7 6.35 7.59 8.32 8.43 10,51 || 3.77 521

Average 1.42 2.03 5.24 7.08 9.69 1024 | 896 1097 | 3.90 5.37

calibration target — PM,,

train: low high high low continuous

test: low high low high continuous
error metric | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 276 3.63 |11.19 1529 |15.36 16.32 | 17.08 2242 | 9.01 11.36
RF 3.31 436 | 16.29 21.85 |12.01 14.58 | 17.64 2291 || 9.31 1245
ANN (BL) | 2.81 3.67 | 12.83 1841 | 15.8 16.73 | 17.08 2248 | 7.56 10.32
ANN 2.99 403 |1232 17.23 | 5.58 7.57 |16.46 21.85 || 8.44 11.46

Average 2.97 392 |13.16 18.20 | 12.19 13.8 | 17.07 2242 | 8.58 11.40

them more carefully. They are shown in Table 8.

The calibration models were evaluated by training with either high or low concen-
tration data and evaluating with the remaining one. To give an impression about
the performance of the model on similar data, a leave-one-out cross-validation was
performed by leaving one of the continuous periods out from the training data and
then using that left out period for validation. The validation was done multiple
times by leaving each of the continuous periods out once. The results in Table 6
verify the expected. The cross validation results prove that too homogeneous data
gives optimistic impression about the performance of the model. Using ANN (BL)
to calibrate PMy 5 a homogeneous training and evaluation environment resulted in
85% lower mean absolute error (MAE) than using distinct training and evaluation
environment. In PM;, the biggest difference occurred using MLR. Even 83% lower

MAE was achieved when using similar training and evaluation conditions.

The continuous evaluation results from Table 5 are shown in the rightmost columns

for comparison. Results from the continuous evaluation are closer to the results of
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Figure 9: Predictions after training and evaluating with data corresponding to dif-
ferent pollution levels. The plots depict the results shown in Table 6. Only the
ANN’s predictions are shown to keep the plots interpretable, but other techniques

behaved similarly.

the cross validation results, which suggests that the continuous evaluation method
does not cover diverse PM concentrations. The models trained with high concen-
tration data tend to overestimate the concentrations when evaluated with low data,
whereas the models trained with low concentrations seem to underestimate them
when evaluated with high concentration data. This is confirmed by the plots of the
predictions in Figure 9. One exception in the experiment is the ANN’s performance
when trained with high concentration PM;, data and evaluated with low concentra-
tion data. The predictions are higher, but still quite reasonable, and the error is the

smallest among all techniques.

The average error of all techniques in different training and evaluation environments
is shown at the bottom. For PM, 5, the magnitude of the average errors in homo-

geneous and continuous evaluation environments are from low to very low in terms
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of air pollution concentration. However diverse evaluation yields an error that is
almost the size of the annual guideline value set by WHO (shown in Table 1, Sec-
tion 1). Similar observations can be made for PMy,. This highlights the significance

of generalizability of a calibration model.

It should be emphasized that, besides few peak values in Figure 9, even the highest
concentrations in PM, 5 high concentration dataset are rather low as they yield an
air quality index of Satisfactory to Fair on Finnish scale, or Ezcellent on Chinese
scale (Table 2, Section 1). The PM;, levels in the high dataset on the other hand
indicate that higher concentration periods might occur occasionally in the test envi-
ronment instead of just witnessing individual peak values. The Finnish index ranks
the highest levels of the high PM,, dataset to Poor, the Chinese index to Good.

Impact of Meteorological Factors

The next evaluation is similar to the previous one, but emphasizing selecting periods
based on different meteorological factors. After selecting the two datasets based
on the level of PM concentration, low and high training datasets were selected
from the remaining data with the same Algorithms 1 and 2 by looking at different
meteorological features with a window of 5 days. For some training sets, the length of
the window had to be shortened since there were not enough non-overlapping 5-day
periods. The meteorological features were selected to cover temperature, relative

humidity, air pressure and wind speed.

The training sets contained roughly the same amount of data as the high and low
PM sets. However, for those meteorological variables with shorter window, a slight
decrease in data resulted. The smaller sets contained 13,824 data points (48 days)
whereas the rest had 14,400 data points (50 days). Note that for PMy 5 and PMy,
the meteorological training sets are not guaranteed to be the same, since they are
selected from the remaining data after forming the high and low sets w.r.t. each
PM. Sizes of all datasets are shown in Table 7.

All high and low partitions in Tables 9-12 refer to meteorological conditions. The
meteorological high and low datasets are depicted in Table 8 through mean and
standard deviation values of each set. Also mean and standard deviation of PM
concentration of each set is shown on the right. Although the means of all fea-
tures vary greatly, the PM, 5 concentration stays rather stable through low and high

datasets. KS test was used to confirm that all high and low datasets indeed were
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Table 7: Number of data points in each data partition. All train, test, low, high

and diverse sets were equal by their size w.r.t. partitioning feature.

partition target
based on PM,s PM,, partitions
continuous data | 14,400 14,400 train, test
PM, 5 14,400 - low, high
PM;g - 14,400 low, high

temperature 14,400 14,400 | low, high, diverse
humidity 14,400 14,400 | low, high, diverse
pressure 13,825 13,825 | low, high, diverse
wind speed 13,825 14,400 | low, high, diverse

different from each other w.r.t. both the feature used for partitioning and the PM. In
PM, the differences are more noticeable, but standard deviation remains high. This
might be caused by constantly varying PM;, concentration levels or by occasional

high periods in a generally low pollution level environment.

The models were trained with either the high or low meteorological concentration
data and tested with the remaining one. A cross validation was also performed
within low-low and high-high sets as in the previous experiment. The results of
the experiment are shown in Tables 9-12. The continuous evaluation results from

Table 5 are shown in the rightmost columns for comparison purposes.

When selecting training and evaluation data w.r.t. to temperature, the calibration
of PM, 5 only shows mild effects to different levels of temperature. This indicates
that changes in temperature alone do not cause major changes in the functionality

of the calibration models as all the errors are close to those of the continuous period.

When calibrating the PM;, measurements, all models performed better in low tem-
perature than in continuous period. This again implies overfitting since training and

testing in high temperature environment increases MAE by 17% — 92%.

RMSE was chosen as a secondary error metric to depict any odd behaviour of the
models. Both MLR and RF achieve lower MAE than the continuous evaluation when
trained with low temperature data and evaluated with high temperature data. The
RMSE of the same cases are higher to those of the continuous periods. This indicates
that the mistakes in the model predictions are relatively large which implies failing
to predict a big increase or a decrease in the PM concentration. Almost identical

observations can be made from the datasets selected w.r.t pressure (Table 11).
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Table 8: The mean values of each dataset selected w.r.t. certain feature.

low datasets

PM, 5 PM,
feature meange: SDgeat | Meanpy  SDpy ||| meangeyt  SDiear | meanpy  SDpum
PM (pg/m?) 144 204 | 144 204 || 465 376 465  3.76
temperature (°C) | -1.36 3.08 3.35 3.05 -1.77 4.32 ‘ 10.01 7.22
humidity (%) 54.21 16.35 3.91 4.0 96.07 16.14 11.84 9.49
pressure (mbar) | 996.58  7.15 3.36 3.51 997.72  7.07 ‘ 9.23 7.25
wind speed (m/s) 2.26 1.27 3.87 3.11 1.95 1.05 11.36 8.33

high datasets

PM, 5 PM;
feature meange; SDfeat | Meanpy  SDpy ||| meane,;  SDiear | meanpy  SDpu
PM (ng/m?) 8.86 5.28 8.86 5.28 19.17 13.28 19.17 13.28
temperature (°C) | 18.82 3.87 4.23 3.39 19.39 3.94 ‘ 11.96 8.04
humidity (%) 87.91 8.49 3.79 3.19 88.57 9.28 9.04 6.0
pressure (mbar) 1020.4  5.84 3.91 3.18 1019.88 5.8 ‘ 10.53 7.54
wind speed (m/s) 4.76 2.34 3.08 2.85 5.08 2.24 8.34 6.28

Table 9: Errors between true concentrations and predictions from models trained

with data selected considering the level of temperature.
data selected based on temperature,

calibration target — PM, 5

train partition low high high low continuous

test partition low high low high continuous
error metric | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

MLR 3.41 5.1 3.67 4.65 3.47 5.4 4.86 6.35 3.54 4.62

RF 3.77 5.54 3.98 5.1 3.3 5.38 3.97 5.15 3.73 5.05

ANN (BL) 3.5 5.24 3.53 4.54 3.5 5.09 3.59 4.81 4.55 6.59

ANN 3.61 5.4 3.79 4.96 5.02 7.06 4.15 5.44 3.77 5.21

data selected based on temperature,

calibration target — PM,,

train partition low high high low continuous
test partition low high low high continuous
error metric | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 6.19 9.01 855  11.95 | 6.08 9.18 | 8.79 12.97 || 9.01 11.36
RF 6.75 1054 | 9.13 13.06 | 6.51 9.95 | 8.85 12.7 9.31 12.45
ANN (BL) 6.94 10.05 | 819 11.74 | 9.06 11.47 | 835 12.84 7.56  10.32
ANN 5.4 8.63 | 10.35 14.07 | 10.77 14.78 | 8.83 12.65 | 8.44 11.46
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Table 10: Errors between true concentrations and predictions from models trained

with data selected considering the level of humidity.

data selected based on humidity, calibration target — PM, 5
train partition low high high low continuous
test partition low high low high continuous
error metric ~ MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE || MAE RMSE
MLR 3.03 4.11 5.01 6.47 12.05 13.23 4.48 6.34 3.54 4.62
RF 3.09 4.37 4.78 6.59 6.48 8.07 5.91 7.71 3.73 5.05
ANN (BL) 4.67 6.23 5.97 8.31 3.23 4.31 4.25 6.18 4.55 6.59
ANN 2.87 4.05 5.71 7.51 4.54 5.51 4.25 5.95 3.77 5.21
data selected based on humidity, calibration target — PM,,
train partition low high high low continuous
test partition low high low high continuous
error metric  MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 9.64 14.75 | 6.48 8.63 | 15.85 19.64 | 7.97 9.96 9.01 11.36
RF 10.29 16.38 | 6.46  9.08 124  17.51 | 31.14 37.79 || 9.31 1245
ANN (BL) 16.27 21.56 | 5.66 7.76 9.04 15.05 | 9.25 1257 || 7.56 10.32
ANN 8.65  13.64 | 812 10.43 | 1042 15.44 | 10.85 13.48 844  11.46

Table 8 shows that mean and standard deviation of PM, 5 values in the humidity
based high and low datasets vary little. As the two are similar, no major difference
in performance can be observed for PM, 5 in Table 10 except with the MLR when
trained with high humidity data and evaluated with the low humidity dataset.

Looking at Table 8, the mean and standard deviation values of PM;, show more
differences between the high and the low humidity dataset. The PM;, values in
Table 10 show varying performance of the models between datasets except the ANN

for which performance is reasonably stable.

Training and evaluating with low and high periods of wind speed shows signs of the
known negative correlation between PM and wind speed [52]. For example when
calibrating PM;y, ANN trained in high and evaluated in low wind speed had over
50% higher error compared to the continuous evaluation, and in contrast even 35%
lower error when trained in low and evaluated in high wind speed. This kind of
model behaviour emphasizes the meaningfulness of verifying the performance under

different meteorological conditions.
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Table 11: Errors between true concentrations and predictions from models trained

with data selected considering the level of pressure.
data selected based on pressure,

calibration target — PM, 5

train partition low high high low continuous

test partition low high low high continuous
error metric | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

MLR 2.71 3.56 3.76 5.28 3.63  4.19 3.06  4.87 3.54  4.62

RF 2.99 4.0 3.56 5.32 44 6.48 3.55 5.31 3.73  5.05

ANN (BL) 3.59  4.87 3.57 517 3.59  4.87 3.14 492 4.55 6.59

ANN 3.56  4.77 3.79 489 6.02 8.27 | 473  6.14 3.77  5.21

data selected based on pressure,

calibration target — PM;,

train partition low high high low continuous
test partition low high low high continuous
error metric | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 4.44 6.39 8.0 12.39 | 7.16 8.6 7.94 13.44 | 9.01 11.36
RF 4.94 6.93 8.84 14.09 | 7.64 10.59 | 8.46 13.71 | 9.31 12.45
ANN (BL) 7.38 9.65 | 7.48 12.31 | 7.38 9.65 8.53  13.99 7.56  10.32
ANN 4.75 6.7 7.24 11.5 9.58 12.6 | 8.07 13.37 | 8.44 11.46

Table 12: Errors between true concentrations and predictions from models trained

with data selected considering the level of wind speed.
data selected based on wind speed,

calibration target — PM, 5

train: wind speed low high high low continuous
test: wind speed low high low high continuous
error metric MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE || MAE RMSE
MLR 4.3 5.83 236 3.16 4.21 6.3 2.69 3.44 3.54  4.62
RF 4.64 6.44 2.8 3.77 4.24 6.3 6.29 7.18 3.73  5.05
ANN (BL) 6.27 8.22 236 3.22 44 6.51 3.89 441 4.55 6.59
ANN 5.48 7.17 244 3.36 5.35 7.42 5.87  7.18 3.77 521
data selected based on wind speed, calibration target — PM;,
train partition low high high low continuous
test partition low high low high continuous
error metric MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE || MAE RMSE
MLR 12.59 1787 | 4.1 5.34 | 11.08 17.8 6.18 7.57 9.01 11.36
RF 15.22 2221 | 4.46 576 | 11.31 17.95 7.4 10.47 || 9.31 12.45
ANN (BL) 17.92 2385 | 4.0 529 | 11.22 18.07 6.0 7.7 7.56  10.32
ANN 16.08 2443 | 4.45 6.16 12.9 19.6 5.48 7.81 8.44 11.46
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Impact of Meteorological Factors at Different Levels of PM

The previous experiment considered the effects of meteorological factors in cali-
bration, which are correlated with pollution concentration (Table 4). Testing a
calibration model in high wind speeds means testing it in lower pollution concentra-
tion than what occurs in low wind speeds (Table 8). Therefore, this section focuses
directly on performance in different levels of pollution concentrations. The calibra-
tion models trained with data selected based on meteorological conditions were next
evaluated with the PM high and low sets that were used earlier in the examination.
In addition to the low and high meteorological datasets, a diverse training set was
created for each feature using Algorithm 3 (Section 3). The motivation of using
diverse datasets was justified in Section 3 where it was noticed to have improved
the generalizability and boosted the performance of calibration models. The diverse
dataset contained partly the same data as the low and high sets and it was the same
size as them as shown in Table 7. A Kolmogorov-Smirnov test confirmed that all

the diverse sets were different from the high and low sets.

Summary of Results

The robustness of different calibration models was compared by fixing the test
feature to either PM type, while the training feature was iterated over tempera-
ture, pressure, humidity and wind speed. The detailed results of mean absolute
errors (MAE) and root mean squares errors (RMSE), when training the models
with different low, diverse and high sets can be found from Appendix 1. A summary
of the tables is shown in Tables 13 and 14. Table 13 shows average performance of
calibration models whereas Table 14 highlights the effects of using certain kind of

training data.

In case of PM, 5, looking at Table 13 the lowest mean of errors is achieved by RF
both in terms of MAE and RMSE and it has lowest MAE and RMSE 38% of the
time. MLR is close to RF in performance, but it never has the lowest error in either
error metric, however sometimes it has the highest error (MAE 25%, RMSE 13%
of the time). ANN (BL) has the highest mean MAE, being 11% higher than the
MAE of RF. However, the behaviour of the model seems unstable since it yields the
lowest error 25% of the time in MAE and 50% of the time in RMSE, but it also has
the highest error 50% of the time in both MAE and RMSE. The unstable behaviour
highlights both the models poor generality and the meaning of good quality training
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Table 13: Summary of calibration techniques from Tables 15-18

PM, 5
) ] mean #lowest #highest
calibration
model MAE RMSE MAE RMSE MAE RMSE
MLR 9.46 12.04 0 0 2 1
RF 9.21 11.96 3 3 1 2
ANN (BL) | 10.3  12.86 2 4 4 4
ANN 10.19 13.14 3 1 1 1
PMg
) ) mean #lowest #highest
calibration
model MAE RMSE MAE RMSE MAE RMSE
MLR 17.79  24.37 2 3 1 1
RF 18.24  25.21 1 1 2 2
ANN (BL) | 20.85  27.26 2 1 4 3
ANN 19.65  26.4 3 3 1 2

data. ANN has slightly lower MAE and slightly higher RMSE than ANN (BL), but
its behaviour is more stable: lowest MAE 38% of the time and the highest MAE or
RMSE only 13% of the time.

Using the same summary(Table 13) for PM;y, MLR has the lowest mean MAE and
RMSE. It has lowest MAE 25% and RMSE 38% of the time, and highest MAE or
RMSE in 13% of the cases. RF has the second lowest mean MAE and RMSE, but
it has lowest MAE and RMSE only in 13% and highest in 25% of the experiment
cases. ANN (BL) shows signs of similar behaviour than with PMj 5, having lowest
error in 25% (MAE) and 13% (RMSE), and highest error in 50% (MAE) and 38%
(RMSE) of the cases. ANN (BL) also has the highest mean MAE and RMSE values,
the MAE being 17% and RMSE 12% higher than the lowest ones from MLR. The
other ANN has lowest error in 38% of the cases in both error metrics and the highest
in 13% (MAE) and 25% (RMSE) of the experiment cases.

Generally the levels of PM, 5 are quite low, due to which the RF may capture most
efficiently the small changes through non-linear decision chains. In PM;, the slightly
higher concentrations might be easier to spot and the best fit is found using MLR
or ANN. Comparing over both PM and all the techniques, ANN achieves the lowest
MAE most often.
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Table 14: Summary of training data partitions from Tables 15-18

PM, 5
data mean #lowest #highest
partition | MAE RMSE MAE RMSE MAE RMSE
low 9.93  12.65 5 4 4 5
diverse 9.5 12.22 3 2 0 1
high 10.01  12.71 0 2 4 4
PM;,
data mean ‘ #lowest ‘ #highest
partition | MAE RMSE MAE RMSE MAE RMSE
low 18.75  25.57 3 4 2 4
diverse | 17.97 24.87 1 2 1 1
high 18.48  25.18 4 2 5 3

In addition to comparing calibration techniques, the performance of training datasets
selected using certain partitioning method (Algorithms 1-3, Section 3) were com-
pared. Similar summary to the comparison of calibration techniques is shown in
Table 14. Both in PM, 5 and PM,, using low and high data partition resulted in a
higher MAE and RMSE than when using a diverse partition. Using diverse training
data in the calibration of PM, 5 yielded approximately 5% lower MAE and 4% lower
RMSE. In PM;, the errors were approximately 3% (MAE) and 2% (RMSE) lower.
The use of diverse training data caused the highest error in case of PM;o(MAE and
RMSE) only in 13% of the cases. In PM, 5, diverse training data never caused the
highest MAE and the highest RMSE was caused 13% of the time. The lowest errors
in PM, 5 were achieved in 38% (MAE) and 25% (RMSE) of the time. In PM;, the

lowest errors were achieved respectively in 13 % and 25% of the cases.
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6 Discussion and Summary

This Thesis has presented a novel method of selecting data (Section 3) to improve
both training and evaluation process of low-cost sensor calibration models. Datasets
created with this method were shown to give useful information about the generality
of calibration models. This section goes through possible extensions and implications

of our work, as well as covers its limitations.

Evaluation of Calibration Models

The calibration of low-cost sensor has been studied extensively [10, 15, 23, 43, 48|.
A validation process based only on the performance of calibration model over a
continuous period of real-life deployment [15, 43, 48] can give an overly optimistic
impression, due to similar levels of air pollution, and autocorrelation of both me-
teorological features and air pollutants. Although the results of past studies are
promising, little can be said about the generalizability of such calibration models.
To ensure diversity of training and testing data, and to build confidence on the
model’s capability to handle varying real-life conditions, more emphasis should be
put on data selection both in training and validation phase. Throughout the re-
sults section the magnitude of errors was found to vary for all calibration models
depending on the used training and validation data. This implies that the level of
generalization achieved by current state-of-the-art calibration models is not as good
as might have been indicated, when evaluation has been based on a single continuous

period.

This work has highlighted the importance of generalizability of calibration tech-
niques and proposed a novel method of selecting periods of time based on high and
low levels of environmental factors. Through this method of selecting data, cali-
bration models can be guaranteed to have seen different phenomena in the training
data. The results presented in Section 5 show that the validation process is easily bi-
ased by the homogeneity of the data. This is why model predictions on an arbitrary
continuous period do not suffice in depicting the true performance of a calibration
model in varying pollution concentrations or atmospheric conditions. The data se-
lection method proposed in this thesis has shown to be useful in the evaluation of a
calibration model, since it can be used to determine time periods of diverse environ-
mental conditions. Model’s performance can be evaluated in diverse pollution levels

and meteorological conditions giving more realistic impression about its capability
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to generalize over varying environmental conditions, also required by the regulatory

air quality standards [2].

Impact of Results

Results in Table 14 support the suggested improvement of performance and robust-
ness of calibration models, when using diverse training data [25]. Also our multi
phased evaluation process has shown how sensitive calibration models are to extreme
pollutant levels or meteorological conditions. Compared to a continuous evaluation
period, this approach brings out the challenges that calibration models face in real-
life deployments. After acknowledging weaker performance in certain environmental
conditions, calibration models can be improved by including more diverse training
data.

Results obtained in this Thesis indicate that some performance levels reported in
previous studies might unintentionally give overly optimistic impression about the
current level of state-of-the-art calibration models. Such findings are still valuable
in developing new approaches, or as they are if they can be verified to maintain the

level of performance under diverse environmental conditions.

The results also question the reliability of current applications that use calibrated
low-cost air quality sensors. For example, Cheng et al. [10] introduce several ap-
plications utilizing low-cost air quality sensor data. These applications are used to
show current level of air quality based in a users location, plan a trip with clean
air instead of shortest distance or keep your virtual pet away from high pollution
levels [42, p.749]. The models that provide calibrated measurements for these appli-
cations need to be re-evaluated in diverse environmental conditions to verify their
general accuracy. Otherwise the calibrated accuracy might be even 83 lower when
the model is exposed to diverse pollution levels, as shown in Table 6. Since the mea-
surements cannot be confirmed to be reliable in varying environmental conditions,

the applications built on calibrated measurements are less useful.

Suggested Future Work

Past studies on calibration could benefit from the observations done in this thesis
by investigating the performance of their models under diverse environmental condi-

tions. This would strengthen the obtained results from the perspective of generality,
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and help to improve the robustness of their models by using diverse training data.

Examining data selection process more carefully in the future would likely benefit
from having access to more significant pollution concentration levels. However, an
environment with low pollution concentration is a challenging scenario to model since
pollution level changes are subtle which low-cost sensors might struggle detecting.
Therefore, it should also be paid attention to as a model should be capable of

handling all kinds of pollution levels so that it could be considered truly trustworthy.

Comparing calibration techniques in diverse meteorological and pollution conditions
(Tables 15-18, Appendix) showed that lowest error was achieved most often using
an ANN. The potential of ANN in calibration however can be developed by using
connections that are more complex than fully connected layers e.g., deep learning
calibration models have shown to improve accuracy in the past [33]. For example
Convolutional Neural Networks and Recurrent Neural Networks can be used to
look at more than just a single timestamp. Including information from previous
timestamps might enable the model to better learn the temporal effect of certain

phenomena without directly copying the autocorrelation pattern.

Instead of attempting to estimate air quality measurements directly, another option
is to modify the problem statement into predicting the general level of air quality
w.r.t. an air quality index. In such scenario the task is to detect changes in the
air quality index instead of exact concentrations. The data could be assigned an
indication of the level of air quality at each timestamp as has been done in the
past [10, 19]. In terms of machine learning, this turns the regression problem into
a classification problem, which enables the use of other techniques. This way the
problem could benefit from applying both regression and classification techniques to
solve the mapping from inputs to outputs. Regardless whether the problem type is
classification or regression, validation should still be conducted more rigorously, as

proposed in this work.

Limitations

A limiting factor in this work is the used distance between the reference station and
the micro sensor. The distance was less than 50 meters and there were no obstacles
between the two, however an optimal positioning of the sensors would be next to
each other. However, installing the micro sensor to rooftop ensured similar altitude

with the reference station, which would have otherwise been challenging.
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Another limitation is the general concentration of particles in the available data.
The general PM concentration tends to be rather low making most of the PM data
quite similar. The effects of different environmental phenomena might not be as
clearly observable. To fully confirm the findings, a similar work should be done with

data from an area which has generally higher level of PM concentration.

The effects of using a shorter time window when creating datasets (Table 8) were
not fully covered. This should be done in the future to see whether using a shorter
time window better balances the distribution of extreme phenomena appearing in

training data, and therefore improves generality of a calibration model.

Summary

This thesis studied the calibration of low-cost air quality sensors to improve their
accuracy in real-life deployments where environmental conditions constantly vary.
As the accuracy of the low-cost sensors is affected by both the air pollution level
and meteorological factors, the evaluation of a calibration technique was carried out
more thoroughly than what has been done in the past where a single continuous
period has been selected. Evaluation on a continuous period does not suffice since
a calibration technique is not guaranteed to generalize over diverse environmental
conditions, and since daily patterns in data affect model predictions. PM concentra-
tions were found to affect the calibration by giving too optimistic impression about
the performance of the model when trained and evaluated in similar conditions.
Out of the meteorological factors, high wind speed had the most significant effect,
lowering the error up to 78% compared to training with low wind speed periods,
but humidity and pressure also affected calibration performance. In summary it is
recommended that at least one year of data covering all seasons is used to have the
right kind of training data for a calibration model. Results with all available data
suggest that selecting diverse training data achieves a better level of performance

and robustness in varying environmental conditions and deployment sites.
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Appendix 1. Impact of Meteorological Factors at Dif-
ferent Levels of PM — Tables

Results from Table 6 are shown in the two rightmost columns for comparison pur-

poses.

Table 15: The errors between true concentrations and predictions from models

trained with data selected considering the level of temperature.
train: temperature train: PM, 5
training partition low ‘ diverse ‘ high low ‘ high
test partition PM, 5 — low PM;y 5 — low
error metric MAE RMSE | MAE RMSE | MAE RMSE || MAE RMSE | MAE RMSE
MLR 234 275 | 251 292 | 216 266 || 138 198 | 928  9.58
RF 2.71 3.23 2.05 2.65 2.35 2.93 1.5 2.16 | 11.68 125
ANN (BL) 224  2.69 2.5 2.94 5.03 5.39 1.39 1.97 | 10.23 10.55
ANN 5.28 6.51 2.86 3.3 2.58 3.2 1.4 2.01 7.59 8.32
train: temperature train: PMjy 5
training partition low diverse high low high
test partition PM, 5 — high PM, 5 — high
error metric MAE RMSE | MAE RMSE | MAE RMSE || MAE RMSE | MAE RMSE
MLR 6.84  9.04 6.97 9.11 7.57  9.66 4.95 6.78 8.58  10.62
RF 6.73 8.89 7.13 9.3 6.66 8.88 6.31 8.36 8.62 10.71
ANN (BL) 6.65 8.8 6.98 9.18 7.49 9.59 5.0 6.83 | 10.21  12.02
ANN 5.92 7.84 6.94  9.26 7.0 9.32 4.7 6.35 8.43  10.51
train: temperature train: PM,
training partition low diverse high low high
test partition PM;q — low PM;q — low
error metric MAE RMSE | MAE RMSE | MAE RMSE || MAE RMSE | MAE RMSE
MLR 475 548 | 596  6.66 | 427 504 || 276 3.63 | 1536 16.32
RF 5.6 6.77 547  6.98 6.38 7.26 3.31 436 | 12.01 14.58
ANN (BL) 4.15 5.44 537  6.27 4.45 5.19 2.81 3.67 15.8  16.73
ANN 4.4 5.16 4.45 527 8.16 9.61 299  4.03 5.58 7.57
train: temperature train: PMq
training partition low diverse high low high
test partition PM,, — high PM;, — high
error metric MAE RMSE | MAE RMSE | MAE RMSE || MAE RMSE | MAE RMSE
MLR 13.27  18.99 | 11.98 17.81 | 13.14 19.12 11.19  15.29 | 17.08 22.42
RF 12.61 18.26 | 12.23 18.09 | 12.44 18.25 16.29 21.85 | 17.64 22.91
ANN (BL) 12.1 18.0 | 22.38 26.86 | 14.1 20.0 12.83 18.41 | 17.08 22.48
ANN 15.36  20.92 | 12.74 18.65 | 13.84 19.6 12.32 1723 | 16.46 21.85




Table 16: The errors between true concentrations and predictions from models

trained with data selected considering the level of relative humidity.

train: humidity

train: PMs 5

training partition low ‘ diverse ‘ high low ‘ high
test partition PM, 5 — low PM,; 5 — low
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 3.23 3.65 2.59 3.03 2.34 2.8 1.38 1.98 9.28 9.58
RF 4.8 6.59 3.03 4.1 2.75 3.64 1.5 216 | 11.68 12.5
ANN (BL) 2.78 3.17 3.18 3.58 2.17 2.64 1.39 1.97 | 10.23 10.55
ANN 2.74 3.39 2.58 3.2 2.32 3.03 1.4 2.01 7.59 8.32
train: humidity train: PM, 5
training partition low diverse high low high
test partition PM, 5 — high PM, 5 — high
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 6.16 8.3 6.71 8.84 6.86 9.01 4.95 6.78 8.58  10.62
RF 5.84 7.87 6.23 8.52 6.24 8.49 6.31 8.36 8.62 10.71
ANN (BL) 10.22  12.02 6.4 8.61 | 10.22 12.02 5.0 6.83 | 10.21  12.02
ANN 6.57 8.64 6.23 8.36 7.83 9.92 4.7 6.35 8.43  10.51
train: humidity train: PM;,
training partition low diverse high low high
test partition PM;q — low PM;y — low
MLR 5.62 6.32 5.39 6.12 5.03 5.74 2.76 3.63 | 15.36 16.32
RF 745 1029  5.28 6.77 5.32 6.9 3.31 436 | 12.01 14.58
ANN (BL) 3.9 4.84 4.15 5.44 4.83 5.53 2.81 3.67 15.8  16.73
ANN 4.47 5.36 5.72 6.86 5.61 6.53 2.99 4.03 5.58 7.57
train: humidity train: PM,,
training partition low diverse high low high
test partition PM;, — high PM;, — high
MLR 12.06 1795 12.6 18.65 | 12.69 18.66 11.19 1529 | 17.08 22.42
RF 11.69 1748 12.8 18.78 | 12.36 18.04 16.29 21.85 | 17.64 2291
ANN (BL) 13.8 19.58 13.1 19.27 | 14.42 20.23 12.83 1841 | 17.08 22.48
ANN 15.64 21.27 1255 18.6 124 18.31 1232 1723 | 16.46 21.85




trained with data selected considering the level of pressure.

Table 17: The errors between true concentrations and predictions from models

train: pressure

train: PMs 5

training partition low diverse high low high
test partition PM, 5 — low PM,; 5 — low
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 2.36 2.76 2.43 2.83 2.97 3.35 1.38 1.98 9.28 9.58
RF 2.27 3.04 2.19 2.76 2.72 3.55 1.5 216 | 11.68 12.5
ANN (BL) 1.98 2.45 2.88 3.26 2.72 3.12 1.39 1.97 | 10.23 10.55
ANN 1.85 2.53 2.46 3.12 2.06 2.74 1.4 2.01 7.59 8.32
train: pressure train: PM, 5
training partition low diverse high low high
test partition PM, 5 — high PM, 5 — high
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 6.91 9.08 6.99 9.12 6.74 8.86 4.95 6.78 8.58  10.62
RF 7.05 9.34 7.13 9.45 6.54 8.69 6.31 8.36 8.62 10.71
ANN (BL) 7.12 9.29 1022 12.02 | 6.51 8.66 5.0 6.83 | 10.21  12.02
ANN 8.52 10.56  6.45 8.67 7.79 9.83 4.7 6.35 8.43  10.51
train: pressure train: PM;,
training partition low diverse high low high
test partition PM;q — low PM;y — low
MLR 4.79 5.52 5.46 6.21 6.36 7.12 2.76 3.63 | 15.36 16.32
RF 4.52 5.85 4.82 5.89 4.86 6.27 3.31 436 | 12.01 14.58
ANN (BL) 5.52 6.29 4.15 5.44 6.11 6.87 2.81 3.67 15.8  16.73
ANN 3.86 4.91 4.07 5.15 3.57 461 2.99 4.03 5.58 7.57
train: pressure train: PM,,
training partition low diverse high low high
test partition PM;, — high PM;, — high
MLR 12.75  18.68 11.8 17.68 | 11.47 17.22 11.19 1529 | 17.08 22.42
RF 12.87 1875 124 1835 | 1213 17.8 16.29 21.85 | 17.64 2291
ANN (BL) 22.38 26.86 11.9 17.83 | 11.81 17.65 12.83 1841 | 17.08 22.48
ANN 13.44 1939 11.55 17.28 | 12.96 18.82 1232 1723 | 16.46 21.85




Table 18: The errors between true concentrations and predictions from models

trained with data selected considering the level of wind speed.

train: wind speed

train: PM, 5

training partition low ‘ diverse ‘ high low ‘ high
test partition PM,y 5 — low PM,y 5 — low
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 228 272 256 296 | 21 256 | 138 198 | 928  9.58
RF 2.28 2.81 2.28 2.83 2.06 2.74 1.5 216 | 11.68 12.5
ANN (BL) 2.62 3.02 1.58 2.38 1.58 2.38 1.39 1.97 | 10.23 10.55
ANN 2.32 2.79 2.04 2.57 2.3 2.9 1.4 2.01 7.59 8.32
train: wind speed train: PM, 5
training partition low diverse high low high
test partition PM, 5 — high PM, 5 — high
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 6.8 9.01 6.63 8.85 7.52 9.6 4.95 6.78 8.58  10.62
RF 6.56 8.78 6.97 9.15 7.3 9.52 6.31 8.36 8.62  10.71
ANN (BL) 10.22  12.02 7.25 9.43 | 10.22 12.02 5.0 6.83 | 10.21  12.02
ANN 6.66 8.85 7.07 9.26 7.55 9.69 4.7 6.35 8.43  10.51
train: wind speed train: PM;,
training partition low diverse high low high
test partition PM,q — low PM;, — low
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 5.92 6.59 5.3 6.04 4.22 4.96 2.76 3.63 | 15.36 16.32
RF 6.36 8.36 4.66 6.02 3.9 4.89 3.31 436 | 12.01 14.58
ANN (BL) 6.69 7.48 4.15 5.44 4.06 4.82 2.81 3.67 15.8  16.73
ANN 4.95 5.81 5.1 5.95 3.61 4.65 2.99 4.03 5.58 7.57
train: wind speed train: PM,,
training partition low diverse high low high
test partition PM;, — high PM;, — high
error metric MAE RMSE MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
MLR 12.06 1793 12.17 18.06 | 13.62 19.54 11.19  15.29 | 17.08 22.42
RF 11.77 17,55 12.23 18.12 | 13.88 19.78 16.29 21.85 | 17.64 2291
ANN (BL) 12.86  18.74 1247 18.32 | 22.38 26.86 12.83 1841 | 17.08 22.48
ANN 12.45 1822 13.19 19.04 | 11.37 17.05 1232 1723 | 16.46 21.85




