
Automatic Discovery of Host Machines in Cloudify-powered
Cluster

Lauri Suomalainen

Master’s Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, May 31, 2019

Faculty of Science Department of Computer Science

Lauri Suomalainen

Automatic Discovery of Host Machines in Cloudify-powered Cluster

Computer Science

Master’s Thesis May 31, 2019 0

Virtualization, Distributed Systems, Containerization

Hybrid Clouds are one of the most notable trends in the current cloud computing
paradigm and bare-metal cloud computing is also gaining traction. This has created
a demand for hybrid cloud management and abstraction tools. In this thesis I identify
shortcomings in Cloudify’s ability to handle generic bare-metal nodes. Cloudify is an open-
source vendor agnostic hybrid cloud tool which allows using generic consumer-grade
computers as cloud computing resources. It is not however capable to automatically
manage joining and parting hosts in the cluster network nor does it retrieve any hardware
data from the hosts, making the cluster management arduous and manual. I have
designed and implemented a system which automates cluster creation and management
and retrieves useful hardware data from hosts. I also perform experiments using the
system which validate its correctness, usefulness and expandability.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

1 Introduction 1

2 Background 3
2.1 Virtualisation . 3
2.2 Heterogeneous clouds, bare-metal and hybrid 5
2.3 Virtualisation Techniques . 6

2.3.1 Full virtualisation . 6
2.3.2 Hardware-Layer virtualisation 7
2.3.3 Container-based virtualisation 7
2.3.4 Paravirtualisation . 8
2.3.5 Unikernels . 8
2.3.6 Bare-metal cloud computing 9

2.4 Cloudify and Cloud Management Platforms 9
2.4.1 Cloudify . 9
2.4.2 OpenStack . 10
2.4.3 Comparison of OpenStack and other Cloud Manage-

ment Platforms . 10

3 System Design and Implementation 12
3.1 Design overview . 13

4 Technical Implementation 15
4.1 Network Scanner . 15

4.1.1 Sniffer . 16
4.1.2 Start-up routine . 18
4.1.3 Pinger . 18

4.2 Request Service . 20
4.2.1 Id checking . 23
4.2.2 Adding a new host to Host-pool Service 23
4.2.3 Limitations and assumptions of the Discovery Service 24
4.2.4 Patching a host . 24

4.3 Specification retriever . 25
4.3.1 Technical implementation of the Specification Retriever 26

5 Experiments 30
5.1 Hardware set-up . 30
5.2 Software environment set-up 31
5.3 Test cases . 33

5.3.1 Discovering hosts at start up 33
5.3.2 Detecting a joining host 34
5.3.3 Detecting a departed host 35

ii

5.3.4 Patching a host . 36
5.3.5 Retrieving hardware data from the hosts 37
5.3.6 Running an example workload in the system 39

6 Future Research and Conclusions 43

Sources 45

A Test measurements 50
A.1 All start-up scan times . 50
A.2 All host discovery times . 51
A.3 All host disconnection times 53
A.4 All host patching times . 55

iii

1 Introduction

Cloud adoption is growing ever so fast with vast majority of both enter-
prises and small and medium businesses leveraging on cloud comput-
ing one way or another [41]. While private cloud usage is growing at
steady pace, its growth is eclipsed by that of public cloud usage which
is estimated to grow trice as fast when compared to private clouds.
Contributing to the accelerated speed of cloud adoption is the trend
of simultaneous use of multiple cloud environments and services, both
private and public. The concept of using multiple clouds to support and
enable same business is called Hybrid cloud and on average enterprises
report using and experimenting with almost five different clouds simulta-
neously. Another trend of cloud computing is a shift away from virtualised
clouds to running workloads directly on hardware. This bare-metal com-
puting interests companies running computationally heavy workloads
such as Big Data and Machine learning as bare-metal seeks to amend
performance overheads inherent to virtualisation. OpenStack Foundation
reports a stark increase in the usage of its bare-metal service Ironic [43]
and along with the possibility to use bare-metal servers with major public
cloud providers there are also relatively new service providers such as
Vultr [31] and Packet [20] who focus especially on providing bare-metal
servers as a service.

Growing usage of both hybrid clouds and the variety of the underlying
hardware and interfaces to use them introduce complexity to manage-
ment of these systems. As a natural reaction, there are now many tools
to abstract and manage this complexity. For example, IBM has their own
tool IBM Multicloud Manager [11] and Rancher [22] has been a popular
framework for handling multiple Kubernetes clusters [14]. This thesis
focuses on Cloudify [3] which is also a tool to manage multiple clouds.
What sets it apart from others however is the fact that it aims to be a
general tool independent of the underlying platform implementations
meaning that the user can control multiple clouds and even single physi-
cal machines as a generic set of resources without extensive knowledge
of their implementation. This opens up avenues in optimising cloud re-
source usage and introducing hardware that has not traditionally been
used as cloud computing resources such as consumer-grade comput-
ers and single-board computers such as Raspberry PIs. However, as
bare-metal cloud computing is not as popular as applications of virtu-
alised computing resources, Cloudify’s bare-metal capabilities remain
underdeveloped.

In this thesis I identify shortcomings related to Cloudify’s capability
of managing generic computational resources such, as consumer-grade

1

computers, and provide prototypical solutions addressing them. Main
problems addressed are Cloudify’s inability to automatically detect and
manage physical hosts in the cluster and its lacking knowledge of the
performance capabilities of the said hosts. My key contributions are:

1. A software solution which detects joining and parting hosts in the
cluster network automatically without a need for human interven-
tion and provides them to the Cloudify Manager for allocation.

2. A modification to Cloudify’s Host-pool service so that it retrieves and
stores hardware data and performance capabilities of the hosts. In
the future Cloudify Manager can use this data to optimise resource
usage and make more intelligent workload allocation choices.

Both of the solutions integrate seamlessly with the existing Cloudify
components. I also perform experiments on real machines to showcase
and validate the capabilities and correctness of my solutions within the
scope of this thesis. The features I am addressing are lacking likely
because Cloudify’s development team’s focus has been on integrations
with the major cloud platforms and generic hardware provisioning is a
niche use case compared to them.

The remainder of this thesis is structured as follows: First in section 2
I give a background overview of common cloud computing concepts. Then
I follow with the background review of Cloudify, comparing it conceptually
to OpenStack which serves as an example of a typical Cloud computing
platform. I also provide a quick overview of hybrid cloud and bare-metal
management tools similar to Cloudify. From section 3 onwards I focus on
identifying the scope of the prototype and the shortcomings of Cloudify
I set out to correct. I provide an overview of the parts in Cloudify with
which my proposed system interacts with and detail a high level design
of my solutions for automating host detection and retrieval and storage
of hardware data. Section 4 presents the lower level details of solutions’
implementation followed by the experiments in section 5 showcasing
and validating the solutions’ capabilities. Finally in chapter 6 I review
future work and research required to fully develop the system beyond
the prototype.

Both solutions, Discovery Service and Modified Host-pool Service,
presented in this thesis are open source.1

1The Discovery Service is available at https://bitbucket.org/Fleuri/
discoveryserviceforcloudify/src/master/. The modified Host-pool Service is
available at https://github.com/Fleuri/cloudify-host-pool-service.

2

2 Background

Often heard quote about cloud computing is that "There is no cloud. It
is just someone else’s computer", implying that cloud computing is just
traditional distributed computing marketed with a more attractive name.
While the core of the cloud is undeniably in distributed computing, cloud
computing as a whole can be seen as a fundamental paradigm shift in
which the hardware and software is abstracted to the end user and the
resources are offered as different types of services. [38]

In cloud computing, there are multiple recognised service models
which dictate how the users can use the given system and what privileges
they are given [48]. In its most limited form, a cloud service is offered to
a user as a predefined application or a set of applications. The user has
some interface for interacting with the applications but is given no con-
trol over anything else such as other applications, the operating system
the application is running on or network and hardware configurations.
This is generally known as Software as a Service (SaaS). The most permis-
sible service model is known as IaaS, Infrastructure as a Service. In its
archetype the user gets access to all fundamental computing resources,
possibly including some network components, and can run arbitrary
software including operating systems. The user experience should be
similar to that with their personal computers. The user is not allowed
to access the underlying cloud infrastructure. Between the two falls
Platform as a Service (PaaS). PaaS typically allows users to deploy their
own applications along with their dependent libraries, tools, services etc.
provided that they are supported by the cloud provider. The user has no
control over underlying cloud infrastructure, operating system, storage
or network but usually can configure certain settings and possibly choose
different supporting services the cloud provider offers. There are also
other "aaS" such as Data as a Service (DaaS) and Storage as a Service
(SaaS) but they are based on one of the three aforementioned service
models or are variations or subsets of them. Sometimes the numerous
models are referenced with umbrella terms of XaaS and EaaS meaning
Everything as a Service for both or Anything as a Service for the former
[38].

2.1 Virtualisation

Virtualisation in the context of distributed cloud environments usually
refers to virtual machines. The core idea is analogous to computer
hardware virtualisation. Operating systems offer an interface for the
processes to utilise the computer hardware while giving them an illusion

3

that they have all of the hardware for themselves [34]. In reality the
resources are shared among many processes. Likewise in cloud environ-
ments resources are being share by processes but also by different users
running different operating systems, configurations and programs. As
with the processes, users are given an impression that they alone have
access to the underlying hardware resources, whereas in reality there
are multiple users using the same physical machines.

There are several reasons as to why would one prefer a virtualised
environment to a non-virtualised one.

1. Hardware utilisation

Obviously in multitenant cloud services it is crucial for the service
provider to maximise the use of their hardware resources. Thus it is
imperative for the provider to try to share the limited hardware resources
among as many users’ virtualised environments as possible. Otherwise
every user would need their own physical machine in the system which
would both require more resources per user and leave resources un-
derused. For example a 2018 study showed that even a typical public
computing cluster uses around half of the CPU and memory resources
available to it. [53]

2. Fault tolerance

From the fault tolerance perspective, using virtual machines in a dis-
tributed environment decreases their dependency on the underlying
physical hardware [36]. That is because in virtual machine architectures
which support live migration of operating system instances can be seam-
lessly moved from one physical machine to another. This also helps the
load-balancing in the distributed system and allows low-level and physical
maintenance of the hardware without considerably disrupting the usage
of the system.

3. Flexibility

An end-user also has many reasons to use virtualised cloud services. User
only needs a lightweight computer with an internet connection to per-
form computationally challenging tasks in the cloud back-end. Similarly
devices with little storage capacity can leverage from a cloud service’s
vast storage space. Some users would like to use applications and pro-
grams not native to their operating system of choice making another
virtualised OS a convenient option [34]. Virtualised environment allows

4

software developers to test and debug their software with many differ-
ent settings, as virtualised environments can have different operating
systems and available hardware resources. Naturally this also allows
emulating completely different devices [39].

2.2 Heterogeneous clouds, bare-metal and hybrid

One of the most common assumptions of the current cloud computing
paradigm is that the cloud environment is built on commodity hardware
[37]. Even if that was not the case, virtualisation and orchestration
techniques typically abstract the underlying hardware making it invisible
to users. This can cause problems if the cluster’s devices’ capabilities
differ from each other drastically. In a multitenant cloud the use cases,
workloads and resource needs differ between users, but the cloud is only
capable of offering generic solutions for everyone.

Other motivations to deploy heterogeneous hardware to data centres
relating to different use cases and needs stem from bare-metal solutions
and green computing movement [45]. For example, if a user is running
mainly computationally light applications that perhaps only run for a
short time, it is wasteful to keep full-fledged rack servers running if the
same task could be accomplished with hardware requiring less power and
outputting less heat e.g. a Raspberry Pi [23]. In addition, such machines
are magnitudes cheaper than traditional rack servers. Virtualisation tech-
niques deployed in current clouds have wide range of benefits but they
incur overheads making them undesirable for certain high-performance
computing tasks [46]. Such tasks may also require specialised hardware
to optimise the performance and thus in the best scenario user should
have information of the hardware capabilities and be able to control on
which nodes their tasks are run.

Ability to know and control nodes and their capabilities are also rele-
vant hybrid clouds. One way to classify different clouds is by which party
offers the service. Clouds hosted by an organisation meant for its internal
use are referred to as Private clouds whereas cloud service offered by
an organisation for other party to rent and use is known as Public clouds
[42]. Hybrid cloud is typically combination of these two, but could also
refer to any separate cloud platforms used together. An organisation
may need to provision resources from a public cloud occasionally for
different use-cases and workloads to complement their own environment
or the private cloud is used to control data more securely as the service
using the data is offered in a public cloud. Use cases and motivations for
deploying a hybrid cloud vary, but a result is most likely a cluster with
heterogeneous hardware.

5

(a) Full (b) Hardware-Layer (c) Container-based

Figure 1: Popular virtualisation techniques. Along with a) full virtu-
alisation, b) hardware-layer virtualisation, and c) container-based virtual-
isation, other virtualisation techniques include unikernels and paravirtu-
alisation. Bare-metal computing which gives the users complete control
over the computing resources is also getting popular.

2.3 Virtualisation Techniques

Traditionally virtualisation has referred to a software abstraction layer
residing between the computer hardware and the operating system [51].
This layer has been called Virtual Machine Monitor (VMM) or more
recently a hypervisor and it hides and abstracts the computing resources
from the OS, allowing multiple OSes to run simultaneously on the same
hardware. There are multiple ways to run hypervisor-based virtualisation.
Lately a technology called container-based virtualisation has been gaining
popularity. Instead of emulating whole hardware, containers make use of
features provided by the host operating system to isolate processes from
each other and other containers [39]. Cloud computing in which the host
machines are not virtualised is known as bare-metal computing [46].

2.3.1 Full virtualisation

In full virtualisation, the hypervisor runs on top of the host OS. The guest
OSes run on top of the hypervisor which in turn emulates the underlying
real hardware to them. The hypervisors running on top of the host OS
are generally referred as Type 2 Hypervisors [39]. The guest OSes can
be arbitrary. Figure 1a shows the full virtualisation architecture with
the hypervisor running on top of the Host OS and Guest OSes on top of
the hypervisor using their emulated hardware.

The main advantage of full virtualisation is that it is easy to deploy

6

and should not pose problems to an average user but the virtualisation
overhead results in significantly reduced performance when compared to
running directly on hardware [51]. Popular examples of full virtualisation
applications are Oracle’s VirtualBox[19] and VMware Workstation[30].

2.3.2 Hardware-Layer virtualisation

Hardware-Layer virtualisation is also a type of full virtualisation, but
unlike Type 2 hypervisors, the so called Type 1 Hypervisors (also native
and bare metal) run directly on hardware. As seen in figure 1b, there’s
no Host OS per se. Instead the Guest OSes access to hardware resources
is controlled by the hypervisor.

Running directly on hardware, Hardware-Layer virtualisation tech-
niques suffer less performance overhead than their OS-layer counterparts
[51]. On the other hand, Type 2 hypervisors being essentially applications
themselves can be ran in parallel on the host OS whereas Type 1 hypervi-
sors can not. For an average user, setting up a Type 1 hypervisor can be
more difficult than Type 2. Commercial examples of Type 1 Hypervisors
include Microsoft’s Hyper-V [15] and VMware’s VSphere [29].

2.3.3 Container-based virtualisation

Instead of virtualising the underlying hardware, container-based virtuali-
sation also known as OS-Layer virtualisation [51] focuses on user space
and allows running multiple operating systems in parallel as applications
using the same kernel as the host operating system. A prime example
of a popular container-based virtualisation platform is Docker [8] which
leverages on native Linux kernel features to virtualise and isolate OS
instances. Figure 1c shows a container-based virtualisation architecture
in which containerised environments are running operating systems on
host OS’s kernel.

Container-based virtualisation does not need to emulate the hardware
as containers communicate directly with the host kernel [39] and are thus
very fast to start. They also do not require all of the components a fully
virtualised environment would need to run and therefore their resource
fingerprint is minimal when compared to hypervisor-based virtualisation
techniques.
The obvious drawback of the technique is that the kernel of the vir-
tualised OS has to be the same as that of Host OS e.g. In a situation
depicted in figure 1c operating systems based on Linux kernel could be
ran on Ubuntu Host OS but OSes like Windows or OSX could not. On
certain virtualisation platforms resource-intensive containers can also

7

affect other containers detrimentally as the shared host OS’s kernel is
forced to spend its execution time on handling the instructions from the
stressed container [54].

2.3.4 Paravirtualisation

Paravirtualisation differs from full virtualisation by requiring the Guest
OS to be modified in order to accommodate the virtual environment
in which it is ran. Otherwise the architecture is similar to that of full
virtualisation, but with thinner hypervisor allowing performance close
to that of a non-virtualised environment. A well-known example of a
paravirtualisation hypervisor is Xen [32].

2.3.5 Unikernels

Unikernels are a relatively recent take on virtualising services. Building
on the notion that in cloud environments each VM usually specialises to
provide only one service even if each VM contains a full-fledged general
computer [47]. Unikernels are essentially minimal single-purpose library
operating system (LibOS)[49] VMs with a single address space. They
contain only the minimal set of services, implemented as libraries, built
and sealed against modification to run the one application. Unlike the
earlier LibOSes unikernels do not require a host OS to run but run directly
on a VM hypervisor, such as Xen.

Some benefits of unikernels are obvious. Constructing VMs with
minimal set of service libraries results in small images and resource
footprints as well as fast boot times. Other benefits include reduced
attack surface due to smaller code base and sealing preventing any code
not compiled during the creation of the VM from running. Single-address
space improves context switching and eliminates the need for privilege
transitions making system calls as efficient as function calls [44]. Running
directly on the hypervisor instead of a host OS eliminates superfluous
levels of hardware abstraction.

Optimisation and simplification are not without drawbacks. By defini-
tion, unikernels are not intended for general-purpose multi-user comput-
ing but for microservice cloud environments. Running multiple applica-
tions on a single VM is risky due single-address space does not offer any
inherent resource isolation. As unikernels are sealed during compiling, it
is not possible to do changes to them afterwards. User is instead required
to compile and launch a completely new modified VM.

Popular examples of unikernels are MirageOS [16] and OSv[44].

8

2.3.6 Bare-metal cloud computing

While virtualisation is often desirable for its flexibility, multi-tenancy and
other attributes, there are use cases in the cloud where a user would
rather forego virtualisation. Bare-metal cloud computing refers to a
practice of running distributed workloads directly on cloud’s physical
servers much like one would with virtualised servers: Similar elements
include for example abstraction and on-demand provisioning. Bare-
metal is often preferred in High Powered Computing (HPC) use cases for
maximum utilisation of computing power. Bare-metal’s benefits include
non-existent virtualisation overhead, ability to choose the hardware the
workload runs on and can tune it for maximum performance, and single-
tenancy ensuring that no other users are running workloads on the same
physical machine which could interfere with each other [50]. On the
other hand the aforementioned flexibility is lost and single-tenancy poses
challenges on workloads if maximum resource usage is desired.

Prominent bare-metal provisioning platforms include OpenStack Ironic
[12], Canonical Maas [1] and Razor [24].

2.4 Cloudify and Cloud Management Platforms

Enterprises are using increasingly more distinct clouds simultaneously
[41] and the clouds themselves are becoming bigger and more complex.
Different clouds have different features and capabilities, are used differ-
ently and are not always interoperable [40]. This has created demand for
tools to manage the scale and complexity of these systems. These range
from integration libraries like jclouds [13] to full-fledged management
frameworks like IBM Multicloud Manager, Cloud Foundry and Cloudify
[11, 2, 3] which offer unified resource abstraction, orchestration and
deployment capabilities among others.

In the following sections I provide background to Cloudify and mo-
tivate its use in this thesis. I also discuss OpenStack as an example
of a typical Cloud Platform and compare it to Cloudify to point out the
differences and similarities between them and other cloud platforms and
cloud management platforms in general.

2.4.1 Cloudify

Cloudify [3] is an open-source orchestration software aiming to provide
a unified control and modelling layer for common cloud computing plat-
forms. Cloudify can be used to uniformly orchestrate heterogeneous sets
of both virtual and physical cloud resources such as networking, comput-
ing and storage resources and even pieces of software. They can also be

9

provided from different environments such as OpenStack, AWS, Google
Cloud Platform (GCP), Kubernetes and even bare-metal clouds. Orches-
trating different versions of the same underlying cloud environment is
also possible. The applications, workflows and the cloud infrastructure
itself is described with OASIS TOSCA [33] based Domain Specific Lan-
guage (DSL) in configuration files called blueprints in Cloudify jargon.
Configuration files are vendor-agnostic, meaning the same configuration
can be reused with different underlying infrastructure. Cloudify plugins
act as an abstraction layer between the generic blueprints and cloud
environments’ more specialised APIs. The generalising approach makes
Cloudify suitable for hybrid clouds and allows seamless migration of
resources between different environments.

2.4.2 OpenStack

OpenStack [17] is an open-source software platform for cloud computing.
A project originally founded by NASA and Rackspace Inc. now has a large
base of supporting companies [7] and a thriving community. OpenStack
allows its users to deploy a full-fledged cloud computing infrastructure.
User can control pools of both physical and virtual computing, storage
and networking resources. It can be run on commodity hardware and
supports a plethora of enterprise- and open source technologies making
it possible to use heterogeneous physical and software environments.
OpenStack consists of different projects that provide services for the
system. A user can freely choose which services to deploy. Project range
from essential Core Services like computing, block storage, identity ser-
vice and networking to more specific and specialised such as MapReduce
and Bare-metal provisioning[17]. OpenStack boasts many features: It is
massively scalable supporting up to million physical and 80 million virtual
machines [52]. It also supports a wide array of market-leading virtualisa-
tion technologies such as QEMU, KVM and Xen and it is fully open-source
with thriving community and industry backing [7]. Other features in-
clude fine-grained access control and multi-tenancy, fault-tolerance and
self-healing [18].

2.4.3 Comparison of OpenStack and other Cloud Management
Platforms

Both OpenStack and Cloudify are used to operate a large number of
computing, networking and storage resources. However, they are not
directly comparable. While Cloudify can be used to orchestrate resources
and applications on a cloud platform, OpenStack is a cloud platform.

10

Similar orchestration project within OpenStack is Heat [10], which can
be used similarly to Cloudify’s DSL to write human-readable templates
(HOTs – Heat Orchestration Templates as they are called in the Heat
project) to automate deployments of applications and cloud resources.
Heat orchestration is of course limited to OpenStack itself. Even though
there are drivers which allow OpenStack to manage resources from major
public clouds such as AWS and GCP (and thus allowing a public/private
hybrid cloud), the resources are abstracted to those common to Open-
Stack: Heat cannot orchestrate them independently of an OpenStack
deployment. Cloudify however is cloud-platform agnostic and it can
manage multiple different cloud environments simultaneously, including
OpenStack. On the subject of hybrid clouds, Cloudify supports bare-metal
deployments by default and OpenStack’s project Ironic for provisioning
bare-metal instances has been integrated to OpenStack since ’Kilo’ de-
velopment cycle. Both Cloudify and OpenStack are open-source projects
with notable contributing community but OpenStack has more industrial
partners than Cloudify.

What makes Cloudify stand out however is its broadness, general-
ity and expandability. Other frameworks like Cloud Foundry focus on
common application stacks and mechanisms to streamline application de-
velopment and deployment work while Cloudify allows user to orchestrate
complex workflows on practically any platform, starting from infrastruc-
ture management ending as low as a single BASH script [4]. Among
these capabilities is the ability to provision generic host machines as
cloud resources without using a cloud platform. There are other systems
which can provision generic hosts similarly, such as Red Hat Satellite
[25] or Docker Machine [9] but unlike them Cloudify does not require in-
stallation of any additional software on the hosts. Additionally preparing
the hosts for provisioning seems to require human intervention in most
cases, including Cloudify. Simplifying and automating this task as well as
providing more insight to the hosts’ capabilities are the main focuses of
this thesis.

11

3 System Design and Implementation

Current cloud management platforms make simplified assumptions about
the hardware in the datacentre and its usage. Hardware is by default
powerful rack or blade servers, they are virtualised, and always on. Thus
cloud management platforms on the market are sub-optimal for certain
use cases.

HPC and Big Data applications require highly optimised and powerful
hardware. In such applications, the overheads imposed by virtualisation
are undesirable and for maximum efficiency the cluster should consist
of bare-metal computing nodes. Furthermore other advantages of virtu-
alisation such as multi-tenancy and scaling are not useful in bare-metal
computing.

On the other end of the spectrum are very weak computers with lim-
ited computing power, memory, I/O throughput and storage. These ma-
chines can be a worthwhile addition to a cloud environment for running
small low intensity tasks: They are significantly cheaper to traditional
datacentre hardware costing some hundred Euros per machine instead
of thousands like a single rack server. They do not require much space
to store, use less electricity and output less heat. Virtualisation may
not be applicable for such machines either due to hardware not sup-
porting virtualisation in the first place, or as the virtualisation overhead
may consume large enough share of a machine’s resources rendering
it incapable to perform or at least severely restricting any other func-
tionality besides virtualisation. With low end computers virtualisation
benefits like multi-tenancy and running multiple operating systems in
parallel may simply not be possible because of limited capabilities. Using
these machines in a heterogeneous cluster requires treating them like a
traditional bare-metal nodes, albeit not nearly as powerful.

In order to leverage on bare-metal nodes in a heterogeneous and
possibly even in a hybrid cloud, the task schedulers require a view to
the underlying infrastructure so that they can allocate tasks to nodes
fitted to perform them. To extend the usage to befit hybrid clouds in
addition to heterogeneous, the orchestrator has to be vendor agnostic
too. This thesis presents prototype extensions to Cloudify’s [3] client
agents, which are used to communicate between the nodes and Cloudify
Manager. Extensions are going to allow two things:

1. Allow the Manager to gain information about the nodes’ hardware
capabilities, a feature that is currently lacking from the project.

2. Enable node discovery in the cluster.

12

Currently managing the composition of the host-pool is a manual
effort. The hosts nodes in the cluster can either be configured before
launching the cluster using a host pool YAML file or with REST API calls.
Therefore monitoring for failing nodes and adding new ones, especially en
masse, is an arduous task. A discovery mechanism for new nodes in the
cluster would ameliorate if not solve the problem, even if replacing faulty
hardware is more often than not a manual task. Additionally discovery
mechanism would allow Bring-your-own-host kind of functionality.

3.1 Design overview

Centrepiece in Cloudify’s architecture for achieving the set goals for
more detailed information and node discovery is the Host-pool service
[5]. Host-pool service is a RESTful service to which Cloudify Manager
can make calls via Host-pool plugin to gain information about nodes
that compose the cluster. It can also allocate hosts for jobs run by the
manager as well as deallocate them. One major feature host-pool service
provides is adding hosts to the pool during runtime. It can also remove
hosts from the pool and both operations are performed with a similar
REST API call. A Cloudify set-up without host-pool service can not make
use of generic cluster comprising of different bare-metal nodes. The
relationships between different Cloudify components are illustrated in
figure 2.

Figure 2: The role of the Host-Pool Service.

The goal for retrieving more hardware information from hosts re-
quires running a script on the hosts. Currently the information host-pool

13

service provides is concise, providing information like the operating sys-
tem of the host, available endpoints and login credentials. It does not in
fact query the host themselves. In order to get any performance informa-
tion, host-pool service should run a script querying for the hardware data
and storing the results when adding the host to the logical pool. This
requires extending the host-pool service.

The goal for host discovery and automated host pool management
will be implemented as an additional Discovery Service. The role of the
Discovery service is twofold as seen on figure 3.

Figure 3: Discovery service’s relation to other Cloudify Components.

The Discovery Service constantly monitors the network and its devices
and keeps track of discovered devices and their health. When a new
device is detected in the network its details are added to Discovery
Service’s local memory and a REST API call to add the device to the
logical pool of hosts is made to Host-pool Service. Device health is
monitored periodically and after a set number of failed health checks are
detected, the device is removed from Discovery Service’s memory and a
REST API call to remove the host from the logical pool is made.

14

4 Technical Implementation

Discovery Service is implemented with Python programming language
and Flask Web framework. They were chosen because all of the compo-
nents in Cloudify are also written in Python and Flask is used primarily
for providing REST APIs. Even though Discovery Service does not pro-
vide any REST APIs, Flask is used for configuration management and
source code organisation. Naturally, if need arises in the future to expand
Discovery Service with a REST API, the development work is streamlined
because of the framework.

In addition to Python program, Discovery Service relies on Redis
[26] as an in-memory key-value storage. Redis is a completely separate
process in addition to Discovery Service. The preferred way of deploy-
ing Redis is in a docker container as it doesn’t require installation or
configuration save for exposing a correct port in the container and speci-
fying Redis’ address to Discovery Service. Redis could also be installed
in the host system or even a remote system, though latter option has
no practical purpose due to network latency as Redis achieves its high
performance by storing values in the memory instead of disk.

On the source code level, Discovery Service consists of two major
components: The network scanner and request service. The network
scanner is given a subnet as a parameter and it constantly sniffs the
network detecting joining and already present devices and keeping track
of them. Its other task is to periodically send health checks to known
devices and if a health check fails enough times, it removes the given
device from the logical host pool. Request service is responsible for
sending HTTP requests to the Cloudify Host-pool service. It is called by
the Request Service and it runs asynchronously. In addition to HTTP re-
quests, it performs checks to ensure that the state of Discovery service’s
and Host-pool service’s databases correlate.

The communication relationships between different components in
the system are depicted in figure 4. The source code for Discovery Service
as well as the documentation can be found at https://bitbucket.org/
Fleuri/discoveryserviceforcloudify/src/master/

4.1 Network Scanner

The Network Scanner is responsible of monitoring the network allocated
for the Cloudify-orchestrated bare-metal cluster. It does so by passively
listening to the network traffic but also by actively pinging the already
discovered hosts. Network Scanner has two main functions, sniffer and
pinger, and they run concurrently on two threads. Sniffer listens to ARP

15

Figure 4: The communication relationships between Discovery Service
and other components

packets in the network and upon receiving one, stores the details of the
sender device. Pinger function periodically sends ARP pings to previously
discovered device and keeps track of their successes, eventually removing
unresponsive devices from the logical host pool. In addition to two main
functions there’s a start-up function that initialises both local Redis
storage and the Host-pool service’s database. It pings all of the IP
addresses in the given IP range and stores the found device details to
databases.

4.1.1 Sniffer

Sniffer is the part of the Network Scanner used to passively listen to
the network traffic in the cluster’s network, and detect and store joining
hosts.

Sniffer is started in its own thread during the start up sequence of the
Discovery Service. It uses Scapy library [27] for Python. Sniffer function
is given three arguments:

16

1. The network interface which the Sniffer listens to for incoming
packets.

2. The callback function which details further instructions to per-
form when a packet is caught.

3. The filter which restricts the type of packets caught.

Only the interface can be set by the user of the Discovery Service.
The callback function is the core application logic of the sniffer and the
Discovery Service itself relies on sniffing ARP packets and therefore the
filter is set accordingly.

When it comes to programming logic, the callback function is the most
interesting part of the sniffer. Its purpose is to evaluate whether an ARP
request comes from a new or know device and store details about them.
When the function receives an ARP packet it first filters out packets that
are not standard ARP requests. There are two such cases: ARP Probe
[35], in which the source IP address or hardware address of the ARP
request is 0.0.0.0 or 00:00:00:00:00:00 respectively, and gratuitous ARP
in which the hardware address is ff:ff:ff:ff:ff:ff. The user can also define
a list of IP and hardware addresses which the Discovery Service should
ignore i.e. devices on which Cloudify should not run workloads. Such
devices include the host on which Cloudify manager runs and network
devices such as routers.

Next the function checks whether the packet’s origin is an already
known host by querying Redis. If the host is not previously known or if it
is a known device with a changed IP address, the function starts a new
thread to add or patch the host to the Host-pool service. See section 4.2.

Whether the packet’s origin host is known or not, the next step in
the function is to insert values extracted from the packet to Redis. The
data structure Discovery service uses is simple, being a hash table with
the devices’ hardware address being a key and value being a dictionary
object consisting of the given device’s IP address and the number of
failed ping attempts. See section 4.1.3 for more details. If the packet’s
origin is a new host, its key and values are inserted to the data store with
number of failed pings always being zero. If a device is already known,
its hardware address is already stored to Redis and therefore its values
are modified: in most cases only the failed ping count is reset to zero
but there could be cases in which the device’s IP address has changed
and it is updated here accordingly. Algorithm 1 details the structure of
the function. Note that both adding a new host and patching an already
known host is done in the same Request Service function. See section
4.2.2 for details.

17

Algorithm 1: Sniffer Callback Function

Input: Packet
if Packet is an ARP packet then

if Packet is not an ARP Probe or Gratuitous ARP then
if Hardware address not found in Redis or IP address not
found in Redis then

RequestService.Register_a_new_host();
end
Redis.store(Packet.HardwareAddress: {ip_address:
Packet.IPAddress, ping_timeouts: 0});

end

end

4.1.2 Start-up routine

Related to the sniffer function, when initialising the Discovery service, a
start-up routine is run. It has three functions:

• It flushes the Redis key-value store

• It empties the logical host-pool on the Host-pool Service.

• It scans every IP address in the cluster network, adding any device
found to the logical host-pool.

The routine follows the steps outlined above. First a flushing call is
made to Redis. Then, using the Request Service detailed in the section
4.2, the start-up routine retrieves the ids of the current hosts in the
host-pool service delete the entries one by one.

Finally the routine sends an ARP ping to each hosts (Manually ex-
cluded hosts do not apply) and upon receiving a reply, stores the details
of the host as described in the section 1. At the prototypical state, the
network scan waits for every host to either reply or timeout, making the
start-up routine slow if subnet’s IP range is large. Parallelism and other
possible future optimisations are discussed in section 6

4.1.3 Pinger

Pinger is the part of the Network scanner which is used to perform health
checks on existing hosts in the network and subsequently remove them
from storage were they to fail them a certain number of times.

18

Pinger function is started in its own thread in the Network Scanner.
Its responsibility is to keep track of the health of the nodes in the network.
If Pinger discovers an unreachable node, it is removed from both Redis’
and Host-pool service’s storage.

Pinger periodically works through a list of known hosts in the network
sending an ARP ping to each host. Upon receiving a response it resets
the corresponding host’s ping time-out counter to zero. If Pinger does
not receive a response, it increments the given hosts’ ping time-out by
one. If after this operation the time-out crosses the given ping time-out
threshold, the host is assumed to have disconnected from the network
and is removed from the storage. After Pinger has pinged every host in
the network, the process waits for a given ping interval after which it
restarts the process.

The user gives inputs two parameters in a configuration file for Pinger
to use: ping_timeout_threshold and ping_interval. Ping_timeout_threshold
specifies the maximum consecutive ping failures that can occur before a
host is marked unreachable and removed from storage. Ping_interval is
the duration in seconds of which Pinger waits after each round of pinging
the network. The more detailed presentation of the function is presented
in the algorithm 2.

19

Algorithm 2: Pinger Algorithm

while True do
foreach host in Redis do

timeouts = host.ping_timeouts;
response = Ping(host);
if response then

Redis.patch(host, {ping_timeouts: 0});
end
else

timeouts++;
if timeouts >= ping_timeout_threshold then

RequestService.delete(host);
Redis.delete(host);

end
else

Redis.patch(host, {ping_timeouts: timeouts};
end

end

end
Sleep(ping_interval);

end

4.2 Request Service

Request Service is responsible of communication between the Discovery
Service and Host-pool Service. As seen on figure 4, it is called by
Network Scanner and it makes requests to Host-pool Service. The REST
API Host-pool Service provides is quite succinct but provides a typical
CRUD interface for handling nodes in the network. The methods are as
follows2

[GET] /hosts
GET request to /hosts returns a JSON list of hosts and their details.
Also accepts certain filters.

[POST] /hosts
POST request to /hosts with a valid JSON array will add one or
more hosts to Host-Pool service’s storage See listing 1 for the JSON
schema definition. Returns Id’s of the new host or hosts.

2Note: Paths are relative to Host-pool service base URL e.g. localhost:8081/hosts

20

[GET] /host/id
Returns details of a single host corresponding to the ID number.

[PATCH] /host/id
PATH request allows updating specified fields of a host with the
given ID.

[DELETE] /host/id
Removes the host with given ID from Host-pool service’s storage.

[POST] /host/allocate
This API call allocates a host to be used by the Cloudify Manager.

[DELETE] /host/id/deallocate
This returns a previously allocated host back to the host pool to be
reallocated again.

Request Service interacts with all of the REST API endpoints except
for allocation and deallocation endpoints which are interacted by Cloudify
Manager’s Host-pool plugin.

On source code level a typical Request Service function either makes
an HTTP request to a certain endpoint, possibly with an ID corresponding
to a host in the network, or constructs a JSON payload and sends that
along with a POST request. Programmatic challenge in Request Service
rises from the fact that the data model Host-pool service accepts is sig-
nificantly more robust than that of the Discovery service, as can be seen
on listing 1. If Discovery Service’s data model as seen on listing 2 was
a subset of Host-pool service’s, handling data in Request Service would
be trivial. However as Discovery Service’s data model uses hardware
addresses as unique identifiers whereas Host-Pool Service attaches a
running number to each host. Hardware addresses are used as they are
immutable in the cluster use-case and Discovery Service accounts for
possibly changing IP addresses. However, Hardware addresses are by
to Host-pool Service implicitly, as Discovery Service assigns each host’s
hardware address as a value for ’name’ key.

21

1 hosts: {
2 id: Integer
3 name: String
4 os: String
5 endpoint {
6 ip : String
7 protocol: String
8 port: Integer
9 }

10 credentials: {
11 username: String
12 password: String
13 key: String
14 }
15 tags: Array
16 allocated: Boolean
17 alive: Boolean
18 }
19 NOTES:
20 - name is an arbitrary string, but Discovery Service assigns

the host’s hardware address as the value of name.
21 - os can be either ’linux’ or ’windows’. Other values are

invalid.
22 - endpoint.ip has to be a valid IP address range with CIDR

notation. If a range is defined, Host-pool Service
considers each unique IP address a single host.

23 - protocol can be either ’winrm-http’, "’winrm-https’ or ’
ssh’, but Host-pool service does not explicitly force
this.

24 - Host-pool Service manages id, allocated and alive fields.
For User, all other fields except credentials.password,
credentials.key and tags are obligatory.

25 - In addition to ’hosts’ key, Host-pool Service also accepts
’defaults’ key. ’defaults’ can contain the same keys as
’hosts’. If ’defaults’ is provided, its values are
appended to each host which has respective undefined
values. id, allocated and alive cannot be provided as
defaults.

Listing 1: JSON schema accepted by the Host-pool Service for a single
host

22

1 hwaddress: {ip_address: "string", ping_timeouts: "integer"}

Listing 2: Discovery Service data format for a single host

4.2.1 Id checking

Due to differing identifiers, certain functions are implemented to keep
the two data stores synchronised. A get_id() -function retrieves a JSON
object of hosts as depicted in algorithm 3. Then it compares stored IP
addresses for each host or until a match is found after which the ID is
returned. If hardware address is passed as an argument, the function
also compares it to name -field’s value, as Discovery Service names hosts
in Host-pool Service after their hardware addresses. Hardware address
check is used when Network Scanner finds an already known host with
a changed IP address and calls Request Service to patch it to Host-pool
Service. The ID itself is used for REST API calls that are directed at a
single host.

Algorithm 3: get_id -function compares stored IP addresses and
optionally hardware addresses to find out the corresponding ID
number in Host-pool Service.

Input: ip_address
Input: hardware_address = None
foreach host in RequestService.get_hosts() do

if host.endpoint.ip is ip_address or name is not None and
host.name is hardware_address then

return host.id ;
end

end
return None;

4.2.2 Adding a new host to Host-pool Service

When Network Scanner detects a new host, it adds it to Redis key-
value storage and starts a Request Service routine register_a_new_host
depicted in algorithm 4 in a new thread to add the details also to Host-
pool service. If a new IP address is detected but with an existing hardware
address, the same routine is called. The register_a_new_host function
takes existing hosts into account and branches to patching function if
need be. However, IP address changing for a host is a rare occasion

23

and thus the function branching logic is done in Request Service for
optimisation and maintaining source code readability.

Algorithm 4: get_id -function compares stored IP addresses and
optionally hardware addresses to find out the corresponding Id
number in Host-pool Service.

Input: ip_address
Input: hardware_address = None
stored_id = get_id(ip_address, hardware_address) if stored_id is
None then
data = *formatted json object corresponding to host’s details*;
response = *POST request to Host-pool Service with ’data’ as
payload.*;
return response.json, message

end
else

return RequestService.patch_a_host(stored_id, ip_address,
hardware_address)

end

4.2.3 Limitations and assumptions of the Discovery Service

At its current prototypical state Discovery Service makes certain assump-
tions about the physical hosts in the cluster. Namely hosts are assumed
to have Linux as an operating system (Distribution can vary) and a default
user name and a password, those being ’centos’ and ’admin’ respectively.
In addition hosts are required to be running an SSH server which is a
requirement enforced to Linux hosts by Cloudify itself. Discovery Service
requires that the standard port 22 for SSH is open.

4.2.4 Patching a host

Host-pool Service allows duplicate hosts, a feature which can be regarded
as an oversight by the Host-pool Service developers. Discovery Service
enforces that single host has only a single recorded IP address stored in
the system. Therefore, if Discovery Service detects a host which has an
already existing IP or Hardware Address, but the other one differs from
the already stored one, Discovery Service will patch the given address
with the new one. The patching to Redis is done in the Network Scanner
as previously seen in algorithm 1. The patching to Host-pool Service is
depicted in algorithm 5

24

Algorithm 5: patch_a_host function is called by regis-
ter_a_new_host when Discovery Service detects a host whose IP
address has changed or a new host which uses the same IP address
as another host previously.

Input: id
Input: ip_address
Input: hardware_address
data = {};
host = RequestService.get_a_host(id);
if host.ip != ip_address then

data[’ip’] = ip_address;
end
else if host.name != hardware_address then

data[’name’] = hardware_address;
end
else

return {}, message
end
response = *PATCH request to Host-pool Service with ’data’ as
payload.*;
return response.json, message

The function patch_a_host takes three arguments: The Id of the host
in Host-pool Service, host’s IP address and its hardware. Then it retrieves
the host’s details from Host-pool Service in JSON format and compares
the IP addresses received as an argument and retrieved from Host-pool
Service. If they do not match, the argument IP address is patched as
the new value to Host-pool Service using the REST function. In a rare
case in which IP addresses match, but hardware addresses do not, the
hardware address is patched to Host-pool Service as a name for the host.
This is a highly unlikely event and in most cases happens because there
are pre-configured hosts in the Host-pool Service and the database is not
formatted before deploying Host-Pool Service causing the hosts to have
names that do not conform to format enforced by Discovery Service i.e.
names are hardware addresses.

4.3 Specification retriever

As seen on listing 1, Host-pool Service’s data format has a list object
named ’tags’ which can hold an arbitrary number of arbitrary keywords
used to describe a given host. Typical uses for these tags would be to

25

describe a Linux distribution a host runs as the ’os’ object only accepts
’linux’ or ’windows’ or vaguely describe the physical capabilities of a host,
for example ’small’ or ’large’. Host-pool plugin can use these tags to
filter applicable hosts when they are allocated to Cloudify manager to
use. The other attribute which can be used for filtering is the ’os’ key.
The problem with the tags however is the fact that they like many other
attributes in Host-pool service have to be applied manually.

As one of my goals is to allow Cloudify Manager to make more in-
formed decisions based on hosts’ hardware capabilities and Host-pool plu-
gin already having a filtering capabilities, it should be straightforward to
extend that capability to also include hardware data. That however is not
in the scope of this project. To leverage on hardware data, a way should
exist to acquire it easily and automatically. That is why I have extended
the Host-pool Service to contact the hosts added to the logical host-pool
by the Discovery service and retrieve their individual hardware specifi-
cations. The source code for the custom Host-pool Service can be found
here: https://github.com/Fleuri/cloudify-host-pool-service.

4.3.1 Technical implementation of the Specification Retriever

Specification retriever should retrieve actual hardware data from the
target hosts, it should work without changing other functionality or user
experience on Cloudify Manager, Host-pool Plugin, Host-pool Service or
Discovery Service and it should work automatically without requiring
user input or configuration.

These design goals in mind I have extended the Host-pool Service so
that when a host is added to the logical host-pool, Host-pool Service runs
a series of scripts on the given host which returns hardware data such
as amount of RAM, number of CPUs and available disk space on that
host. It also adds the received data to Host-pool Service’s data format so
that it can be queried and patched using Host-pool Service’s REST API.
The scripts can be run because each host’s data record includes their IP
address, port and remote access protocol as well as access credentials.
Due to prototypical limitations, the Specification Retriever presented in
this thesis only works on Linux hosts as it uses Linux commands in the
scripts.

26

417 def run_command(self , command, spec_array , list_key ,
client) :

418 stdin , stdout , stderr = client .exec_command(command)
419 line = stdout . readlines ()
420 spec_array [l ist_key] = line [0] . strip (’ \n ’)
421
422 def retrieve_hardware_specs (self , hosts) :
423 host = hosts [0]
424 i f host [’os ’] == ’ linux ’ :
425 client = paramiko .SSHClient ()
426 client . set_missing_host_key_policy (paramiko .

AutoAddPolicy ())
427 client . connect(host [’endpoint ’] [’ ip ’] , port=host

[’endpoint ’] [’ port ’] ,
428 username=host [’ credentials ’] [’

username ’] , password=host [’
credentials ’] [’password ’])

429 spec_array = {}
430 command_list = dict({ ’cpus ’ : " lscpu | awk ’/^CPU

\ (s \) : /{ print $2}’" ,
431 ’ram’ : " free ≠m | awk ’ /Mem

:/{ print $2}’" ,
432 ’ disk_size ’ : "df ≠h | awk

’ / \ / $/{ print $2 }’" ,
433 ’graph_card_model ’ : " lscpu

| awk ’ /Model name/ ’ |
sed ≠e ’s /Model name: / / g
’ ≠e ’s/^[\ t] * / /g ’ " ,

434 ’cpu_arch ’ : " lscpu | awk ’ /
Architecture /{ print $2
}’"

435 })
436
437 for l ist_key , command in command_list . items () :
438 self .run_command(command, spec_array , list_key ,

client)
439
440 hosts [0][’hardware_specs ’] = spec_array
441

27

442 client . close ()

Listing 3: "Hardware specification retriever is an addition to Host-
pool Service. Source code is more expressive than pseudocode in this
particular case."

Specification Retriever is two additional functions implemented in
Host-pool Service seen on listing 3. They are called the backend class’
add_host seen on listing 4 which in turn is called whenever a new host
is discovered in the network. Before Specification Retriever is run, the
HostAlchemist.parse() function on line 283 checks the validity of the
received host data and makes a couple of additions resulting in a data
element similar to one depicted in listing 1. This element, hosts as
seen on listing 5, is then passed to Specification retriever in which the
hardware data is added to it.

277 def add_hosts (self , config) :
278 ’ ’ ’Adds hosts to the host pool ’ ’ ’
279 self . logger .debug(’backend. add_hosts({0}) ’ .format(

config))
280 i f not isinstance (config , dict) or \
281 not config . get (’hosts ’) :
282 raise exceptions .UnexpectedData(’Empty hosts

object ’)
283 hosts = HostAlchemist (config) . parse ()
284 hosts = self . retrieve_hardware_specs (hosts)
285 return sel f . storage . add_hosts (hosts)

Listing 4: Host-pool Service’s backend’s add_host function makes a call
to Specification Retriever

Specification Retriever’s retrieve_hardware_specs function takes
the hosts object as a parameter as it makes modifications to it and uses its
data to perform the remote operations on host machines. After checking
if the added host is a Linux host (In Discovery Service’s case the OS is
forced) the function establishes an SSH connection using the Paramiko
library[21]. The arguments required to establish the connection, namely
the host’s IP address, port, user name and password are extracted from
hosts. Next on line 430 there is a declaration for a key-value list consisting
of keys that are to be added to hosts and matching Linux commands to
extract the value for that key in the host system. Currently Specification
Retriever uses the following commands:

lscpu to retrieve the number of CPU’s in the host system.

free to acquire the amount of RAM the host system has.

28

df to list the overall disk space available in the system.

The Specification Retriever is designed so that adding new commands
only requires listing them to command_list along with the identifying
key.

After connecting to the host, the run_command routine on line 417 is
ran for each command in the command_list. It runs the command on the
host and reads the result from the host’s standard output stream storing it
into the spec_array hash table of results. After the for-loop spec_array
is finally concatenated as a value for the key hardware_specs which
is returned from the function after the connection is closed. The final
list is added to the original data structure on line 284 seen in listing 4.
The resulting data structure can be seen on listing 6 and it integrates
seamlessly to existing data and functionality.

1 "hardware_specs": {
2 "ram": "3219",
3 "disk_size": "456G",
4 "cpus": "2"
5 }

Listing 5: An example of additional data inserted by the Specification
Retriever

1 {
2 "endpoint": {
3 "ip": "192.168.150.2",
4 "protocol": "ssh",
5 "port": 22
6 },
7 "name": "08:9e:01:db:af:61",
8 "tags": [],
9 "alive": false,

10 "hardware_specs": {
11 "ram": "3372",
12 "disk_size": "455G",
13 "cpus": "2"
14 },
15 "credentials": {
16 "username": "centos",
17 "password": "admin"
18 },
19 "allocated": true,

29

20 "os": "linux",
21 "id": 1
22 }

Listing 6: An example of final data structure after the Specification
Retriever has inserted hardware data

5 Experiments

During development, the Discovery Service and Specification Retriever
software were tested separately by mocking other elements in the Cloud-
ify cluster. This section describes the experiments and their set-ups used
to verify that different components integrate and work together flawlessly
in a full environment built on real machines. The components in question
are the aforementioned Discovery Service and Specification Retriever in
addition to Host-Pool Service, Cloudify Manager, Host-Pool Plugin and
the test workload, Cloudify Nodecellar Example[6].

5.1 Hardware set-up

To verify that the Discovery Service and the Specification retriever func-
tion correctly in real environment and on real machines, I set up a
test-bed depicted in figure 5.

The test-bed consist of a Lenovo Thinkpad T420S 4173L7G laptop
computer with 4-core Intel i5-2540M CPU and 8 GB of RAM acting as
a master node in the Cloudify cluster. The three slave-machines are
Lenovo Thinkpad Edge E145’s with 2-core AMD E1-2500 APU CPUs and
4 GB of RAM. The master host has Centos 7 installed as the operating
system to accommodate Cloudify’s installation requirements. The three
slave machines are running Ubuntu 16.04 as the OS of the slaves can be
anything as long as they are Linux-based and the hosts themselves can
be accessed via SSH.

As seen on figure 5, the test-bed set up has two different networks.
The Master can be accessed remotely via a bastion host wint-13. Wint-13
itself is not a part of the test-bed set up, but it is used to access the
testbed remotely and allow internet access for and through the master
host.

Master host has two network interfaces configured for each network
it’s a part of: The subnet A for outside access and B which is the subnet
dedicated for the Cloudify cluster. Master also serves as a default gateway
for all of the slaves. Figure 5 shows how slave machines are part of

30

Figure 5: The testbed hosts are located in a private network but master
and slave-3 are also directly connected to network A.

the cluster subnet with static IP addresses. In addition slave-3 is also
connected to the A subnet. This is to provide a way to drop the host
off and connect it back the cluster network but still be able to access
it remotely via external network. The physical network is wired with
Ethernet cables connected to an HP 5412 zl V2 switch.

5.2 Software environment set-up

As mentioned previously, slave hosts do not have many software require-
ments besides running a Linux distribution as an operating system and
having an SSH server installed and accepting connections on the stan-
dard port 22. In the test-bed they also have their IP addresses and
network interfaces configured statically.

Master node is more intricate than slaves in addition to being more
powerful. It has the similar requirements to slaves when it comes to SSH
server, but additionally it also runs the programs listed on table 1.

31

Figure 6: The actual test-bed. Master node on lower shelf on the right,
slaves in the upper and lower shelf

Software Version
Cloudify Manager 18.10.4 community
Host-pool Plugin within Cloudify Manager 1.4
Modified Host-pool Service 1.2
Discovery service N/A
Docker 1.13.1
Redis running in a Docker container 5.0.0

Table 1: List of software and their versions used in the experiment setup

In addition the master host has to expose a certain number of ports
both internally and externally listed on table 2.

Host-pool plugin runs as a Cloudify deployment managed by Cloudify
manager. The modified Host-pool Service runs as a stand-alone Python
program listening to port 5000. Even though Cloudify documentation
recommends running Host-pool Service as a Cloudify Deployment on a
separate host from Cloudify Manager, there are no drawbacks in this
kind of local deployment either.

The Discovery Service is also run as standalone program and it doesn’t
reserve any ports. However the key-value storage the Discovery Service

32

uses, Redis, is run in a docker container using the official Redis docker
image. It reserves the standard Redis port 6379.

Application Port
Cloudify ports

Rest API and UI, HTTP 80
Rest API and UI, HTTPS 443
RabbitMQ 5671
Internal REST communication 53333

Other ports
SSH 22
Host-pool Service* 5000
Redis* 6379
* Only internal access

Table 2: Required open ports on the master
node. All ports are TCP

Finally, the server
clocks on master host
and slave-3 are synchro-
nised with ntp against
the ntp server located
in network A, as syn-
chronised time is needed
for accurate measure-
ment results in the exper-
iments.

5.3 Test cases

To verify that different
parts of the Discovery
Service and Specifica-
tion Retriever work in a
real environment, I have
come up with six test cases which test how different parts of the software
integrate with a real system. First four of the test cases test Discovery
Service’s ability to monitor the cluster network and deliver the current
cluster status to the Host-pool Service. The fifth test verifies that the
Specification Retriever script in the Modified Host-pool service collects
the hardware data correctly and also showcases its expandability. Finally
I am going to run an example workload in the cluster which uses the
Discovery Service to manage its logical host-pool. This verifies that the
system can be used as an addition in a real Cloudify cluster.

The time measurements from all of the applicable test cases are
displayed in table 3. The table shows the fastest and slowest measured
times, average and median times as well as standard deviation. All timed
tests are run thirty times and the detailed report of the measurement
results can be found in appendix A.

5.3.1 Discovering hosts at start up

As detailed in the section 4.1.2, when Discovery Service is initialised
it flushes all of the databases and performs an ARP scan for every IP
address in the network. The time taking starts when the ARP scan itself
starts and finishes after. The flushing of Host-pool Service’s database
and Redis are not included in the results. The scanning function imposes

33

Test-case Min Max Mean Median Std. dev.
Start-up 5.40 5.79 5.59 5.58 0.094

Joining host 0.083 0.22 0.15 0.15 0.04
Parting host 40.39 45.14 42.51 42.47 1.34

Patching a host 0.04 0.06 0.048 0.048 0.004

Table 3: Summary of measurement results.

a two second wait time after the last packet is sent and the interval
between each sent packet is 0,001 seconds.

Setting up the experiment

In this experiment I have modified the ARP scanning routine so that it
measures the time it takes to scan through the 256 address network. The
network itself contains three other hosts besides the master host which
is ignored in the scan. This experiment does not require measurements
from other servers and therefore no modifications or scripts are run on
them. Additionally, the main function of Discovery Service is modified so
that it runs the start-up routine thirty times and exits right after.

Results

As seen in the table 3, scanning through a 256 address network takes
approximately 5.6 seconds. This means that it takes approximately 22
milliseconds to send and receive an ARP request for a single host. The
real value however varies as the requests may return out of sync and
with varying intervals. Also the timeout value which denotes the time
spent waiting after the last request is set to relatively high value of two
seconds.

Overall, all of the runs succeeded and there is no notable deviation
in the distribution of times. In comparison to writing and providing host
specification in JSON format, automatic scanning is significantly more
efficient.

5.3.2 Detecting a joining host

One of the main features of the Discovery Service is the ability to detect
machines joining the network in real time. In this test case Slave-3 is
not initially connected to the cluster network. I have prepared a script
which first returns a current time stamp on Slave-3 and then enables
the network interface facing the cluster network. The sniffer algorithm

34

on the Discovery Service is modified so that it too returns a time stamp
upon detecting a new host. As both hosts are synced against the same
time server, the timestamps are comparable allowing me to measure a
time it takes for Discovery Service to detect a host after it has joined the
network.

Setting up the experiment

This experiment required only a minor modification to Discovery Service’s
register_a_new_host function which printed the timestamp to a file
whenever Slave-3 was detected as a new host. Slave-3 was initially
disconnected from the cluster network. On slave-3 a BASH script was
run which first turns on the network interface to network B, sleeps fifteen
seconds and sends an ARP request to the network while recording the
timestamp. Then the script sleeps for a minute, turns off the interface
and waits another minute until and starts over. The function was repeated
thirty times.

Results

As with the start-up scan, the time to detect a joining host is very regular
and is more affected by the network speed rather than the implementation
overhead. There were however outliers caused by the test implemen-
tation. As the network interface on Slave-3 was enabled there was a
slight wait in the script execution so that the interface is ready before
sending an ARP request. As the script was run multiple times, the ARP
cache often did not have time to invalidate and thus no ARP request was
automatically sent when the interface was ready, so manually sending the
ARP request was necessary. In a real use case, such rapid enabling and
disabling of the interface would be unlikely and the cache invalidation a
non-issue. In few cases however, the cache was invalidated between a
run and the ARP request was sent when interface was ready, causing the
Discovery Service to catch the request before the time was recorded on
Slave-3 resulting in a negative time in the final results. Those times have
been disregarded in the table 3 but are provided in the appendix A.

Overall most of time taken to detect a joining hosts consists of the
interval between sending and receiving the ARP request.

5.3.3 Detecting a departed host

Similarly to detecting the joining host, detection of a departed host is
another major feature of the Discovery Service. The testing procedure is

35

also similar: Slave-3 has a script which drops the host from the network
while producing a time stamp for the event. The departure detection
in the Discovery Service is modified to return a time stamp when the
detection of Slave-3 is detected. The detection is done in the pinger com-
ponent described in section 4.1.3, in which a host is declared departed if
it fails to reply to a set number of pings. The values for the ping interval
and ping failures are five seconds for the interval and three failures. This
relatively long interval is likely to cause a wide distribution of time results
as the time between Slave-3 getting dropped from the network and the
first ping could be five seconds. On the other hand this measurement is
representable of a real usage scenario.

Setting up the experiment

As in the previous experiment, only modification done to Discovery Ser-
vice is producing a timestamp when Slave-3 is declared to have left the
network. The script run on Slave-3 is also virtually identical to that of
experiment 5.3.2 with the exception that the time stamp is recorded
when the network interface is disabled. Slave-3 started disconnected
from the cluster network in this case also.

Results

Every execution of the pinging routine consists of two parts which make
up the majority of the execution time. First the time out the ARP ping
spends waiting for a reply is ten seconds and an interval between pings
is five seconds. Depending on how fast a ping routine fires after Slave-3
disconnects, these parts take minimum of forty seconds and maximum of
45 five seconds.

Both extremums are presented in the experiment sampling and both
average and median values are close to expected mathematical average.
The computational overhead is negligible when compared to the ping
interval and time out, but keeping that in mind, the average and me-
dian times could have been expected to be slightly over 42,5 seconds.
Nevertheless, taking into account the expected five second variability of
the beginning of execution, another data sample could result in slightly
different times but similar standard deviation.

5.3.4 Patching a host

Procedure on this test case is similar to the previous two. A script
modifies the IP address of Slave-3 from B.B.B.4 to B.B.B.5 and back, each

36

modification producing a time stamp for in Slave-3 and each detected
address change producing one on Master. Similarly to Detecting a joining
host experiment, an ARP request is sent manually as the ARP caches may
not have time to be invalidated and thus changing the IP address may
not trigger an ARP request automatically.

Setting up the experiment

The experiment setup started similarly to previous two but instead of one
function on Slave-3 to turn the network interface on and off, there needed
to be two to alternate between .4 and .5 IP addresses using the network
manager. Discovery Service’s patch_a_host function was modified to
produce a timestamp whenever Slave-3’s IP address was edited.

During the preliminary testing it became apparent that in some cases,
as one IP address was unused for a longer time than for example in
Detecting a parting host experiment, ARP caches became invalidated
more frequently. This meant, that changing an IP address triggered an
automatic ARP call more frequently than first expected and capturing
this behaviour required an another time stamp to be recorded in the
script on Slave-3.

Results

In the experiment, Slave-3 provided time stamp both when the interface
was enabled and also when the ARP request was sent manually. The first
time stamp prevented negative times in the results but the time itself
didn’t reflect a time it takes for the Discovery Service to detect and patch
an IP change, but rather the time it takes for a the interface to be ready
in this particular case. These values have been omitted from the results
in table 3 but they are included in the appendix A.

The tests succeeded on every execution. Patching seemed to be the
most lightweight of the operations tested: The slowest execution time was
circa 26 milliseconds faster than the fastest execution of the Detecting
a joining host experiment. This is because changing a single field in an
existing data object is computationally significantly less demanding than
creating a new data object with multiple fields.

Like the results from the previous experiments, Patching a host re-
sults also indicate correct, fast and regular execution of the routine.

5.3.5 Retrieving hardware data from the hosts

This test case shows, that the modified Host-pool Service retrieves correct
hardware data from the host. First the hardware data is listed manually

37

on the target host. Next the start-up routine is run which adds all the
hosts in the network to logical host pool. The modified Host-pool Service
runs the hardware specification retrieval scripts when the hosts are
added. Afterwards Host-pool Service can be queried to confirm that
correct data was retrieved.

This test case also demonstrates how easily new commands can be
added to the Specification Retriever.

Setting up the experiment

This experiment did not require any additional modifications apart from
additional commands described in the next section. However, correct
values from Slave-3 were retrieved by hand as seen on figure 8 so that
the values produced by the Specification Retriever could be verified. As
values were static and slave hosts identical, the experiment was run only
once.

Results

Figure 7: Host-pool service query returns a json with added new fields
cpu_arch and graph_card_model

38

Figure 8: The results of individual commands run on Slave-3

OpenStack’s Ironic -project[28] retrieves a modest amount of hard-
ware data, namely the Number of CPUs, available RAM, available disk
space and CPU architecture. CPU architecture retrieval was not included
in the modified Host-pool Service specification detailed in section 4.3,
but to demonstrate specification retrievers capabilities and extendibility,
I have added it as well as a command to retrieve the host’s graphics card
model to the list of commands executed on hosts. The commands are as
follows:

• lscpu | awk ’/Architecture/{ print \$2 }’ which retrieves
the cpu architecture.

• lscpu | awk ’/Model name/’ |
sed -e ’s/Model name://g’ -e ’s/^[\t]*//g’which retrieves
the graphics card model while removing whitespace from the com-
mand result.

In the experiment the additional query commands were added to the
modified Host-pool service. Discovery Service was ran normally and
the Host-Pool Service REST endpoint was queried for Slave-3’s data.
Figure 7 is a screenshot of the query result and it shows the hardware
data along with the added CPU architecture and graphics card model.
Figure 8 is a screenshot showing the same data when queried directly
on Slave-3 in remote terminal. The data in Host-pool service query is
identical to that queried directly on Slave-3, verifying the correctness of
the Hardware Specification retrieval operation. It also verifies, that the
Hardware Specification retrieval operation can be easily extended with
only minor additions to Host-pool Service.

5.3.6 Running an example workload in the system

The final experiment shows, that Discovery Service works seamlessly
when running a real workload in the Cloudify cluster. The workload in
question is Cloudify’s standard example workload Cloudify Nodecellar
Example[6]. Nodecellar is a web application which simulates a wine in-
ventory system. It is deployed on two separate hosts with the nodejs_host

39

Figure 9: Cloudify console shows the topology diagram of the Nodecellar
deployment

Figure 10: Nodecellar deployment’s parts listed in the Cloudify console

running a webserver and a Node.js based frontend application whereas
the second mongod_host houses MongoDB. The figures 9 and 10 are
screenshots of the Cloudify console showing the different components of
the Nodecellar deployment and the relations between them. The goal of
this experiment is to have a functioning Nodecellar application running
on two of the slave hosts which were discovered by the Discovery Service
and allocated to Cloudify Manager by the Host-Pool Service.

40

Setting up the experiment

Figure 11: Cloudify Nodecellar Example’s landing page when deployed
on the test bed cluster. The localhost IP address is due to port being
forwarded to the node_js host.

Figure 12: Nodecellar allows the user to add their own wines to the list.
This particular vintage is a real labour of love.

Prior to deploying Nodecellar, I had set up Host-pool Service, Dis-
covery Service and Cloudify Manager. I had also forwarded the port of
Cloudify Manager’s web console so that I could access it remotely. On

41

Cloudify, every component has to be defined as a Blueprint using TOSCA
DSL. When blueprints are uploaded to Cloudify Manager, user can create
Deployments of them which in turn create the actual resources.

Before Cloudify Manager could use Host-pool Service to allocate hosts
for the deployment, the Host-pool Plugin was required to be installed.
The latest version 1.5 was faulty so I downgraded to 1.4. This also
meant that I had to manually change Nodecellar Example’s blueprint’s
dependencies to use Host-pool Plugin version 1.4 instead of the default
1.5. After uploading the modified blueprints and creating deployments of
them I ran the ’Install’ workflow which requested the required hosts from
Host-pool Service via Host-pool Plugin and after receiving them installed
the required software on them.

Results

As Host-pool Plugin allocates the requested available hosts in order,
Slave-1 was designated as the nodejs_host and Slave-2 as mongod_host.
To verify that the application is usable and served correctly I forwarded
another port via wint-13 bastion host and Master host so that I could
view the web page on my local machine. Figure 11 shows a screenshot
of the Nodecellar application. I could also add and remove wines to and
from the system as seen on figure 12. This validated that the MongoDB
database on the second host as well as the connection between the hosts
functioned correctly.

Overall it can be concluded that Discovery Service and the modified
Host-pool Service function correctly in the experimental scope of this
thesis.

42

6 Future Research and Conclusions

As seen in the previous section, Discovery Service and Modified Host-pool
Service work well within their their limited prototypical scope. There
are however both major and minor assumptions, lacking features and
programming solutions that should be addressed before the software
could be regarded as a mature, full-fledged solution.

As of now, Discovery Service does the bare minimum of error checking
and, while no errors or bugs were detected while evaluating the system,
there are some known possibilities for failure e.g. network communi-
cation failure between Discovery Service and Host-pool service would
prevent Host-pool service from updating. There’s also no robust logging
in the system. Maybe the most major design issue in the system is the
two different data formats with Redis having their own data for hosts
and Host-pool service their own. This decision was made early in the
project and its implications became apparent only later on. Granted,
Discovery Service does not need as much data on the hosts than the
Host-pool Service, but redesigning its data format to resemble that of
Host-pool Service’s could bring clarity to the source code and eliminate
the need to match different primary keys (MAC addresses in Discovery
Service, running count in Host-pool Service). The major assumptions of
Discovery Service are that hosts are Linux hosts and that they have a
common username and password. To mature Discovery Service, it should
also work with Windows hosts. Key and credentials handling is a larger
and more complex challenge and would likely require preparing the hosts
somehow, like installing software on them beforehand.

The Modified Host-pool Service’s Specification Retriever also relies
on assumption that the hosts in the network run Linux, but it does check
for the fact before trying to run scripts on them. However it also makes
an assumption that the commands it runs on the hosts exist on them. A
production ready version should check if the command can be run before
attempting to run it. It should also be able to support Windows hosts.

An issue I noticed while working with Host-pool Service is that the
alive field is never used and by default all hosts are marked dead. Dis-
covery Service could, instead of immediately removing an entry when a
host leaves the network, manipulate the alive field.

To be more in the line with other Cloudify components, Discovery
Service should be packaged as a Cloudify Blueprint.

Finally, a larger scale performance testing could uncover issues that
are not apparent in the prototypical scope of the works. Another project
could be work on the Cloudify Manager to leverage on more detailed
hardware data Host-pool Service now provides so that it could make

43

more intelligent scheduling and provisioning decisions.
Otherwise I have created groundwork for automating and managing

a Cloudify cluster consisting of generic and heterogeneous hosts and
provided a mechanism to gather performance and hardware related data
from them. This allows users to easily introduce varied infrastructure
to their cloud computing cluster and account for hardware differences
between the hosts while eliminating some aspects of manual work in the
cluster management and enabling ’plug-and-play’ approach to adding and
removing hosts. The possibility to use heterogeneous hardware allows
user to size their hardware capabilities, heat and energy efficiency and
costs to fit their workloads with Cloudify enabling operation in hybrid
environments.

44

Sources

[1] Canonical maas. https://maas.io/. Accessed 19.5.2019.

[2] Cloud foundry. https://www.cloudfoundry.org. Accessed
25.5.2019.

[3] Cloudify. https://cloudify.co/. Accessed: 31.5.2019.

[4] Cloudify faq. https://cloudify.co/FAQ_cloud_devops_

automation#q05A. Accessed 25.5.2019.

[5] Cloudify host-pool service. https://github.com/cloudify-cosmo/
cloudify-host-pool-service. Accessed: 31.5.2019.

[6] Cloudify nodecellar example. https://github.com/
cloudify-cosmo/cloudify-nodecellar-example. Accessed
27.1.2019.

[7] Companies supporting the openstack foundational. https://www.
openstack.org/foundation/companies/. Accessed: 31.5.2019.

[8] Docker. https://www.docker.com. Accessed: 31.5.2019.

[9] Docker machine. https://docs.docker.com/machine/. Accessed
25.5.2019.

[10] Heat. https://docs.openstack.org/heat/latest/. Accessed
26.1.2019.

[11] Ibm hybrid, multicloud management. https://www.ibm.com/
cloud/management. Accessed 5.5.2019.

[12] ironic. https://wiki.openstack.org/wiki/Ironic. Accessed
19.5.2019.

[13] jclouds. https://jclouds.apache.org/. Accessed 25.5.2019.

[14] Kubernetes. https://kubernetes.io/. Accessed 26.1.2019.

[15] Microsoft Hyper-V. https://docs.microsoft.
com/en-us/previous-versions/windows/it-pro/
windows-server-2012-R2-and-2012/mt169373(v=ws.11). Ac-
cessed: 31.5.2019.

[16] MirageOS. https://mirage.io/. Accessed: 31.5.2019.

[17] Openstack. https://www.openstack.org/. Accessed: 31.5.2019.

45

[18] Openstack: Features and benefits. https://docs.openstack.org/
swift/stein/admin/. Accessed: 31.5.2019.

[19] Oracle VirtualBox. https://www.virtualbox.org/. Accessed:
31.5.2019.

[20] Packet. https://packet.com/. Accessed 5.5.2019.

[21] Paramiko. http://www.paramiko.org/. Accessed 12.12.2018.

[22] Rancher. https://www.rancher.com. Accessed 5.5.2019.

[23] Raspberry pi. https://www.raspberrypi.org/. Accessed:
31.5.2019.

[24] Razor. https://puppet.com/docs/pe/2017.1/razor_intro.html.
Accessed 19.5.2019.

[25] Red hat satellite documentation: Provisioning guide chapter
5: Provisioning bare metal hosts. https://access.redhat.
com/documentation/en-us/red_hat_satellite/6.4/html/
provisioning_guide/provisioning_bare_metal_hosts. Ac-
cessed 25.5.2019.

[26] Redis. https://redis.io/. Accessed 31.5.2019.

[27] Scapy. https://scapy.net/. Accessed 27.10.2018.

[28] Troubleshooting ironic. https://docs.openstack.org/ironic/
pike/admin/troubleshooting.html#top. Accessed 7.4.2019.

[29] VMware VSphere Hypervisor. http://www.vmware.com/products/
vsphere-hypervisor.html. Accessed: 31.5.2019.

[30] VMware workstation. http://www.vmware.com/products/
workstation-pro.html. Accessed: 31.5.2019.

[31] Vultr. https://vultr.com/. Accessed 5.5.2019.

[32] Xen project. https://www.xenproject.org/. Accessed: 31.5.2019.

[33] Tosca simple profile in yaml version 1.1. Oasis stan-
dard, January 2018. Latest version: http://docs.
oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/
TOSCA-Simple-Profile-YAML-v1.1.html.

[34] Arpaci-Dusseau, Remzi H. and Arpaci-Dusseau, Andrea C.: Operat-
ing Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.91 edition,
May 2015.

46

[35] Cheshire, Dr. Stuart D.: IPv4 Address Conflict Detection. RFC 5227,
July 2008. https://rfc-editor.org/rfc/rfc5227.txt.

[36] Clark, Christopher, Fraser, Keir, H, Steven, Hansen, Jacob Gorm,
Jul, Eric, Limpach, Christian, Pratt, Ian, and Warfield, Andrew:
Live migration of virtual machines. In In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI, pages 273–286, 2005.

[37] Crago, S., Dunn, K., Eads, P., Hochstein, L., Kang, D. I., Kang, M.,
Modium, D., Singh, K., Suh, J., and Walters, J. P.: Heterogeneous
cloud computing. In 2011 IEEE International Conference on Cluster
Computing, pages 378–385, Sept 2011.

[38] Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C., and Hu, B.:
Everything as a service (xaas) on the cloud: Origins, current and
future trends. In 2015 IEEE 8th International Conference on Cloud
Computing, pages 621–628, June 2015.

[39] Eder, Michael: Hypervisor-vs. container-based virtualization. Fu-
ture Internet (FI) and Innovative Internet Technologies and Mobile
Communications (IITM), 1, 2016.

[40] Ferry, N., Rossini, A., Chauvel, F., Morin, B., and Solberg, A.:
Towards model-driven provisioning, deployment, monitoring, and
adaptation of multi-cloud systems. In 2013 IEEE Sixth International
Conference on Cloud Computing, pages 887–894, June 2013.

[41] Flexera: Rightscale 2019 State of The Cloud Report from Flexera.
Technical report, February 2019.

[42] Jadeja, Y. and Modi, K.: Cloud computing - concepts, architecture
and challenges. In 2012 International Conference on Computing,
Electronics and Electrical Technologies (ICCEET), pages 877–880,
March 2012.

[43] Jimmy McArthur, Alison Price et al.: 2018 openstack user survey
report. Technical report, 2018.

[44] Kivity, Avi, Laor, Dor, Costa, Glauber, Enberg, Pekka, Har’El,
Nadav, Marti, Don, and Zolotarov, Vlad: OSv—optimizing the
operating system for virtual machines. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
61–72, Philadelphia, PA, June 2014. USENIX Association,
ISBN 978-1-931971-10-2. https://www.usenix.org/conference/
atc14/technical-sessions/presentation/kivity.

47

[45] Kurp, Patrick: Green computing. Commun. ACM, 51(10):11–13,
October 2008, ISSN 0001-0782. http://doi.acm.org/10.1145/
1400181.1400186.

[46] Luszczek, Piotr, Meek, Eric, Moore, Shirley, Terpstra, Dan, Weaver,
Vincent M., and Dongarra, Jack: Evaluation of the hpc chal-
lenge benchmarks in virtualized environments. In Alexander,
Michael, D’Ambra, Pasqua, Belloum, Adam, Bosilca, George, Can-
nataro, Mario, Danelutto, Marco, Di Martino, Beniamino, Gerndt,
Michael, Jeannot, Emmanuel, Namyst, Raymond, Roman, Jean,
Scott, Stephen L., Traff, Jesper Larsson, Vallée, Geoffroy, and Wei-
dendorfer, Josef (editors): Euro-Par 2011: Parallel Processing Work-
shops, pages 436–445, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg, ISBN 978-3-642-29740-3.

[47] Madhavapeddy, Anil, Mortier, Richard, Rotsos, Charalampos,
Scott, David, Singh, Balraj, Gazagnaire, Thomas, Smith, Steven,
Hand, Steven, and Crowcroft, Jon: Unikernels: Library operat-
ing systems for the cloud. SIGPLAN Not., 48(4):461–472, March
2013, ISSN 0362-1340. http://doi.acm.org/10.1145/2499368.
2451167.

[48] Mell, Peter M. and Grance, Timothy: Sp 800-145. the nist definition
of cloud computing. Technical report, Gaithersburg, MD, United
States, 2011.

[49] Porter, Donald E., Hunt, Galen, Howell, Jon, Olinsky, Reuben, and
Boyd-Wickizer, Silas: Rethinking the library os from the top down. In
Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). Association for Computing Machinery, Inc., March 2011.
https://www.microsoft.com/en-us/research/publication/
rethinking-the-library-os-from-the-top-down/.

[50] Rad, P., Chronopoulos, A. T., Lama, P., Madduri, P., and Loader,
C.: Benchmarking bare metal cloud servers for hpc applications.
In 2015 IEEE International Conference on Cloud Computing in
Emerging Markets (CCEM), pages 153–159, Nov 2015.

[51] Sahoo, J., Mohapatra, S., and Lath, R.: Virtualization: A survey
on concepts, taxonomy and associated security issues. In Com-
puter and Network Technology (ICCNT), 2010 Second International
Conference on, pages 222–226, April 2010.

48

[52] Sefraoui, Omar, Aissaoui, Mohammed, Eleuldj, Mohsine, Iaas, Open-
stack, and Scalableifx, Virtualization: Openstack: Toward an open-
source solution for cloud computing, 2012.

[53] Shan, Yizhou, Huang, Yutong, Chen, Yilun, and Zhang, Yiying: Le-
goos: A disseminated, distributed OS for hardware resource disag-
gregation. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 69–87, Renton, WA, 2019. USENIX Association,
ISBN 978-1-931971-47-8. https://www.usenix.org/conference/
atc19/presentation/shan.

[54] Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C., Lange, T., and
Rose, C. A. F. De: Performance evaluation of container-based virtu-
alization for high performance computing environments. In 2013
21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 233–240, Feb 2013.

49

A Test measurements

A.1 All start-up scan times

Run order Time taken in seconds
1 5.5212135315 Average: 5.5874319077
2 5.6992228031 Median: 5.5766154528
3 5.7459275723 Fastest: 5.402588129
4 5.5203478336 Slowest: 5.7881305218
5 5.402588129 Standard Deviation:: 0.0941250689
6 5.5956482887
7 5.5960564613
8 5.6395816803
9 5.5402934551
10 5.5746655464
11 5.5216667652
12 5.5795629025
13 5.7881305218
14 5.6899979115
15 5.5003581047
16 5.6109347343
17 5.5516016483
18 5.6865930557
19 5.7207539082
20 5.6052863598
21 5.5212519169
22 5.7254798412
23 5.6741354465
24 5.5785653591
25 5.5100474358
26 5.5130033493
27 5.4387583733
28 5.5147643089
29 5.5006010532
30 5.555918932

50

A
.2

A
ll
h
o
st

d
is
co

ve
ry

ti
m
e
s

R
u
n
or
d
er

H
os
t
jo
in
ed

n
et
w
or
k

H
os
t
fo
u
n
d

T
im

e
ta
ke
n
in

se
co
n
d
s

1
1
5
5
1
9
8
5
2
2
2
.1
5
2
3
9

1
5
5
1
9
8
5
2
2
2
.3
7
0
9
9

0
.2
1
8
6
0
0
0
3
4
7

W
it
h
n
e
g
a
ti
ve

s
ti
m
e
s

2
1
5
5
1
9
8
5
3
5
3
.3
7
0
7
6

1
5
5
1
9
8
5
3
5
3
.5
5
5
3
2

0
.1
8
4
5
6
0
0
6
0
5

A
ve
ra
g
e:

-2
.0
5
9
7
4
4
3
3
4
2

3
1
5
5
1
9
8
5
4
8
4
.6
0
7
0
6

1
5
5
1
9
8
5
4
8
4
.6
9
0
2
8

0
.0
8
3
2
2
0
0
0
5

M
ed

ia
n
:

0
.1
4
4
5
9
0
0
2
0
2

4
1
5
5
1
9
8
5
6
1
5
.8
3
3
8
4

1
5
5
1
9
8
5
6
1
5
.9
7
9
1
9

0
.1
4
5
3
5
0
2
1
7
8

F
as
te
st
:

-9
.4
2
2
3
5
9
9
4
3
4

5
1
5
5
1
9
8
5
7
4
7
.0
4
2
5

1
5
5
1
9
8
5
7
4
7
.1
3
2
1
6

0
.0
8
9
6
5
9
9
2
9
3

S
lo
w
es
t:

0
.2
1
8
6
0
0
0
3
4
7

6
1
5
5
1
9
8
5
8
7
8
.2
8
0
7
3

1
5
5
1
9
8
5
8
6
8
.8
9
6
7
8

-9
.3
8
3
9
4
9
9
9
5

S
ta
n
d
ar
d
D
ev
ia
ti
on

:
4
.0
7
7
9
0
2
7
1
6
2

7
1
5
5
1
9
8
6
0
0
9
.4
7
9
4
6

1
5
5
1
9
8
6
0
0
9
.6
3
2
9
3

0
.1
5
3
4
7
0
0
3
9
4

8
1
5
5
1
9
8
6
1
4
0
.6
9
3
8
9

1
5
5
1
9
8
6
1
4
0
.7
8
5
0
2

0
.0
9
1
1
3
0
0
1
8
2

W
it
h
o
u
t
n
e
g
a
ti
ve

s
ti
m
e
s

9
1
5
5
1
9
8
6
2
7
1
.9
3
3
2
9

1
5
5
1
9
8
6
2
7
2
.1
2
1
9
6

0
.1
8
8
6
6
9
9
2

A
ve
ra
g
e:

0
.1
5
1
9
4
2
6
1
5
9

1
0

1
5
5
1
9
8
6
4
0
3
.1
7
0
8
7

1
5
5
1
9
8
6
3
9
3
.8
7
1
1
2

-9
.2
9
9
7
5
0
0
8
9
6

M
ed

ia
n
:

0
.1
4
8
6
0
9
8
7
6
6

1
1

1
5
5
1
9
8
6
5
3
4
.3
8
9
1

1
5
5
1
9
8
6
5
2
5
.0
0
5
8
3

-9
.3
8
3
2
7
0
0
2
5
3

F
as
te
st
:

0
.0
8
3
2
2
0
0
0
5

1
2

1
5
5
1
9
8
6
6
6
5
.6
0
6
3
5

1
5
5
1
9
8
6
6
6
5
.8
0
4
7
6

0
.1
9
8
4
1
0
0
3
4
2

S
lo
w
es
t:

0
.2
1
8
6
0
0
0
3
4
7

1
3

1
5
5
1
9
8
6
7
9
6
.8
2
4
5
4

1
5
5
1
9
8
6
7
9
6
.9
7
2
6
8

0
.1
4
8
1
4
0
1
9
2

S
ta
n
d
ar
d
D
ev
ia
ti
on

:
0
.0
4
0
6
4
8
5
9
9
5

1
4

1
5
5
1
9
8
6
9
2
8
.0
7
3
0
4

1
5
5
1
9
8
6
9
2
8
.2
2
1
6
5

0
.1
4
8
6
0
9
8
7
6
6

1
5

1
5
5
1
9
8
7
0
5
9
.3
1
1
8
4

1
5
5
1
9
8
7
0
4
9
.8
8
9
4
8

-9
.4
2
2
3
5
9
9
4
3
4

1
6

1
5
5
1
9
8
7
1
9
0
.5
5
8
7
2

1
5
5
1
9
8
7
1
9
0
.7
4
4
6
2

0
.1
8
5
8
9
9
9
7
2
9

1
7

1
5
5
1
9
8
7
3
2
1
.7
7
6
0
1

1
5
5
1
9
8
7
3
2
1
.8
8
5
2
3

0
.1
0
9
2
2
0
0
2
7
9

1
8

1
5
5
1
9
8
7
4
5
3
.0
2
1
6
6

1
5
5
1
9
8
7
4
5
3
.1
6
5
4
9

0
.1
4
3
8
2
9
8
2
2
5

1
9

1
5
5
1
9
8
7
5
8
4
.2
3
6
6
5

1
5
5
1
9
8
7
5
7
4
.8
7
5
4
5

-9
.3
6
1
2
0
0
0
9
4
2

2
0

1
5
5
1
9
8
7
7
1
5
.4
7
1
2
2

1
5
5
1
9
8
7
7
1
5
.6
7
9
6
5

0
.2
0
8
4
3
0
0
5
1
8

2
1

1
5
5
1
9
8
7
8
4
6
.7
2
4
0
6

1
5
5
1
9
8
7
8
4
6
.8
7
1
3
7

0
.1
4
7
3
1
0
0
1
8
5

2
2

1
5
5
1
9
8
7
9
7
7
.9
4
2
8
8

1
5
5
1
9
8
7
9
7
8
.1
3
3
5
6

0
.1
9
0
6
8
0
0
2
7

51

2
3

1
5
5
1
9
8
8
1
0
9
.1
6
3
6
1

1
5
5
1
9
8
8
0
9
9
.9
0
0
4
9

-9
.2
6
3
1
1
9
9
3
6

2
4

1
5
5
1
9
8
8
2
4
0
.3
7
6
0
2

1
5
5
1
9
8
8
2
4
0
.5
5
2
3
6

0
.1
7
6
3
4
0
1
0
3
1

2
5

1
5
5
1
9
8
8
3
7
1
.6
2
4
0
2

1
5
5
1
9
8
8
3
7
1
.7
5
0
5
2

0
.1
2
6
4
9
9
8
9
1
3

2
6

1
5
5
1
9
8
8
5
0
2
.8
5
0
9
6

1
5
5
1
9
8
8
5
0
3
.0
0
4

0
.1
5
3
0
3
9
9
3
2
3

2
7

1
5
5
1
9
8
8
6
3
4
.0
7
7
1
3

1
5
5
1
9
8
8
6
2
4
.9
0
3
7
7

-9
.1
7
3
3
6
0
1
0
9
3

2
8

1
5
5
1
9
8
8
7
6
5
.3
2
0
5
5

1
5
5
1
9
8
8
7
6
5
.5
1
1
9
9

0
.1
9
1
4
4
0
1
0
5
4

2
9

1
5
5
1
9
8
8
8
9
6
.5
4
0
4
1

1
5
5
1
9
8
8
8
9
6
.6
3
6
5
6

0
.0
9
6
1
4
9
9
2
1
4

3
0

1
5
5
1
9
8
9
0
2
7
.7
7
7
4
4

1
5
5
1
9
8
9
0
2
7
.8
9
3
4
6

0
.1
1
6
0
1
9
9
6
4
2

52

A
.3

A
ll
h
o
st

d
is
co

n
n
e
ct
io
n
ti
m
e
s

R
u
n
O
rd
er

H
os
t
D
is
co
n
n
ec
te
d

H
os
t
D
er
eg

is
te
re
d

T
im

e
ta
ke
n
in

se
co
n
d
s

1
1
5
5
2
1
2
2
8
3
8
.3
0
7
7
1

1
5
5
2
1
2
2
8
7
8
.8
4
4
5
2

4
0
.5
3
6
8
1
0
1
5
9
7

A
ve
ra
g
e:

4
2
.5
0
7
1
4
3
3
4
6
5

2
1
5
5
2
1
2
2
9
6
9
.5
2
8
2
1

1
5
5
2
1
2
3
0
1
0
.3
9
0
5
7

4
0
.8
6
2
3
6
0
0
0
0
6

M
ed

ia
n
:

4
2
.4
7
3
5
1
5
0
3
3
7

3
1
5
5
2
1
2
3
1
0
0
.7
5
0
5
5

1
5
5
2
1
2
3
1
4
1
.9
2
9
6
7

4
1
.1
7
9
1
2
0
0
6
3
8

F
as
te
st
:

4
0
.3
9
2
5
6
0
0
0
5
2

4
1
5
5
2
1
2
3
2
3
2
.0
0
5
2
2

1
5
5
2
1
2
3
2
7
3
.4
3
7
6
4

4
1
.4
3
2
4
2
0
0
1
5
3

S
lo
w
es
t:

4
5
.1
3
7
3
3
9
8
3
0
4

5
1
5
5
2
1
2
3
3
6
3
.2
1
8
7

1
5
5
2
1
2
3
4
0
4
.9
4
4
0
1

4
1
.7
2
5
3
1
0
0
8
7
2

S
ta
n
d
ar
d
D
ev
ia
ti
on

:
1
.3
4
1
4
3
4
6
8
3
3

6
1
5
5
2
1
2
3
4
9
4
.4
1
7
2
2

1
5
5
2
1
2
3
5
3
6
.4
4
3
3
8

4
2
.0
2
6
1
6
0
0
0
1
8

7
1
5
5
2
1
2
3
6
2
5
.6
4
9
1
7

1
5
5
2
1
2
3
6
6
7
.9
9
7
1
5

4
2
.3
4
7
9
8
0
0
2
2
4

8
1
5
5
2
1
2
3
7
5
6
.8
9
9
7
9

1
5
5
2
1
2
3
7
9
9
.4
9
8
8
4

4
2
.5
9
9
0
5
0
0
4
5

9
1
5
5
2
1
2
3
8
8
8
.1
2
6
5
6

1
5
5
2
1
2
3
9
3
0
.9
9
0
3
2

4
2
.8
6
3
7
5
9
9
9
4
5

1
0

1
5
5
2
1
2
4
0
1
9
.3
3
0
2
9

1
5
5
2
1
2
4
0
6
2
.4
9
0
8
5

4
3
.1
6
0
5
5
9
8
9
2
7

1
1

1
5
5
2
1
2
4
1
5
0
.5
5
3
9
6

1
5
5
2
1
2
4
1
9
3
.9
4
8
2
2

4
3
.3
9
4
2
5
9
9
2
9
7

1
2

1
5
5
2
1
2
4
2
8
1
.7
7
4
8

1
5
5
2
1
2
4
3
2
5
.4
9
9
1
2

4
3
.7
2
4
3
1
9
9
3
4
8

1
3

1
5
5
2
1
2
4
4
1
3
.0
1
1
0
1

1
5
5
2
1
2
4
4
5
7
.0
4
0
7
4

4
4
.0
2
9
7
3
0
0
8
1
6

1
4

1
5
5
2
1
2
4
5
4
4
.2
2
8
5
5

1
5
5
2
1
2
4
5
8
8
.5
3
9
9
7

4
4
.3
1
1
4
1
9
9
6
3
8

1
5

1
5
5
2
1
2
4
6
7
5
.4
5
8
3
5

1
5
5
2
1
2
4
7
2
0
.0
4
8
8
6

4
4
.5
9
0
5
1
0
1
2
9
9

1
6

1
5
5
2
1
2
4
8
0
6
.6
9
4
3

1
5
5
2
1
2
4
8
5
1
.5
0
2
0
3

4
4
.8
0
7
7
2
9
9
5
9
5

1
7

1
5
5
2
1
2
4
9
3
7
.9
1
5
9
9

1
5
5
2
1
2
4
9
8
3
.0
5
3
3
3

4
5
.1
3
7
3
3
9
8
3
0
4

1
8

1
5
5
2
1
2
5
0
6
9
.1
4
8
8
2

1
5
5
2
1
2
5
1
0
9
.5
4
1
3
8

4
0
.3
9
2
5
6
0
0
0
5
2

1
9

1
5
5
2
1
2
5
2
0
0
.3
6
6
8
8

1
5
5
2
1
2
5
2
4
1
.0
3
8
2
6

4
0
.6
7
1
3
8
0
0
4
3

2
0

1
5
5
2
1
2
5
3
3
1
.5
9
5
9
5

1
5
5
2
1
2
5
3
7
2
.5
2
2
3
8

4
0
.9
2
6
4
3
0
2
2
5
4

2
1

1
5
5
2
1
2
5
4
6
2
.8
2
6
2

1
5
5
2
1
2
5
5
0
4
.0
2
8
1
5

4
1
.2
0
1
9
5
0
0
7
3
2

2
2

1
5
5
2
1
2
5
5
9
4
.0
5
3
9
7

1
5
5
2
1
2
5
6
3
5
.4
9
8
5
1

4
1
.4
4
4
5
3
9
7
8
5
4

53

2
3

1
5
5
2
1
2
5
7
2
5
.2
7
8
5

1
5
5
2
1
2
5
7
6
7
.0
3
7
0
5

4
1
.7
5
8
5
4
9
9
2
8
7

2
4

1
5
5
2
1
2
5
8
5
6
.5
0
9
8
1

1
5
5
2
1
2
5
8
9
8
.5
3
6
1
1

4
2
.0
2
6
2
9
9
9
5
3
5

2
5

1
5
5
2
1
2
5
9
8
7
.7
5
4
6
8

1
5
5
2
1
2
6
0
3
0
.0
4
6
4
8

4
2
.2
9
1
8
0
0
0
2
2
1

2
6

1
5
5
2
1
2
6
1
1
8
.9
7
2
8
8

1
5
5
2
1
2
6
1
6
1
.5
9
2
7
1

4
2
.6
1
9
8
3
0
1
3
1
5

2
7

1
5
5
2
1
2
6
2
5
0
.2
2
2
2
8

1
5
5
2
1
2
6
2
9
3
.0
9
0
7
2

4
2
.8
6
8
4
3
9
9
1
2
8

2
8

1
5
5
2
1
2
6
3
8
1
.4
4
5
2

1
5
5
2
1
2
6
4
2
4
.5
8
6
5
6

4
3
.1
4
1
3
6
0
0
4
4
5

2
9

1
5
5
2
1
2
6
5
1
2
.6
9
6
6
5

1
5
5
2
1
2
6
5
5
6
.1
3
8
3
6

4
3
.4
4
1
7
0
9
9
9
5
3

3
0

1
5
5
2
1
2
6
6
4
3
.9
3
7
2
8

1
5
5
2
1
2
6
6
8
7
.6
3
7
8
9

4
3
.7
0
0
6
1
0
1
6
0
8

54

A
.4

A
ll
h
o
st

p
a
tc
h
in
g
ti
m
e
s

R
u
n
O
rd
er

H
os
t
p
at
ch

ed
A
rp

se
n
t
af
te
r
in
te
rf
ac
e
re
ad

y
A
rp

se
n
t
m
an

u
al
ly

T
im

e
ta
ke
n
in

se
co
n
d
s

1
1
5
5
4
0
9
0
3
6
1
.3
3
8
0
7

1
5
5
4
0
9
0
3
5
1
.2
8
4
7
2

1
5
5
4
0
9
0
3
6
1
.2
9
2
9
3

0
.0
4
5
1
4
0
0
2
8

2
1
5
5
4
0
9
0
4
3
6
.9
4
2
3
3

1
5
5
4
0
9
0
4
2
6
.8
8
2
5
8

1
5
5
4
0
9
0
4
3
6
.8
8
9
3

0
.0
5
3
0
2
9
7
7
5
6

3
1
5
5
4
0
9
0
5
1
2
.5
7
6
5
3

1
5
5
4
0
9
0
5
0
2
.5
1
6
0
1

1
5
5
4
0
9
0
5
1
2
.5
3
0
0
4

0
.0
4
6
4
8
9
9
5
4

4
1
5
5
4
0
9
0
5
8
8
.1
4
3
1
9

1
5
5
4
0
9
0
5
7
8
.0
7
9
2
4

1
5
5
4
0
9
0
5
8
8
.0
9
5
2
1

0
.0
4
7
9
7
9
8
3
1
7

5
1
5
5
4
0
9
0
6
6
3
.7
4
4
5
8

1
5
5
4
0
9
0
6
5
3
.6
8
5
4
5

1
5
5
4
0
9
0
6
6
3
.6
9
4
2
5

0
.0
5
0
3
2
9
9
2
3
6

6
1
5
5
4
0
9
0
7
3
4
.7
7
3
3
7

1
5
5
4
0
9
0
7
2
9
.3
0
5
7
7

1
5
5
4
0
9
0
7
3
9
.3
1
7
4
5

5
.4
6
7
6
0
0
1
0
7
2

7
1
5
5
4
0
9
0
8
1
4
.9
1
8
4

1
5
5
4
0
9
0
8
0
4
.8
6
4
1
6

1
5
5
4
0
9
0
8
1
4
.8
7
1
5
5

0
.0
4
6
8
4
9
9
6
6

8
1
5
5
4
0
9
0
8
9
0
.5
0
3
2
3

1
5
5
4
0
9
0
8
8
0
.4
4
0
3
3

1
5
5
4
0
9
0
8
9
0
.4
4
9
5
3

0
.0
5
3
7
0
0
2
0
8
7

9
1
5
5
4
0
9
0
9
6
6
.0
6
8
4
6

1
5
5
4
0
9
0
9
5
6
.0
1
9
7
7

1
5
5
4
0
9
0
9
6
6
.0
2
6
0
4

0
.0
4
2
4
1
9
9
1
0
4

1
0

1
5
5
4
0
9
1
0
4
1
.6
4
2
5
6

1
5
5
4
0
9
1
0
3
1
.5
7
1
6
7

1
5
5
4
0
9
1
0
4
1
.5
8
8
6
5

0
.0
5
3
9
1
0
0
1
7

1
1

1
5
5
4
0
9
1
1
1
7
.2
2
3
5
9

1
5
5
4
0
9
1
1
0
7
.1
6
4
9
4

1
5
5
4
0
9
1
1
1
7
.1
7
8

0
.0
4
5
5
8
9
9
2
3
9

1
2

1
5
5
4
0
9
1
1
9
2
.8
3
7
5
2

1
5
5
4
0
9
1
1
8
2
.7
6
3
2
9

1
5
5
4
0
9
1
1
9
2
.7
8
0
2
7

0
.0
5
7
2
4
9
7
8
4
5

1
3

1
5
5
4
0
9
1
2
6
8
.4
4
2
1
7

1
5
5
4
0
9
1
2
5
8
.3
7
6
6
3

1
5
5
4
0
9
1
2
6
8
.3
9
1
0
9

0
.0
5
1
0
7
9
9
8
8
5

1
4

1
5
5
4
0
9
1
3
4
4
.0
2
7
3
1

1
5
5
4
0
9
1
3
3
3
.9
6
4
3
7

1
5
5
4
0
9
1
3
4
3
.9
7
6
6
7

0
.0
5
0
6
3
9
8
6
7
8

1
5

1
5
5
4
0
9
1
4
1
9
.6
4
0
8
7

1
5
5
4
0
9
1
4
0
9
.5
8
7
6
1

1
5
5
4
0
9
1
4
1
9
.5
9
8
9
6

0
.0
4
1
9
1
0
1
7
1
5

1
6

1
5
5
4
0
9
1
4
9
0
.8
0
1
7
4

1
5
5
4
0
9
1
4
8
5
.1
7
2
4
3

1
5
5
4
0
9
1
4
9
5
.1
8
7
0
6

5
.6
2
9
3
0
9
8
9
2
7

1
7

1
5
5
4
0
9
1
5
7
0
.8
2
6
5
2

1
5
5
4
0
9
1
5
6
0
.7
6
2
6
4

1
5
5
4
0
9
1
5
7
0
.7
7
3
5
1

0
.0
5
3
0
0
9
9
8
6
9

1
8

1
5
5
4
0
9
1
6
4
6
.3
6
2
4
5

1
5
5
4
0
9
1
6
3
6
.3
0
3
8
8

1
5
5
4
0
9
1
6
4
6
.3
2
1
2
4

0
.0
4
1
2
0
9
9
3
6
1

1
9

1
5
5
4
0
9
1
7
2
1
.9
5
5
7
6

1
5
5
4
0
9
1
7
1
1
.8
9
8
6
1

1
5
5
4
0
9
1
7
2
1
.9
0
7
4
1

0
.0
4
8
3
5
0
0
9
5
7

2
0

1
5
5
4
0
9
1
7
9
7
.5
5
6
2
7

1
5
5
4
0
9
1
7
8
7
.4
9
7
4

1
5
5
4
0
9
1
7
9
7
.5
0
7
7

0
.0
4
8
5
6
9
9
1
7
7

2
1

1
5
5
4
0
9
1
8
7
3
.1
4
7
7
5

1
5
5
4
0
9
1
8
6
3
.0
8
6
4
5

1
5
5
4
0
9
1
8
7
3
.0
9
9
5
9

0
.0
4
8
1
5
9
8
3
7
7

2
2

1
5
5
4
0
9
1
9
4
8
.7
0
6
6
7

1
5
5
4
0
9
1
9
3
8
.6
5
1
5
4

1
5
5
4
0
9
1
9
4
8
.6
6
0
7
9

0
.0
4
5
8
8
0
0
7
9
3

55

2
3

1
5
5
4
0
9
2
0
2
4
.3
0
8
4
1

1
5
5
4
0
9
2
0
1
4
.2
6
1
6
6

1
5
5
4
0
9
2
0
2
4
.2
7
1
5
6

0
.0
3
6
8
4
9
9
7
5
6

2
4

1
5
5
4
0
9
2
0
9
9
.8
7
9
5
3

1
5
5
4
0
9
2
0
8
9
.8
2
0
6
6

1
5
5
4
0
9
2
0
9
9
.8
2
9
2
5

0
.0
5
0
2
7
9
8
5
5
7

2
5

1
5
5
4
0
9
2
1
7
5
.4
6
0
2
5

1
5
5
4
0
9
2
1
6
5
.4
0
1
4
3

1
5
5
4
0
9
2
1
7
5
.4
0
8
4
6

0
.0
5
1
7
8
9
9
9
9

2
6

1
5
5
4
0
9
2
2
5
1
.0
7
0
9
7

1
5
5
4
0
9
2
2
4
1
.0
1
5
3
6

1
5
5
4
0
9
2
2
5
1
.0
2
6
5
9

0
.0
4
4
3
7
9
9
4
9
6

2
7

1
5
5
4
0
9
2
3
2
6
.7
0
3
5
7

1
5
5
4
0
9
2
3
1
6
.6
5
0
6
3

1
5
5
4
0
9
2
3
2
6
.6
5
9
2
5

0
.0
4
4
3
1
9
8
6
8
1

2
8

1
5
5
4
0
9
2
4
0
2
.2
8
4
3
4

1
5
5
4
0
9
2
3
9
2
.2
2
3
2

1
5
5
4
0
9
2
4
0
2
.2
3
5
5
8

0
.0
4
8
7
5
9
9
3
7
3

2
9

1
5
5
4
0
9
2
4
7
7
.8
3
5
9
2

1
5
5
4
0
9
2
4
6
7
.7
7
8
9
9

1
5
5
4
0
9
2
4
7
7
.7
8
8
0
9

0
.0
4
7
8
3
0
1
0
4
8

3
0

1
5
5
4
0
9
2
5
5
3
.3
7
9
1
5

1
5
5
4
0
9
2
5
4
3
.3
1
4
5

1
5
5
4
0
9
2
5
5
3
.3
2
7
6

0
.0
5
1
5
4
9
9
1
1
5

A
ll
va

lu
e

N
o
o
u
tl
ie
rs

A
ve
ra
g
e:

0
.4
1
4
8
0
5
6
2
6
9

A
ve
ra
g
e:

0
.0
4
8
1
1
6
3
8
5
9

M
ed

ia
n
:

0
.0
4
8
4
6
0
0
0
6
7

M
ed

ia
n
:

0
.0
4
8
2
5
4
9
6
6
7

F
as
te
st
:

0
.0
3
6
8
4
9
9
7
5
6

F
as
te
st
:

0
.0
3
6
8
4
9
9
7
5
6

S
lo
w
es
t:

5
.6
2
9
3
0
9
8
9
2
7

S
lo
w
es
t:

0
.0
5
7
2
4
9
7
8
4
5

S
ta
n
d
ar
d
D
ev
ia
ti
on

:
1
.3
9
5
6
4
8
9
0
7
2

S
ta
n
d
ar
d
D
ev
ia
ti
on

:
0
.0
0
4
4
9
4
8
9
4
4

56

