
Congestion Control Algorithms for the Constrained Applica-
tion Protocol (CoAP)

Iivo Raitahila

Helsinki May 14, 2019

UNIVERSITY OF HELSINKI

Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/226768309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Computer Science

Iivo Raitahila

Congestion Control Algorithms for the Constrained Application Protocol (CoAP)

Markku Kojo

Master's thesis May 14, 2019 59 pages

CoAP, CoCoA, FASOR, congestion control, IoT protocols

The Internet of Things (IoT) consists of physical devices, such as temperature sensors and lights,

that are connected to the Internet. The devices are typically battery powered and are constrained

by their low processing power, memory and low bitrate wireless communication links. The vast

amount of IoT devices can cause heavy congestion in the Internet if congestion is not properly

addressed.

The Constrained Application Protocol (CoAP) is an HTTP-like protocol for constrained devices

built on top of UDP. CoAP includes a simple congestion control algorithm (DefaultCoAP). CoAP

Simple Congestion Control/Advanced (CoCoA) is a more sophisticated alternative for DefaultCoAP.

CoAP can also be run over TCP with TCP's congestion control mechanisms.

The focus of this thesis is to study CoAP's congestion control. Shortcomings of DefaultCoAP

and CoCoA are identi�ed using empirical performance evaluations conducted in an emulated IoT

environment.

In a scenario with hundreds of clients and a large bu�er in the bottleneck router, DefaultCoAP does

not adapt to the long queuing delay. In a similar scenario where short-lived clients exchange only

a small amount of messages, CoCoA clients are unable to sample a round-trip delay time. Both of

these situations are severe enough to cause a congestion collapse, where most of the link bandwidth

is wasted on unnecessary retransmissions.

A new retransmission timeout and congestion control algorithm called Fast-Slow Retransmission

Timeout (FASOR) is congestion safe in these two scenarios and is even able to outperform CoAP

over TCP. FASOR with accurate round-trip delay samples is able to outperform basic FASOR in

the challenging and realistic scenario with short-lived clients and an error-prone link.

ACM Computing Classi�cation System (CCS):

Networks ∼ Network protocol design,

Networks ∼ Network performance evaluation

Tiedekunta � Fakultet � Faculty Koulutusohjelma � Studieprogram � Study Programme

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Ohjaajat � Handledare � Supervisors

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Communications in IoT 2

2.1 Constrained devices and networks . 2

2.2 The Constrained Application Protocol (CoAP) 4

2.3 CoAP over TCP . 5

2.4 Other IoT protocols . 7

2.5 Congestion and congestion control . 8

3 Baseline congestion control algorithms for CoAP 11

3.1 DefaultCoAP . 11

3.2 TCP retransmission timer algorithm 11

3.3 CoAP Simple Congestion Control/Advanced (CoCoA) 13

4 Related work 14

5 Test arrangements 16

5.1 Test phenomena . 16

5.2 Test network . 18

5.3 Workloads . 19

5.4 Metrics . 20

5.5 Modi�cations to default settings and implementations 20

6 Baseline results 21

6.1 Error free link . 22

6.2 Error-prone link . 28

6.3 Summary . 29

7 Fast-Slow Retransmission Timeout (FASOR) 29

7.1 Development path . 30

iii

7.1.1 Improved backo� logic . 30

7.1.2 Fine tuning of the RTO calculation 32

7.2 FASOR pseudocode . 33

7.3 FASOR with accurate RTT measurements 35

8 Results with improved algorithms 37

8.1 FASOR development path . 37

8.2 Error-free link with continuous workload 39

8.3 Error-free link with random workload 43

8.4 Error-prone link with continuous workload 46

8.5 Error-prone link with random workload 48

8.6 Summary . 49

9 Use cases and con�guration 49

10 Conclusion and future work 52

References 54

1

1 Introduction

The idea of the Internet of Things (IoT) is to connect physical devices to the Internet

[AFGM+15]. Such devices include temperature sensors, thermostats, lightbulbs,

GPS-trackers and irrigators, for example. The sensors can be read and actuators

can be controlled over the Internet. It is expected that the amount of IoT entities

reaches 212 billion by the end of 2020 and that machine-to-machine tra�c constitutes

up to 45% of the Internet tra�c by 2022 [AFGM+15].

These devices typically have low processing power, low amounts of memory and oper-

ate on battery power. Smartphones and single board computers, such as Raspberry

Pi and Arduino computers, �tted with sensors and a wired network connection, are

examples of more powerful IoT devices.

IoT devices can use di�erent communication technologies, such as WiFi [Wi-Fi],

Bluetooth [Bluetooth], Z-wave [Z-Wave], LTE-Advanced [GRM+10] and NFC [NFC].

The communication links are typically wireless, have a low bitrate, and are prone

to a high packet-error rate [SHB14].

Special embedded Operating Systems include TinyOS [LMP+05] and Contiki

[DGV04], but also Android can be used. Abstraction layers that ease network

programming can take a large amount of the sparse resources [AFGM+15].

The Constrained Application Protocol (CoAP) [SHB14] is an HTTP-like protocol for

constrained devices. The CoAP protocol tackles these issues by having low overhead

and simple algorithms. To lower the overhead, the protocol is implemented on top of

UDP by default and optional functionality for reliable message delivery is included

with necessary congestion control.

CoAP includes a simple congestion control algorithm (DefaultCoAP) that can be

replaced with other algorithms. The hypothesis is that the more complex algorithms

provide better performance at least in certain cases. Such algorithms include CoAP

Simple Congestion Control/Advanced (CoCoA) [BBGD17], a congestion control al-

gorithm specially meant for CoAP. CoAP can also be used over TCP [BLT+18] using

TCP's congestion control algorithms.

The research problem of this thesis is to study CoAP's congestion control. This is

important because communication occurs usually over low-bitrate bottleneck links

and a potentially vast number of IoT devices can cause heavy congestion if congestion

is not properly addressed.

2

This thesis includes empirical performance evaluation of DefaultCoAP, CoCoA and

CoAP over TCP. The evaluation is conducted in a network environment that emu-

lates an IoT environment, where multiple clients communicate with one server over

a constrained and error-prone bottleneck link. The algorithms are implemented

into libcoap, an open-source CoAP library for C [libcoap]. Both ends of the test

network (the clients and the server) use the library and actual implementations of

the algorithms. A new retransmission timeout (RTO) and congestion control algo-

rithm called Fast-Slow Retransmission Timeout (FASOR) [JKRC18] addresses the

shortcomings that were found.

The rest of the thesis is organized as follows. Section 2 describes the general set-

ting of IoT communications, including descriptions of IoT devices, IoT networks,

congestion and the Constrained Application Protocol (CoAP). Section 3 covers the

existing congestion control algorithms (DefaultCoAP, TCP RTO and CoCoA) while

Section 4 contains performance evaluation results from other publications. The test

arrangements for the new performance evaluations are described in Section 5 and

results for the existing congestion control algorithms are discussed in Section 6.

Section 7 introduces the new FASOR algorithm and its results are compared with

the baseline algorithms in Section 8. Sections 9 and 10 review use cases for the

congestion control algorithms, future work and conclude the thesis.

2 Communications in IoT

This section discusses the characteristics of IoT devices and networks, protocols

used in IoT environments and congestion control in general. Running CoAP over

TCP is not a part of the basic CoAP speci�cation, but is a separate standard and

discussed in its own subsection. At the end of the Chapter, an overview �gure of an

IoT network is presented.

2.1 Constrained devices and networks

IoT devices can be constrained in many aspects. Constrained devices (nodes) do

not have the same characteristics that are taken for granted for regular devices con-

nected to the Internet [BEK14]. There are, for example, constraints in physical size

and weight, manufacturing cost and available power. Energy and network usage

optimizations are a design priority, as the devices can be battery powered and wire-

3

less transmission consumes a lot of energy. Using constrained devices in a network

causes constraints to the network, too.

The RFC 7228 de�nes classes for constrained devices. A class 0 device has less than

10 KiB of RAM and less than 100 KiB of storage capacity. Class 1 and 2 devices

have about 10 KiB and 50 KiB of RAM, respectively, and about 100 KiB and 250

KiB of storage capacity, respectively. Class 0 devices are most likely too constrained

to communicate securely when connected directly to the Internet, requiring the use

of a proxy or a gateway. Class 1 devices are capable of using a special constrained

protocol stack such as CoAP. Class 2 devices can use regular protocol stacks but

bene�t from lightweight protocols [BEK14].

A network can be constrained independently from the devices. Again, these net-

works do not have the same link-layer characteristics that are taken for granted

with common networks in the Internet. Typical constraints are low bitrate and high

packet-error rate. The communication links are typically wireless [SHB14], and er-

rors may occur in bursts [DMK+01]. Even wired media can be error prone, such as

when communicating over power lines [GAMC18].

Because the devices can be battery powered, low power usage is often more impor-

tant than for example high bandwidth and range. Low data rate services account for

more than 67% of total IoT services [CMHH17]. Video surveillance is one example of

a high data rate service, requiring for example LTE-Advanced or WiFi connection.

IoT devices can use di�erent communication protocols that have di�erent properties

[CMHH17]. For example WiFi, Bluetooth and Z-Wave are short-distance protocols.

Low-power wide area networks (LPWAN) are suitable for long-distance IoT commu-

nication [AVTP+17]. Typically higher data rates cause higher energy consumption

and shorter range. LoRaWAN [LoRaWAN] is a LPWAN technology that provides a

data rate of 0.3 - 50 kbit/s, a battery lifetime of around 10 years and a communica-

tion range of 2-15 kilometers. LoRaWAN devices communicate with a gateway that

connects them to, for example, the Internet. Other LPWAN technologies include

SigFox [Sigfox] with 100 bit/s uplink, Ingenu [Ingenu] with 624 kbit/s uplink and

156 kbit/s downlink, and Weightless-W [Weightless] with up to 1 Mbit/s data rate.

LoRaWAN, among others, favours uplink communication from the devices to the

server/gateway.

The 3rd Generation Partnership Project (3GPP) created multiple cellular stan-

dards for IoT that operate in mobile operators' networks instead of using private

access points/gateways [AVTP+17]. Roaming is one advantage of using cellular

4

networks [CMHH17]. These standards include the GSM compatible EC-GSM-IoT

[EC-GSM], LTE compatible eMTC [eMTC-NB] and new Narrow Band IoT (NB-

IoT) [eMTC-NB]. NB-IoT has a data rate of up to 250 kbit/s uplink and downlink.

In a scenario where the carrier has reserved 200 kHz bandwidth for NB-IoT, the

uplink peak rate is 66.7 kbit/s and 32.4 kbit/s for downlink [CMHH17]. In this

scenario the battery should last about 10 years when a 200-byte message is sent

once a day.

2.2 The Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) [SHB14] is a web transfer protocol

designed for machine-to-machine applications that use constrained nodes. To in-

crease packet delivery probability and decrease the need for packet fragmentation,

the message overhead is kept as small as possible. The protocol is similar to HTTP

in many ways (method codes, request methods such as GET and POST, URIs).

It uses the REST architecture with a client/server model, where the client sends

requests to the server and the server sends responses.

CoAP is built on top of UDP and provides optional reliability in the form of con-

�rmable messages. Con�rmable messages require acknowledgements and are re-

transmitted if not acknowledged using a simple RTO-based stop-and-wait mecha-

nism. The acknowledgement may contain the response piggybacked or the response

can arrive later as a separate message if the processing takes too long .

For congestion control CoAP uses a simple binary exponential scheme. The initial

RTO is a random value between 2 and 3 seconds, and the current RTO value is

doubled on timer expiration. By default the maximum retransmission attempts is

4 and only one outstanding interaction per server is allowed. These parameters,

among others, can be con�gured.

bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Options (if any)
Payload (if any)Payload marker (if any)

Ver Type Token length Code Message ID
Token (if any, Token length bytes)

Figure 1: CoAP message structure, adapted from [SHB14]

The header length is �xed to 4 bytes, optionally followed by a token, options and a

payload (see Figure 1). The header contains a message ID that is used for duplicate

detection and reliability (the acknowledgement message contains the same message

5

ID as the con�rmable message). Non-con�rmable messages use the message ID

for duplicate detection only. In case the response is not piggybacked, an empty

acknowledgement message with the same message ID is returned. The separate

response message is associated to the request using a Token. The token is a client

generated value between 0 and 8 bytes long that is echoed back by the server. An

empty token value can be used when piggybacked responses are used.

Because CoAP is based on UDP, which supports only fragmentation, there is a limit

on how large payloads can be. To avoid IP fragmentation, the payload size should be

maximum 1024 bytes (1280 bytes IPv6 MTU, can be less for constrained networks).

Larger payloads should use block-wise transfers [BS16]. For example, �rmware up-

dates do not �t in a single UDP datagram. In block-wise transfers the transferred

resource is split into multiple 16 to 1024 byte pieces that are transferred in multiple

ordinary CoAP request-response pairs in a stop-and-wait fashion. Additional block

options are used, where for example the block size is negotiated. Normal congestion

control rules apply. If a block is lost, it can be easily re-requested individually. The

transfer is mostly stateless.

A CoAP proxy is a CoAP client that can perform requests on some other client's

behalf, for example to reduce direct communication with a battery powered CoAP

endpoint [SHB14]. A proxy can be a forward-proxy, allowing communication from

the CoAP devices, or a reverse proxy, allowing external communication to the CoAP

devices. A proxy can also translate between protocols, such as HTTP as de�ned

in RFC 7252. A CoAP-HTTP proxy allows CoAP clients to use HTTP resources

and a HTTP-CoAP proxy allows the use of CoAP resources from web interfaces, for

example.

The CoAP protocol contains more features, such as security using Datagram Trans-

port Layer Security (DTLS), that are not discussed in this thesis to focus on the

topic. Unless explicitly speci�ed, all messages discussed in this thesis are con�rmable

messages .

2.3 CoAP over TCP

The CoAP protocol exchanges messages over UDP by default [SHB14], but also

TCP can be used. RFC 8323 [BLT+18] speci�es the use of CoAP over TCP, TLS

and WebSockets. CoAP over UDP clients in a network can also communicate with a

gateway that connects to another network using CoAP over TCP. Transport Layer

6

Security (TLS) provides security for CoAP over TCP in a similar manner as DTLS

provides it for CoAP over UDP, and WebSockets can be used in CoAP applications

running in a web browser that cannot use other protocols than HTTP. These latter

two techniques are not discussed further in this thesis.

TCP is a connection-oriented protocol that provides reliable transmission and or-

dered data delivery, used for example in WWW and email [GAMC18]. In IoT

communications UDP is often preferred over TCP, because TCP's connection es-

tablishment increases delay, the TCP header is larger than the UDP header, and

TCP does not support multicast nor unreliable communication.

Some other drawbacks of TCP are erroneously criticized [GAMC18]. The congestion

control was designed for wired links where packet losses are assumed to be caused by

congestion and not link errors that are often present in IoT networks. The problem

of distinguishing congestion from link errors is not present only in TCP, but also in

other Automatic Repeat reQuest (ARQ) based protocols such as CoAP. The delay

caused by connection establishment is a smaller issue if the connection is long lived

or TCP Fast Open [CCRJ14] is used, where data can be embedded already in the

SYN and SYNACK packets. TCP is also regarded as a complex protocol and while

it is more complex than UDP, it was designed for computers from the eighties that

resemble current constrained devices.

UDP is the recommended transport for CoAP, but some networks block UDP traf-

�c. These networks include enterprise networks and geographically remote networks,

with 2 to 4 percent of terrestrial access networks blocking UDP tra�c and 0.3 percent

rate-limit UDP tra�c [BLT+18]. TCP connections have longer NAT binding time-

outs (mean 386 minutes vs 160 seconds for TCP and UDP respectively [BLT+18]),

requiring less keepalive messages.

bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Options (if any)
Payload marker (if any) Payload (if any)

Token (if any, Token length bytes)Code
Token lengthLength Extended Length (if any, 8 to 32 bits chosen by Length)

Options (if any)
Payload (if any)Payload marker (if any)

Ver Type Token length Code Message ID
Token (if any, Token length bytes)

Figure 2: CoAP over TCP message structure, adapted from [BLT+18]

The CoAP over TCP header is di�erent from the regular CoAP header (see Figure

2). The reliability and deduplication features of CoAP over UDP are redundant

when CoAP is used over TCP, thus the Type and Message ID �elds are removed.

The type of the message will always be similar to con�rmable, because TCP is a

reliable transport protocol. The Version �eld is removed, and if required, version

7

negotiation can be achieved with the Capabilities and Settings Messages (CSM). As

TCP is a stream oriented protocol, the length of the message is a necessary piece of

information and it is added to the CoAP header.

After the TCP three-way handshake, both endpoints exchange Capabilities and

Settings Messages (CSM) that contain settings such as the maximum message size.

The message can be empty if default settings are used. The connection initiator

does not have to wait for the recipient's CSM message and may send other messages

right after sending the CSM to reduce delay. Due to Nagle's algorithm [Nag84] there

might be an additional delay of one RTT before the sender can send a message after

the CSM message. Nagle's algorithm prevents the transmission of small packets

when there is unacknowledged data to reduce overhead caused by the IP and TCP

headers. When Nagle's algorithm is used, the CSM message is sent, but the next

small message is queued and waits for an acknowledgement for the CSM message.

It is not mandatory to implement all TCP features [GCS19, GAMC18]. Such a

lightweight implementation is TCP standard compliant and may have, for example,

lower data throughput, but is more suitable for IoT devices. These tactics include

setting the maximum segment size (MSS) into a �xed low value (1220 bytes with

IPv6) for avoiding Path MTU discovery, and advertising a TCP window size of one

MSS to simplify congestion and �ow control. With one MSS window size options

such as Window scale can be left unimplemented, because the window size is so

small that scaling is unnecessary. On the other hand, sophisticated features such as

Explicit Congestion Noti�cation (ECN) may be bene�cial in constrained networks

to notify about congestion without packet drops and expensive retransmissions. uIP

[Dun03] is an implementation of a TCP/IP stack for constrained devices that has a

code size of about 5 kilobytes.

2.4 Other IoT protocols

CoAP is not the only application/transport protocol used in IoT. Other protocols

include Message Queue Telemetry Transport (MQTT) [MQTT], Extensible Messag-

ing and Presence Protocol (XMPP) [XMPP], Advanced Message Queuing Protocol

(AMQP) [AMQP] and Data Distribution Service (DDS) [DDS]. Less constrained de-

vices can use common protocols such as HTTP. Some are more suitable for di�erent

scenarios and environments than others [AFGM+15].

MQTT consists of publishers, subscribers and brokers. Subscribers register their

8

interest to speci�c topics to a broker. Publishers send messages with topics to the

broker, which then relays the messages to interested subscribers.

XMPP was created for instant messaging (chatting). Clients connect to a server

and servers can be connected to each other in a decentralized fashion. Servers can

be gateways to other networks, such as the Internet. The communication is based

on XML, which adds overhead compared to binary communication.

AMQP supports point-to-point and publish/subscribe communication with at-most-

once, at-least-once and exactly once delivery guarantees. A broker, similar to

MQTT's, stores messages in queues for sending to subscribers.

DDS is a publish/subscribe protocol without brokers. Instead, the messages are sent

using multicasting.

Out of the aforementioned protocols only CoAP supports RESTful communication.

The request/response method is supported by XMPP in addition to CoAP. The

others use a publish/subscribe method, which is an option for XMPP and also

proposed for CoAP [KKJ19]. The CoAP Observe feature [Har15] is similar to pub-

lish/subscribe, in which the server sends updates to clients when a resource they

have subscribed to is modi�ed. CoAP, MQTT (MQTT-SN version) and DDS are

able to run on top of UDP, while AMQP and XMPP rely on TCP.

There are not many performance evaluation publications comparing these protocols

[AFGM+15]. With high packet-error rate CoAP delivers messages with lower delay

than MQTT, but with low error rate CoAP's delay is higher. In a smartphone

environment CoAP outperforms MQTT in terms of bandwidth usage and round-

trip time. CoAP is able to outperform HTTP in terms of transmission time and

energy usage in a wireless sensor setting [AFGM+15].

2.5 Congestion and congestion control

Congestion occurs in a packet switching network under heavy load, when packets are

sent at a higher rate than can be delivered or bu�ered, increasing delay and packet

drops. Congestion is a problem especially in complex networks that have links of

di�ering bandwidth [Nag84]. Packet drops itself are not the main problem, as drops

are used as an indication of congestion [RFB01]. If congestion is not addressed

properly, the network experiences a congestion collapse [Nag84, Jac88].

Before discussing congestion collapse, a short description of reliable transmission.

9

To ensure data delivery, TCP (among other protocols) uses a retransmission timer,

which value is called the retransmission timeout (RTO) [PACS11]. If the TCP sender

does not receive an acknowledgement after a certain time, the packet is resent. The

RTO may be more conservative than the algorithms de�ned in RFC 6298, but not

more aggressive in order not to cause congestion.

Many reliable transport protocols, including TCP, perform round-trip time (RTT)

estimation to calculate a proper RTO value [KP87]. Because the Internet consists

of a variety of networks, the RTTs are widely di�erent. Congestion also �lls up

bu�ers that take time to drain, increasing delay. The computed RTO should be an

upper bound on the actual RTT. If the RTO timer is set to less than actual RTT,

a spurious RTO and unnecessary retransmission occurs.

Backo� of the RTO means that when a timeout occurs, the previous RTO is in-

creased by a certain factor and the packet is retransmitted. This allots time for the

congestion to deplete before the next retransmission.

Congestion collapse is a stable condition, where the network transmits mostly un-

necessary retransmissions [Nag84]. Under load the RTTs in the network increase

and if the RTT increases above the retransmission interval of a host, it will unnec-

essarily retransmit copies of the packet. The copies cause more congestion, causing

the retransmission timer to expire more than once if RTO is not properly adjusted.

Eventually the network is �lled with unnecessary retransmissions and the through-

put is severely reduced. A congestion collapse happened in the Internet in 1986

[Jac88].

In addition to the RTO algorithm, there are other approaches to congestion control.

TCP has congestion control mechanisms, such as slow start and fast retransmit

[APB09]. For example, slow start is congestion control at the beginning of the

connection, increasing transmission rate until congestion occurs.

UDP does not contain built-in congestion control, thus congestion control has to

be implemented in applications or protocols such as CoAP. The RFC 5405 [EF08]

provides congestion control guidelines for UDP applications. The default congestion

control scheme in CoAP (DefaultCoAP) is based only on a timer and exponential

backo� without RTT estimation.

Active Queue Management techniques include Random Early Detection (RED)

[BCC+98] that drops packets probabilistically when the average queue size increases,

indicating the sender about incipient congestion early on. The algorithms are im-

10

x
x

x

...

H
un

dr
ed

s
of

 Io
T

de
vi

ce
s

NB-IoT bottleneck link
32.4kbps down, 66.7kbps up

x

Packet drops due
to congestion

Packet drops due
to link errors

Cloud servers

VDSL

Ethernet

Z-Wave Bluetooth

4G LTE

1Gbps
fiber

Figure 3: Overview of an IoT network

plemented in routers, thus requiring support from the network administrators. Ac-

tive queue management prevents single connections from monopolizing the queue

(lock-out), lowers delay by keeping the bu�ers drained and reserves space for packet

bursts.

Instead of dropping packets early on, the packets can be complemented with an

indication of congestion using Explicit Congestion Noti�cation (ECN) [RFB01]. An

algorithm such as RED sets the Congestion Experienced codepoint in the IP packet

header. In addition to routers, ECN requires support from the transport protocol

(e.g. TCP) to reduce transmission rate, but ECN can be incrementally deployed.

Avoiding packet drops is bene�cial, for example, in latency-sensitive real-time audio

and video streaming, where the retransmission delay would be excessively high.

Figure 3 represents a setup with mostly wireless IoT devices communicating with

a server over the Internet. The left half of the �gure depicts wireless and wired

devices connected to the Internet via a gateway device. The gateway can provide

security features and convert short range communication technologies (Z-Wave and

Bluetooth) to long range wireless (4G LTE) or wired (VDSL) communications. The

right half of the �gure closely represents the test arrangement used in this thesis,

where hundreds of devices share a long range bottleneck link, such as NB-IoT.

11

3 Baseline congestion control algorithms for CoAP

This section covers three existing congestion control algorithms that can be used with

CoAP. The congestion control mechanism built into CoAP is called DefaultCoAP

in this thesis. CoCoA [BBGD17] is an improved congestion control algorithm made

speci�cally for CoAP. The congestion control of CoAP over TCP is provided by

TCP, thus the TCP retransmission timer algorithm is discussed.

3.1 DefaultCoAP

The trade-o� of simple algorithms is their possible low performance. For reliable

message delivery, the CoAP protocol introduces a no frills congestion control algo-

rithm. By default the algorithm initializes the retransmission timeout (RTO) timer

to a random value between 2 to 3 seconds [SHB14] for each new message. If no

acknowledgement is received, the message is retransmitted and the RTO is doubled

on timer expiration. The timer is reset after an acknowledgement is received or re-

transmission attempts are depleted. The randomness (dithering) in the initial RTO

is used to prevent synchronization e�ects.

This approach has its problems. RFC 3481 [IML+03] suggests that initial RTO

value should not be less than 3 seconds, because 2.5G/3G networks may have high

latencies. In such a case, the original transmission inevitably encounters a spurious

RTO. The RTT of a network may exceed 3 seconds especially in the presence of

bu�erbloat [GN11].

3.2 TCP retransmission timer algorithm

The basis of the reliable data transmission in TCP is the retransmission timer. If

a message is not acknowledged, the message is retransmitted on timer expiration.

The retransmission timeout (RTO) value is calculated with the algorithm speci�ed

in RFC 6298 [PACS11].

Round-trip time (RTT) is the time passed from the transmission to the receiving

of the acknowledgement. RTT sampling uses Karn's algorithm [KP87] that does

not include samples from retransmitted messages, because when a packet has been

retransmitted, in the traditional scheme it is not known that which transmission

is actually acknowledged. This is called retransmission ambiguity. If it is assumed

12

that the acknowledgement is to the most recent retransmission, it is often a false

assumption. Assuming the RTT estimate is correct, the original acknowledgement

might arrive very shortly after the spurious retransmission, causing too small RTTs

to be sampled repeatedly. If the sample is measured from the original transmission

and the path is lossy, the RTT estimate becomes too large. If RTT samples are not

measured from retransmitted packets, then in case of an increase in the actual RTT,

the RTT estimate does not grow at all because all packets are spuriously retransmit-

ted at least once. Karn's algorithm solves the problem by ignoring measurements

from retransmitted packets, but keeping the backed o� RTO value for the next new

message to increase the probability of measuring an unambiguous sample.

In the RFC 6298 algorithm, the initial RTO is 1 second or more. The SRTT

(smoothed RTT) variable contains a smoothed average of the RTT samples, where

the latest sample has the largest weight. The RTTVAR (RTT variation) variable

contains the smoothed average of RTT deviation. When the �rst RTT is sampled,

the SRTT is initialized to the RTT sample and the RTTVAR to half of the RTT

sample. The RTO value is then calculated as:

RTO = SRTT +max(G,K ∗RTTV AR) (1)

Where G is the clock granularity in seconds and K is 4 by default.

On subsequent RTT samples the SRTT and RTTVAR variables are updated:

RTTV AR = (1− beta) ∗RTTV AR + beta ∗ |SRTT − sample| (2)

SRTT = (1− alpha) ∗ SRTT + alpha ∗ sample (3)

Where alpha should be 1/8 and beta should be 1/4. The RTO is then calculated

using the equation 1.

If the calculated RTO value is less than 1 second, it should be set to 1 second. A

TCP sender can be more conservative. The SRTT and RTTVAR variables may be

cleared if too many backo�s occur, indicating a change in the network. There is no

dithering on the RTO value, causing possible synchronization issues [GAMC18].

In cases where only one message is in �ight at a time, as in CoAP tra�c, the RTO

recovery mechanism is the only one available. Mechanisms such as Fast Retransmit

[Ste97] cannot be used.

13

3.3 CoAP Simple Congestion Control/Advanced (CoCoA)

To combat the shortcomings of the default congestion control algorithm, an alterna-

tive congestion control algorithm called CoAP Simple Congestion Control/Advanced

(CoCoA) has been proposed [BBGD17]. The CoAP speci�cation allows the in-place

replacement of the congestion control algorithm, making the switch to alternative

algorithms straightforward.

CoCoA uses round-trip time (RTT) measurements to estimate the actual RTT of

the link. The estimates are then used to compute more suitable RTO timer values

to gain better performance.

CoAP is used in various network types that have di�erent RTT values. Before any

RTT samples have been measured, CoCoA uses 2 seconds initial RTO value. With

dithering the range is the same as with DefaultCoAP, as dithering is from RTO to

ACK_RANDOM_FACTOR * RTO (default 1.5).

The RTO calculation is based on the algorithm de�ned in RFC 6298 [PACS11]

with some modi�cations. Two RFC 6298 estimators are run in parallel: the strong

estimator is updated only when the exchange required no retransmissions, and the

weak estimator is updated when no more than two retransmissions were required.

As there is ambiguity in which of the transmissions was acknowledged, the update

to the weak estimator calculates the time taken from the original transmission. The

RTO used for the next new message is an (exponentially) weighted moving average

of the two estimators using the following weights:

RTO := 0.5 * E_strong_ + 0.5 * RTO (used when the strong estimator is updated)

RTO := 0.25 * E_weak_ + 0.75 * RTO (used when the weak estimator is updated)

The initial values for the estimators are 2 seconds. The factor K in the weak es-

timator is set to 1 to avoid too steep increases when a sample is measured from

retransmitted exchanges.

CoCoA uses a variable backo� factor to avoid using up all retransmissions too quickly

or too slowly. RTO estimates shorter than 1 second are backed o� with a factor of

3 to conserve retransmissions. For RTOs between 1 and 3 seconds the factor is 2 as

in DefaultCoAP and TCP, and for RTOs larger than 3 seconds the factor is 1.5.

The exponential backo� is truncated at 32 seconds . The RTO estimator can have

values larger than 32 seconds and that is not limited by the speci�cation nor by the

implementation used in the tests.

14

The CoCoA speci�cation states that the RTO value must be decayed during idle

periods to take into account possible changes in the network, such as a switch from

LTE mode to GPRS mode in a cellular network. The estimate is decayed towards

the initial RTO of 2-3 seconds. If the RTO value is lower than 1 second, and it has

not been updated in 16 times the value, double the RTO. If the RTO value is higher

than 3 seconds, and it has not been updated in 4 times the value, set the RTO as 1

second + RTO/2.

4 Related work

There are a number of studies that have analyzed congestion control algorithms and

the behaviour of network protocols in IoT environments. This thesis concentrates

on the CoAP protocol, which is the subject of many other studies. IoT devices have

special requirements that require special test cases. Thus the new experiments are

fundamental, but the previous results of others are discussed here.

The number of clients in the related papers are quite small. The CoAP maximum

retransmissions parameter value is increased from the default 4 to 10 in [JDK15]

with maximum 80 clients.

CoCoA has been developed as part of research work and there are multiple papers

published by the authors [BBGD17]. Only the most recent ones are discussed, since

there have been modi�cations to the protocol, such as setting 32 seconds maximum

backed o� RTO instead of earlier 60 seconds maximum, and that the weak estimator

is updated when a maximum of two retransmissions had occurred.

The test setup of [BGDP16] has two scenarios and includes evaluation of also other

algorithms in addition to DefaultCoAP, CoCoA and TCP/Linux RTO. The scenario

using an IEEE 802.15.4 multihop network is quite di�erent from the one used in

this thesis. The second scenario consists of a computer using actual GPRS link

connecting to a �xed server over the Internet, where this link is the only wireless

one. The bandwidth of the link is approximately 40 kbps downlink and 15 kbps

uplink. The clients and server use Java Californium (Cf) CoAP implementation.

Their TCP tests cover only the congestion control algorithm (Linux RTO), as the

tests are carried over UDP with the ordinary CoAP UDP header.

The workloads are a divided into continuous and burst tra�c workloads. The con-

tinuous workload consists of 10 to 40 clients that exchange request-response pairs

15

with the server back to back for 180 seconds. The burst tra�c workload consists of

10 continuous clients and a sudden inclusion of up to 50 continuous clients.

The packet loss rate of GPRS is relatively low and the performance of the continuous

workload depends mostly on adaptation to the high RTT. The RTT increases due

to queuing delay as the amount of clients increases. DefaultCoAP's �xed RTO

values cause spurious RTOs and react slowly to actual losses. CoCoA performs

better than DefaultCoAP and Linux RTO. Linux RTO does not increase the RTO

value when the RTT decreases, leading to too small RTO values when congestion is

present. With 40 clients the average �nished transactions per second (throughput,

the higher the better) are about 16.5 for DefaultCoAP, 19.0 for CoCoA and 17.8 for

Linux RTO.

Similarly with the burst tra�c load, CoCoA performs the best while DefaultCoAP

performs the worst. CoCoA's variable backo� and aging mechanisms prevent the

RTO value from growing too large when sequential packets are lost due to link errors.

With 30 burst clients, the average settling times in seconds (the lower the better)

are about 180 (truncated) for DefaultCoAP, 105 for CoCoA and 110 for Linux RTO.

These results are in line with our results. With high prevailing RTT, DefaultCoAP

does unnecessary retransmissions with each new message as it does not adapt to

the high RTT. In our error-prone tests, even with the low error rate, DefaultCoAP

recovers from packet losses slower than CoCoA and TCP. In our error-free scenario

with 50 clients, the results with DefaultCoAP and CoCoA are roughly the same,

though. While CoCoA's variable backo� and aging mechanisms help in the error-

prone scenarios, they cause CoCoA clients to behave too aggressively wasting the

scarce bandwidth in error-free scenarios. When facing bu�erbloat, aging prevents

the RTO value from increasing to a proper level by quickly decaying it back to the

default value range.

The paper [JDK15] evaluates DefaultCoAP, CoCoA, Linux RTO (UDP as previ-

ously) in addition to Peak-Hopper. The test setup emulates a single hop ZigBee

network using Netem with Java Californium as the CoAP implementation. The

bandwidth of the bottleneck link is 20 kbps with a 512-byte bu�er and it is error

free. The workloads consist of 1 to 80 clients that communicate with a server over

the shared link, exchanging 50 request-response pairs back to back with 30 byte

response payload. Continuous clients exchange the 50 pairs normally and random

clients reset their congestion control state after 1 to 10 exchanges. They also mixed

the client types and DefaultCoAP clients with other congestion control clients for

16

competition testing.

The median client completion time (similar to �ow completion time) of DefaultCoAP

clients is stable but usually the highest, because its RTO value is high for the link.

Continuous CoCoA and Linux RTO clients use RTT measurements to lower the

RTO value and to complete quicker. Random CoCoA clients reset the state often

enough for the completion time to be only slightly lower than with DefaultCoAP.

Linux RTO outperforms DefaultCoAP and CoCoA with 20 and more clients due to

CoCoA's weak sampling increasing the RTO value unnecessarily high. Linux RTO

is highly unstable and does have higher upper percentiles, though.

Our tests indicate similar unstableness and low median completion time of contin-

uous Linux RTO (albeit using TCP) clients with small bu�er sizes.

5 Test arrangements

The test environment used in [JRCK18a], [JRCK18b] and [JPR+18] emulates a sce-

nario, where multiple adjacent IoT devices connect to a �xed server. For example,

informative displays at bus stops update their timetables by requesting an update

and then receiving incremental updates to the timetable. The devices share a con-

strained bottleneck link to a router connected to the Internet.

5.1 Test phenomena

If the path from the client to the server has plenty of available bandwidth, low delay

and is error free, then the congestion control algorithm has little impact on the

performance (aside from protocol options and di�erent header sizes). However, the

wireless links commonly used in IoT are constrained and error prone.

1. Losses due to congestion The common congestion case is one where the bu�er

of the bottleneck router is not large enough to hold all of the incoming packets.

The packets that do not �t into the bu�er are discarded (tail-dropped) when the

network/link becomes congested.

A congestion control algorithm should decrease the transmission rate so that the

bu�er size is not exceeded and that the link stays fully utilized. The bu�er should

not be fully depleted, because then the link becomes idle at times, lowering its

utilization.

17

2. Bu�erbloat

Bu�ers are essential for packet networks, but too large bu�ers cause excessive delays

[GN11]. Without bu�ers the packets have no place to wait for transmission and the

network has to be globally synchronized, which is expensive and in�exible. Active

queue management techniques such as Random Early Detection (RED) are used to

keep the bu�ers from growing too large for �uent operation. Because active queue

management is not widely enabled in network devices, memory chips are cheap

and packet loss is minimized, bu�erbloat emerges. As the bu�er �lls up, the delay

increases linearly, causing slow reaction to congestion. Commodity network devices

may use a single bu�er size for all links connected to it. The bu�er is then sized

for the fastest connection, causing the bu�er to be too large for slower connections,

such as wireless ones. Reports indicate that bu�erbloat exists also at the core of the

Internet [GN11].

A congestion control algorithm should wait long enough for the packet to traverse

through the bu�er (queuing delay), that is, a longer RTO value is better.

3. Losses due to link errors

The link loses packets due to the corruption of physical layer frames [IML+03]. In

the test network the losses are emulated and reproducible.

A congestion control algorithm should retransmit the packet quickly, i.e. shorter

RTO value is better. As the packet is lost, the recovery method is to retransmit it

as quickly as possible.

As can be noticed, the appropriate actions for the phenomena are contradictory:

longer RTO for congestion and bu�erbloat, but shorter RTO for recovering from

link errors. Networks can su�er from each of the phenomena, making the design of

Shared constrained bottleneck link
MTU 296 B

Uplink 60 kbps, 200 ms delay

Downlink 30 kbps, 400 ms delay 1 Gbps wired link
0-20 ms delay...

Emulated

Figure 4: The test setup

18

a congestion control algorithm for IoT environments challenging. The congestion

control algorithm of TCP is designed for wired networks with mostly congestion

related losses, and it performs sub-optimally under non-congestion losses [GAMC18].

Handling congestion is the main objective of congestion control and performance

optimizations are secondary objectives [JRCK18a].

5.2 Test network

Network emulators create a constrained NB-IoT-like [CMHH17] link between the

client and the server as shown in Figure 4. This bottleneck link has a data rate of

30 kbps downstream and 60 kbps upstream. There is a 400 ms delay downstream,

200 ms delay upstream and a random 10-20 ms delay between the bottleneck router

and the server. The MTU of the bottleneck link is 296 bytes. The bottleneck router

bu�er size is selected from 2500 bytes, 14100 bytes, 28200 bytes and 1410000 bytes.

The smallest one is approximately the bandwidth-delay product of the link and the

largest one is practically in�nite, i.e. large enough that packets are never lost due

to congestion.

The test network consists of a client host running the client software, a server host

running the server software and two hosts running the Netem network emulator.

The clients and the server use actual implementations of the algorithms. The hosts

are physical computers running Debian 9 Stretch. The client generates tra�c that is

typical for IoT devices. The server is a more powerful �xed host, such as a database

server. The tra�c is captured from di�erent network interfaces using tcpdump for

analysis.

Independent of the direction of the data �ow, the �rst network emulator emulates the

link bitrate and the bu�er of the bottleneck router. The second network emulator

then emulates propagation delay and packet loss. This arrangement ensures the

correct emulation of bu�ers, link capacity, delays and packet drops.

The error free test scenarios are subject only to congestion-related losses, meaning

that packet drops are only due to full bu�ers. With the in�nite bu�er size, the bu�er

of the bottleneck router is large enough to hold all sent packets. It takes considerable

time to empty the bu�er. All spuriously retransmitted packets are queued into the

bu�er, increasing the RTT and decreasing the throughput.

The link-error test scenarios have three di�erent error pro�les. The alternation and

the average error rate is accomplished with a two-state Markov model that creates

19

short error bursts of the higher error rate. The low error pro�le has a constant

average 2% packet-error rate without state alternation. The medium error pro�le

has an average 10% error rate using alternation between 0% (good state) and 50%

(bad state). The high error pro�le has an average 18% error rate using alternation

between 2% and 80%.

5.3 Workloads

The test requests contain the minimal CoAP header of 4 bytes with UDP or 2 bytes

with TCP, and 6 bytes for the URI path option. The response CoAP header is 1

byte larger due to the payload marker. A zero length token is used for all messages,

except for congestion control algorithms requiring a token value, where a 1-byte

token is used. 8-byte UDP and 20-byte TCP transport headers are used in the tests

in addition to a 20-byte IPv4 header.

The responses have a payload of 60 bytes. Such payload could contain for example

temperature, electricity consumption or air quality measurements. Experiments

with larger payloads, that are used for example with �rmware updates, are not

discussed in this thesis, but are in [Pes19].

The tests are conducted with two types of clients and the number of concurrent

clients varies from 1 to 400. "Continuous" clients exchange 50 request-response

pairs. "Random" clients exchange the 50 request-response pairs in batches of 1 to

10 messages and then reset all state information. This emulates a situation where the

client sends only a few messages and is then followed by another similar client. Such

short exchanges are challenging for congestion control, because the algorithms have

to start with an initial RTO and have only little time to adapt to the prevailing RTT.

Note that with DefaultCoAP the continuous and random clients function identically

as DefaultCoAP does not have any state information.

In the CoAP over TCP tests with continuous clients, the three-way handshake is

completed and the CSM message is sent beforehand and the timing is started at

the transmission of the �rst request message. With random clients, this is not the

case as the TCP connection is closed after each batch and a new TCP connection

is established before sending the next batch.

20

5.4 Metrics

All of the error free tests are run for 20 replications and the error-prone tests are

run for 40 replications. The metrics are calculated from these replications.

The main metric is the Flow Completion Time (FCT) which is the time taken for

a single client to exchange the 50 request-response pairs. More speci�cally it is the

time from the �rst request to the �rst response of the last request. It includes the

TCP connection establishment for random clients.

Other metrics were also used while analysing the algorithms. RTT is the time

taken to complete a single request-response pair. Frequency of transmissions is the

number of transmissions required to complete a request-response pair. Expired RTO

measures the RTO values and Client RTO max is the highest expired RTO. Number

of packet drops is the di�erence between sent and received packets. Number of

unnecessary retransmissions is the amount of late arriving response duplicates after

the �rst (non-duplicate) response.

5.5 Modi�cations to default settings and implementations

Maximum number of retransmissions and RTO

The CoAP MAX_RETRANSMIT value, controlling the maximum number of re-

transmissions, is increased from the default 4 to 20 in order to complete the large

tests without errors. The CoAP speci�cation does not specify an upper bound limit

for the backed o� RTO value, so with maximum 20 retransmissions the value can

get very high. The DefaultCoAP RTO value is thus limited to 60 seconds.

Linux TCP for CoAP over TCP

The used TCP implementation is the full-�edged Linux TCP implementation and

not one for constrained devices, but it is con�gured as a more standardized version

of TCP that is more suitable for constrained devices. The implementation uses

TCP NewReno [HFGN12]. Control Block Interdependence (CBI) [Tou97], TCP

Timestamp option [BBJS14] and TCP Fast Open (TFO) [CCRJ14] are not used.

The TCP SYN and SYN/ACK retries is increased to 40, and delayed ACKs are sent

with a constant 200 ms timer. The Linux TCP has by default an initial RTO of 2

seconds and a maximum RTO of 120 seconds, which were not modi�ed.

21

Congestion control algorithms

The used libcoap version is 4.1.2. It includes only the DefaultCoAP algorithm. Co-

CoA, CoAP over TCP and the improved algorithms were implemented into libcoap.

The implemented CoCoA version is draft-ietf-core-cocoa-03 [BBGD17]. CoAP has

two layers, the messaging layer for reliable communication and request/response

layer for REST communication. The new congestion control algorithms were im-

plemented into the messaging layer. The aptly named functions that were a�ected

are coap_send_con�rmed (send new message), handle_response (receive acknowl-

edgements and piggybacked responses) and coap_retransmit (retransmit message

on RTO timer expiration).

TCP support to libcoap

CoAP over TCP functionality required the implementation of the CoAP over TCP

header structure. Separate send and receive functions were implemented, but re-

transmissions and congestion control were not, because TCP handles them.

CoCoA aging

The CoCoA speci�cation states that the RTO estimate must be decayed during idle

periods. The concept of an idle period is only brie�y mentioned. The idle period

is thus interpreted as a state where there are no ongoing transmissions. There

are no idle periods in our workloads as the next request is sent immediately after

receiving a response. The aging mechanism is explicitly turned o� in the used

CoCoA implementation, since especially with the increased MAX_RETRANSMIT

value, the test cases can take so long that aging would be performed on a busy �ow.

6 Baseline results

DefaultCoAP, CoCoA and CoAP over TCP are empirically analyzed in [JRCK18a,

JPR+18] to �nd their shortcomings and to form a comparison baseline for the im-

proved algorithms. The results with an error free link and an error-prone link are

discussed separately. The results include both continuous and random workloads.

The �gures in the results chapters contain �ow completion times as boxplots. The

whiskers are the 10th and 90th percentiles, the edges of the box are the 25th and

22

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f0

50

100

150

200

250

T
im
e
(s
ec
)

Figure 5: FCT of 100 continuous

clients, error free link, using 2500B

and in�nite bu�er sizes
D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f0

200

400

600

800

T
im
e
(s
ec
)

Figure 6: FCT of 200 continuous

clients, error free link, using 2500B

and in�nite bu�er sizes

75th percentiles (quartiles) and the line inside the box indicates the median. The al-

gorithm and used bu�er size is indicated on the x-axis. The names of the algorithms

have been abbreviated: DefaultCoAP is DC and CoAP over TCP is TCP.

6.1 Error free link

Continuous workload

Starting with 100 continuous clients, the congestion with small bu�er sizes results in

packet losses. Using the small 2500B bu�er size, the median FCT of DefaultCoAP is

101.6 seconds, CoCoA 104.7 seconds and CoAP over TCP 86.7 seconds (see Figure

5). CoAP over TCP reacts to congestion more e�ectively than DefaultCoAP and

CoCoA. TCP keeps the backed o� timer value until data is acknowledged without

retransmissions (Karn's algorithm) decreasing congestion and lowering the amount

of retransmissions. Both DefaultCoAP and CoCoA transmit the next message with

non-backed o� RTO value despite that retransmissions occurred and congestion may

be present. This causes more packet drops and retransmissions. Only some CoAP

over TCP clients have to back o�, making way for other clients, and may have a

23

very high FCT. Also, the TCP timer limit is 120 seconds instead of 60 as in the

others, causing roughly 5% of the clients to use an RTO longer than 60 seconds.

Even though it is unfair for the clients that have to wait longer, it is e�ective as the

median FCT of CoAP over TCP is 14.7% and 17.2% shorter than DefaultCoAP's

and CoCoA's, respectively.

When using the in�nite bu�er, the median FCT of DefaultCoAP is 244.911 seconds,

CoCoA 125.870 seconds and CoAP over TCP 146.308 seconds. TCP's larger header

causes enough overhead so that the CoCoA clients are able to complete faster. The

queue is so long that the RTT becomes much higher than two seconds. As the

initial RTO is at most 3 seconds for each algorithm, many of the �rst transmissions

encounter a spurious RTO (TCP has already measured an RTT estimate during

the connection establishment). For DefaultCoAP the situation is graver, because

every transmission begins with a 2-3 seconds RTO, causing every new message to

be unnecessarily retransmitted. CoCoA and CoAP over TCP have to unnecessarily

retransmit only a couple of messages before the RTO value is set high enough.

With 200 clients the packet losses with small bu�er sizes and queuing delay with large

bu�er sizes increases. With the 2500B bu�er size, the median FCT of DefaultCoAP

is 187.758 seconds, CoCoA 202.999 seconds and CoAP over TCP 171.142 seconds

(see Figure 6). When packets are lost due to congestion, the median FCT of CoAP

over TCP is the shortest because of TCP's responsiveness to congestion. CoCoA

and TCP measure the RTT and adjust the RTO values accordingly, requiring only

a few unnecessary retransmissions in the beginning.

With the in�nite bu�er size, the median FCT of DefaultCoAP is 849.945 seconds,

CoCoA 273.486 seconds and CoAP over TCP 303.799 seconds. DefaultCoAP re-

acts to congestion by backing o� the RTO value exponentially, which works with

small bu�ers, but because the prevailing RTT with large bu�er sizes is longer than

the initial RTO, a lot of spurious RTOs occur. DefaultCoAP restores the initial

RTO value after each successful exchange and �lls the bu�er with spurious RTOs

increasing queuing delay even more. Because only little forward progress is made

due to the transmission of unnecessary retransmissions, with the in�nite bu�er size

the situation is similar to a congestion collapse.

When packets are not lost, TCP's larger header causes the median FCT to be longer

than CoCoA's [JPR+18].

With 400 clients and the 2500B bu�er size, the median FCT of CoAP over TCP is

the shortest. The median FCT of DefaultCoAP is 386.756 seconds, CoCoA 411.899

24

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

D
C
14
10
0B

C
oC

oA
14
10
0B

T
C
P
14
10
0B

0

200

400

600
T
im
e
(s
ec
)

Figure 7: FCT of 400 continuous

clients, error free link, using 2500B

and 14100B bu�er sizes
D
C
28
20
0B

C
oC

oA
28
20
0B

T
C
P
28
20
0B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f0

500

1,000

1,500

2,000

2,500

T
im
e
(s
ec
)

Figure 8: FCT of 400 continuous

clients, error free link, using 28200B

and in�nite bu�er sizes

seconds and CoAP over TCP 316.687 seconds (see Figure 7). The longer median

FCT of CoCoA is due to CoCoA's aggressiveness: the variable backo� factor is

only 1.5 when the RTO value is above 3 seconds, as it often is in this case. This

causes the long RTO values to be backed o� less than necessary and the message is

retransmitted too quickly.

With the 14100B bu�er size, the median FCT of DefaultCoAP is 554.857 seconds,

CoCoA 440.427 seconds and CoAP over TCP 447.289 seconds. With the 28200B

bu�er size, the median FCT of DefaultCoAP is 705.121 seconds, CoCoA 480.779

seconds and CoAP over TCP 422.398 seconds. As the bu�er size increases, more

packets introduce more queuing delay.

With the in�nite bu�er size all transmissions are queued and every unnecessary

retransmission wastes the bottleneck link. DefaultCoAP does on median 196 unnec-

essary retransmissions, wasting about 80% of the link capacity, and resulting in a

congestion collapse. The median FCT of DefaultCoAP is 2425.320 seconds, CoCoA

642.100 seconds and CoAP over TCP 626.073 seconds (see Figure 8).

25

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f0

50

100

150

200

250

T
im
e
(s
ec
)

Figure 9: FCT of 100 random

clients, error free link, using 2500B

and in�nite bu�er sizes
D
C
28
20
0B

C
oC

oA
28
20
0B

T
C
P
28
20
0B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f0

200

400

600

800

T
im
e
(s
ec
)

Figure 10: FCT of 200 random

clients, error free link, using 28200B

and in�nite bu�er sizes

Random workload

With the random workload the CoAP over TCP clients have to establish a new

connection and exchange the Capabilities and Settings Message (CSM) at the be-

ginning of each batch, which requires altogether two RTTs due to Nagle's algorithm

[Nag84]. TCP's three-way handshake is a known shortcoming for typical IoT com-

munication [JPR+18]. This causes the median FCT of random CoAP over TCP

clients to be 47.093 seconds with one client, that is 41.8% higher than the median

FCT of continuous CoAP over TCP clients [JPR+18].

With 100 random clients and the small 2500B bu�er, the results of DefaultCoAP

and CoCoA are similar to the results of the continuous clients (see Figure 9). The

median FCT of DefaultCoAP is 101.908 seconds, CoCoA 105.918 seconds and CoAP

over TCP 145.320 seconds. When using the small bu�er size, TCP's connection

establishment packets can also be dropped due to congestion and when using the

in�nite bu�er, these packets cause more queuing delay.

When using the in�nite bu�er size, where the RTT is above two seconds, CoCoA

and CoAP over TCP have longer median FCTs than continuous clients because

26

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

D
C
14
10
0B

C
oC

oA
14
10
0B

T
C
P
14
10
0B

0

200

400

600

800
T
im
e
(s
ec
)

Figure 11: FCT of 400 random

clients, error free link, using 2500B

and 14100B bu�er sizes
D
C
28
20
0B

C
oC

oA
28
20
0B

T
C
P
28
20
0B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f0

1,000

2,000

3,000

T
im
e
(s
ec
)

Figure 12: FCT of 400 random

clients, error free link, using 28200B

and in�nite bu�er sizes

their state is reset after each batch. The initial RTO value is too low causing spu-

rious RTOs. The median FCT of DefaultCoAP is 244.863 seconds, CoCoA 152.693

seconds and CoAP over TCP 203.548 seconds.

With 200 random clients and the larger bu�er sizes CoCoA slows down because the

weak samples do not adjust the RTO value quickly enough, causing the RTO value

to be too low and messages are spuriously retransmitted, increasing the queue (see

Figure 10). This happens with continuous clients too, but only once per client. With

the random workload every new batch starts with too low RTO value. The median

FCT of CoAP over TCP is longer due to the additional three-way handshakes.

With the 28200B bu�er size, the median FCT of DefaultCoAP is 461.338 seconds,

CoCoA 374.131 seconds and CoAP over TCP 517.621 seconds.

With 400 random clients the trend is similar as with 200 random clients. With

the 2500 bu�er size, the median FCT of DefaultCoAP is 385.086 seconds, CoCoA

417.007 seconds and CoAP over TCP 460.947 seconds (see Figure 11). CoAP over

TCP is the slowest one to complete.

With the 28200B bu�er size the queue is long enough that the initial RTO is too

27

small (see Figure 12). All algorithms do spurious RTOs. The median number of

unnecessary retransmissions per client (exchanging only a few messages) is 64 for

DefaultCoAP, 25 for CoCoA and 6 for CoAP over TCP.

With the in�nite bu�er size, the median FCT of DefaultCoAP is 2424.610 seconds,

CoCoA 2898.480 seconds and CoAP over TCP 1237.885 seconds. Both DefaultCoAP

and CoCoA experience a congestion collapse. Due to the long bu�er queue, later

CoCoA batches cannot get even weak RTT samples. CoCoA becomes an aggressive

DefaultCoAP variant (the variable backo� factor is 1.5 instead of DefaultCoAP's

2). CoCoA unnecessarily retransmits each message 5 to 6 times.

CoAP over TCP does a couple of unnecessary retransmissions when establishing

the connection and when transmitting the CSM message, but the total number

of unnecessary retransmissions is much lower than DefaultCoAP's and CoCoA's

[JPR+18].

D
C
m
ed
iu
m

C
oC

oA
m
ed
iu
m

T
C
P
m
ed
iu
m

D
C
h
ig
h

C
oC

oA
h
ig
h

T
C
P
h
ig
h

0

50

100

150

200

250

T
im
e
(s
ec
)

Figure 13: FCT of 10 continuous

clients, error-prone link, using

medium and high error rates

D
C
m
ed
iu
m

C
oC

oA
m
ed
iu
m

T
C
P
m
ed
iu
m

D
C
h
ig
h

C
oC

oA
h
ig
h

T
C
P
h
ig
h

0

100

200

300

T
im
e
(s
ec
)

Figure 14: FCT of 10 random

clients, error-prone link, using

medium and high error rates

28

6.2 Error-prone link

In the error-prone test cases, packet losses are due to link errors and not congestion.

For baseline, using the continuous workload without errors and with 10 clients, the

median FCT of DefaultCoAP is 33.220 seconds, CoCoA 33.220 seconds and CoAP

over TCP 33.440 seconds. With low error rate the median FCT of DefaultCoAP is

38.126 seconds, CoCoA 35.531 seconds and CoAP over TCP 35.341 seconds.

When the error rate increases, the FCT grows. With medium error rate the median

FCT of DefaultCoAP is 70.212 seconds, CoCoA 57.002 seconds and CoAP over TCP

50.726 seconds (see Figure 13).

The median FCT of CoAP over TCP is the shortest one with medium error rate.

TCP's RTT estimate is more accurate than CoCoA's (and DefaultCoAP does not

perform RTT measurements), which allows quicker retransmission of lost packets.

CoCoA's strong RTT estimate is weighed with only 0.5 causing slow convergence

and the weak estimator in�ates the RTO value. Both of these cause the RTO value

to be too high and the reaction to lost packets to be slow [JPR+18].

With high error rate the median FCT of DefaultCoAP is 134.596 seconds, CoCoA

112.606 seconds and CoAP over TCP 99.721 seconds.

With high error rate the upper percentiles of CoAP over TCP's FCT are the high

due to Karn's algorithm [KP87]: if consecutive messages are dropped, the RTO is

unnecessarily backed o�. Due to the lack of Karn's algorithim in DefaultCoAP and

CoCoA, their poor performance with congestion allows them to recover losses more

quickly [JPR+18].

Using the random workload without errors and with 10 clients the median FCT of

DefaultCoAP is 33.220 seconds, CoCoA 33.220 seconds and CoAP over TCP 47.598

seconds. With low error rate the median FCT of DefaultCoAP is 38.260 seconds,

CoCoA 37.193 seconds and CoAP over TCP 52.015 seconds.

CoAP over TCP's median FCT is the longest due to the TCP connection estab-

lishment segments as with the error-free clients. These segments are also subject to

packet losses [JPR+18].

With medium error rate the median FCT of DefaultCoAP is 70.148 seconds, CoCoA

67.484 seconds and CoAP over TCP 90.179 seconds (see Figure 14). With high error

rate the median FCT of DefaultCoAP is 137.065 seconds, CoCoA 130.645 seconds

and CoAP over TCP 178.696 seconds.

29

The error-prone link with the random workload is the most realistic and demanding

one. Improvements in the FCT of these cases are very desirable.

6.3 Summary

DefaultCoAP does not use RTT measurements to adjust the RTO and thus does

unnecessary retransmissions when the prevailing RTT is larger than the initial RTO

of 2 to 3 seconds. This is the case especially with 400 clients and in�nite bu�er size.

CoCoA's problems include adjusting the RTO estimate slowly and failing to respond

properly to congestion by using a too low RTO value after an unnecessarily retrans-

mitted message [JRCK18a]. With 400 random clients and an in�nite bu�er size,

CoCoA clients fail to measure even weak samples, causing CoCoA to behave even

more aggressively than DefaultCoAP.

The larger header and the three-way handshake of TCP hampers performance, espe-

cially in the random workload. Karn's algorithm makes TCP congestion safe, but it

will slow down error recovery in error-prone cases because link errors are interpreted

as congestion, making it less ideal for IoT communication.

7 Fast-Slow Retransmission Timeout (FASOR)

After analysing the shortcomings of the baseline algorithms, a new congestion control

algorithm for IoT communications was created [JRCK18b]. The development was

driven by empirical research. During development, the algorithm variants were

empirically tested in the same network and with the same workloads as the baseline

algorithms.

The objective was to create an algorithm that is congestion safe in the presence of

congestion and bu�erbloat, and also performs well in environments with link errors.

The resulting algorithm is called Fast-Slow Retransmission Timeout (FASOR) and

it can be complemented with accurate RTT measurements [JKRC18]. FASOR is

based only on RTO measurements and logic, where FASOR with accurate RTT

measurements requires additional information to be inserted into the message.

30

7.1 Development path

The development path consists of three variants from di�erent development phases,

each adding extra logic to the previous one. The variants are "Slow", "FastSlow"

and "FastSlowFast". "FastSlowFast" is used by FASOR.

The improved algorithm is based on UDP because it has a lower header overhead

and avoids the three-way handshake, which hampers the random workload. As with

DefaultCoAP and CoCoA the losses are inferred using an RTO timer.

The algorithm uses the TCP RTO calculation formula (RFC 6298), requiring two

state variables: SRTT and RTTVAR. The RTO value is initialized to 2000 ms. On

each retransmission the RTO is doubled (grows exponentially). The RTO values are

dithered between RTO + SRTT/4 and RTO + SRTT. The initial RTO is dithered

with SRTT being set to 2/3 seconds. Similarly to DefaultCoAP and CoCoA, when

the RTO value is backed o�, it is not dithered again as the value is already dithered.

7.1.1 Improved backo� logic

A third state variable, SLOW_RTO, is used to store the time measurement from the

original transmission to the �rst acknowledgement if retransmissions occurred. This

value serves the same purpose as the Karn's algorithm: the backed-o� RTO value

is retained between transmissions in order to increase the probability of getting an

accurate RTT measurement. This reduces the amount of unnecessary retransmis-

sions in bu�erbloat cases, but slows down error recovery in link error cases. The

SLOW_RTO value is multiplied with a factor of 1.5 by default. The maximum

RTO value is limited to 60 seconds. The SLOW_RTO value is dithered when used.

When an acknowledgement arrives, depending on the retransmission count; either

the RTO value is updated per TCP RTO calculation algorithm (no retransmissions),

or the total elapsed time value multiplied with 1.5 is stored to a SLOW_RTO

variable (there were retransmissions). If there were no retransmissions, the next

new message will have an RTO value calculated using the TCP RTO algorithm,

but if there were retransmissions, the RTO value will be set to the value in the

SLOW_RTO variable.

31

SLOWFAST /
NORMAL

No retransmissions

Retransmissions

Start

Figure 15: States and transitions of the "Slow" variant

SLOWFAST
SLOW

FAST /
NORMAL

Start

Figure 16: States and transitions of the "FastSlow" variant

The "Slow" variant consists of the TCP RTO calculation and a state where the

SLOW_RTO variable is used (see Figure 15). The sender changes the state after

a message has been acknowledged. If the transmission required no retransmissions,

the green path is taken, and with retransmissions, the red path is taken. The

"FAST/NORMAL" state arms the RTO timer with and backs o� the TCP RTO.

The "SLOW" state uses the SLOW_RTO value instead of the TCP RTO value.

To combat link errors more e�ciently, a link error probe logic is introduced in the

"FastSlow" variant (see Figure 16). The next new message will have a small RTO

value in case the previous message was lost due to link errors and not congestion.

More speci�cally, if the previous message had to be retransmitted, the RTO of the

following message will be calculated using the TCP RTO algorithm instead of using

the SLOW_RTO variable. The �rst retransmission of that message will have an

RTO based on the SLOW_RTO value. In addition, the next new message will get

the SLOW_RTO value as its RTO if the previous message had to be retransmitted.

"FastSlowFast" is the �nal variant and it is used by FASOR. "FastSlowFast" is

similar to "FastSlow", but instead of backing-o� the SLOW_RTO value, the TCP

RTO value is backed-o�. The RTO value sequence is TCP RTO, SLOW_RTO,

TCP RTO * 21, TCP RTO * 22 and so on. It uses the SLOW_RTO value only to

ensure that the sender does not cause a congestion collapse, since while waiting for

the SLOW_RTO all the previous retransmissions have time to progress through the

network with bu�erbloat. This speeds up error recovery in the link error cases even

more in case consecutive transmissions are lost.

32

SLOW
FAST

FAST
SLOW
FAST

FAST /
NORMAL

Start

Figure 17: The FASOR states and transitions, adapted from [JRCK18b]

Figure 17 depicts the FASOR state diagram. The "FAST/NORMAL" state arms

the RTO timer with and backs o� the TCP RTO. The "FAST SLOW FAST" state

starts with the TCP RTO, then uses the SLOW_RTO and backs o� the TCP RTO.

The "SLOW FAST" state starts with the SLOW_RTO and backs o� the TCP RTO.

7.1.2 Fine tuning of the RTO calculation

Two small modi�cations to the TCP RTO calculation formula are made to speed

up error recovery in link error cases.

First, the RTO value can be smaller than 1 second, even though the RFC 6298

suggests that RTO values less than 1 second should be rounded up to 1 second.

This is because the RTT of a link can be less than a second causing the error-prone

cases to notice the loss overly late. For TCP this is not an issue because RTO

recovery is only one of the recovery methods, but for CoAP it is the only one. As

with TCP, but unlike CoCoA, the estimators are updated only with unambiguous

samples.

Second, the initialization phase sets the RTTVAR to an unnecessarily large value.

Because the CoAP exchanges are short and far apart, the convergence to realistic

RTT estimation is slow [JRCK18b]. With short exchanges (random clients work-

load) the initial RTO values play an important role [JDK15].

When the �rst sample is measured, normally the RTTVAR is set to measurement/2,

but now the RTTVAR is set to measurement/2K, where K is 4. The RTO after this

�rst measurement will be measurement + measurement/2, e�ectively the same as

setting the K as 1 in the initialization phase.

33

7.2 FASOR pseudocode

The "FastSlowFast" algorithm with �ne tuning is called Fast-Slow RTO (FASOR).

The states and transitions of Figure 17 are described in a pseudocode form in Listing

1. The "fastrto" variable depicts the RTO value calculated using the TCP RTO

formula.

Listing 1: FASOR pseudocode, adapted from [JKRC18]

SLOWRTO_FACTOR = 1.5

var s t a t e = NORMAL_RTO

var f a s t r t o = 2000ms + d i th e r ()

var s l owrto

var or ig ina l_sendt ime

var retransmit_count

var backo f f_ser i e s_t imer

// Sending Or i g i na l Copy and Retransmitt ing ' req '

send_request (req) :

o r ig ina l_sendt ime = time . now

retransmit_count = 0

arm_rto (ca l cu l a t e_r to ())

send (req)

rto_for (req) :

retransmit_count += 1

arm_rto (ca l cu l a t e_r to ())

send (req)

// ACK Proce s s i ng s

ack () :

sample = time . now − or ig ina l_sendt ime

i f (retransmit_count == 0)

unambiguous_ack (sample)

e l s e

ambiguous_ack (sample)

34

unambiguous_ack (sample) :

k = 4

i f (i s_f i r s t_sample ()) // i n i t i a l K = 1

k = 1

f a s t r t o = rfc6298_update (k , sample)

s t a t e = NORMAL_RTO

ambiguous_ack (sample) :

s l owrto = sample ∗ SLOWRTO_FACTOR + d i th e r ()

s t a t e = ambiguous_nextstate (s t a t e)

ambiguous_nextstate (s t a t e) :

switch (s t a t e) :

case NORMAL_RTO: re turn FAST_SLOW_FAST_RTO

case FAST_SLOW_FAST_RTO: re turn SLOW_FAST_RTO

case SLOW_FAST_RTO: re turn SLOW_FAST_RTO

// RTO Ca l cu l a t i on s

ca l cu l a t e_r to () :

r e turn <state>_r t o s e r i e s ()

// f a s t , f a s t ∗2^1 , f a s t ∗ 2^2 . . .
normal_rtose r i e s () :

switch (retransmit_count) :

case 0 : r e turn f a s t r t o_ s e r i e s_ i n i t ()

d e f au l t : r e turn f a s t r t o_s e r i e s_backo f f ()

// f a s t , max(slow , f a s t ∗2) , f a s t ∗2^1 , f a s t ∗2^2 . . .

f a s t s l ow f a s t_ r t o s e r i e s () :

switch (retransmit_count) :

case 0 : r e turn f a s t r t o_ s e r i e s_ i n i t ()

case 1 : r e turn MAX(slowrto , 2∗ f a s t r t o)
d e f au l t : r e turn f a s t r t o_s e r i e s_backo f f ()

35

// slow , f a s t , f a s t ∗2^1 , f a s t ∗2^2 . . .

s l ow f a s t_ r t o s e r i e s () :

switch (retransmit_count) :

case 0 : r e turn s lowrto

case 1 : r e turn f a s t r t o_ s e r i e s_ i n i t ()

d e f au l t : r e turn f a s t r t o_s e r i e s_backo f f ()

f a s t r t o_ s e r i e s_ i n i t () :

backo f f_ser i e s_t imer = f a s t r t o + d i th e r ()

re turn backo f f_ser i e s_t imer

f a s t r t o_s e r i e s_backo f f () :

backo f f_ser i e s_t imer ∗= 2

return backo f f_ser i e s_t imer

7.3 FASOR with accurate RTT measurements

All of the previously discussed algorithms have divided the arriving acknowledge-

ments into either unambiguous or ambiguous samples based on whether any retrans-

missions of the acknowledged message were made. Accurate RTT measurements can

be obtained using a modi�ed token value or a CoAP option, supplementing the FA-

SOR RTO computation logic by making all samples unambiguous.

The token and option insert a retransmission number (ordinal number of the trans-

mission) into a message. The sender stores the timestamps of the original transmis-

sion and of each retransmission. When the �rst arriving response to the outstanding

request arrives, the echoed token or option value is inspected and the RTT estimate

value is updated using the corresponding transmission timestamp. This results in

very accurate RTT estimates with only a small overhead. The token and option

should not be used together because that would be redundant.

The e�ect is achieved in the QUIC protocol with monotonically increasing packet

numbers to resolve retransmission ambiguity [IS18]. The packet number is di�erent

for the original transmission and all retransmissions, thus the acknowledgement can

be associated with the correct transmission easily. This approach does not introduce

any transmission overhead. CoAP uses the message ID for duplicate detection and

it must be the same in retransmissions in case an earlier acknowledgement is lost.

36

A token in CoAP is a client-local request identi�er [SHB14]. The client generates the

token for each request and the server must include the same token in the response if

a token was present in the request. When communicating with multiple endpoints,

the token is used to match the responses to requests. As the token is client generated,

a retransmission number can be encoded in the token. It cannot be used for empty

acknowledgement messages, but common piggybacked responses only.

Our test setup uses one byte tokens for each message. The original transmission has

a token value of zero, the �rst retransmission has a value of one and so on. The

endpoint echoes the unmodi�ed token in the responses as per the CoAP speci�cation,

thus no modi�cations to the endpoint software are required.

The token �eld can contain a traditional token value, too, when the �eld is par-

titioned into a retransmission counter and a (slightly smaller) token value. If the

traditional token value is not used in the application, the token can be omitted from

the original transmission to reduce the overhead. The absence of the token in a

response is then interpreted as the original transmission.

The retransmission number can alternatively be encoded in a CoAP option like TCP

Timestamp Option for Round-Trip Time Measurement [BBJS14]. CoAP options

are conceptually similar to TCP options and are optionally included after the base

header [SHB14]. CoAP options can be either critical or elective. A critical option

must be understood/supported by the endpoint or an error message is returned.

Elective options can be ignored if not supported. The FASOR option is an elective

one, since processing it is only bene�cial for the RTT estimation, but not crucial.

The options are encoded in Type-Length-Value format.

The use of the option requires more space than the token: the option number takes

0-2 bytes, the header 1 byte and the payload 1 byte. The original transmission does

not need the option as it can have an implicit value of zero.

The option has to be supported in both endpoints. For con�rming the support,

the very �rst request carries a special option value with all payload bits set to 1

(also limiting the maximum retransmissions to 254). When the sender receives an

acknowledgement containing the value 254 or any other explicit value, the option

support is considered con�rmed. From this point on messages missing the option

are inferred as original transmissions. The algorithm acts as the regular FASOR if

the option support is not con�rmed.

37

8 Results with improved algorithms

The results are discussed in the same order as in the baseline results, this time fo-

cusing on the improvements made. The results are analyzed in [JRCK18a, JPR+18,

JRCK18b]. The comparison includes DefaultCoAP, CoCoA, CoAP over TCP, FA-

SOR and FASOR with accurate RTT measurements using a Token (FASOR+Token,

or FASOR+T in the �gures). Results with small amount of clients are also presented.

The Token and Option are similar in functionality, providing means for accurate

RTT measurements. Token was selected for the discussion because of its smaller

overhead of only one byte and because it does not require any special support from

the receiver.

8.1 FASOR development path

The algorithms in these tests can produce RTO values less than one second, but the

K variable (the RTT variance multiplier) is initially set to the default 4 in "Slow",

"FastSlow" and FASOR initk4. FASOR and FASOR+Token use K = 1.

S
lo
w
25
00
B

F
as
tS
lo
w
25
00
B

F
A
S
O
R
in
it
k
4
25
00
B

F
A
S
O
R
25
00
B

F
A
S
O
R
+
T
25
00
B

S
lo
w
in
f

F
as
tS
lo
w
in
f

F
A
S
O
R
in
it
k
4
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

200

400

600

T
im
e
(s
ec
)

Figure 18: FCT of 400 continuous clients, error free link, development algorithms

38

"Slow" is the starting point providing a basic TCP RTO algorithm with RTT sam-

pling, exponential backo� logic and Karn's algorithm using the SLOW_RTO vari-

able. "Slow" provides good performance in environments where packet losses occur

only due to congestion (see Figure 18).

"FastSlow" adds a probe for link errors by skipping the use of SLOW_RTO on the

�rst new message after retransmissions. FASOR or "FastSlowFast" exponentially

backs o� the TCP RTO value instead of SLOW_RTO value. The trend is that

the median FCT of "FastSlow" is higher than "Slow's" and the median FCT of

FASOR is higher than "FastSlow's". This results from the fact that "FastSlow" and

FASOR use fast retransmissions when probing for link errors, while actually the link

is congested or bu�erbloated. The FASOR initk1 variant is slightly more aggressive;

with 400 clients and in�nite bu�er size, the median FCT of the initk1 variant is

0.42% and 0.33% longer than the initk4 variant in continuous and random cases,

respectively.

The overhead of the token in FASOR+Token causes the median FCT of FASOR+To-

ken to be 8.15% longer than "Slow's" with 400 clients and 2500B bu�er size in the

continuous cases. With the in�nite bu�er size, the accurate RTT estimation pays

S
lo
w
co
n
t.

F
as
tS
lo
w
co
n
t.

F
A
S
O
R
in
it
k
4
co
n
t.

F
A
S
O
R
co
n
t.

F
A
S
O
R
+
T
co
n
t.

S
lo
w
ra
n
d
.

F
as
tS
lo
w
ra
n
d
.

F
A
S
O
R
in
it
k
4
ra
n
d
.

F
A
S
O
R
ra
n
d
.

F
A
S
O
R
+
T
ra
n
d
.0

100

200

300

400

T
im
e
(s
ec
)

Figure 19: FCT of 10 clients, error-prone link, development algorithms

39

o� and the median FCT of FASOR+Token is only 1.02% and 0.89% longer than

that of "Slow" in continuous and random cases, respectively.

As expected, "Slow" performs poorly in the error-prone cases (see Figure 19). FA-

SOR's backo� logic on the other hand performs well. The smaller initial K value

improves performance by setting the RTO to a more realistic value; with high error

rate the median FCT of the initk1 variant is 7.50% and 17.17% lower than initk4's

in continuous and random cases, respectively.

8.2 Error-free link with continuous workload

The comparison to the baseline congestion control algorithms begins with the error-

free link and continuous workload. The link is subject to congestion related losses

only and to bu�erbloat. The clients exchange 50 request-response pairs back to

back. The CoAP over TCP clients have already established the connection and

exchanged the CSM messages before the test runs.

Only one client exchanging the 50 messages in the network provides a baseline for

comparisons. There are no losses, no queuing and no retransmissions. The median

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

F
A
S
O
R
25
00
B

F
A
S
O
R
+
T
25
00
B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

20

40

60

T
im
e
(s
ec
)

Figure 20: FCT of 50 continuous clients, error free link, using 2500B and in�nite

bu�er sizes

40

�ow completion time (FCT) is 33.003 seconds for DefaultCoAP, CoCoA and FASOR.

The median FCT is 33.208 seconds for CoAP over TCP due to TCP's larger header

size and 33.024 seconds for FASOR+Token due to the included one byte token. The

RTT is roughly 660 ms.

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

F
A
S
O
R
25
00
B

F
A
S
O
R
+
T
25
00
B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

50

100

150

200

250

T
im
e
(s
ec
)

Figure 21: FCT of 100 continuous clients, error free link, using 2500B and in�nite

bu�er sizes

With 50 clients, the median FCTs for DefaultCoAP, CoCoA and FASOR are roughly

the same, 62 seconds using the small 2500B bu�er size (see Figure 20) and 62.7

seconds using the in�nite bu�er. The median FCT of CoAP over TCP and FA-

SOR+Token clients is slightly longer: 65.032 seconds (2500B bu�er) and 69.868

seconds (in�nite bu�er) for CoAP over TCP and 62.690 seconds (2500B bu�er) and

63.363 seconds (in�nite bu�er) for FASOR+Token. The higher FCT compared to

the �ow with only one client is mostly due to increased queuing delay (especially

when using the in�nite bu�er), but also due to congestion related packet drops when

using the small bu�er size, which is visible from the higher percentiles. When using

the small bu�er, CoAP over TCP's notably longer median FCT (+3 seconds, about

5%) is due to the larger header causing longer serialization delay and more conges-

tion in both uplink and downlink router bu�ers. With the in�nite bu�er, CoAP over

TCP's 7.2 seconds (about 11%) longer median FCT is only due to longer queuing

delay because of the larger header size [JPR+18].

41

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

F
A
S
O
R
25
00
B

F
A
S
O
R
+
T
25
00
B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

200

400

600

800
T
im
e
(s
ec
)

Figure 22: FCT of 200 continuous clients, error free link, using 2500B and in�nite

bu�er sizes

With 100 clients, the congestion begins to increase with small bu�er sizes resulting

in more packet losses (see Figure 21). Using the small 2500B bu�er size, the median

FCT of DefaultCoAP is 101.6 seconds, CoCoA 104.7 seconds, CoAP over TCP 86.7

seconds, FASOR 100.642 seconds and FASOR+Token 109.303 seconds.

When using the in�nite bu�er, the median FCT of DefaultCoAP is 244.911 sec-

onds, CoCoA 125.870 seconds, CoAP over TCP 146.308 seconds, FASOR 127.399

seconds and FASOR+Token 127.785 seconds. The prevailing RTT is higher than

two seconds, causing DefaultCoAP to do unnecessary retransmissions on every new

message. CoCoA, CoAP over TCP and FASORs have to unnecessarily retransmit

only a couple of messages before the RTO value is set high enough.

With 200 clients the packet losses and queuing delay increases. With the 2500B

bu�er size, the median FCT of DefaultCoAP is 187.758 seconds, CoCoA 202.999 sec-

onds, CoAP over TCP 171.142 seconds, FASOR 189.608 seconds and FASOR+Token

202.123 seconds (see Figure 22). CoCoA, CoAP over TCP and FASORs adjust the

RTO values accordingly, requiring only a few unnecessary retransmissions in the

beginning. The median FCT of FASOR is shorter than CoCoA's with all bu�er

sizes, and shorter than CoAP over TCP's with 28200B and in�nite bu�er sizes.

42

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

F
A
S
O
R
25
00
B

F
A
S
O
R
+
T
25
00
B

D
C
14
10
0B

C
oC

oA
14
10
0B

T
C
P
14
10
0B

F
A
S
O
R
14
10
0B

F
A
S
O
R
+
T
14
10
0B

0

200

400

600
T
im
e
(s
ec
)

Figure 23: FCT of 400 continuous clients, error free link, using 2500B and 14100B

bu�er sizes

D
C
28
20
0B

C
oC

oA
28
20
0B

T
C
P
28
20
0B

F
A
S
O
R
28
20
0B

F
A
S
O
R
+
T
28
20
0B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

500

1,000

1,500

2,000

2,500

T
im
e
(s
ec
)

Figure 24: FCT of 400 continuous clients, error free link, using 28200B and in�nite

bu�er sizes

43

With the in�nite bu�er size, the median FCT of DefaultCoAP is 849.945 seconds,

CoCoA 273.486 seconds, CoAP over TCP 303.799 seconds, FASOR 261.704 seconds

and FASOR+Token 260.251 seconds. DefaultCoAP starts to su�er a congestion

collapse. When packets are not lost, TCP's larger header causes the median FCT

to be longer than CoCoA's and FASORs' [JPR+18].

With 400 clients and the 2500B bu�er size, the median FCT of CoAP over TCP is the

shortest. The median FCT of DefaultCoAP is 386.756 seconds, CoCoA 411.899 sec-

onds, CoAP over TCP 316.687 seconds, FASOR 387.750 seconds and FASOR+Token

405.912 seconds (see Figure 23). The median FCT of FASOR is 5.86% shorter than

CoCoA's and roughly the same as DefaultCoAP's. FASOR+Token's RTT measure-

ments lower the RTO causing more retransmissions [JRCK18b].

With the in�nite bu�er size all transmissions are queued and every unnecessary

retransmission wastes the bottleneck link. The median FCT of DefaultCoAP is

2425.320 seconds, CoCoA 642.100 seconds, CoAP over TCP 626.073 seconds, FA-

SOR 551.745 seconds and FASOR+Token 527.513 seconds (see Figure 24). De-

faultCoAP su�ers a congestion collapse while FASOR+Token and FASOR are the

fastest ones to complete. The median FCT of FASOR is 77.25%, 14.07% and 11.87%

shorter than DefaultCoAP's, CoCoA's and CoAP over TCP's respectively. The me-

dian FCT of FASOR+Token is even shorter: 4.39% shorter than FASOR's.

The problem with DefaultCoAP is that every new message has an initial RTO of

2-3 seconds while the prevailing RTT is much higher. In addition to RTT sampling,

FASOR implements Karn's algorithm using the SLOW_RTO variable, which allows

time for the queue to empty before retransmitting the message. FASOR+Token

is able to calculate and adapt to the high prevailing RTT accurately using the

additional information provided by the one-byte token.

8.3 Error-free link with random workload

With the random workload, the CoAP over TCP clients have to establish a new

connection and exchange the Capabilities and Settings Message (CSM) at the be-

ginning of each batch. With only one client exchanging the 50 messages, the median

FCT of DefaultCoAP is 33.003 seconds, CoCoA 33.003 seconds, CoAP over TCP

47.093 seconds, FASOR 33.005 seconds and FASOR+Token 33.025 seconds.

With 50 random clients the results are similar to the continuous clients. The median

FCT of DefaultCoAP is 62.002 seconds, CoCoA 62.002 seconds, CoAP over TCP

44

D
C
25
00
B

C
oC

oA
25
00
B

T
C
P
25
00
B

F
A
S
O
R
25
00
B

F
A
S
O
R
+
T
25
00
B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

50

100

150

200

250

T
im
e
(s
ec
)

Figure 25: FCT of 100 random clients, error free link, using 2500B and in�nite

bu�er sizes

88.433 seconds, FASOR 61.939 seconds and FASOR+Token 62.591 seconds.

With 100 random clients and the small 2500B bu�er, the results of DefaultCoAP

and CoCoA are similar to the results of the continuous clients (see Figure 25). The

median FCT of DefaultCoAP is 101.908 seconds, CoCoA 105.918 seconds, CoAP

over TCP 145.320 seconds, FASOR 100.617 seconds and FASOR+Token 109.293

seconds. The three-way handshakes of TCP make the FCT longer.

When using the in�nite bu�er size, where the RTT is above two seconds, CoCoA,

CoAP over TCP and FASORs have longer median FCTs than the continuous clients

because their state is reset after each batch. The initial RTO value is too low

causing spurious RTOs. FASOR+Token is able to get unambiguous samples and

adjusts the RTO quickly. The median FCT of FASOR+Token is only 15.37% longer

than the continuous FCT while the median FCT of CoCoA is 21.31% longer than

the continuous FCT. The median FCT of DefaultCoAP is 244.863 seconds, CoCoA

152.693 seconds, CoAP over TCP 203.548 seconds, FASOR 164.925 seconds and

FASOR+Token 147.420 seconds.

With 200 random clients and the larger bu�er sizes every new CoCoA batch starts

with a too low RTT estimate and the weak samples do not adjust the RTT estimate

45

D
C
28
20
0B

C
oC

oA
28
20
0B

T
C
P
28
20
0B

F
A
S
O
R
28
20
0B

F
A
S
O
R
+
T
28
20
0B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

200

400

600

800
T
im
e
(s
ec
)

Figure 26: FCT of 200 random clients, error free link, using 28200B and in�nite

bu�er sizes

D
C
28
20
0B

C
oC

oA
28
20
0B

T
C
P
28
20
0B

F
A
S
O
R
28
20
0B

F
A
S
O
R
+
T
28
20
0B

D
C
in
f

C
oC

oA
in
f

T
C
P
in
f

F
A
S
O
R
in
f

F
A
S
O
R
+
T
in
f0

1,000

2,000

3,000

T
im
e
(s
ec
)

Figure 27: FCT of 400 random clients, error free link, using 28200B and in�nite

bu�er sizes

46

quickly enough. With the 28200B bu�er size, the median FCT of DefaultCoAP is

461.338 seconds, CoCoA 374.131 seconds, CoAP over TCP 517.621 seconds, FA-

SOR 343.212 seconds and FASOR+Token 300.028 seconds (see Figure 26). The

median FCT of FASOR is 8.27% shorter than CoCoA's and the median FCT of

FASOR+Token is 12.58% shorter than FASOR's.

With 400 random clients the trend is similar as with 200 random clients. With

the 2500 bu�er size, the median FCT of DefaultCoAP is 385.086 seconds, CoCoA

417.007 seconds, CoAP over TCP 460.947 seconds, FASOR 391.240 seconds and

FASOR+Token 409.227 seconds. The median FCT of FASOR is 6.18% shorter than

CoCoA's while CoAP over TCP is the slowest one to complete.

With the 28200B bu�er size the queue is long enough that the initial RTO is too

small. All algorithms do spurious RTOs, but FASOR+Token acquires a sample the

fastest at the beginning of each batch (see Figure 27). The median FCT of FA-

SOR+Token is 2.63% and 4.91% shorter than FASOR's and CoCoA's respectively.

With the in�nite bu�er size, the median FCT of DefaultCoAP is 2424.610 seconds,

CoCoA 2898.480 seconds, CoAP over TCP 1237.885 seconds, FASOR 812.070 sec-

onds and FASOR+Token 702.802 seconds. Both DefaultCoAP and CoCoA experi-

ence a congestion collapse while the FASORs are congestion safe. The median FCT

of FASOR is 72.03% shorter than CoCoA's and the median FCT of FASOR+Token

is 13.46% shorter than FASOR's.

Again, FASOR implements the Karn's algorithm and is able to get unambiguous

samples after a few retransmissions. FASOR+Token is able to convert otherwise

ambiguous samples into unambiguous to adjust the RTO value quickly.

8.4 Error-prone link with continuous workload

In the error-prone test cases, packet losses are due to link errors and not congestion.

For baseline, without errors and with 10 clients, the median FCT of DefaultCoAP

is 33.220 seconds, CoCoA 33.220 seconds, CoAP over TCP 33.440 seconds, FASOR

33.221 seconds and FASOR+Token 33.242 seconds.

With low error rate the median FCT of DefaultCoAP is 38.126 seconds, CoCoA

35.531 seconds, CoAP over TCP 35.341 seconds, FASOR 35.618 seconds and FA-

SOR+Token 35.758 seconds. When the error rate increases, the FCT grows. With

medium error rate the median FCT of DefaultCoAP is 70.212 seconds, CoCoA

57.002 seconds, CoAP over TCP 50.726 seconds, FASOR 53.253 seconds and FA-

47

D
C
m
ed
iu
m

C
oC

oA
m
ed
iu
m

T
C
P
m
ed
iu
m

F
A
S
O
R
m
ed
iu
m

F
A
S
O
R
+
T
m
ed
iu
m

D
C
h
ig
h

C
oC

oA
h
ig
h

T
C
P
h
ig
h

F
A
S
O
R
h
ig
h

F
A
S
O
R
+
T
h
ig
h

0

50

100

150

200

250

T
im
e
(s
ec
)

Figure 28: FCT of 10 continuous clients, error-prone link, using medium and high

error rates

SOR+Token 52.598 seconds (see Figure 28).

As the RTO expiration is the only loss recovery method, accurate RTT estimation

is important. FASOR is able to perform better than DefaultCoAP and CoCoA even

though they have unfair advantage in error-prone cases (not being congestion safe

in error free cases) [JRCK18b].

With medium error rate the median FCT of FASOR is 24.15% shorter than Default-

CoAP's and 6.58% shorter than CoCoA's. The median FCT of FASOR+Token is

1.23% shorter than FASOR's.

With high error rate the median FCT of DefaultCoAP is 134.596 seconds, CoCoA

112.606 seconds, CoAP over TCP 99.721 seconds, FASOR 92.536 seconds and FA-

SOR+Token 93.822 seconds. The median FCT of FASOR is 31.25% shorter than

DefaultCoAP's, 17.82% shorter than CoCoA's and 7.21% shorter than CoAP over

TCP's.

The novel backo� logic allows FASOR clients to recover from the packet losses

quickly while still being congestion safe.

48

D
C
m
ed
iu
m

C
oC

oA
m
ed
iu
m

T
C
P
m
ed
iu
m

F
A
S
O
R
m
ed
iu
m

F
A
S
O
R
+
T
m
ed
iu
m

D
C
h
ig
h

C
oC

oA
h
ig
h

T
C
P
h
ig
h

F
A
S
O
R
h
ig
h

F
A
S
O
R
+
T
h
ig
h

0

100

200

300
T
im
e
(s
ec
)

Figure 29: FCT of 10 random clients, error-prone link, using medium and high

error rates

8.5 Error-prone link with random workload

Without errors and with 10 clients the median FCT of DefaultCoAP is 33.220 sec-

onds, CoCoA 33.220 seconds, CoAP over TCP 47.598 seconds, FASOR 33.222 sec-

onds and FASOR+Token 33.243 seconds. With low error rate the median FCT of

DefaultCoAP is 38.260 seconds, CoCoA 37.193 seconds, CoAP over TCP 52.015

seconds, FASOR 35.954 seconds and FASOR+Token 35.947 seconds.

CoAP over TCP's median FCT is the longest due to the TCP connection establish-

ment segments as with the continuous clients. These segments are also subject to

packet losses. [JPR+18]

With medium error rate the median FCT of DefaultCoAP is 70.148 seconds, CoCoA

67.484 seconds, CoAP over TCP 90.179 seconds, FASOR 56.564 seconds and FA-

SOR+Token 56.580 seconds (see Figure 29). The median FCT of FASOR is 19.44%

shorter than DefaultCoAP's and 16.18% shorter than CoCoA's.

With high error rate the median FCT of DefaultCoAP is 137.065 seconds, CoCoA

130.645 seconds, CoAP over TCP 178.696 seconds, FASOR 106.445 seconds and

49

FASOR+Token 102.332 seconds. The median FCT of FASOR is 22.34% shorter

than DefaultCoAP's and 18.52% shorter than CoCoA's. The median FCT of FA-

SOR+Token is 3.86% shorter than FASOR's.

As with the continuous clients, FASOR's fast retransmit allows quick error recovery

in most cases. FASOR+Token is able to measure the prevailing RTT quickly and

accurately to recover from packet-errors more e�ciently. Since the links used in IoT

tra�c are often error-prone, this is an important improvement.

8.6 Summary

FASOR is able to perform well in the di�cult scenarios, where DefaultCoAP and

CoCoA experience a congestion collapse. FASOR implements Karn's algorithm

using the SLOW_RTO variable and is even faster to complete than CoAP over

TCP when facing bu�erbloat.

FASOR with accurate RTT measurements adjusts the RTO quickly, which is espe-

cially useful with the random workload. FASOR+Token has the shortest FCT in

bu�erbloat scenarios in addition to error-prone scenarios.

Both FASOR variants have shorter FCTs in the error-prone cases than DefaultCoAP

and CoCoA, even though DefaultCoAP and CoCoA have unfair advantage of being

too aggressive in error-free cases.

9 Use cases and con�guration

CoAP has many advantages over the other protocols brie�y discussed in Section 2.4.

From a practical viewpoint CoAP integrates seamlessly with the current TCP/IP

protocol stack and Internet infrastructure [KRS14]. CoAP provides interoperability

into complex Wireless Sensor Network architectures that typically include applica-

tion-dependent and engineering-oriented sensors. The HTTP<->CoAP translations

speci�ed in [SHB14] allow accessing CoAP nodes easily from, for example, traditional

web browsers.

The RESTful architecture provides a gentle learning curve for programmers that

have previous experience in web software development. The use of UDP allows

multicasting and the use of non-reliable messaging if the application does not re-

quire reliability, for example sending temperature measurements as non-con�rmable

50

messages and temperature alerts as con�rmable messages.

In the spirit of this thesis, CoAP allows tuning the transmission parameters and

even replacing the congestion control algorithm. For example, if the deployment

environment is known to be bu�erbloated, the default RTO of 2-3 seconds can be

increased to avoid spurious RTOs.

To ensure the stability of the Internet, a congestion control algorithm must be

su�ciently responsive to congestion [BCC+98]. For an algorithm to be safe to use

in the Internet, it should be usable in all situations. As per the results of Section

8, if CoAP is used over UDP as it is recommended, then a FASOR variant is most

suitable. Because some networks and network devices block UDP tra�c, CoAP over

TCP is a viable option.

In some situations, where the deployment scenario and its properties are known, it

is possible to do optimizations. Two special scenarios are considered as examples at

the end of this Chapter.

Ideally, the quality of the path could be measured to select a best suited congestion

control algorithm. As discussed in Section 5.1, packet drops due to congestion and

link errors are indistinguishable from each other. For example, the Point-to-Point

Protocol (PPP) has a mechanism for link quality monitoring, the Link Control

Protocol [Sim96]. The protocol sends Link-Quality-Report packets containing the

number of packets and octets that were transmitted and successfully received. The

receiver compares the values to the previous report, giving an indication of the

current link quality. The implementation can then decide an action based on the

reports. This approach works only for one link and not for the end-to-end path, as

it does not distinguish the cause of the packet drops and thus cannot supply useful

information for congestion control algorithm selection.

The IEEE 802.15.4 LR-WPAN standard, used by ZigBee among others, has a Link

Quality Indication mechanism on the physical layer [Erg04]. The Link Quality

Indication result is an integer from 0x00 (the lowest quality) to 0x� (the highest

quality). It is measured from an estimate of received signal power and/or signal-to-

noise ratio. The network and application layers can use the result. An application

could, for example, initially use FASOR without a token to conserve bandwidth, but

start including the token when the link quality deteriorates below some threshold.

TCP can utilize ECN as a limited additional information about the presence of

congestion. TCP can also act as a fall back protocol; if CoAP over UDP does not

51

receive acknowledgements, one may try switching to CoAP over TCP.

As the IoT devices are small and constrained, it may not be feasible to include

support for multiple congestion control algorithms. The software and libraries loaded

in the devices can be con�gured before deployment and any excess algorithms be

removed on compile time to limit runtime overhead and required storage space.

The most constrained devices, Class 0 devices [BEK14], have less than 10 kilobytes

of RAM. Those devices may require the use of DefaultCoAP as it has the small-

est memory footprint. DefaultCoAP requires 2 bytes of RAM per client, CoCoA

29 bytes and Linux RTO 21 bytes [BGDP16]. FASOR requires roughly the same

amount of RAM as Linux RTO. The required variables are current RTO value, RTT

variation, smoothed RTT, retransmission count, send timestamp, current state and

SLOW_RTO value. The use of FASOR with accurate RTT measurements requires

more memory as the ordinal retransmission number and respective transmission

timestamps have to be stored in memory. The amount of additional memory required

by the congestion control algorithms is negligible compared with other CoAP fea-

tures, such as the Datagram Transport Layer Security (DTLS) that consumes about

2 kilobytes of RAM [BGDP16].

The �rst example scenario is a cargo container ship. There are one thousand con-

tainers onboard, each one �tted with measurement devices for location and temper-

ature. The devices connect to an on-board base station using a short range protocol

(such as WiFi) and the base station connects to the Internet using a satellite link.

The propagation delay of a Geostationary Orbit satellite link alone is 239.6 - 279.0

milliseconds, increasing the RTT by 479.2 - 558 milliseconds [AGS99]. The metallic

containers and their contents obstruct the radio signals causing poor signal reception

and lost packets. Rain hinders the quality of the satellite link.

For this kind of situation the best performing congestion control algorithm as per the

results is FASOR+Token. It can e�ectively adapt to the large RTT and it performs

the best in error-prone cases. Even though the token increases the overhead, it is

much less than the overhead of the TCP header. On compile time the algorithm

could be con�gured to use initial K of default 4 instead of 1 because the RTT

variance can be high in this case. If low energy consumption is desired, the slow

RTO factor can be increased to minimize the amount of spurious RTOs, but with a

performance penalty.

The second example scenario is a building automation case, where temperature,

humidity, motion and light sensors are scattered all around a large building. There

52

are also actuators, such as lights and door locks. The device installations are �xed

and both communicate and are powered by wired Ethernet. Even though the devices

have an ample supply of power through Power-over-Ethernet, the devices are still

constrained by their manufacturing cost and physical size. The devices are connected

to CoAP gateways that provide security features. The gateways are also connected

to the internet via wired Ethernet.

The link is mostly error free. Message bursts and congestion occur, for example,

when all the lights are lit simultaneously and the light sensors react to it. The system

is managed by network administrators who do not impose arti�cial limits on UDP

tra�c and thus TCP fall back is not needed. CoAP over TCP performs well in error

free cases, but the connection establishment hinders the random workload. Again,

FASOR+Token has the best general performance, but the development prototype

"Slow" algorithm would perform better in cases with only congestion related losses.

10 Conclusion and future work

The Internet of Things (IoT) consists of constrained devices, such as thermometers,

that are often battery powered and have low amounts of memory and processing

power. The devices communicate using networks that also have constraints, such

as low bit rate and high error rate. The Constrained Application Protocol (CoAP)

is a low overhead web transfer protocol for IoT communication. The protocol has

similarities with HTTP and uses a REST architecture with a client/server model.

CoAP is built on top of UDP and supports reliable messaging. CoAP includes a

very simple congestion control algorithm called DefaultCoAP in this thesis.

If the path between the client and the server has plenty of available bandwidth

and no link errors, the congestion control algorithm makes little di�erence. This is

often not the case in IoT networks. CoAP Simple Congestion Control/Advanced

(CoCoA) is a congestion control algorithm speci�cally made for CoAP and IoT

communications to combat the shortcomings of DefaultCoAP. Unlike DefaultCoAP,

CoCoA uses RTT measurements to estimate a proper RTO value. The empirical

performance evaluation also included the use of CoAP over TCP using the general

purpose Linux RTO congestion control algorithm.

The empirical testing was performed in a controlled network that emulated a typ-

ical IoT network. Both the clients and server used actual implementations of the

algorithms implemented into libcoap, an open-source CoAP library for C. The test

53

scenarios had varying amounts of clients (up to 400), bu�erbloat and errors. The

results reveal that both DefaultCoAP and CoCoA experience a congestion collapse

in certain challenging cases, while CoAP over TCP performs sub optimally in error

prone cases.

A new congestion control algorithm, Fast-Slow RTO (FASOR) [JRCK18b, JKRC18],

has been proposed as a solution. FASOR introduces a novel backo� logic allowing

fast recovery from link errors while being congestion safe. FASOR can be comple-

mented with a token value or a CoAP option to remove retransmission ambiguity.

The results indicate that FASOR performs well in IoT environments and is able

to outperform the competition while being congestion safe in the cases where De-

faultCoAP and CoCoA were not. FASOR+Token outperforms plain FASOR in

the demanding error-prone random workload case, which emulates short message

exchanges typical for IoT communications.

The vast amount of IoT devices connected to the Internet signi�es that congestion

control even in seemingly small IoT communications is important to ensure the

stability of the Internet. A congestion control algorithm should be safe to use in all

scenarios. The algorithms can be optimized using con�guration if the deployment

scenario and its properties are known.

Future work includes potentially developing an aging mechanism for FASOR and

tests with TCP related techniques, such as enabling ECN as suggested in [GCS19].

Besides ECN, Explicit Congestion Noti�cation, also Explicit Loss Noti�cation has

been proposed, for example in [DJ01], but not standardized.

The TCP implementation used in the tests was a full-�edged one while lightweight

TCP implementations for constrained devices exist. Although the FASOR token

and option are in�uenced by the TCP timestamp option (12 bytes), the use of the

timestamp option with TCP was not included in the tests.

More workloads. A workload that generates requests at a constant rate, for exam-

ple temperature measurements every 30 seconds, was created but not included in

the tests. The tests of [JDK15] included Competing and Mixed workloads, where

di�erent congestion control algorithms were run in the same test scenario.

The error prone cases were subject to link error related losses only. Further testing

could include cases with larger amount of clients for both congestion and link error

related losses. Related to link error cases, the use of Forward Error Correction could

be investigated.

54

Although constrained devices might not be the ideal target group, the possibility

of exploiting late arriving acknowledgements for additional RTT samples could be

investigated.

References

AFGM+15 Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and

Ayyash, M., Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Communications Surveys Tutorials,

volume 17, June 2015, pages 2347�2376.

AGS99 Allman, M., Glover, D. and Sanchez, L., Enhancing TCP Over Satellite

Channels using Standard Mechanisms. rfc 2488, January 1999.

AMQP AMQP, Advanced Message Queuing Protocol. URL https://www.

amqp.org. Accessed 21.4.2019.

APB09 Allman, M., Paxson, V. and Blanton, E., TCP Congestion Control.

rfc 5681, September 2009.

AVTP+17 Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-

Segui, J. and Watteyne, T., Understanding the Limits of LoRaWAN.

IEEE Communications Magazine, volume 55, September 2017, pages

34�40.

BBGD17 Bormann, C., Betzler, A., Gomez, C. and Demirkol, I., CoAP Simple

Congestion Control/Advanced. Internet Draft, March 2017. Work in

progress.

BBJS14 Borman, D., Braden, B., Jacobson, V. and Sche�enegger, R., TCP

Extensions for High Performance. rfc 7323, September 2014.

BCC+98 Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin,

D., Floyd, S., Jacobson, V., Minshall, G., Partridge, C., Peterson, L.,

Ramakrishnan, K., Shenker, S., Wroclawski, J. and Zhang, L., Recom-

mendations on Queue Management and Congestion Avoidance in the

Internet. rfc 2309, April 1998.

BEK14 Bormann, C., Ersue, M. and Keranen, A., Terminology for Constrained-

Node Networks. rfc 7228, May 2014.

55

BGDP16 Betzler, A., Gomez, C., Demirkol, I. and Paradells, J., CoAP Conges-

tion Control for the Internet of Things. IEEE Communications Maga-

zine, number 7, July 2016, pages 154�160.

BLT+18 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan, B. and

Raymor, B., CoAP (Constrained Application Protocol) over TCP, TLS,

and WebSockets, RFC 8323, February 2018.

Bluetooth Bluetooth SIG. URL https://www.bluetooth.com. Accessed

21.4.2019.

BS16 Bormann, C. and Shelby, Z., Block-Wise Transfers in the Constrained

Application Protocol (CoAP). rfc 7959, August 2016.

CCRJ14 Cheng, Y., Chu, J., Radhakrishnan, S. and Jain, A., TCP Fast Open.

rfc 7413, December 2014.

CMHH17 Chen, M., Miao, Y., Hao, Y. and Hwang, K., Narrow Band Internet of

Things. IEEE Access, volume 5, 2017, pages 20557�20577.

DDS DDS, Data Distribution Service. URL https://www.omg.org/

omg-dds-portal. Accessed 21.4.2019.

DGV04 Dunkels, A., Gronvall, B. and Voigt, T., Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors. 29th Annual

IEEE International Conference on Local Computer Networks, Tampa,

Florida, USA, November 2004, pages 455�462.

DJ01 Ding, W. and Jamalipour, A., A New Explicit Loss Noti�cation with

Acknowledgment for Wireless TCP. 12th IEEE International Sympo-

sium on Personal, Indoor and Mobile Radio Communications. PIMRC

2001. Proceedings, San Diego, California, USA, October 2001.

DMK+01 Dawkins, S., Montenegro, G., Kojo, M., Magret, V. and Vaidya, N.,

End-to-end Performance Implications of Links with Errors. rfc 3155,

August 2001.

Dun03 Dunkels, A., Full TCP/IP for 8-bit Architectures. Proceedings of the 1st

International Conference on Mobile Systems, Applications and Services,

MobiSys '03, Stanford, California, USA, May 2003, ACM, pages 85�98.

56

EC-GSM EC-GSM-IoT, Extended Coverage GSM Inter-

net of Things. URL https://www.gsma.com/iot/

extended-coverage-gsm-internet-of-things-ec-gsm-iot. Ac-

cessed 21.4.2019.

EF08 Eggert, L. and Fairhurst, G., Unicast UDP Usage Guidelines for Appli-

cation Designers. rfc 5405, November 2008.

eMTC-NB eMTC, enhanced Machine Type Communication, and NB-IoT, Nar-

row Band IoT - Standards for the IoT. URL http://www.3gpp.org/

news-events/3gpp-news/1805-iot_r14. Accessed 21.4.2019.

Erg04 Ergen, S. C., ZigBee/IEEE 802.15.4 Summary. UC Berkeley, Septem-

ber 2004, URL http://pages.cs.wisc.edu/~suman/courses/707/

papers/zigbee.pdf. Accessed 21.4.2019.

GAMC18 Gomez, C., Arcia-Moret, A. and Crowcroft, J., TCP in the Internet of

Things: From Ostracism to Prominence. IEEE Internet Computing,

volume 22, January 2018, pages 29�41.

GCS19 Gomez, C., Crowcroft, J. and Scharf, M., TCP Usage Guidance in the

Internet of Things (IoT). Internet-draft, March 2019. Work in Progress.

GN11 Gettys, J. and Nichols, K., Bu�erbloat: Dark Bu�ers in the Internet.

ACM Queue, volume 9, November 2011.

GRM+10 Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N. and Thomas,

T., LTE-Advanced: Next-Generation Wireless Broadband Technology.

IEEE Wireless Communications, volume 17, June 2010, pages 10�22.

Har15 Hartke, K., Observing Resources in the Constrained Application Pro-

tocol (CoAP). rfc 7641, September 2015.

HFGN12 Henderson, T., Floyd, S., Gurtov, A. and Nishida, Y., The NewReno

Modi�cation to TCP's Fast Recovery Algorithm. rfc 6582, April 2012.

IML+03 Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A. and Kha�zov, F.,

TCP over Second (2.5G) and Third (3G) GenerationWireless Networks.

rfc 3481, February 2003.

Ingenu Ingenu. URL https://www.ingenu.com. Accessed 21.4.2019.

57

IS18 Iyengar, J. and Swett, I., QUIC Loss Detection and Congestion Control.

Internet-draft, December 2018. Work in Progress.

Jac88 Jacobson, V., Congestion Avoidance and Control. Symposium Proceed-

ings on Communications Architectures and Protocols, SIGCOMM '88,

Stanford, California, USA, August 1988, ACM, pages 314�329.

JDK15 Järvinen, I., Daniel, L. and Kojo, M., Experimental Evaluation of Al-

ternative Congestion Control Algorithms for Constrained Application

Protocol (CoAP). 2015 IEEE 2nd World Forum on Internet of Things

(WF-IoT), Milan, Italy, December 2015, pages 453�458.

JKRC18 Järvinen, I., Kojo, M., Raitahila, I. and Cao, Z., Fast-Slow Retransmis-

sion Timeout and Congestion Control Algorithm for CoAP. Internet-

draft, October 2018. Work in Progress.

JPR+18 Järvinen, I., Pesola, L., Raitahila, I., Cao, Z. and Kojo, M., Perfor-

mance Evaluation of Constrained Application Protocol over TCP. 2018

IEEE 88th Vehicular Technology Conference, Chicago, Illinois, USA,

August 2018, IEEE.

JRCK18a Järvinen, I., Raitahila, I., Cao, Z. and Kojo, M., Is CoAP Conges-

tion Safe? Proceedings of the Applied Networking Research Workshop,

ANRW '18, New York City, New York, USA, July 2018, pages 43�49.

JRCK18b Järvinen, I., Raitahila, I., Cao, Z. and Kojo, M., FASOR Retransmis-

sion Timeout and Congestion Control Mechanism for CoAP. 2018 IEEE

Global Communications Conference, Abu Dhabi, UAE, December 2018.

KKJ19 Koster, M., Keränen, A. and Jimenez, J., Publish-Subscribe Broker for

the Constrained Application Protocol (CoAP). Internet-draft, March

2019. Work in Progress.

KP87 Karn, P. and Partridge, C., Improving Round-trip Time Estimates

in Reliable Transport Protocols. SIGCOMM'87 Proceedings of the

ACM Workshop on Frontiers in Computer Communications Technol-

ogy, Stowe, Vermont, USA, August 1987, pages 2�7.

KRS14 Khattak, H. A., Ruta, M. and Sciascio, E. E. D., CoAP-based Health-

care Sensor Networks: a survey. Proceedings of 2014 11th International

58

Bhurban Conference on Applied Sciences Technology (IBCAST) Islam-

abad, Pakistan, 14th - 18th January, 2014, Jan 2014, pages 499�503.

libcoap libcoap: C-Implementation of CoAP. URL https://libcoap.net/.

Accessed 21.4.2019.

LMP+05 Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo,

A., Gay, D., Hill, J., Welsh, M., Brewer, E. et al., TinyOS: An Oper-

ating System for Sensor Networks. In Ambient Intelligence, Springer,

2005, pages 115�148.

LoRaWAN About LoRaWAN. URL https://lora-alliance.org/

about-lorawan. Accessed 21.4.2019.

MQTT MQTT, Message Queuing Telemetry Transport. URL https://mqtt.

org. Accessed 21.4.2019.

Nag84 Nagle, J., Congestion Control in IP/TCP Internetworks. rfc 896, Jan-

uary 1984.

NFC NFC Forum. URL https://nfc-forum.org. Accessed 21.4.2019.

PACS11 Paxson, V., Allman, M., Chu, J. and Sargent, M., Computing TCP's

Retransmission Timer. rfc 6298, June 2011.

Pes19 Pesola, L., An Experimental Evaluation of Constrained Application

Protocol Performance over TCP. Master's thesis, University of Helsinki,

2019. Work in Progress.

RFB01 Ramakrishnan, K., Floyd, S. and Black, D., The Addition of Explicit

Congestion Noti�cation (ECN) to IP. rfc 3168, September 2001.

SHB14 Shelby, Z., Hartke, K. and Bormann, C., The Constrained Application

Protocol (CoAP). rfc 7252, June 2014.

Sigfox Sigfox. URL https://www.sigfox.com/. Accessed 21.4.2019.

Sim96 Simpson, W., PPP Link Quality Monitoring. rfc 1989, August 1996.

Ste97 Stevens, W., TCP Slow Start, Congestion Avoidance, Fast Retransmit,

and Fast Recovery Algorithms. rfc 2001, January 1997.

Tou97 Touch, J., TCP Control Block Interdependence. rfc 2140, April 1997.

59

Weightless Weightless SIG. URL http://www.weightless.org. Accessed

21.4.2019.

Wi-Fi Wi-Fi Alliance. URL http://www.wi-fi.org. Accessed 21.4.2019.

XMPP XMPP, Extensible Messaging and Presence Protocol. URL https:

//www.xmpp.org. Accessed 21.4.2019.

Z-Wave Z-Wave Alliance. URL https://z-wavealliance.org. Accessed

21.4.2019.

