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Background Electroencephalography (EEG) depicts electrical activity in the brain, and can be
used in clinical practice to monitor brain function. In neonatal care, physicians can use continuous
bedside EEG monitoring to determine the cerebral recovery of newborns who have suffered birth
asphyxia, which creates a need for frequent, accurate interpretation of the signals over a period
of monitoring. An automated grading system can aid physicians in the Neonatal Intensive Care
Unit by automatically distinguishing between different grades of abnormality in the neonatal EEG
background activity patterns.

Methods This thesis describes using support vector machine as a base classifier to classify seven
grades of EEG background pattern abnormality in data provided by the BAby Brain Activity
(BABA) Center in Helsinki. We are particularly interested in reconciling the manual grading of
EEG signals by independent graders, and we analyze the inter-rater variability of EEG graders
by building the classifier using selected epochs graded in consensus compared to a classifier using
full-duration recordings.

Results The inter-rater agreement score between the two graders was κ=0.45, which indicated
moderate agreement between the EEG grades. The most common grade of EEG abnormality was
grade 0 (continuous), which made up 63% of the epochs graded in consensus. We first trained two
baseline reference models using the full-duration recording and labels of the two graders, which
achieved 71% and 57% accuracy. We achieved 82% overall accuracy in classifying selected patterns
graded in consensus into seven grades using a multi-class classifier, though this model did not
outperform the two baseline models when evaluated with the respective graders’ labels. In addition,
we achieved 67% accuracy in classifying all patterns from the full-duration recording using a multi-
label classifier.
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1

Medical Terminology
Anoxia hypoxia to the severity resulting in permanent damage

Apgar score
an index used to evaluate the condition of a newborn on a scale
from 0 – 2 for five categories (respiration, heart rate, muscle tone, reflexes, skin color),
summed so a 10 is the perfect score

Artifact (in EEG) extraneous noise with sources other than the brain
Asphyxia lack of oxygen in the body, leading to unconsciousness or death.

Cerebral palsy
a neurologic disorder characterized by muscle incoordination and
speech disturbances

Electroencephalography
(EEG)

a brain imaging method that captures electrical activity in the brain and
amplifies them at the scalp with conductive media and electrodes

Encephalopathy a brain injury
Hypothermia lowering of body temperature to subnormal degree
Hypoxic when there is inadequate oxygenated-blood supply
Intrapartum during the act of birth
Ischemic when there is inadequate blood flow to the brain
Neonate newborn less than 4 weeks of age
Perinatal the period around birth
Seizure convulsions resulting from abnormal discharges of electrical activity in the brain

List of Abbreviations
ACNS American Clinical Neurophysiology Society
aEEG amplitude-integrated EEG
AGS automated grading system
BSP burst-suppression pattern
cEEG continuous EEG
CV cross validation
ECOC error-correcting output code
EEG electroencephalography
HFF high-frequency filter
HIE hypoxic-ischemic encephalopathy
IBI inter-burst interval
ICU intensive care unit
LFF low-frequency filter
LOO-CV leave-one-out cross validation
NICU neonatal intensive care unit
qEEG quantitative EEG
RBF radial basis function
SWC sleep-wake cycle
SVM support vector machine



1. Introduction

In neonatal care, the non-invasive electroencephalography (EEG) provides a method to
monitor the cerebral recovery of newborns who have suffered a brain injury. EEG is an
electrobiological imaging tool that records electrical activity in the brain. The electrical
activity is often categorized into background activity patterns that are associated with the
health of the brain, where it may be a sign of cerebral dysfunction if the EEG background
reveals abnormal patterns of discontinuity. Such analysis is often based on the visual
interpretation of changes in the rhythms and patterns of background activity [16] [31, p.
3].

Unfortunately, the expertise required to interpret the signals reliably is often un-
available or limited at many Neonatal Intensive Care Units (NICUs), which motivates the
need for an automated grading system that can accurately and reliably detect patterns
from the EEG features. This can ease the burden of a busy NICU by aiding any attending
physician that may not have the EEG background to interpret the activity.

Methods for an automated grading system to grade EEG background abnormality
have been developed by various groups [17] [21] [32] [1][22][20]. The algorithmic pipeline
of such a system typically begins with filtering and generating features from raw EEG
signals, and then training the features in a classification model to discriminate between
different patterns or states.

This thesis aims to address a part of this algorithmic pipeline, which entails clas-
sifying EEG features into grades of abnormality. We explore the relationship between
inter-rater variability in the EEG grades and the classifier predictions, and we are par-
ticularly interested in reconciling the manual grading of EEG signals by independent
graders. We do so by comparing separate classifiers using two graders’ EEG grades as
class labels to ascertain how reliable a classifier can be in predicting EEG grades when
there is ambiguity in the truth of the class labels.

The rest of the thesis is organized as follows: Chapter 2 begins with a brief overview
of the human brain, and describes the fundamentals of EEG. Chapter 3 details the use of
EEG monitoring in newborns with hypoxic-ischemic encephalopathy and the associated
background abnormality. Chapter 4 discusses related work in automated grading systems
of EEG data, and Chapter 5 describes multi-class and multi-label classification theories.
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3 Chapter 1. Introduction

The methodologies used for the experiments are discussed in Chapter 6, and Chapters 7
and 8 explain the results and analysis of the experiments. We also briefly discuss the im-
plications of using different scoring systems and having inter-rater disagreements. Finally,
Chapter 9 concludes this thesis.



2. The brain and
electroencephalography

2.1 The brain

The brain can be divided into three primary regions: the cerebrum, cerebellum, and
the brain stem. The cerebrum regulates movement, sensory awareness, and emotional
and behavioral expression. The cerebellum regulates voluntary motor movements and
maintains balance, and the brain stem regulates involuntary functions, including heart
regulation and respiration [3, p. 183].

The cerebrum consists of the left and right hemisphere structures that are divided
by a fissure. The cerebral cortex makes up the outer layer of gray matter, or large bodies
of neuronal cells, in the cerebrum. It comprises specialized lobes that are responsible for
sensory and motor functions (Figure 2.1). The frontal lobe is responsible for executive
functions and primary motor control, and the parietal lobe is responsible for integrating
sensory details. The temporal lobe is responsible for sensory details as well, particularly
auditory and visual information, and memory. The occipital lobe is the dominant visual
processing area [3, p. 205–211].

In the human brain, there are approximately 85 billion neurons of different types
[3, p. 24]. Neurons are cells that exchange information over large distances in the human
body by firing electrical signals. A neuron’s structure can be described by its axon, soma,
and dendrites [3, p. 49]. A class of neurons in the cerebral cortex is the pyramidal neuron.
It is distinguished by its pyramidal shape formed by short clusters of basal dendrites at
the bottom and longer apical dendrites at the top end of the soma (Figure 2.2). Pyramidal
neurons make up 2

3 of all neurons in the cerebral cortex, contributing to a considerable
amount of electrical activity.

Electrical activity is produced when a neuron is activated and the synaptic excitation
at the dendrites of the neuron produces a flood of local current flows, causing a difference of
electrical potential in the interior of the neuron and in the extracellular space. Electrical
activity can travel through many layers of non-neural tissue, skull, and skin to reach
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5 Chapter 2. The brain and electroencephalography

electrodes placed on the scalp to capture the signal. Pyramidal neurons are of interest
since they are near the cortical surface in large numbers and their electrical activity can
be recorded at the scalp [3, p. 82–107, 647].

2.2 Electroencephalography

Electroencephalography (EEG) is a brain imaging method that captures electrical activity
in the brain and amplifies them at the scalp with conductive media and electrodes. EEG
gives a limited view of the cerebral cortex since the electrical activity needs to travel some
distance and penetrate many layers in order to reach the electrodes. EEG can only detect
the neuron potentials if the neurons synchronously fire along with neighboring neurons in
a minimum area of 6–10 cm2, limiting the spatial resolution to this scale. Moreover, EEG
recordings that use a fewer number of electrodes describes a wider subcortical region than
if more electrodes were used, which also limits the spatial resolution. However, EEG have
an excellent temporal resolution at milliseconds [31, p. 3–5].

For adults and newborns, the standard placement of electrodes is determined ac-
cording to the international 10-20 system, though infant electrode placement requires
fewer electrodes to account for their smaller scalp (Figure 2.3 – 2.4). The 10-20 system
ensures that the signals can be referenced to a source location and are standardized across
different EEG systems by directing the placements on anatomical landmarks on the head.
This also ensures the reliability of the signals despite differing brain structures due to
individual variation [31, p. 4].

The anatomical landmarks for electrode placement are markers on the sagittal mid-
line and coronal midline. The sagittal midline is defined from nasion, at the bridge of the
nose, to inion, at the back of the head. The preauricular points by the ears define the
coronal midline. The electrodes are then placed at 10% and 20% intervals along these
markers.

The nomenclature for electrode placement is indicated by capital letters – F
(Frontal), Fp (Frontal polar), C (Central), T (Temporal), O (Occipital), P (Parietal),
A (Preauricular) – followed by either a numerical, z, or p suffix. The odd and even num-
bers indicate placement at the left and right hemisphere respectively, and larger numbers
indicate a further placement distance from the sagittal midline. z indicates a location on
the midline, and p indicates the frontal pole [31, p. 4].

Each electrode pair makes up a channel of an EEG trace and is represented by the
difference in potentials between two electrodes. Two methods of combining the channels
are the bipolar montage and the referential montage.

In the bipolar montage, the combination of channels can be arranged as a chain
in either an anterior-to-posterior or transverse direction. When the first electrode in the
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Figure 2.1: The lobes of the cerebral cortex (Modified from Jebelli, Houtan, Sungjoo Hwang, and
SangHyun Lee, 2017). Figure 2.2: A cortical pyramidal cell, found in the cerebral cortex (Modified from
Bear, 2007). Figure 2.3: EEG electrode placement for adults and infants (shaded regions) (Wusthoff,
2009). Figure 2.4: An infant wearing a waveguardTM neonatal EEG cap that can record with 24 – 43
electrodes (Photo courtesy of Sampsa Vanhatalo).

chain captures a more positive amplitude than the second, the pair subtracts from each
other, and a positive potential is displayed. Similarly, if the first electrode in the chain
pair is more negative than the second, a negative potential is displayed.

This is distinguished from the referential montage, in which the combination of chan-
nels is the electrical potential difference between any given electrode and a pre-selected
electrode. Whereas the bipolar montage can amplify local potentials, the referential mon-
tage can more closely represent the absolute potential of an electrode. When interpreting
EEG patterns, one thing to keep in mind is that the activity captured do not reflect a
single cerebral region, but rather of multiple [36].
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2.2.1 Standard EEG review settings

The American Clinical Neurophysiology Society recommends to record with least 21 elec-
trodes and displaying 16 channels for adults, and modified to 9 electrodes for neonates
[7]. During an EEG recording, the channels are displayed as horizontal polygraphic out-
puts on a display monitor for visual interpretation by a neurophysiologist. A positive
potential is indicated by a downward deflection, while a negative potential is indicated by
an upward deflection. Visually, the EEG signals are in the form of waves, typically of a
sinusoidal shape, and they reflect the spatial and temporal properties of the signal, such
as amplitude and frequency [31, p. 19].

Standard EEG review settings determine the activity output’s amplification, fre-
quency filtering, and time scale that aid in the readability of the EEG record. Cerebral
potentials are often low-amplitude, so differential amplification is used to filter out elec-
trical noise by subtracting it by the uniform noise that appears identical at multiple
electrodes.

Common settings for amplitudes are in the range of 5 to 10 µV/mm, though a wider
range of settings are often used. Higher amplitude activity must be compressed to fit
in the EEG display monitor and may hamper the visibility of lower amplitude activity,
so a 2 µV/mm setting is often a practical amplification limit for cerebral activity. EEG
devices often record frequencies in the range of 0.1 to 125 Hz, but standard review settings
use a narrow bandpass filter of a low-frequency filter (LFF) and a high-frequency filter
(HFF) to output activity in the range of 1 to 70 Hz. A 1-Hz LFF is equated to a 0.16 s
time constant, and has a negative linear relationship; as LFF increases, the time constant
decreases. [31, p. 4 – 7]. In neonatal EEG recordings, the LFF is often set to record
slower frequency activity in the range of 0.005 to 0.01 Hz or 0.5 Hz [5, p. 21]. For infants,
EEG activity over 32 Hz is negligible [32].

Since electrical activity occurs many layers below the scalp, the EEG signals that are
captured often have noise, or artifacts, that must be filtered out. Noise in the EEG record
may be from biological or non-biological sources. A common source of non-biological noise
is in the electrical current in the environment, so the notch filter is set to the power supply’s
AC current to reduce this noise. Common sources of biological artifacts include muscle,
eye, heart, or respiratory movements and may appear as high-frequency noise, which can
be reduced by lowering the HFF setting or increasing the LFF setting.

The time scale of the activity determines the expansion or compression of the activity
on the display; for instance, greater horizontal compression may aid in observing slow
seizures evolution. The recommended time scale is 10 s per page, or 12 s per page for
wider screens. [31, p. 7].

The conventional electroencephalogram (cEEG) uses a full array of electrodes to
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capture cerebral electrical activity, while the amplitude-integrated electroencephalogram
(aEEG) is a simpler method of monitoring the brain by displaying a bandpass-filtered,
time-compressed EEG from one channel as it typically records from only 2 electrodes.
While cEEG is a robust method of EEG monitoring, it is a resource-expensive procedure
in the NICU as it takes a specialized neonatal neurophysiologist to perform a multi-channel
EEG recording on newborns, filter out artifact sources, and to interpret the background
activity. As a result, the use of aEEG to monitor neonatal EEG is rising in popularity in
NICUs. Although there are limitations to aEEG due to the reduced number of electrodes
used in recording, it displays EEG background activity trends that are useful determining
the severity of EEG abnormality in neonates [28].

2.3 Identifying EEG background activity patterns by
their features

The goal of analyzing EEG features is to associate them with EEG background activity
patterns with clinical significance. EEG features are in the form of sinusoidal waves, often
categorized by their rhythm, which describes activity with waves of relatively constant pe-
riod. Background activity refers to any EEG activity outside of a distinguishable pattern
that an interpreter is currently observing. The main terminology used in assessing EEG
patterns are those indicative of pattern location and type, with modifiers that describe
the persistence, duration, amplitude, frequency, and sharpness of the pattern [19].

To identify EEG patterns by their features, the current segment or epoch must be
categorized as either a transient, attenuation, or repetition. A transient describes an iso-
lated wave that is distinguished from background activity; attenuation refers to a reduced
EEG amplitude; repetition refers to recurrence of the transient several times without in-
terruption by background activity. Then, the feature can be categorized further by the
distribution of the wave’s electrical field at the scalp – focal, distribution to one electrode
and its immediate neighbors; hemispheric, distribution to electrodes on a unilateral, ante-
rior and posterior to the coronal midline; bilateral, distribution to electrodes on both sides
of sagittal midline, limited on either anterior or posterior of coronal midline; generalized,
distribution to electrodes on sagittal and coronal midline [31, p. 20–22].

Apart from using the morphological features to describe the EEG activity, neuro-
physiologists can also perform quantitative EEG (qEEG) analysis to extract additional
features that complement the features used in visual interpretation [14]. A toolbox for
neonatal qEEG analysis is available for open-source use [34].
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2.3.1 Visual interpretation of neonatal EEG patterns and inter-
rater reliability

Visually interpreting neonatal EEG background activity can be a challenging task. To
monitor the brain recovery of a newborn, there is a need to frequently assess the continuous
EEG signal recorded over many hours in order to evaluate how the EEG background
patterns are evolving, making the EEG interpretation a time-consuming task. Despite the
use of aEEG that simplifies the EEG display, interpreting the signals is still technically
demanding due to the individual variations seen in patients. Moreover, there is the
additional challenge of subjective interpretation of the EEG signals, especially if assessing
the EEG involves multiple independent graders.

When EEG patterns are visually graded by more than one electroencephalographer,
the inter-rater reliability between the graders indicates to what degree is the interpretation
of the patterns reliable and reproducible. High inter-rater agreement scores may indicate
the EEG features’ good reliability and reproducibility due to agreement when describing
the patterns. Standard metrics that can be used to evaluate the inter-rater agreement in
subjective scoring tasks include Cohen’s kappa and Fleiss’ kappa.

Cohen’s kappa statistic (κ) is used to evaluate the inter-rater agreement between
two raters while taking into account of chance (dis)agreements for categorical variables.
When there are more than two raters, Fleiss’ kappa may be used. A κ of 1 means perfect
agreement, and κ of 0 means the variations occurred by chance [38].

Given two observer’s (dis)agreement information (Table 2.1), Cohen’s kappa statistic
can be calculated with equations (2.2), (2.1), and (2.3). If a particular class agreement is
more important than another, the kappa can also be weighted to reflect this bias [38].

Observer 1 results
Yes No Total

Observer 2 Yes a b m1

results No c d m0

Total n1 n0 n

Table 2.1: Results table from two observers for a two-category (Yes/No) dataset. a and d are ob-
servations in agreement, b and c are numbers of observations in disagreement (Modified from Viera,
2005).

κ = po − pe
1− pe

(2.1)

po = a+ d

n
(2.2)



10 Chapter 2. The brain and electroencephalography

pe =
[
n1

n

m1

n

]
+
[
n0

n

m0

n

]
(2.3)

po: observed agreement, pe: expected agreement

A κ value of < 0 indicates less than chance agreement, 0 – 0.20 indicates poor inter-
rater agreement, 0.21 – 0.40 indicates moderate agreement, 0.61 – 0.80 indicates good
agreement, and 0.81 – 1.0 indicates excellent agreement [28].

The kappa may not be representative of a low overall agreement if the observations
are rare since the statistic takes into consideration the prevalence of the observations.
A solution to this misrepresentation is to observe the agreement on the individual class
labels [38].



3. The analysis of EEG background
pattern abnormality

Brain development from the neonatal period to the first year of life is marked by the
rapid growth of cortical hemispheres; gray matter, or neuronal bodies, may increase by
149%. During this period of rapid growth, the brain may be more vulnerable to injuries
that could disrupt its typical development of brain structure and function [13]. When a
newborn suffers a brain insult, brain monitoring tools such as the electroencephalography
(EEG) can give insights to the cerebral function of the developing brain. These infants
display characteristic patterns of EEG abnormality that can help physicians monitor their
cerebral recovery or deterioration, and estimate the severity of the injury.

3.1 The use of EEG monitoring to assess hypoxic-
ischemic encephalopathy in neonates

Hypoxic-ischemic encephalopathy (HIE) is a brain injury that occurs when there is an
interrupted flow of oxygenated blood to the brain. Perinatal HIE affects approximately
1.5/1000 full-term neonates worldwide, and has approximately 15–20% mortality rate in
newborns. 25% of HIE survivors exhibit long-term neurological deficits, such as cerebral
palsy, learning disability, and epilepsy [15].

HIE is an evolving injury in that hours after the initial trauma, secondary injuries
including neuronal necrosis and apoptosis may occur. While newborns with mild HIE
typically recover within 24 hours, those with moderate to severe encephalopathy have an
increased chance of developing seizures [16].

A common therapy includes induced hypothermia by lowering the cerebral temper-
ature to 33 – 34 °C for 72 hours, and provides an opportunity to rescue some cerebral
tissue and prevent neuronal death. This intervention is most effective for newborns with
severe HIE if administered within a short time window of 2–6 hours after birth. Newborns
with moderate HIE also benefit from therapeutic hypothermia if administered 6–12 hours
after birth [9]. Moreover, HIE may periodically lapse into the reperfusion phase at 6–24

11



12 Chapter 3. The analysis of EEG background pattern abnormality

hours after the insult, during which interventions may be more effective [39].
To monitor the effects of therapies and also the brain recovery of newborns post-

insult, EEG is a well-suited neuroimaging method since it is non-invasive and allows for
continuous monitoring of cerebral activity. It is an effective tool in correlating cerebral
recovery; EEG voltage at 6 hours after birth and EEG patterns at 3–6 hours after birth
both correlates well with neurodevelopmental outcome of preschool age children who had
suffered HIE at birth [27] [10]. Since the clinical symptoms of HIE appears early after
birth, it is useful to start the EEG record as soon as possible, or within 10 – 48 hours
after birth, for at least the first three days [16].

When visually interpreting the neonatal EEGs, information such as the age of the
newborn, the clinical condition of the neonate such as the Apgar score, frequency of
seizures, and medication taken, all create variability in the interpretation. Particularly
for neonates who have suffered a hypoxic insult, a common treatment following epileptic
seizures is the prescription of anti-convulsants, such as phenobarbitals. This may affect
the EEG activity, so it is recommended to start the EEG record 30 minutes – 2.5 hours
after administering the medication [16].

3.2 EEG background activity patterns

A major goal from EEG monitoring is to associate the background patterns with the
clinical state of the brain. In the healthy newborn, a typical sleep-wake cycle (SWC) is
a continuous transition between stages of EEG frequency band rhythms – the delta band
(1–4 Hz, high amplitude), theta band (4–8 Hz), alpha band (8–12 Hz), beta band (13–25
Hz), and gamma band (> 25 Hz) (Table 3.1). The EEG signals differ depending on the
state of alertness of the subject being measured. Full-term neonates typically spend 60%
of their time in REM sleep, during which the EEG pattern is similar to the theta and
alpha bands [24, p. 228–229]. Their mean duration of a SWC is 50 – 60 minutes, and the
cycle repeats until it is interrupted by wakefulness every four hours [16].

In neonates who have suffered a hypoxic-ischemic insult, their background EEG
activity tends to be abnormal due to the slowing of activity, amplitude depression, and
increasing discontinuity with bursts, and the SWC will appear disrupted by discontinuity
and bursts [16]. Discontinuity typically refers to low-amplitude activities with a dura-
tion of a few seconds, with interruptions by high-amplitude activities [24, p. 220]. For
specifically categorizing the continuity of the background EEG, the American Clinical
Neurophysiology Society (ACNS) suggests identifying the patterns as continuous (includ-
ing flat or continuously suppressed patterns), brief periods of attenuation, discontinuous,
and burst-suppression [19]. The specific definitions of EEG abnormal background activity
patterns are diverse and are detailed further in section 3.3.
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Sleep stage Pattern Description

Awake Pattern 3: active moyenne (continuous)
Diffuse low-voltage, irregular theta and delta

-

Non-REM
Stage I - IV

Pattern 1: trace alternant

a. Bursts of 4 – 5 s of 1 – 3 Hz

b. Low-voltage activity, 4 – 5 s
Pattern 4: continuous high-amplitude slow waves

1. Regular breathing
2. No eye and limb movements
3. Tonic neck EMG

REM Pattern 2: Mixed low-voltage irregular, 2 – 4 Hz slow waves
1. Irregular breathing
2. Frequent eye and limb movements
3. No tonic neck EMG

Table 3.1: Sleep-wake cycling EEG pattern in full-term neonates (Modified from Nunez, 1995).

The degrees of slowing and discontinuity correspond to the level of severity of HIE,
which can be described with three grades – mild, moderate, and severe. The clinical grade
of HIE is associated with the EEG state of a newborn over a period of monitoring [39]
[16]. Mild cases of HIE have subtle slowing and discontinuity of the EEG, and neonates
with moderate to severe cases of HIE often display more abnormal activity with transient
EEG depression. In severe cases of HIE, the activity may present themselves as burst-
suppression, low-voltage, or even isoelectric (flat with zero difference of electric potential).

A distinctive feature of EEG discontinuity is the burst-suppression pattern (BSP),
which is marked by the contrasting amplitude of the burst and suppression (Figure 3.1).
Burst activity amplitudes can range from low to high, but suppression activity amplitudes
range from inactivity to medium amplitudes. The difference between burst and suppres-
sion must be clearly visible at ≥ 50% decrease in amplitude, though a definitive threshold
is difficult to define due to the wide range of amplitude of the bursts [31, p. 151 - 152]. A
common way to describe BSP is with the inter-burst interval (IBI), which describes the
ratio of burst and suppression. IBIs tend to be shorter (<10 s) with higher amplitude
[21].

The evolving nature of HIE means the corresponding EEG states are constantly
evolving and are non-stationary, and may even be affected by external factors. The EEG
background patterns may appear highly depressed if the newborn had been administered
high dosages of anti-convulsant medication used to treat epileptic seizures following the
insult. As the dosage increases, the ensuing EEG frequency slows into the theta and
delta bands until it appears isoelectric [24, p. 232] [16]. In addition, the treatment of
hypothermia may increase the EEG discontinuity of the neonate aged 3 – 6 hours, though
this effect recedes with time [39].

The evolution from a discontinuous state to a more continuous, coherent form is a
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Figure 3.1: Burst-suppression patterns (Stern, 2005).

developmental milestone towards a normal EEG state. EEG coherence is associated with
a high chance of normal cerebral development, and the presence of normal sleep-wake
cycling is also indicative of a favorable outcome. Ideally, the brain should recover from
inactive/poor activity to continuous activity at the first 12 – 24 hours of life for a better
chance of a normal outcome [39].

3.3 EEG classification schemes

There are currently no standardized values of amplitude and duration for assessing the
background patterns, but multiple nomenclature have been proposed, and different studies
have used their own definitions of EEG abnormality. Watanabe et al. (1980), Pressler
et al. (2001), and Murray et al. (2009) all conducted different studies to evaluate the
prognostic value of grading EEG abnormality in newborns with HIE [40] [26] [23].

Watanabe et al. took a 13 – 17 channel EEG recording of 132 full-term newborns
with perinatal hypoxia. A recording was captured weekly for three weeks, and each record
had a duration of 2 – 3 hours. The EEG were graded according to the classification scheme
in Table 3.2. The classification showed high correlation between the EEG in the first week
with the outcome at later years (the children in the follow-up had a mean age of 4.3 years).
All infants who had normal EEG in the first week had normal outcome, and of the infants
who had normal EEG in the second and third week, 72% in the second week and 43% in
the third week had a favorable outcome. The authors also found high correlation between
increasing levels of EEG abnormality and sleep-stage disturbances [40].

Pressler et al. (2001) assessed nine full-term infants with HIE with a 16-channel
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video-EEG recording within eight hours of age (mean 5.6 hours). Each record had a
duration of at least 60 minutes, and hour-long epochs were graded according to Table 3.2.
Surviving infants were assessed for their neurodevelopmental outcome at 1 year. Two
infants with moderate abnormality had normal outcome, and three who had inactive
EEG grades but recovered within 12 – 24 hours had favorable outcome [26].

Murray et al. examined the predictive value of abnormal EEG results by taking the
EEG recordings of 44 infants who had been diagnosed with HIE. The EEG recordings
were taken within 6 – 72 hours from birth for a duration of 24 – 72 hours. The definitions
in Table 3.2 were used to assess the EEG by hour-long epochs. The evaluation of the EEG
grades using the classification scheme highly correlated with the outcome of the infants
upon a follow-up at 24 months. The timing of the EEG recording affected the predictive
value of the EEG grade; for EEG recorded at 6, 12, or 24 hours, normal/mildly abnormal
EEG grades correlated with normal outcome (100% positive predictive value (PPV), 67 –
76% negative predictive value (NPV)). However, for EEG recorded at 48 hours, some of
the moderate/severe EEG grades improved in EEG state as well as outcome (71% PPV,
93% NPV). For all cases, at 6 hours of age, normal EEG grades were associated with
normal outcome, and very low-amplitude EEG grades were associated with abnormal
outcome. For infants who had a maximal IBI of > 30 s or isoelectric trace and whose
EEG did not recover by 12 hours, all had either severe neurological deficits or died [23].

From the three studies, it can be concluded that EEG grades of abnormality have
high prognostic value if the EEG recording were done soon after birth at 6 – 24 hours of
age. Normal grades usually correlated with good outcome, and cerebral recovery within
12 hours is also highly associated with favorable outcome.

Other studies have used different classification schemes to review the prognostic
value of EEG grades of abnormality. A review by Walsh et al. (2011) compared 16 stud-
ies to consolidate general findings and interpret the common cEEG features (Table 3.2)
used in the classification schemes. All studies used amplitude voltage and continuity
patterns to describe the EEG abnormality, and most included descriptions of frequency,
symmetry, SWC, transient, seizure, and maturity. Due to the wide range of the ages of
the newborns, the follow-up duration, and differing outcome measures, it was difficult
to make a fair comparison between the studies reviewed. However, there was general
agreement in that the correlation between the clinical grade of HIE severity and the levels
of EEG background abnormality was highest at extremes, and similarly so for outcome.
Normal/mild EEG grades had high correlation with a mild HIE grade and good outcome,
and severely abnormal EEG grades had high correlation with a severe HIE grade and poor
outcome. Moderate abnormalities in EEG typically have low prognostic value in predict-
ing the outcome, possibly due to the more diverse categorization of moderately abnormal
injuries. Infants in this group are shown to benefit most from therapeutic hypothermia
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[39].
The use of aEEG in NICUs has increased in popularity due to its compressed out-

put for display, which reduces the number of channels to one or two for interpretation.
However, this also reduces the amount of EEG information available to analyze, prompt-
ing studies to explore its limitations and to determine how to interpret the compressed
activity for evaluating EEG background abnormality. Two widely accepted aEEG back-
ground activity scoring systems were proposed by Al Naqueeb et al. (1999), and by
Hellström-Westas et al. (2006) [28].

Al Naqueeb et al’s scoring system showed a close relationship between aEEG and
the outcome of neonatal encephalopathy. Fifty-six infants at risk of encephalopathy were
studied, and 40 were suspected of having suffered birth asphyxia. EEG recordings were
taken with aEEG monitors for a median of 15 hours, and only the most abnormal trace
sections were analyzed. For each subject, at least 30 minutes of recording were analyzed.
Any administered medication was noted, and subsequent EEG recordings up to 30 minutes
after administered anti-convulsants were excluded.

Two pediatric residents without extensive training in EEG were briefly trained in
aEEG interpretation, and 50 EEG records were independently scored by an EEG expert
and the two residents. The records were chosen to represent a broad spectrum of traces
and contain records from normal infants from the control group as well. They also only
contain traces that were recorded within 12 hours of birth to determine if EEGs can
be used soon after birth. The categories of EEG patterns that were used are shown in
Table 3.2.

The inter-rater variability showed good agreement of amplitudes (unweighted κ =
0.85). The overall agreement among the three graders was 0.85, and the two residents’
agreement with the expert was 0.75 and 0.87 respectively. Subsequent follow up assessed
the infant’s outcome at 18 – 24 months of age. 19 of 21 infants who had been categorized
as normal were normal at follow up, 13 of 15 infants whose EEG had been categorized
as moderately abnormal/suppressed developed neurologic deficits or died, and no infants
whose EEG had been categorized as suppressed had a normal neurodevelopmental out-
come. This scoring system demonstrated high inter-rater agreement, as well as a high
predictive value on prognosis, even with EEG taken close after birth at 5 hours [2].

A criticism of Al Naqueeb et al’s simple scoring system is that the background base-
line may vary and appear at higher margins in the presence of artifacts. This is especially
true in abnormal tracings, and using this scoring system may risk underestimating the
degree of abnormality in the trace.

Hellström-Westas et al. developed a more involved scoring system for categorizing
abnormal aEEG signals and aims to be generalizable for use to categorize EEG of new-
borns of all ages, from very pre-term to full-term neonates (Table 3.2). This system lowers
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the minimum amplitude margin below 5 µV and raises the maximum to above 25 µV.
Shellhaas et al’s assessment of the two scoring systems, by Al Naqueeb et al. and

by Hellström-Westas et al., aims to determine their inter-rater agreement in categoriz-
ing EEG background activity as well as the aEEG correlation with cEEG. 144 cEEGs
were reviewed, and grades in consensus were chosen for conversion into aEEGs for ex-
perienced electroencephalographers to review using the two aEEG scoring systems. To
convert cEEG into aEEGs, a single channel of the EEG was put through filters that at-
tenuates to the amplitude levels of aEEG and also time compressed as such. To directly
compare two scoring systems, Hellström-Westas et al’s burst-suppression, low-continuous,
and flat-tracing patterns were combined as to represent the suppressed (markedly abnor-
mal) amplitudes [28].

The multi-rater κ score of 0.66 was good for Al Naqueeb et al’s simple system, while
Hellström-Westas et al’s advanced system only had a moderate agreement score of κ =
0.44. Both systems had a similar fair agreement (κ = 0.4) with cEEG, which is considered
the gold standard for categorizing EEG patterns. One reason for the low to moderate
agreement scores may be due to the neonatologist graders’ training since they worked at
five separate institutions and represented three countries, and thus had different grade
interpretation styles.
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4. Automated grading systems for
neonatal EEG background
abnormality

Automated methods for detecting EEG background abnormality have been developed to
improve brain monitoring for neonates.

Löfhede et al. (2008) used Fisher’s linear discriminant (FLD), a feed-forward artifi-
cial neural network (ANN), and a SVM to compare the algorithms’ ability to distinguish
bursts from suppression in the burst-suppression pattern. From the EEG recordings of
six full-term newborns, 6 – 40 minute recordings of each newborn were used to ensure
a minimum of ten bursts were included. An electroencephalographer identified burst-
suppression patterns and then further categorized each pattern as burst or suppression.
While the burst patterns have a higher amplitude than suppression, the entire burst-
suppression pattern cannot be identified using an amplitude threshold. Five features,
spectral edge frequency, 3 Hz power, median, variance, Shannon entropy, were calculated
after pre-processing the raw EEG, and then normalized to the interval [0, 1]. Since the
sample size was small, leave-one-out (LOO) cross-validation was used and six ROC curves
were created from the validation sets to evaluate the classifiers. SVM was implemented
using Matlab with an RBF kernel, though the parameters and weight parameters were
undisclosed. SVM consistently outperformed both FLD and ANN, and FLD generally
performed the worst [17].

Matić et al. (2012) built an automated grading system using a temporal profile to
detect inter-burst intervals (IBI) to grade EEG discontinuity in neonates with mild HIE.
EEG data from eight newborns with mild to moderate HIE were used, and three segments
of 5-minute intervals from each recording were selected at the recording’s beginning,
middle, and end, and segments with artifacts were not discarded. The segments were
visually graded by a neurophysiologist into four grades – normal (IBI < 5 s), mild (5 s <
IBI < 10 s), moderate (10 s < IBI < 5 s), and severe (IBI > 20 s). Another neurologist
then visually marked the beginning and end points of each IBI.

The EEG segments were generated with an adaptive segmentation algorithm to
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abnormality
segment the EEG channels based on two moving average windows that detected the
largest difference in amplitude and frequency values between the windows as segment
points, creating quasi-stationary epochs. The segments were further classified into low,
medium, or high amplitude distribution categories to mimic human visual interpretation.
The detection of IBIs is done by creating a temporal profile membership function for every
class of IBI. The temporal profile function outputs a value which indicates the number of
channels where the epoch falls under IBI definition. If the temporal profile signal exceeds
a threshold of over half the total number of channels, the time of that signal defines the
duration of the IBI. The algorithm correctly detected most IBIs, and most errors were
in identifying low amplitude bursts that occurred in the beginning of EEG recordings, a
few hours after the insult. While it could detect suppressions, it had trouble detecting
transitions between bursts and suppressions [21].

Stevenson et al. (2013) have built an automated grading system using a multi-class
linear classifier for classifying EEG abnormality for the neonatal population. 54 full-term
neonates who had suffered from HIE had their EEGs recorded within 12 hours of birth
for 12 – 72 hours using an 8-channel bipolar montage. Approximately one hour of EEG
data were selected from each subject for analysis. The segments were chosen to ensure
a relatively constant grade, and epochs with major artifacts were excluded. Epochs with
minor artifacts were excluded from training but were included in the final evaluation as
the model was expected to reject the artifacts automatically [32].

The EEG data was then independently graded by two neonatologists, and epochs in
disagreement were subsequently reviewed and discussed by the graders until a consensus
was reached. The inter-rater agreement was high (Cohen’s κ = 0.868). The scoring
system they used corresponded to grade 1, normal/mild abnormalities; grade 2, moderate
abnormalities; grade 3, major abnormalities; grade 4, inactive.

The automated grading system pipeline involved pre-processing the EEG by normal-
izing the features using a Box-Cox transformation to ensure similar statistical distribution
across all features. Then, they performed feature extraction to generate sub-signals be-
fore classifying the data using a multi-class linear discriminant classifier, using Cohen’s
kappa as a loss function. During training, they first expanded the outputs into six grades
by creating two additional transition states to account for the natural cycling between
grades 1 and 2 during sleep. They then combined the expanded states into the original
four during post-processing.

Originally a binary classifier, the linear discriminant classifier was modified for the
multi-class problem by decomposing into binary subproblems. 4(4−1)

2 = 6 binary classifiers
based on the pairwise combinations of the classes were built and evaluated. To determine
the certainty of the predicted outputs, a post-processing step was performed that required
a 2

3 majority vote of the 6 classifiers in order to output a decision. By assessing the
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certainty with a majority vote, the authors were able to determine which EEG classes
the classifier had low confidence outputting. The classifier was able to achieve an 83%
classification accuracy for the four grades [32].

Similarly, Ahmed et al. (2014) have built an automated grading system to clas-
sify four grades of EEG background activity using a combined Gaussian Mixture Model
(GMM) supervector and SVM. They used the same dataset as Stevenson et al. for a
direct comparison of results. First, the raw signals were preprocessed, and then features
were extracted and decorrelated using Principal Component Analysis. A Universal Back-
ground Model (UBM) was created using a GMM, in which the means of the UBM were
used to create a new GMM by using Maximum a Posteriori adaptation. The supervectors
were created by concatenating the means into one, and were used as inputs to the SVM.

Six binary classifiers were created based on the pairwise combinations of the classes,
and used for multi-class SVM classification with 2-fold cross-validation. The authors also
determined the classifier certainty based on a 2

3 majority vote of the 6 classifiers. This
classification method yielded > 90% precision for grades 3 and 4 and > 80% for grades 1
and 2 [1].

Matić et al. (2014) used a tensor-based classification method to classify EEG record-
ings from full-term newborns who suffered from birth asphyxia into three grades of ab-
normalities, modified from Murray et al (2009). Hour-long epochs were graded without
preselection by one neurophysiologist, and eight equidistantly-selected epochs of contin-
uous EEG recordings were used from each newborn, resulting in a total of 272 1 hour
epochs for the full dataset. The tensors were built by calculating the prevalence of three
features that were computed from independent segments of the EEG channels. All three
features correspond to the EEG amplitude since lower amplitude values are associated
with more severe abnormalities. The first feature captured the peak-to-peak amplitude,
the second feature captured the global, spatial amplitude, and the third feature captured
the duration of segments that have the same amplitude class of low, medium, or high.
The prevalence of the features with a particular feature distribution was calculated to ob-
tain the 3D tensor structure. Dimensionality reduction was applied to the tensors using
Tucker N -way decomposition, and feature selection was applied according to the Fisher
information ranking score. Finally, classification was applied using the least-squares SVM
(LS-SVM) algorithm with a one-versus-one coding scheme. The authors achieved an
overall accuracy of 89% [22].

Matić et al. (2016) used a LS-SVM to classify EEG data from 53 neonates into levels
of dynamic IBI (dIBI) that indicates both amplitude and duration of the detected IBI.
The EEG recordings were split into three group to first optimize the detection of dIBI,
then to optimize the post-processing test, and finally for validation. The first dataset used
157 hours of EEG segments from seven neonates with mild to moderate abnormalities,
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abnormality

the second dataset used 1 hour EEG segments from 38 neonates that contained milder
abnormalities and were taken from the beginning of the recording. Neonates with mild
and moderate EEG background discontinuities were used for validation since this group
is typically the most difficult to discriminate. An neurophysiologist visually graded the
EEG segments according to Murray et al.’s (2009) scoring system. The EEG segmentation
was done with the same method as in Matic et al. (2012). Similarly, a low-amplitude
temporal profile was also created to detect the dIBIs, and then a LS-SVM was applied to
the detected dIBIs to further refine them into four groups: 1 (3 s ≤ dIBI < 5 s), 2 (5 s <
dIBI < 10 s), 3 (10 s < dIBI < 5 s), and 4 (20 s ≤ dIBI < 60 s). The classifier achieved
95% true positive rate after refinement [20].

In this thesis, we classify full-term neonatal background EEG into discrete grades
using support vector machine for multi-class and multi-label classification. Several dif-
ferences between this thesis and some other works are: 1) We do not use start with the
raw EEG signals, but rather the qEEG features as described in Appendix A 2) The EEG
segments were not preselected for grading. The full duration of recording at 5-minute
epochs for each patient was visually graded by two independent graders 3) The classifica-
tion scheme used is based on amplitude voltage and IBIs, and we are grading discontinuity
rather than just BSP patterns 4) We are attempting to determine how well the classifier
performs if there is ambiguity between the graders’ scores.



5. Machine learning background on
classification

The simplest case in classification is the binary problem, in which the task is to classify
an instance as either one of K = 2 non-overlapping classes. For example, one may be
interested in automatically determining whether a patient should be diagnosed positive
for a disease (+1) or not (−1). Algorithms such as the support vector machine (SVM)
and perceptron algorithm are designed to solve the binary cases [18].

The binary classifier can be extended to learning the multi-class problem. In multi-
class classification, the learning problem is to classify the data into one of K > 2 non-
overlapping classes. For instance, multi-class classification could distinguish between the
three iris types in the Iris dataset.

Another subset of a classification problem is the multi-labeled problem. The binary
and multi-class case mentioned above were described in the single-label case, in which
each instance can be categorized into one of K classes. In the multi-labeled problem,
some or all instances can be categorized into subsets of K classes. For example, a film
could be classified as both the genre comedy and horror.

5.1 Support Vector Machines

Support vector machines (SVM) are well-studied for classification problems, particularly
for text classification and in bioinformatics. Given an input set X ∈ Rn×d and an output
set Y ∈ {+1,−1}n, SVM acts as a binary classifier and assigns xi to yi by mapping inputs
into a higher dimensional space. A linear decision boundary of d-dimensions is learned so
that it maximizes the margin between the support vectors.

The decision boundary is defined as f(x) : wTx + b = 0, where wTx = ∑n
i=1 wixi.

Given a feature vector x, the predicted output y is solved by h(x) = sign(wTx + b).
The margin forms the two half-spaces between two classes as defined by the decision

boundary, and the support vectors are the data points that lie on the margin bound-
aries. A wider margin is preferred for less ambiguous predictions and allows for better
generalization to new data [11].

23
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Subsequently, the optimization problem is to maximize the margin with respect to
finding the best parameters w and b that form the decision boundary. The objective
function is

minimizew,b
1
2‖w‖

2 (5.1)

s.t. yi(wixi) + b ≥ 1, i=1...n

The optimization problem is convex and of a quadratic form, allowing the classifier
to avoid the local minima that other algorithms, such as neural networks, may face. There
are two methods of setting up the optimization problem with Lagrange multipliers: the
primal problem and the dual problem.

In an input space where there are n samples with d features, the dual function is
preferable when d � n, and the primal function is preferable otherwise. This is because
the dual method requires only the computation of inner products rather than minimizing
over w, b subject to constraints. The dual and the primal are equivalent to an optimal
convex solution if they satisfy the Karush-Kuhn-Tucker conditions.

SVM can solve the classification problem for non-separable inputs by using a
soft margin, which allows margin violations with the addition of slack variables ξ =
(ξ1, ξ2, ..., ξn) and a penalty parameter C. Slack variables determine how many data points
can violate the margin boundaries, and the penalty parameter determines the weight of
the slack variables. With the addition of slack variables and a penalty parameter, the
problem constraint is modified as:

yi(wixi) + b ≥M(1− ξi) (5.2)

∀i, ξi ≥ 0,∑n
i=1 ξi ≤ constant. Equation 5.2 measures the overlap of the classes from the

margin in relative distance. Bounding ∑n
i=1 ξi to a constant c effectively bounds the total

proportion of margin violations so that the maximum number of misclassified instances
is c.

The optimization problem is subsequently reformulated as:

minimizew,b
1
2‖w‖

2 + C
n∑
i=1

ξi (5.3)

s.t. ξ ≥ 0, yi(wixi) + b ≥ 1− ξi∀i

As C increases, the margin width narrows, and there is a heavier penalty on as-
signing slack variables, causing the optimizing attempts to make unambiguous separation
between the classes. Similarly, as C reduces towards 0, the margin width becomes wider,
and there is less penalty on assigning the slack variables, which makes misclassifications
more tolerable during optimization attempts. The hyperparameter BoxConstraint in
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Matlab for SVM refers to the penalty parameter C. In the dual optimization problem,
the Lagrange multipliers are constrained within the range [0, C].

Non-linearity is supported through kernel mapping with a kernel that is chosen a
priori, and the decision boundary equation is modified as wTφ(x) + b. φ is the kernel
used in which x is mapped to. A kernel calculates the distance, or similarity, between two
vectors by directly computing the inner products rather than computing the expanded
representation. The kernel trick provides a computationally efficient way of projecting
data into a higher-dimension [37].

A popular kernel to use is the Gaussian or Radial Basis Function (RBF) kernel:
K(x,x′) = exp(−‖x−x′‖2

2σ2 ), in which we can substitute 1
2σ2 with the hyperparameter γ that

determines the width of the kernel. The RBF kernel can be written as a dot product,
K(x,x′) = 〈φ(x),φ(x′)〉, and is a measure of similarity where larger kernels correspond
to closer distances between x and x′. SVM predicts outputs with features that are similar
to the learned features in the model under the assumption that similar instances would
have similar outputs [37]. In Matlab, the KernelScale refers to γ.

To search for the optimal hyperparameters, a traditional approach is by using a cross-
validation and grid search for C and for γ [11]. Since grid-search can be computationally
expensive, it may be prudent to initially use a coarse grid in wider intervals to narrow
down the search region before redefining smaller search intervals. Matlab provides a
bayesopt hyperparameter optimization function that approximates the cross-validation
rate with an internal k-fold cross-validation (default k = 5).

SVM on its own merely outputs the predicted classes. After the classifier outputs
the weights of the support vectors, we can obtain the posterior probabilities of the output
classes by using a modified sigmoid function. For each feature input xi, we can evaluate the
distance between xi and the decision boundary, and then bound that metric between [0, 1]
for a probabilistic output [25]. If the classes are perfectly separated, Matlab transforms
the scores to posterior probabilities by using the step function with some threshold c.

5.2 Class imbalance

In classification problems, class imbalance occurs when there are more instances in some
classes that there are in others. The ratio at which the classes are imbalanced can be at
1:100 or larger. This creates a problem in classification when the classifier is unable to
properly learn the rules for classifying the rarer classes, particularly in smaller datasets, so
they end up being misclassified more often. Noisy data also makes it particularly difficult
to discriminate the rarer cases.

Class imbalance is pervasive in anomaly detection, such as fraud detection and
medical diagnosis, since the goal is to detect what is out of the norm. In situations where
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it is valuable to classify rare cases, such as injury occurrences, it may be so that a higher
identification rate for those classes is preferred.

5.3 Multi-class classification

The multi-class classification problem is a single-label problem where there is a finite
set of K > 2 class labels, and each xi is assigned to one yi ∈ Y : {1, ..., K}n. It can
be solved with a learning reduction approach, in which the multi-class problem can be
decomposed into multiple binary subproblems. Algorithms that are efficient in solving
binary problems, such as neural networks, k-Nearest Neighbor, and SVMs may then be
applied to solve the subproblems. Their outputs will then be combined to obtain the final
predictions [18].

Common methods of reduction include one-versus-all, and one-versus-one. Some
advantages to these methods are that with the application of reductions theory, the re-
ductions perform statistically well, are programmable, and can be used to solve large
datasets [4].

The decomposition into binary classifiers is described using a code-matrix M . Each
row of M indicates a different class, and each column of M indicates a set of labels that
a different binary classifier will be learning (Figure 5.1). Each element could be of the
values {−1, 0, 1}, where −1 indicates a negative class, +1 indicates a positive class, and
0 indicates that it does not participate in the classifier training. The K classes can be
evaluated with l = dlog2(K)e binary classifiers, and there are 0.5(3K + 1) − 2K possible
combinations of binary predictors inM [18]. In Matlab, fitcecoc allows for custom coding
matrices.

5.3.1 One-versus-All

One method for reducing a multi-class problem into several binary problems is using the
one-versus-all reduction, which creates K binary classifiers, f1, f2, ..., fK , each classifier
representing one positive class. The fi model is trained so that those data in the ith class
are given the positive label, and the rest are given the negative label. M is represented
as a K × K matrix, with its diagonal elements as +1, and the rest as −1. Each class
is discriminated against the other K − 1 classes. Each new example is evaluated by the
classifiers in which there are K decision functions, and the class receiving the highest
score is the predicted output.

The number of errors ε that the binary classifiers can make in total is defined by
the error rate of (K − 1)ε; to reduce this error rate, it helps to randomly break ties and
modify the weights of the classifier to favor positive outputs – thus potentially reducing
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Figure 5.1: A four-class code-matrix (Lorena, 2008). The binary partition for each classifier is shown
e.g., (1) × (2,4) indicates that classifier f1 partitioned class 1 as the positive class and classes 2, 4 as the
negative class. Class 3 did not participate in that classifier.

the error rate to approximately K
2 ε. However, the modifications to one-versus-all do not

guarantee an improvement in cases where the binary problems are noisy [4].

5.3.2 One-versus-One

Another method for reducing a multi-class problem into a number of binary problems is
using the one-versus-one reduction, which creates K(K−1)

2 binary classifiers for all pairwise
combinations of theK classes. For all pairs of classes i, j and i 6= j, class i is discriminated
against class j. M is represented as a K × K(K−1)

2 matrix, where in each column, class i
is +1, class j is labeled −1, and all other classes are labeled 0 since they are disregarded
for that particular binary classifier.

The classifiers evaluate each new example and the predicted output is the class that
receives a majority vote. Since not all predictors are involved with classifying the true
class, they present themselves as noise in the final vote.

One-versus-one handles imbalanced datasets since it evaluates the classes in pairs,
thus allowing the smaller classes to be discriminated against other individual classes,
which potentially aids in separating the two classes. However, for datasets with few
training instances, one-versus-one may risk overfitting the data.

5.3.3 Error-correcting output codes

In reductions theory, errors that are made during the reductions suggests that the origi-
nal problem would manifest similar errors. Therefore, it is useful to measure these errors
and reduce them. For multi-class problems in general, the error rates can be poten-
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tially reduced by using error-correcting output codes (ECOC) for a distributed output
representation. ECOC is robust to changes in training sample size and can provide reli-
able probability estimates for output classes [6]. In Matlab, it is used in the multi-class
classification function fitcecoc.

The ECOC code-matrix can be described similarly to the code-matrix for decom-
position problems. For each class, a codeword, or a unique binary string, of length n is
assigned. The length n need not equalK, and a longer codeword is suggested to contribute
to the robustness of the learning task. The codewords together form a binary matrixM of
values {0, 1}, in which the rows correspond to each class. In the case of Figure 5.2, there
are 10 classes and subsequently 10 codewords of length n = 15. Each f0...f14 represents a
binary function to be learned for that respective column and evaluated to form an n-bit
string [6].

Common evaluation of the codewords includes the Hamming distance, which eval-
uates how many bits apart two strings are (i.e., how many bits are different). For each
new instance, a string is evaluated, and the Hamming distance is computed between the
evaluated string to each of the ten codewords. The class corresponding to the closest
codeword to the string according to the nearest Hamming distance will be the predicted
class. For example, if the string ‘001110110000110’ was evaluated, the nearest Hamming
distance will be 4, corresponding to class 3 (Figure 5.2).

Figure 5.2: A 15-bit ECOC for k = 10 (Modified from Dietterich, 1994).

For ECOC to effectively reduce the error, the codewords should be well-separated,
and the individual errors from the binary classifiers must be uncorrelated. Otherwise,
identical or columns that are complements of each other will produce identical errors.
Dietterich et al. (2004) suggests four techniques based on the number of classes to meet
these criteria, though the authors did not justify how the number of classes were stipu-
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lated. For problems where K ≤ 7, they suggest using an exhaustive code, which would
generate 2(K−1) − 1 binary classifiers with Hamming distance being 2(K−2) [6].

Since ECOC is a more complex decomposition into binary subproblems, these prob-
lems are subsequently challenging to learn and require longer training time, despite having
good error-reducing properties. By iteratively experimenting with adding and removing
ECOC codewords and choosing promising ones according to its error-correcting capabil-
ities, this introduces an additional function that can evaluate a codeword’s quality. The
length of the codeword can also be systematically determined by evaluating the number
of errors that different lengths of ECOCs can correct [18].

5.3.4 SVM as a base classifier

Lorena et. al. (2008) suggests using SVM for multi-class problems since they generally
perform well, though they have high computational complexity and subsequently long
training time. SVM can be extended for multi-class problems by training multiple binary
classifiers with the approaches mentioned in section 5.3. Another approach for multi-class
SVM is to directly compute the optimization problem for all classes, creating variables
that associate with the number of classes. A similarity that both approaches share is that
the problem space is expanded. However, training multiple binary classifiers still takes
less computational resources than solving a larger optimizing problem [12].

The one-versus-one approach is suggested to perform better than one-against-all in
a comparative study using ten multi-class datasets from the UCI repository [12]. This
may be due to one-vs-one discriminating between fewer classes each time during opti-
mization. This approach does require higher complexity of K2 order due to the increased
combination of classifiers from the pairwise combinations to evaluate. However, since each
classifier is of the binary case, it does not require too much time to compute [18]. Partic-
ularly for SVMs, the computational time depends more on the number of unique support
vectors to evaluate than the number of decision functions to evaluate. One-versus-all uses
more support vectors than one-versus-one does, so the training time for one-versus-all
is significantly higher than one-versus-one. While there are computational savings that
could be implemented by avoiding recalculating the same kernel matrix several times, the
training time is still expected to be higher for one-vs-all [12].

SVM also lessens the effects of an imbalanced class distribution. While many algo-
rithms are inadequate in learning with class imbalance, SVM is often less sensitive to the
imbalanced distribution since decision boundaries only depend on several support vec-
tors, regardless of class size. However, in extremely imbalanced cases, the support vector
ratio between the prevalent classes and rarer classes increases. SVM subsequently favors
predicting the prevalent classes in order to maximize the margin. In the multi-class imbal-
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anced case, using the one-versus-all method may worsen the performance of the smaller
class since the classifier now has a massively imbalanced problem in the binary case [33].

5.4 Multi-label classification

Multi-class problems are often single-label problems, in which each instance is associated
with one class label. In contrast, multi-label problems, some instances are associated
with more than one class labels in a finite set of K class labels. This is common in text
classification of movie genres where a film could be categorized as ‘horror’ and ‘comedy’
[35].

Multi-label datasets can be described with the statistics, label cardinality and label
density. Label cardinality refers to the average number of labels per instance, and label
density normalizes label cardinality by the total number of class labels K [41].

There are two main methods to solving multi-label problems – the problem transfor-
mation methods, and algorithm adaption methods. The former method entails transform-
ing the problem into a single-class algorithm prior to evaluation, and the latter method
entails directly extending learning algorithms to classify multi-labels.

One naive method for transforming the problem into a single-label problem is to
randomly discard the labels so that there is only a single label for each feature input. If
the labels are continuous, one could take the mean or median between the two classes.
However, the former method also discards a lot of information from the original dataset,
and the latter does not extend well to categorical labels [35].

Several more robust problem transformation methods include the binary relevance
method (BR), binary pairwise classification method (PW), label combination/label power-
set method (LC), and copy-weight transformation method (CW) [30].

5.4.1 Binary relevance method

The most common approach to transforming the multi-label problems is the binary rele-
vance method (BR), which is to learn K binary classifiers for each of the different labels,
similar to the single-label multi-class classification problem (Table 5.1a) [8]. However, BR
assumes label independence, so if there are label dependencies in the data, BR cannot
directly capture label correlations and may not perform optimally [30]. Moreover, it may
not perform well if the label density is low [41].
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5.4.2 Binary pairwise classification method

The binary pairwise classification method (PW) is to learn K(K−1)
2 binary classifiers for

each pairs of the labels, resulting in pairwise outputs of labels (Table 5.1b). PW is
prevalent in use with ranking schemes, in which the labels can be ranked according to its
relevance to the instance. A disadvantage of this method is the increased computational
power as its complexity is quadratic, which prevents PW as being ideal for practical use
[35].

5.4.3 Label combination/label power-set method

The label combination/label power-set method (LC) combines the multi-labels into one
atomic label, effectively creating new single-labels (Table 5.1c). For example, a label
yi = {0, 1} would be transformed into yi =‘01’. This has the potential to increase the
number of classes to an exponential complexity, depending on the number of subsets of
label groupings, and makes this an unideal method to use when there are many labels
involved. Moreover, LC tends to overfit during training since it only observes the subsets
of labels in the training instances.

To mitigate these problems, a related method, RAkELd, was developed. It randomly
groups the labels into smaller subsets before combining into a single label, thus reducing
the computational load as well as preventing a skewed class distribution.

5.4.4 Copy-weight transformation method

Copy-weight transformation is to duplicate the feature inputs with multiple labels and to
create a weight vector with weights of 1

ki
, where ki corresponds to the number of labels

belonging to the ith instance (Table 5.1d).
A disadvantage of this method is that when using SVM to classify the instances, it

is unclear where the decision boundary should lie when the features overlap but appear
to belong in different classes, as it makes the classes inseparable. Moreover, as the set of
labels grow, so does the data set. Similarly to the binary approach, this transformation
does not take into account label dependencies.

5.4.5 Label dependencies

Regardless of which method is used to transform multi-label into a single-label problem,
the consensus is that the set of labels are not necessarily independent. This may lead to
ambiguity in the feature space due to feature overlap corresponding to multiple classes.
The dependencies between the labels may be an informative feature to use for training
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a) Binary Relevance
instance y = 1 ¬y = 1 instance y = 2 ¬y = 2
x1 0 1 x1 1 0
x2 1 0 x2 0 1
x3 1 0 x3 1 0
x4 0 1 x4 1 0

instance y = 3 ¬y = 3 instance y = 4 ¬y = 4
x1 1 0 x1 0 1
x2 0 1 x2 0 1
x3 1 0 x3 0 1
x4 0 1 x4 1 0

b) Binary Pairwise
instance label instance label instance label
x1 ¬y = 1, y = 2 x1 ¬y = 1, y = 3 x2 y = 1,¬y = 4
x2 y = 1,¬y = 2 x2 y = 1,¬y = 3 x3 y = 1,¬y = 4
x4 ¬y = 1, y = 2 x4 ¬y = 1,¬y = 3 x4 ¬y = 1, y = 4

instance label instance label instance label
x4 y = 2,¬y = 3 x1 y = 2,¬y = 4 x3 y = 3,¬y = 4

x3 y = 2,¬y = 4 x4 ¬y = 3, y = 4

c) Label Transformation d) Copy Weight Transformation Method
instance label instance label weight
x1 y = 23 x1a y = 2 0.5
x2 y = 1 x1b y = 3 0.5
x3 y = 123 x2 y = 1 1
x4 y = 24 x3a y = 1 0.33

x3b y = 2 0.33
x3c y = 3 0.33
x4a y = 2 0.5
x4b y = 4 0.5

Table 5.1: Problem transformation methods (Modified from Sorower, 2010). Suppose there is the train-
ing set (x1, y = {2, 3}), (x2, y = 1), (x3, y = {1, 2, 3}), (x4, y = {2, 3}). a illustrates the binary relevance
transformation, b illustrates the binary pairwise transformation, c illustrates the label transformation,
and d illustrates the copy weight transformation.

the classifier. A method to capture the co-occurrence patterns between classes is to define
additional parameters over pairs of labels and features [8].

5.5 Classifier performance evaluation metrics

A classifier’s outputs can be organized into a confusion matrix to evaluate its performance.
A confusion matrix (Figure 5.3) can be used to calculate the overall accuracy, which is a
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single score that considers the number of true positives over the total number of samples.

Figure 5.3: A confusion matrix for binary classification (Sokolova, 2009).

However, binary, single-label evaluation metrics do not present the classifier perfor-
mance for individual categories nor take into account of instances associated with several
labels. Several evaluation metrics address these differences for multi-class and multi-label
classifiers (Table 5.2) [18].

For multi-class classification, measures such as precision, recall, and the F-measure
can be used to evaluate each class label independently. Average accuracy describes the
average accuracy of individual class labels. Two variants of averaging across the class
labels are micro-averaging and the macro-averaging.

Taking the macro-average means to average the K measures calculated for K in-
dividual labels, while taking the micro-average means to average a single measure over
n instances. The micro-average favors larger classes since they would contribute more
when averaging over smaller classes. In contrast, the macro-average assumes that all
classes contribute to the classifier equally, which may make it better suited to evaluate
an imbalanced dataset [29].

Two main methods to evaluate multi-label problems are example-based metrics and
label-based metrics. Example-based metrics include taking the mean value of accuracy,
precision, recall, F-measure, Exact match ratio, or Hamming Loss across the test set.
Label-based methods include evaluating by individual class labels, and then taking the
micro/macro-average of accuracy, precision, recall, and F-measure [41].

Multi-label evaluation metrics can also be organized as partial or exact class label
matching. Partial class label matching considers that the classifier may not always be able
to acquire an exact distribution of each class from the training instances, and takes into
account each element in a label subset equally. In contrast, exact class label matching is a
much stricter metric since all elements in a label subset must agree with the true label to
be considered a true positive. Example metrics of partial and exact class label matching
is the Hamming Loss and Exact Match Ratio [29].

A measure is invariant if its value does not change even if a set of values in the
confusion matrix changes. If the goal of a classifier is to find true positives, precision
and recall are beneficial to use since they describe a classifier’s ability to detect positive
classes, and display invariance for true negatives. In contrast, non-invariant measures to
true negative classes describe a classifier’s ability to detect negative classes [29].
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Multi-class Measure Formula
Average Accuracy 1

K

∑K
i=1

tpi+tni
tpi+fni+fpi+tni

Precisionµ
∑K

i=1 tpi∑K

i=1 tpi+fpi

Recallµ
∑K

i=1 tpi∑K

i=1 tpi+fni

F1-scoreµ 2× Precisionµ×Recallµ
Precisionµ+Recallµ

PrecisionM
∑K

i=1
tpi

tpi+fpi
K

RecallM
∑K

i=1
tpi

tpi+fni
K

F1-scoreM 2× PrecisionM×RecallM
PrecisionM+RecallM

Multi-label Measure Formula
Exact Match Ratio / Subset Loss 1

n

∑n
i=1 I(ŷi = yi)

Hamming Loss 1
nk

∑n
i=1

∑k
j=1 I(ŷij 6= yij)

Table 5.2: Summary of evaluation metrics for multi-class and multi-label classification (Modified from
Sokolova, 2009). µ represents micro-averaging, M represents macro-averaging. K is the total number of
class labels, and tp, fp, tn, fn denotes the true/false positive/negative counts. I is the indicator function.
yi denotes the true class for instance i, and ŷi denotes the predicted class. k is the total number of labels
in a subset.



6. Methods

The main goals of this thesis are to create a classifier that could distinguish between levels
of continuity in EEG patterns of full-term neonates and describe the cerebral development
of the newborns with a visualization that could be used by neonatologists that may or
may not be experts in EEG.

To analyze the full duration of EEG recording, we would have to reconcile the
manual grading of the epochs by the independent graders. We begin by creating two
classifiers that use the two graders’ individual labels as a baseline reference. Then, we
select epochs that were graded in consensus to train another classifier and use it to evaluate
the epochs in disagreement. If the features of the ambiguous class labels correlate well
with the features of epochs graded in consensus, then the classifier should improve over
the reference classifiers.

Finally, we directly learn the full-duration recording by using a multi-label approach
to explore how well the classifier can reconcile the scores in disagreement. We considered
that both graders captured the EEG transitions satisfactorily to a trained physician’s
visual observation, despite having 5678 epochs (40% of the total recording) in disagree-
ment. Therefore, we assumed that the two interpretations of the EEG patterns inherently
contain latent information that the classifier can exploit. Subsequently, we can treat this
as a multi-label classification problem by decomposing the multi-labels into single labels.
In other words, where there is a disagreement in the EEG grade between the two graders,
we consider both labels as the true class labels so that some instances can be classified
into a maximum of two grades.

6.1 Data acquisition

The datasets used in this thesis were acquired from the BABA Center. The original
EEG datasets were provided to the BABA Center by a collaboration between Professors
Emily Tam and Cecil Hahn (Toronto) and Professor Sampsa Vanhatalo (Helsinki). The
data was obtained from a clinical trial, Neurological Outcome of Glucose in Neonatal
encephalopathy (NOGIN), that was conducted at the The Hospital for Sick Children
(SickKids) in Toronto, Canada. The study was partly aimed at studying long-term glucose

35



36 Chapter 6. Methods

monitoring during NICU treatment after birth asphyxia.
Continuous multichannel EEG recordings were taken from 31 full-term neonates us-

ing Stellate Harmonie or Xltek Brain Monitor ICU video-EEG systems (Natus Neurology,
Oakville, Ontario, Canada) with a 12–14 channel bipolar montage. The EEG recording
continued over 12–48 hour periods, capturing sleep-wake activity. Visual review and back-
ground scoring were performed by two neurologists, Drs. Elana Pinchevsky (Toronto) and
Viviana Marchi (Pisa/Helsinki), blindly.

Data preprocessing was performed by Ms. Minna Kauppila, while feature calculation
was performed by Ms. Karoliina Tapani. The 75 qEEG features are listed in Appendix A.

6.1.1 EEG pattern labels

Two neurologists, E.P. and V.M, independently annotated the EEG patterns by referring
to the Toronto epoch timestamps and using the scoring system by The Hospital for Sick
Children at the University of Toronto as described in Table 6.1. The Toronto timestamps
list the patient id, epoch date, and epoch time by increments of 5 minutes.

Epochs of 5-minute intervals were used for the visual interpretation of the EEG data
and can be classified into one of eight scores (Table 6.1). Some epochs were not graded if
there were excessive movement artifact or seizures.

Score Description
0 continuous (recovered from inactivity / poor activity)
1 trace alternant: IBI voltage ≥ 25µV with IBI duration ≤ 6 seconds
2 trace alternant: IBI voltage ≥ 25µV with IBI duration > 6 seconds
3 trace discontinuous: IBI voltage < 25µV

4 depressed and undifferentiated: persistent low-voltage background activity
w/ amplitude between 5µV and 15µV and w/o normal features

5 burst suppression: IBI amplitude < 5µV
6 very low voltage: amplitude < 5µV or with no discernible cerebral activity
999 unable to assess background (due to seizure or artifact)

Table 6.1: cEEG scoring guide (Courtesy of BABA Center). IBI: inter-burst interval. This scoring
system was created for use in the NOGIN clinical study, and it describes the EEG abnormality that may
be seen after birth asphyxia by classifying the background patterns into seven grades. The EEG behavior
states here are described with amplitude ranges and burst patterns with defined duration. SWC is not
used by this system since the patterns are graded every five minutes, as opposed to other clinical set
ups that may grade the EEG by the hour. Moreover, this scoring system describes seven levels of EEG
pattern abnormality, which is more detailed than other scoring schemes.

Twenty-seven individual subjects’ EEG data were annotated instead of 31 since four
patient files were corrupted. We received two sets of EEG pattern grades, and we then
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aligned the two graders’ labels according to the epoch timestamps. Epochs with score 999
were indistinguishable signals, so we removed them from the dataset. This subsequently
reduced the total number of class labels from eight to seven.

After aligning the epochs and removing missing or undistinguishable instances, the
dataset contained a combined length of 14103 epochs (approx. 1175 hours) of recording.
The average length of the recordings per patient is 44 hours (range 9–100 hours). Of those
epochs, 5678 epochs (approx. 473 hours in total) were in disagreement (for the average
patient, 210 epochs or 17.5 hours). Cohen’s unweighted kappa statistic is κ=0.45, which
suggests moderate agreement of EEG grades, and subsequently fairly good reproducibility.
The raw proportion of agreement is 0.60.

Since we will refer to the graders a considerable amount for the remainder of this
thesis, E.P. and V.M. will be referred to as ‘Grader 1’ and ‘Grader 2’ respectively for
clarity. Table 6.2 describes the distribution of the class labels. There is a class imbalance
where the EEG pattern labels are skewed towards grade 0 (Graders 1 and 2) and grade 3
(Grader 1), compared to the significantly fewer instances of grade 4, 5, 6 (Graders 1 and
2).

Grader 1 Grader 2
Grade Count Percent Count Percent

0 7350 52.12 5756 40.81
1 805 5.71 2196 15.57
2 1113 7.89 1838 13.03
3 3346 23.73 1822 12.92
4 254 1.80 742 5.26
5 762 5.40 1199 8.50
6 473 3.35 550 3.90

Table 6.2: Tabulated summary of the graders’ labels. Both graders classify a larger proportion of EEG
grades as 0 or 3.

As seen in Figure 6.3, Grader 2 tended to classify more patterns as moderate/severe
than Grader 1 (i.e., disagreement between grades 5 and 3). There are no disagreements
in which Grader 2 classified the EEG trace as normal/mild and Grader 1 classified as
moderate/severe.
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Grader 1 vs Grader 2 scores
0 5283 1412 533 111 8 3 0
1 157 329 255 64 0 0 0
2 178 253 461 221 0 0 0

Grader 1 3 138 202 589 1374 262 781 0
4 0 0 0 0 164 1 89
5 0 0 0 52 251 406 53
6 0 0 0 0 57 8 408

0 1 2 3 4 5 6
Grader 2

Table 6.3: EEG grades assessed by the two graders. The bolded diagonal entries describe grades scored
in consensus, and the unbolded entries describe the grades scored in disagreement.

6.2 Pre-processing the features

We assume HIE leads to diffuse cerebral dysfunction, which allows us to take the me-
dian across the channels for each feature. Then, we standardized the data with z-score
standardization to zero mean and unit variance, which bounds all features within [0, 1].
Scaling is an essential pre-processing step to take prior to using SVM to prevent any
features from dominating the rest due to an extreme scale.

6.2.1 Feature selection

Due to the high number of extracted features from the EEG data, there is the risk of
increased computational time as well as overfitting. To mitigate this, we also experiment
with using stepwise regression to obtain the best subset of features to use for training. In
stepwise regression, features are systematically added and removed in a regression model
depending on whether its p-value meets a tolerance level. In Matlab, the function for
stepwise regression algorithm is stepwisefit.

6.3 Datasets

We derived four datasets to use in creating the different classifiers. All of the four dataset
uses the same feature set, but with different variations of selected epochs and class labels.

Dataset 1 and 2 contain all epochs (those graded in consensus and disagreement)
labeled by Grader 1 and Grader 2 respectively. Both consists of 14103 combined epochs.
We will evaluate these two independently as reference models.
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Dataset 3 contains only epochs that were graded in consensus, which consists of
8425 combined epochs. This allows us to interpret the classifier results without any
ambiguity from the truth of the labels. We later use this model to evaluate how well
it performs upon seeing inherently ambiguous instances (epochs in which the graders
disagreed on) by predicting Grader 1 and Grader 2’s labels independently.

To create dataset 4, we expanded the feature space by duplicating the instance
with class labels that the graders disagreed on, corresponding to the copy-weight problem
transformation approach in multi-label learning. In addition, we created a corresponding
weight vector where each class label in consensus was given a weight of 1, and each
class label in disagreement that was duplicated was given a weight of 0.5. The dataset
subsequently grew to a combined length of 19781 epochs. The label cardinality is 1.4,
and label density is 0.2.

For the remainder of this thesis, we will refer to dataset 1 as grader 1, dataset 2
as grader 2, dataset 3 as consensus, and dataset 4 as CW. Figure 6.1 summarizes the
different models trained by the datasets.

Figure 6.1: Summary of different classification models built with the datasets grader 1, grader 2,
consensus, and CW.

6.4 Experimental setup

For all four datasets, we randomly shuffled the data by patients to produce a random
70/30 split for training and testing respectively. Shuffling the patient order allows us to
preserve the epoch orders by patients since the features for each epoch per patient have
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time dependencies. More importantly, this prevents test set contamination that may
occur if we permute by correlated epochs.

We then used the same procedure on grader 1, grader 2, and consensus in Matlab
by using fitcecoc to train a multi-class ECOC model that uses SVM as a base classifier
with a Gaussian kernel on the training set. We use a one-vs-one coding system to create
21 binary learners. We chose a one-vs-one approach to avoid exacerbating the problem of
class imbalance.

We also used fitcecoc to train the multi-label classifier using CW due to its multi-
class properties, but we gave the weight vector as an additional input to the classifier.
The weight vector is then normalized so that its sum equals the prior probability of the
classes.

SVM with a Gaussian kernel can be optimized with the hyperparameters, BoxCon-
straint (C) and KernelScale (γ), which corresponds to the regularization parameter to
penalize slack variables, and the width of the kernel respectively. To find the optimal
hyperparameters, we used grid search from the intervals [2−5, ..., 215] for choosing C, and
[2−15, ..., 23] for choosing γ [11]. We decided to use grid search since there are only two pa-
rameters to search for, thus limiting the required computational time, and grid search also
allows for parallelization since the hyperparameter pairs are independent. Although Mat-
lab’s hyperparameter optimization has an option to specify grid search as its optimizer,
users can only define the number of values that the optimizer will randomly evaluate along
some grid, rather than a specified search range of values. As such, we implemented an
exhaustive search instead. In total, we searched 21 × 19 = 399 parameter combinations,
using Matlab’s Parallel Computing Toolbox to run the computations in parallel.

For each parameter pair, we used 5-fold cross-validation, using 5 patients as valida-
tion each time, and selecting the parameter pair with the highest average cross-validation
accuracy. Using the entire training set, we retrained the model with the selected param-
eter pair and then evaluated the classifier on the test set. To see how well the model
generalizes to new data, we used leave-one-out cross-validation (LOO-CV), leaving out
one patient for validation each time, to evaluate the full datasets and report the aver-
age accuracy. We also transformed the classification scores into posterior probabilities
for visualization in Section 7.6. All experiments were performed on either a 2-processor
2.7 GHz i5 machine with 8GB ram, running Mac OS, or an ukko2 cluster with 48 cores
provided by the University of Helsinki.

In creating the visualizations to illustrate the outputs of the classifier, we considered
that physicians prefer to see a confidence score for the predicted classes, and that they are
interested in the development of the newborn. EEG signals naturally transition between
grades throughout the normal sleep-wake cycle. Since the EEG is scored over five-minute
epochs, the recorded grades will reflect the cycles as noise, rather than the overall state
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of the EEG. By smoothing the grades, we can filter out natural transitions of the sleep-
wake cycle that do not contribute much to determining the neurological development of
the newborn. Thus for part of our visualizations, we observe the overall development of
the trend by taking the moving average of the labels over 4 and 12 five-minute epochs,
smoothing the EEG grades by 20 and 60 minutes.

6.5 Evaluating classifier performance

To evaluate the classifiers, we used raw accuracy, average accuracy, and several macro-
averaging metrics of precision, recall, and F1 score. We use macro-averaging measures
due to the imbalanced dataset. We also use Hamming Loss to evaluate the multi-label
classifier, and not Exact-Match Ratio since we are satisfied if the classifier can predict at
least one of the graders’ score. We evaluate the classifiers using the test sets, and also
determine how well the classifiers can generalize to new data by using LOO-CV on the
full datasets.

Finally, we evaluated the test set of grader 1 and grader 2 with the consensus model,
as we hope the classifier had learned the features of the grades in consensus. This allowed
us to evaluate how well the classifier extends to ambiguous labels (i.e., EEG pattern grades
in disagreement between the two graders).

We expect consensus to perform the best since it is likely to have distinctive features
that reflect the grades in agreement. We also hypothesize that this model can learn
generalizable relationships to predict ambiguous instances. Therefore, we will evaluate
the test set of grader 1 and grader 2 with the consensus model. If the consensus model
is able to learn the features of the epochs that the graders agreed on, then it could act as
a noise filter for the features that make the epochs ambiguous to grade. If so, then the
subsequent performance on the test sets would improve compared to the baseline models
– those trained with the graders’ respective labels and which contains features of epochs
in disagreement. If the consensus model cannot filter out the noise, we expect similar
performance to the baseline models.

It is important to note that the pattern grades have a slight ordinal relationship in
that lower grades are associated with better outcome, and worsens as the grades increase.
However, this relationship is not linear, and in reality, physicians would consider grade 0
as the healthiest, [1, 2, 3] as still healthy, and [4, 5, 6] as abnormal.

To closer reflect how physicians interpret the scores, as well as to manage the class
imbalance that is skewed towards grades 0 and 3, we combined the seven labels into three
classes: 0, [1, 2, 3], and [4, 5, 6]. This reveals which models misclassifies more severely into
classes that are farther away, since misclassifications that are close to the true class (i.e.,
falls within the groups) can be accepted.



7. Results

The highest performing model was with the consensus dataset at 82% overall accuracy
(95% average accuracy) on the test set and 79% overall accuracy with LOO-CV. Table 7.1a
summarizes the results between the different models, and Table 7.1b displays the confusion
matrix of average outputs from LOO-CV over the full datasets.

7.1 grader 1 and grader 2
The datasets grader 1 and grader 2 were independently trained as a baseline reference to
compare against the consensus model. The classifiers achieved 71% and 57% for grader 1
and grader 2 respectively, 92% and 88% average accuracy respectively, and 68% and 55%
LOO-CV accuracy on the full dataset respectively.

The test set that was used to evaluate the trained model did not contain true class
label 4 for grader 1, which motivated the evaluation of the full dataset with LOO-CV
(Table 7.1b). grader 1 had high recall, or true positive rate, for grades 0 and 3 (Table 7.5),
while grader 2 had high recall for only grade 0.

Although the classifier was able to identify less true class labels for other classes, the
misclassifications tend to occur at neighboring classes for both datasets (Tables 7.5, 7.6).
When using Grader 2’s class labels, the grade 5 was often misclassified as 3 or 4 grade,
and the grade 6 was often misclassified as grade 4. Grader 2 had labeled more instances
as grade 6, and the grader 2 model subsequently was able to identify more instances as
so (54% recall).

7.2 consensus
The consensus model out-performed the individual reference models with 82% overall
accuracy (95% average accuracy) for the test set, and had a 79% LOO-CV for the full
dataset.

To evaluate how well the consensus model can predict class labels for features that
were graded in disagreement, we evaluated the test set of grader 1 and grader 2 (both
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grader 1 grader 2 consensus CW
C γ C γ C γ C γ

8.00 8.00 0.25 8.00 8.00 8.00 8.00 8.00
5-Fold CV avg raw accuracy (train set) 0.70 0.57 0.78 0.67
Raw accuracy (test set) 0.71 0.57 0.82 0.67
Accuracy w/ grouped class labels (test set) 0.78 0.69 0.87 0.74
Avg accuracy (test set) 0.92 0.88 0.95 0.91
PrecisionM (test set) 0.44 0.42 0.50 0.43
RecallM (test set) 0.32 0.38 0.36 0.31
F1-ScoreM (test set) 0.37 0.40 0.42 0.36
Hamming Loss (test set) - - - 0.17
LOO-CV avg raw accuracy (full) 0.68 0.55 0.79 0.65

(a) Summary of evaluation metrics on the models, trained with all features. M denotes macro-
averaging.

consensus (AVG ACC 79%) CW (AVG ACC 65%)
0 190 1 4 3 1 0 0 0 322 2 10 16 1 1 0
1 10 2 2 1 0 0 0 1 39 3 4 4 0 0 0
2 8 1 7 3 0 0 0 2 40 2 13 12 0 0 0

True 3 4 1 5 40 1 4 0 True 3 34 2 27 123 1 9 4
Class 4 5 0 0 1 1 0 2 Class 4 4 0 0 2 1 1 9

5 1 0 0 13 0 2 1 5 2 0 0 35 1 5 2
6 1 0 0 1 4 1 10 6 1 0 0 4 9 1 7

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Predicted Class Predicted Class

grader 1 (AVG ACC 68%) grader 2 (AVG ACC 55%)
0 258 1 6 9 1 1 0 0 200 5 7 2 1 1 0
1 25 2 2 2 0 0 0 1 62 7 13 1 0 0 0
2 25 1 9 7 0 0 0 2 33 5 25 6 1 1 0

True 3 20 1 16 83 1 4 3 True 3 12 1 19 26 1 12 0
Class 4 4 0 0 2 1 1 5 Class 4 8 0 1 1 7 11 3

5 1 0 0 24 1 3 1 5 3 0 1 25 10 9 1
6 1 0 0 4 7 2 7 6 2 0 0 0 8 1 12

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Predicted Class Predicted Class

(b) Average confusion matrix from LOO-CV over full dataset. The misclassifications tend to
skew towards 0 when the true class is 1, 2, or 3.

which contains epochs in disagreement) with the consensus model. grader 1 achieved 70%
overall accuracy, and grader 2 achieved 59% overall accuracy. Compared to the baseline
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grader 1 grader 2
0 1923 38 129 236 13 0 2 0 1601 12 59 220 6 0 2
1 127 30 40 14 0 0 0 1 400 35 33 23 4 0 0
2 151 18 75 136 1 0 0 2 159 33 85 122 2 0 0

True 3 9 1 7 448 7 49 0 True 3 49 7 73 351 8 49 0
Class 4 0 0 0 0 0 0 0 Class 4 1 0 0 108 16 23 11

5 3 0 0 12 21 36 43 5 0 0 1 22 1 0 1
6 4 0 0 1 73 12 140 6 7 0 0 1 78 25 171

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Predicted Class Predicted Class

Table 7.2: Confusion matrix of grader 1 and grader 2 test set evaluated with consensus model.

performances in section 7.1, there was no improvement in classifying the features graded
in disagreement.

7.3 CW
The copy-weight dataset was the expanded dataset that included grades in disagreement
and used both graders’ grades as class labels. The overall accuracy for the test set was
67% (91% average accuracy, 65% LOO-CV for the full dataset). Similarly to consensus
and grader 1, there was high recall in grades 0 and 3. The Hamming Loss was 0.17, which
indicated that the proportion of incorrect predictions was comparable to other methods.

7.4 Selected features

During training, we used 5-fold cross-validation to search for 399 hyperparameter pairs for
the SVM model. During the nested loop for each fold, we used stepwisefit to repeatedly
select features to generate the optimal feature set for each model, thus searching on
average 1967 combinations of feature combinations for each model. Table 7.3 summarizes
the commonly selected features.

The overall accuracies remained the same for the models that used a reduced set of
features when compared to those that used the full set of features (Refer to 7.5).

7.5 Combined grade evaluation

By combining the grades into three groups: 0, [1, 2, 3], and [4, 5, 6], we effectively allowed
neighboring classes to be considered as correct.

As expected, the accuracy after grouping by class labels increased for all models,
notably for grader 2. A significant number of [1, 2, 3] was misclassified as 0, but rarely
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Most frequently
selected features

Number of times
selected on average

Most frequently
selected features
(continued)

Number of times
selected on average
(continued)

amp_variance 1967 band1_3norm 1717
band10_12norm 1967 AR4 1714
burst_nro 1967 H_shannon 1707
Line_length 1935 m_med 1679
fractal_dim 1912 mdfa 1548
band5_7norm 1905 AR1 1470
Cov_IA_IF 1899 freq_variance 1444
band2_4norm 1891 rEEG_5 1418
band8_10norm 1851 H_spectral 1395
peak_freq 1821 freq_kurt 1361
dfa 1781 freq_mean 1343
burst_duration 1767 fisher 1335
wavelet_energy 1741 Zero_crossings 1167

Table 7.3: The commonly selected features across all 4 models, on average over 1967 combinations of
selected features.

was grade 0 misclassified as [4, 5, 6], and vice versa.

consensus CW
True 0 1636 63 27 True 0 2678 234 44
class 1, 2, 3 141 327 83 class 1, 2, 3 772 848 55

4, 5, 6 3 8 227 4, 5, 6 3 220 229
0 1, 2, 3 4, 5, 6 0 1, 2, 3 4, 5, 6
Predicted class Predicted class

grader 1 grader 2
True 0 2158 152 31 True 0 1764 114 22
class 1, 2, 3 474 607 32 class 1, 2, 3 792 398 243

4, 5, 6 3 139 203 4, 5, 6 5 15 446
0 1, 2, 3 4, 5, 6 0 1, 2, 3 4, 5, 6
Predicted class Predicted class

Table 7.4: Confusion matrices for grouped evaluation
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consensus (ACC 82%) CW (ACC 67%)
0 1636 1 3 59 24 0 3 0 2678 9 24 201 35 2 7
1 75 2 2 0 0 0 0 1 316 7 3 17 0 0 0
2 66 3 9 47 0 0 0 2 432 17 18 170 0 0 0

True 3 0 0 2 262 2 80 1 True 3 24 0 7 609 6 49 0
Class 4 0 0 0 0 0 0 0 Class 4 0 0 0 0 0 0 0

5 0 0 0 8 0 1 0 5 0 0 0 173 4 36 8
6 3 0 0 0 72 10 144 6 3 0 0 47 129 6 46

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Precision 0.92 0.33 0.56 0.7 0.0 0.01 0.97 Precision 0.78 0.21 0.35 0.5 0.0 0.39 0.75
Recall 0.95 0.03 0.07 0.76 - 0.11 0.63 Recall 0.91 0.02 0.03 0.88 - 0.16 0.2

F1-Score 0.93 0.05 0.13 0.72 - 0.02 0.76 F1-Score 0.84 0.04 0.05 0.64 - 0.23 0.32

grader 1 (ACC 71%) grader 2 (ACC 57%)
0 2158 3 11 138 24 1 6 0 1764 14 50 50 19 2 1
1 198 3 3 7 0 0 0 1 428 18 34 7 8 0 0
2 263 7 10 101 0 0 0 2 267 24 53 50 5 2 0

True 3 13 0 4 472 4 28 0 True 3 97 8 71 133 8 220 0
Class 4 0 0 0 0 0 0 0 Class 4 1 0 0 8 39 107 4

5 0 0 0 92 2 17 4 5 1 1 0 6 4 13 0
6 3 0 0 47 125 7 48 6 3 0 0 0 118 8 153

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Precision 0.82 0.23 0.36 0.55 0.0 0.32 0.83 Precision 0.69 0.28 0.25 0.52 0.19 0.04 0.97
Recall 0.92 0.01 0.03 0.91 - 0.15 0.21 Recall 0.93 0.04 0.13 0.25 0.25 0.52 0.54

F1-Score 0.87 0.03 0.05 0.69 - 0.2 0.33 F1-Score 0.79 0.06 0.17 0.34 0.22 0.07 0.7

Table 7.5: Confusion matrix for models using all features. The precision, recall, and F1-Score are
calculated for each class.

7.6 Data visualization

Neonatologists using EEG to monitor the cerebral recovery of newborns are interested in
their EEG transition over time in order to determine the health of the brain. While an
automated grading system aids in interpreting the EEG patterns, a visualization of the
predicted grades with a confidence output from the classifier helps physicians to gauge
how much to trust the prediction, which ultimately serves to support the physician’s
decision making.

To visualize the classifier outputs in a form that allows for the intuitive interpretation
of the predicted grades, as well as to see how confident we can be about the predictions, we
created a heatmap with colors corresponding to the posterior probabilities from the SVM
classifiers. Figures 7.1a–c and 7.2a–c show several visualization examples that display
the results of patient 19 (chosen since it was the first case in the test set, not because
of the classifier’s predictive accuracy). The visualizations show the cerebral activity over
approximately 29 hours of EEG recording, with both predictive and true class labels.
This patient’s EEG recording has only grades 0 – 3.

The visualizations in Figures 7.1a–d provide information about the confidence of the
predictions by showing the probabilities of other grades. The red dots indicate true class
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consensus (ACC 82%) CW (ACC 67%)
0 1642 0 6 57 19 0 2 0 2653 8 22 226 47 0 0
1 78 0 1 0 0 0 0 1 308 7 4 24 0 0 0
2 82 0 1 42 0 0 0 2 411 11 22 193 0 0 0

True 3 2 0 1 266 3 75 0 True 3 21 0 9 625 7 31 2
Class 4 0 0 0 0 0 0 0 Class 4 0 0 0 0 0 0 0

5 0 0 0 6 0 3 0 5 0 0 0 185 4 22 10
6 0 0 0 0 73 11 145 6 2 0 0 46 120 4 59

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Precision 0.91 - 0.11 0.72 0.0 0.03 0.99 Precision 0.78 0.27 0.39 0.48 0.0 0.39 0.83
Recall 0.95 0.0 0.01 0.77 - 0.33 0.63 Recall 0.9 0.02 0.03 0.9 - 0.1 0.26

F1-Score 0.93 - 0.01 0.74 - 0.06 0.77 F1-Score 0.84 0.04 0.06 0.63 - 0.16 0.39

grader 1 (ACC 71%) grader 2 (ACC 59%)
0 2121 0 15 179 26 0 0 0 1720 37 98 19 22 4 0
1 192 4 2 13 0 0 0 1 389 60 34 2 10 0 0
2 247 5 14 115 0 0 0 2 213 68 87 25 7 1 0

True 3 14 0 5 484 5 12 1 True 3 65 39 79 159 11 184 0
Class 4 0 0 0 0 0 0 0 Class 4 1 0 5 29 36 79 9

5 0 0 0 94 2 16 3 5 0 0 1 6 6 12 0
6 2 0 0 51 121 2 54 6 1 0 0 0 125 6 150

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Precision 0.82 0.44 0.39 0.52 0.0 0.53 0.93 Precision 0.72 0.29 0.29 0.66 0.17 0.04 0.94
Recall 0.91 0.02 0.04 0.93 - 0.14 0.23 Recall 0.91 0.12 0.22 0.3 0.23 0.48 0.53

F1-Score 0.86 0.04 0.07 0.66 - 0.22 0.38 F1-Score 0.8 0.17 0.25 0.41 0.19 0.08 0.68

Table 7.6: Confusion matrix for models using selected features. The precision, recall, and F1-Score are
calculated for each class.

labels, and the colored blocks indicate the posterior probability of the predicted class,
where pink is the highest probability and represents the predicted class. Figures 7.1a–b
depict the consensus model, Figure 7.1c depicts the grader 1 model, Figure 7.1d depicts
the grader 2 model. Note there are less hours displayed in Figures 7.1a–b than Figures
7.1c–d since only selected epochs in consensus were used.

We can observe that there are natural grade jumps due to SWC between grades
within a short period of 5 minutes, so to display the overall EEG transitions with reduced
noise, it is useful to smooth the predictions over some time. Figures 7.1a–c were smoothed
by a moving average of four 5-minute epochs (20 minutes) and the probabilities were then
normalized between 0 and 1; each block in the colorbar indicates a probability increment
of 0.1.

To better display the transition of the EEG grades over time, we also use a line plot
to visualize the predictions in a minimal fashion. Figures 7.2a–c show more clearly that
towards hour 14 in consensus, the EEG became very non-stationary, and the classifier
was able to capture this dynamic. Figure 7.1a corresponds to Figure 7.2a where both
consensus models are displayed without any smoothing; similarly, Figure 7.1b depicts the
consensus model with smoothing by 20 minutes, and corresponds to Figure 7.2b. Figure
7.2c is smoothed by 60 minutes, which further reduces noise.
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Figure 7.1: Visualization plots for patient 19, whose EEG recording displayed only grades 0 – 3. The red
dots indicate true class labels, and the colored blocks indicate the posterior probability of the predicted
class, where pink is the highest probability and represents the predicted class. Figures 7.1a–b depict
the consensus model, Figure 7.1c depicts the grader 1 model, Figure 7.1d depicts the grader 2 model.
Note that a–b display shorter hours than c–d since only selected epochs in consensus were used. b–d
were smoothed by a moving average of four 5-minute epochs (20 minutes) and the probabilities were
then normalized between 0 and 1; each block in the colorbar indicates a probability increment of 0.1.
The visualization plots reflect the degree of variation between the graders’ labels, and the classifiers were
largely able to predict the graders’ labels with high/moderate probability.
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Figure 7.2: Visualization plots for patient 19, whose EEG recording displayed only grades 0 – 3. The
blue lines indicate the predicted class labels, and the red lines indicate the true class labels. a shows
the result of the consensus model without any smoothing, and b and c smooth the results by 20 and 60
minutes respectively. The overall EEG trend is displayed more clearly when noise is reduced with the
smoothing.



8. Discussion

This thesis explores the relationship between inter-rater variability in the EEG grades and
the classifier output. We are particularly interested in reconciling the manual grading of
EEG signals by independent graders. The experiments in creating classifiers by using
different graders’ EEG grades as class labels were to ascertain how reliable a classifier
can be in predicting the grades when there is ambiguity in the truth of the class labels.
The ambiguity in the truth of the class labels mostly originated from the disagreement
between the two graders on some EEG patterns.

The disagreements between the graders may have stemmed from human error and
individual variability when visually interpreting the EEG signals. Upon evaluating an
EEG trace, one grader may grade more conservatively than the other when uncertain
about that instance. For example, Table 6.3 reveals that Grader 2 tends to classify some
epochs as grade 5 when Grader 1 classified them as grade 3. The classifier using grader
2 ’s class label mirrored this disagreement and the grade 5 was often misclassified as 3.
As the classifier performance was higher with grader 1 ’s class labels, we can speculate
that perhaps the classifier had learned some features that are related to the features that
Grader 1 visually interpreted during the grading.

In addition, the interpretation of EEG background activity may vary by nomencla-
ture from different institutions of training, which may lead to variability between indepen-
dent graders when interpreting the patterns. The two graders of the BABA dataset were
trained at institutions in different countries, which may have contributed to the grading
differences in the dataset.

The disagreements may also be related to signals that did not contain attributes
that fell strictly under the definitions as described by the scoring system. Moreover,
the EEG signals may also have contained some noise that were not filtered out during
pre-processing, causing the signals to have less distinguishable features to discriminate
against. For example, higher amplitude artifacts could mask lower amplitude activity
and distort its pattern. If the EEG signals do not contain distinctive features between
different grades as described in the scoring system to discriminate against, then both
human and machine may confuse one class with another. Observing Figure 6.3 reveals
that the graders mostly disagreed on grades that were close to each other or when the
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EEG signals look visually similar.
Moreover, the scoring terminology may have contributed to the variations between

the two graders’ scores. As seen in Shellhaas et al’s assessment, a simpler scoring sys-
tem resulted in a higher inter-rater agreement than the more advanced scoring system
did [28]. The Toronto scoring system is similar to the advanced scoring system with
strict definitions for the EEG patterns, which may account for the moderate inter-rater
agreement.

The epoch length used to grade the EEG patterns may also have contributed to the
ambiguity of visual interpretation. EEG signals are non-stationary and can evolve over
time, so when the graders evaluated the EEG at shorter epochs (e.g. 5 minutes), they
may be have been assessing patterns in transition, which may present itself as sharing
features similar to neighboring grades, or as if it could fit the definition of multiple EEG
grades. Thus, there may be no clear answer to which grade of abnormality the pattern
belongs to, contributing to grader disagreement.

We trained the consensus model with selected epochs that were graded in consensus
and used it to evaluate the full-duration recording EEG data with the labels of Grader
1 and Grader 2. In comparison to their respective baseline models as reference, the con-
sensus classifier did not outperform the baseline models, though the performance did not
decrease. The consensus model was not able to generalize its learned features to classify
the features of epochs graded in disagreement, which may be due to truly ambiguous
features that are markedly different from other features due to noise.

In contrast, the multi-label classifier directly learned the ambiguous features with
the full-duration recording, and its performance was comparable to the other models.
Its overall accuracy was, as expected, lower than consensus since it was a more difficult
task for the classifier to learn several labels for the same feature, rather than only one
label. Moreover, it misclassified on average more patterns with severe abnormalities as
mild/moderate than consensus, which is arguably a very undesirable property of the
classifier.

To predict the outcome of a newborn with encephalopathy, it is reasonable to expect
the classifier to minimize the number of false positives to the healthy scores so that the
patients can receive the proper treatment. Similarly, it is undesirable for the classifier to
have false positives to abnormal scores when it is truly healthy to prevent unnecessary
treatment. In our experiments, all the classifiers rarely falsely classified severely abnor-
mal patterns as healthy patterns. From the combined evaluation, the classifiers rarely
predicted healthy patterns as moderate/severely abnormal patterns and vice versa.

The results of the classifiers reflect the properties of the EEG data. For all the
models, grade 0 consistently obtained high precision and recall. We suspect that this was
due to the class imbalance in the datasets, and was reflected in the performance of the
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classifier where it frequently misclassified the grades 1 and 2 as 0, even if it is not a neigh-
bor class. Since SVM’s loss function attempts to maximize overall performance during
training, it may have allowed misclassifications of the rarer classes to better discriminate
between the larger classes when determining the margins.

The imbalanced dataset also affected the average accuracy in that it was different
than the overall accuracy since the number of instances in each class is different. We can
observe that the average accuracy was consistently higher than the overall accuracy since
the classifiers could more easily detect grade 0 patterns, and there were more instances of
grade 0 than other grades.

The large number of grade 0 (healthy, continuous pattern) in the data is reasonable
since EEG signals are not static, and neonates who are recovering from HIE will naturally
progress into more continuous EEG periods. Moreover, there are also natural variations
in the patterns from the sleep-wake stages. Since cycling between states do not occur
in higher grades of abnormality (major/inactive) than it does for normal/mild/moderate
abnormalities, it is reasonable to see more ambiguity between grades 0 – 3.

Using feature selection resulted in the same overall classification accuracies, which
suggests that only several features contribute to the classifier. Interestingly, most models
selected C = 8 and γ = 8 as the best parameter with 5-fold cross-validation, other than
grader 2. Recall that a smaller C allows for looser constraints and a larger margin, thus
resulting in smaller penalty when assigning slack variables while optimizing the decision
boundary allowing for more instances to cross the margins. This suggests that there
was more difficult or ambiguous feature instances to distinguish between when classifying
grader 2 ’s class labels.

The results of this thesis support the idea that automatic grading systems can
be used as decision support systems to physicians in interpreting the EEG patterns,
though they are not reliable enough as standalone interpreters. Altogether, the visual
interpretation of EEG activity may lead to ambiguity in the EEG grades. While it does not
seem to be a bottleneck in determining general findings (e.g. whether EEG abnormality
grades have good prognostic value or not), it affects how effective peer review on EEG
studies can be. Further studies of what classification schemes work best internationally
will aid in developing a truly standardized system, and will also aid in developing the
ideal automated grading system.

8.1 Future work

When assessing EEG background activity, it is useful to consider what time resolution
is needed in the clinical case to evaluate the classifier. The physicians at BABA are
interested in longer, overall EEG trends at 20 – 60-minute epochs, so we smoothed out the
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5-minute epochs at a post-processing step for evaluation. Thus, there is an opportunity to
incorporate the features of the shorter epochs during training to output hour-long epoch
grade predictions. This would subsequently require a human grader to grade the EEG
data by the hour.

We also did not have access to the raw EEG patterns in this thesis – but in the future
we can incorporate pre-processing and calculating the EEG features to the automated
grading system. In addition, future work include applying more advanced classification
techniques, such as neural networks and other discriminative classifiers, and incorporating
sleep-state cycling to adjust the predictions.

Since the multi-label classifier performed comparably to consensus and the reference
models, it encourages efforts to optimize its performance. Some advantages of the multi-
label classifier are that it can evaluate the full-duration recording instead of selected
epochs, and it also reconciles inter-rater variability of the EEG graders by using both
their scores as training data. We observed that the classifier cannot capture abnormal
patterns as well as healthy patterns, which may be improved in the future by more severely
penalizing false negatives to abnormal patterns during training.

Lastly, to further refine and evaluate the classifier, we could follow up with the
newborns with confirmed HIE diagnosis and determine how well the manual grades and
the classifier grades correlate with the outcome.



9. Conclusion

Using multi-class and multi-label classification with support vector machines, neonatal
background EEG signals can be classified into seven scores of abnormality patterns. The
work in this thesis also provides a method of visualizing EEG grades in full-term infants
which can assist in monitoring the brain recovery of newborns who have suffered a HIE
insult.
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Appendix A. Calculated EEG Features

EEG features
amp_mean mobility band10_12
amp_variance complexity band12_30
amp_skew Nonlinear_energy band0_2norm
amp_kurt H_spectral band1_3norm
freq_mean Zero_crossings band2_4norm
freq_variance AR1 band3_5norm
freq_skew AR2 band4_6norm
freq_kurt AR3 band5_7norm
Cov_IA_IF AR4 band6_8norm
fractal_dim AR5 band7_9norm
dfa AR6 band8_10norm
mdfa AR7 band9_11norm
mdfa_max AR8 band10_12norm
rEEG_5 AR9 band12_30norm
m_med total_power SEF90
burst_duration band0_2 SEF95
burst_nro band1_3 SEF80
ibi band2_4 kurt
Line_length band3_5 skew
wavelet_energy band4_6 svd_entropy
min_max band5_7 fisher
RMS_amp band6_8 ZC1d
H_shannon band7_9 ZC2d
peak_freq band8_10 V1d
activity band9_11 V2d
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