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1 Introduction

Microservices are a modern service-oriented architecture (SOA) related software de-
velopment approach where application logic is divided and implemented as separate
functional domains, instead of implementing all application logic in a single mono-
lithic application. Compared to SOA services, microservices are typically considered
to be more lightweight, less coupled and more fine-grained [Mir]. Microservices are
self-contained and can be separately deployed and removed, whereas SOA architec-
tures might be more tightly coupled and depend on a shared messaging layer such as
the Enterprise Service Bus (ESB) or other infrastructure services, like service discov-
ery. SOA based services are more coupled into the service’s ecosystem compared to
microservices, which typically can have their own deployment and testing pipelines
from the rest of the microservices. The popularity of microservices have been in-
creasing and it is used by many known companies such as Netflix and Soundcloud
[AAE16].

GraphQL is a novel API query language created by Facebook and is an alternative
to using typical JSON or XML API endpoints in a server application. The GraphQL
request determines which data is returned by the GraphQL server, whereas a JSON
endpoint would typically return a fixed predetermined selection of data. The query
language’s key selling points are being client-centric, developer friendly and reducing
roundtrips to the server by making it possible to request all the needed data in
one request [Sch15]. Also, only the requested fields are returned, which reduces
unnecessary network traffic and server resource usage.

Architecture patterns are reusable solutions to specific architecture or design prob-
lems in software development [Ric18, p.20]. The patterns solve a problem by struc-
turing the application in a specific way, or using a specific strategy to fulfill functional
or quality requirements. Applying architecture patterns might cause new issues in
the application that need to be solved by other architecture patterns. There typ-
ically isn’t a superior set of patterns that should be always used, but rather the
patterns are used to solve specific issues caused by the application’s structure or
requirements.

The purpose of this thesis is to study architecture patterns usable in the context
of GraphQL and microservices. Typical microservice patterns are discussed and
evaluated. Also GraphQL related patterns such as schema stitching are discussed
and evaluated when applied in the context of the microservice architecture.
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Chapter 2 presents the methodology and research questions of the thesis. In chapters
3 and 4 the microservice architecture and GraphQL specification are covered as
the basis of the thesis. In chapter 5 typical microservice architecture patterns are
gathered from scientific studies and grey literature, such as conference presentations
and technical articles. In chapter 6 possible GraphQL related patterns are presented.
The chapter 7 lays out the interview method used in this thesis. The results of the
interviews are presented in chapter 8. The interview results are compared to research
findings in chapter 9. Lastly, recommendations are suggested in chapter 10 based
on the findings.

2 Methodology

In this thesis literature sources are researched for any common architecture patterns,
which are used in the context of microservices and GraphQL. Also, semi-structured
interviews are used to study the incidence of the presented architecture patterns in
commercial products. In each interview a past or ongoing project of the interviewee
is discussed. A qualitative analysis of the interviews is done to evaluate the incidence
of covered patterns, and their shortfalls and benefits if those were mentioned in
the interviews. Current best practices from literary sources and interview data are
combined to make a recommendation on how to structure a microservice architecture
with GraphQL interfaces.

The research questions of the thesis are the following

• RQ1: What is the typical architecture layout in a microservice architecture
project using GraphQL?

• RQ2: What is the overall developer experience in real world microservice
projects using GraphQL?

• RQ3: Does GraphQL impose any limitations in a microservice architecture
compared to alternative API methods?

3 Microservice architecture

Service oriented software development is a style of software development which splits
application’s business logic into separate autonomous applications, called services
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[Fow14]. Services implement a piece of the business domain, typically one busi-
ness capability, and they can be used by other clients or services over the network
[CDP17]. Microservices architecture is a fairly new trend in service oriented soft-
ware development, which promotes high isolation in microservice’s infrastructure
and deployment pipeline. A microservice should work independently from other
microservices, which is achieved with loose coupling by using synchronous remote
procedure calls (RPC) or asynchronous messaging to handle inter-process commu-
nication (IPC). The microservice should own their data model, which makes it pos-
sible to have separate persistence layers of each microservice, deployed in separate
databases.

3.1 Comparison to Monolithic architecture

Microservice architecture is a software architecture which is used to implement a
web application using loosely coupled single-purpose services [BHJ+]. Microservice
architecture might be selected over a monolithic architecture, which has all the
business logic implemented in a single software package [Hun17, p.1]. The benefits
of using a monolithic architecture is its simplicity. At smaller sizes the monolithic
application is generally easier to develop and the deployment is easier because only
one package has to be deployed. Also scaling is to some extent easier because only
one software package has to be deployed multiple times and the whole application
stays functionally the same. There’s no inter-process communication that should be
taken into account when scaling a monolith. Integration testing is simpler than in a
distributed system, and also the simpler architecture makes drastic changes possible
into the system [Ric18, p.4].

In a comparison of the two architectures, an application with microservices will have
separation of concerns by nature [Hun17, p.1]. Also each service in an application
can be developed with different set of tools, such as databases, programming lan-
guages, monitoring, testing and build pipelines. Other reasons to split a monolithic
application into many microservices is to cut costs when using modern pay-by-usage
cloud platform-as-a-service (PAAS) providers such as AWS or Azure. Splitting to
microservices enables scaling only those parts of the application that need scaling
instead of scaling the whole monolithic application [BHJ+]. Also different modules
can have differing computational requirements – one module might have special
memory requirements as another module might use CPU a lot. The breaking of
modules into different microservices makes it possible to tailor the servers exactly
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to their needs, which also cuts costs [Ric18, p.6]. Implementing applications using
microservices also prevents vendor lock-in [BHJ+], because the service as a whole
is less dependent on one service provider, programming language or framework. A
monolithic application on the other hand will have the same language, conventions
and tools everywhere which might make its functions easier to develop across soft-
ware teams. Although adding new features might be easier across domain teams in
a monolithic application, the deployment might be more difficult because the whole
application has to be tested and working instead of just deploying the changed parts
of the application.

DevOps related concepts like continuous integration (CI) suits microservices well.
Because one microservice’s scope is limited to a small set of functions, they are more
easy to test in isolation. Continuous integration means that changes are applied to
the main code branch in short development cycles while keeping the whole applica-
tion functional. Continuous deployment is also easier with microservice architecture.
Continuous deployment means that the application is deployed automatically when
changes are added into the main code branch. DevOps and organizational patterns
are covered in more detail in chapter 5.6.

Microservices will typically be split so that one service handles tasks related to one
entity in the business domain [Hun17, p.4]. Microservices might be split even futher
if a specific functionality is important enough. Because of the added complexity
that intercommunication between microservices adds to the application, testing the
whole system becomes more difficult because network issues such as latency and
availability have to be taken into account [Ric18, p.17]. In a monolithic application
communication works simply through function calls, which is simple and fast but
it results in greater coupling across the application. It is recommended to use a
monolithic architecture if the application domain is small and it won’t need to be
extended in the future. Monolithic architecture can also be used as a starting point
for a microservice architecture. Fowler calls this approach the Monolith-first pattern
[Fow]. Using the Monolith-first pattern allows the team to study the business domain
before investing into a more complex microservice architecture.

There are drawbacks to using microservice architecture other than increased testing
complexity. One is the difficulty of splitting the business domain in a sensible way.
The domains have to be non-dependant from each other so the microservices can be
deployed separately and so they are only loosely coupled. If the microservices are
dependant from each other, the whole architecture has to be deployed as one and can
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be thought as a distributed monolithic application [Ric18, p.17]. The third drawback
is the difficulty of deploying new features which span across multiple microservices,
because of the added complexity of microservice intercommunication and also the
timing of deploying all the updated microservices.

3.2 Comparison to Service-oriented Architecture

Service-oriented architecture (SOA) is a broad term with no clear definition [CDP17].
Common characteristics of SOA and microservice architecture are building an ap-
plication using separate composable services. Services are invoked using remote
procedure calls. A SOA uses an enterprise service bus (ESB) and heavier proto-
cols for communication with other services [Mir]. Also SOA services can share the
persistence layer whereas microservices should have their own databases. Sharing
a service bus for communication and databases makes SOA services more coupled.
Cerny et al. describes SOA’s and microservice architecture’s main differences as
where the application’s business rules are implemented [CDT18]. In SOA the busi-
ness rules are applied through the shared ESB and other platform services and the
SOA services are kept simple. In microservice architecture the business rules are ap-
plied and enforced by the microservices themselves, and the communication layer is
kept simple. Having the business rules applied through the communication layer re-
quires heavier protocols [CDT18]. Microservices are expected to use light messaging
protocols such as REST [DRS17]. Sources on the definition of SOA are scarse and
vague at best [CDP17], whereas there seems to be more clear definitions available
for the microservice architecture [Fow14, Ric18].

3.3 Inter-process communication

Because application’s functionality and data is scattered across multiple services,
inter-process communication has to be used to fulfill requests that need data from
other services. Communication strategies between microservices can be divided into
two categories: synchronous and asynchronous [Pac18]. The synchronous one-to-one
communication is called request-response communication and can be implemented
with protocols such as HTTP, gRPC and Apache Thrift. Synchronous communica-
tion means that the client that made the request will wait for the response before
continuing code execution. Asynchronous communication methods don’t stop code
execution when the request is sent. The result of the request has to be polled from
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the server afterwards separately. Typically asynchronous communication methods
are used for triggering tasks on other microservices that don’t need an immedi-
ate response or the task needs a lot of time to complete, for example generating a
file. A message broker such as RabbitMQ or Apache Kafka is often used to relay
asynchronous messages between microservices.

3.4 CAP theorem, microservice availability and consistency

CAP theorem is an idea presented by Eric Brewer which states that a distributed
database can only have two qualities from the following three: data consistency,
availability and tolerance to network partitions [Bre12]. Network partitioning
means that some operations happen only locally because a database is unavailable,
which means that the database operations are eventually applied to the database,
when the database is available again. When a network partition happens either
availability or consistency has to be sacrificed. If availability is prefered, it means
that the data across the systems will become inconsistent until recovery from net-
work partition has happened. If consistency is prefered the service has to become
unavailable until the network partition has ended. Blocking all requests will keep
the data consistent, but availability has been sacrificed. CAP therem can also be
applied to microservice architecture because of the distributed nature of the appli-
cation logic and data storage [Ric18, p.113-114]. For instance CAP theorem can be
applied to IPC when choosing from synchronous or asynchronous communication
protocols. Synchronous communication keeps data consistent because the request
waits for the data to be returned. If cascading synchronous data fetches happen
for the request, e.g. other data is requested from other services to fulfill the orig-
inal request, the services become even more unavailable in favor of consistency.
Richardson states that availability is usually favored in microservice architectures
[Ric18, p.114]. To make services more available, asynchronous communication and
eventual consistency should be used where possible [Ric18, p.103]. Eventual consis-
tency means that if data writes span across microservices, the changes are applied
over time to enable faster response times [Vog09]. Abadi describes an extension
to the CAP theorem called PACELC, which adds latency as a variable in to the
mix [Aba12]. Abadi argues that even without network partitions, a trade-off exists
between consistency and latency in a distributed system. Availability and latency
can also be linked together, where unavailable service essentially is a service with
a very long latency. Abadi states that to achieve high availability and low latency,
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data has to be replicated in a distributed system [Aba12]. Richardson also presents
a microservice architecture specific solution where a local copy of the data is stored
from other services [Ric18, p.105]. A microservice subscribes to events of other ser-
vices to keep their local copies of external entities up to date. With replicating data
there’s a drawback of potentially duplicating large amounts of data across services.

3.5 Research

Two systematic mapping studies were found on microservice architectures [AAE16,
TLP18]. Alshuqayran et al. studied the incidence of challenge topics which have to
be addressed when using a microservice architecture [AAE16]. The most commonly
covered topics were related to deployment and communication. Other challenges
covered in the research material were related to service discovery, fault-tolerance,
performance, security and logging. Case studies, solution proposals and validation
of solution proposals were found for both deployment and communication. The
rest of the topics had mostly just solution proposals with no validation studies.
Alshuqayran et al. states that studies in microservice architecture is still in its
infancy and important topics such as security are largely uncovered [AAE16]. A
newer mapping study by Taibi et al. on microservice architecture patterns supports
these claims as they found that the most studied pattern categories were related to
communication and coordination, deployment, and patterns related to data storage
[TLP18].

4 GraphQL

GraphQL is an API query language specification designed by Facebook. Facebook
has also built a reference implementation in Javascript which is widely used as a basis
for other GraphQL implementations [Facc]. This section will explain the essential
properties of the GraphQL specification.

4.1 Description

GraphQL is an API query language [Fac15b] which can be used to describe an
arbitrary selection of objects and their fields that a GraphQL server should return.
[Fac18a] The query is parsed and resolved by a GraphQL server, and data is returned
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to the client that made the query. GraphQL specification defines the query language,
but it doesn’t define how the query should be resolved. The query resolving can
happen in any way and it differs between GraphQL implementations. A GraphQL
implementation is typically a small layer in the server that only parses the query
and calls data resolvers accordingly.

As pointed out by one interviewee, GraphQL language is usually associated with
the HTTP transport protocol, but the language can be used with any transport
protocol which can delivery the query to the GraphQL server. Examples of using
GraphQL over WebSockets or other inter-process communications exist [Apo19c].

4.2 Specification

The first GraphQL specification was released in 2015 [Fac15b, Fac15a]. The GraphQL
implementation used at Facebook predates the specification by three years and was
in production use [Sch15]. The design principles for the GraphQL specification were
to provide a client-first API query language, where the developer can freely define
which data is fetched from the backend [Sch15]. The latest specification was pub-
lished June 2018 [Fac18b, Fac18a] and it is the first stable release of the GraphQL
specification. The specification defines the language and its grammar, type system,
introspection system, and describes the execution and validation engines that can
be used to resolve the queries.

4.3 Language

A request, referred as a document in the specification, can contain operations. By
specification operations are called either queries ormutations [Fac18a], but other op-
erations also exist in GraphQL implementations such as the subscription. Roughly,
queries are operations that fetch data and mutations are operations that mutate
the application’s state or data. Subscription is an example of a library specific op-
eration, which describe queries that push data to the client when changes happen.
A typical way to implement subscriptions would be to use the WebSocket protocol,
which supports pushing data to the client. The request document can also contain
fragments which can be used in the aforementioned operations to define a set of
fields that should be resolved by the server. Fragments are used to define reusable
parts of requests such as interfaces which are implemented by GraphQL objects.
Interfaces are explained in section 4.5.4.
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The document consists of lexical tokens which can be Punctuators that describe the
document’s structure, Names which can be operation or field names, and Values of
integer, float, and strings.

Listing 1: A simple GraphQL request document
query GetBook {

book ( i sbn : "9780345391803") {
t i t l e
pageCount
synops i s
r e l ea s eDate

}
}

Listing 2: A GraphQL JSON response
{

{
"data " : {

"book " : {
" t i t l e " : "The Hitchhiker ’ s Guide to the Galaxy"
"pageCount " : 224
" synops i s " : "One Thursday lunchtime Earth i s unexpectedly demol ished to make way f o r a new hyperspace bypass . For Arthur Dent , who has only j u s t had h i s house demolished that morning , t h i s i s a l r eady more than he can cope with . Sadly , however , the weekend has only j u s t begun . And the Galaxy i s a very , very l a r g e and s t a r t l i n g p lace indeed . "
" r e l ea s eDate " : "1979−1−1"

}
}

}

Listing 1 shows a simple example of a GraphQL document. The document has a
named query "GetBook". The document describes a query with a SelectionSet of
a book with an argument isbn. SelectionSets are denoted with curly brackets. The
book also has a SelectionSet which selects fields from the book object. If a field is a
complex object such as the book in the example, it has to include a SelectionSet to
choose which values are returned by the server. Listing 2 shows a response to the
listing 1

Listing 3 is an example of a more typical request document with a reusable fragment
and variables. Variables are denoted with ’$’ characters and are followed by a type
declaration. The character ’ !’ means that the variable is required and cannot be
a null value. Variables are used to parametrize operations so the operation can be
reused on client-side without building a separate request document string for every
request.
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Listing 3: GraphQL document example
query GetBook ( $ i sbn : S t r ing ! ) {

book ( i sbn : $ i sbn ) {
t i t l e
pageCount
synops i s
r e l ea s eDate

author {
. . . p e r sonF i e ld s

}

ed i t o r {
. . . p e r sonF i e ld s

}
}

}

fragment pe r sonF i e ld s on Person {
name
imageUrl

}

Behaviour of resolving field data can be altered with directives. Directives can be
used to specify additional information about field’s format, conditional field reso-
lution, field skipping for instance. Listing 4 shows an example of using a directive
specifically to include a field when a variable is set to be true.

Listing 4: Example of using directives
query GetBook ( $ i sbn : S t r ing ! , $ inc ludeSynops i s : Boolean ) {

book ( i sbn : $ i sbn ) {
t i t l e
pageCount
synops i s @include ( i f : $ inc ludeSynops i s )
r e l ea s eDate

}
}

4.4 GraphQL Schema

GraphQL specification includes a type system language which describes GraphQL
server’s schema [Fac18a]. The GraphQL schema tells which queries, mutations,
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types and directives exist on the server. The schema can include inline documenta-
tion by using multiline strings next to the documented types. The inline documen-
tation is then used by the developers who will develop their application against the
implemented GraphQL server. The schema can also be used for instance by client
libraries for code-generation and by servers for generating stub functions for query
resolvers. GraphQL schema can also describe extensions on another schema which
might come from an another API. These schema extensions are one feature that can
be used when combining microservices with Schema Stitching, and will be discussed
later in this thesis.

4.5 Types

GraphQL type system consists of objects and scalar types which are defined in the
application’s GraphQL schema.

4.5.1 Scalars

GraphQL specification has primitive types called Scalars which can be integers,
floating point numbers, booleans, and strings [Fac18a]. The schema can also define
custom Scalars that resolves into a string, but represents for instance a date. The
GraphQL response’s leaves are always Scalars, so they always resolve into a basic
primitive type. The specification describes strict rules on type coersions, e.g. how
scalars can be typecasted when resolving a value. Primitive values can also be
represented as Enums, if there’s only a limited amount of values which the primitive
can resolve into.

4.5.2 Objects

Objects are entities that hold other Objects, Scalars, or Enums. Objects form the
hierarchical structure of the GraphQL schema [Fac18a]. Objects contain named
fields that represent other Objects, Scalars, Enums or Unions. Fields can be named
anything other than strings starting with double underscore ’__’, which are reserved
for the schema introspection system in GraphQL.

Listing 5: GraphQL Object example
type Book {

t i t l e : S t r ing !
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pageCount : Int
synops i s : S t r ing
r e l ea s eDate : Date
author : Person
ed i t o r : Person
r e l a t e d : [ Book ]

}

Listing 5 shows an example object schema where ’title’, ’pageCount’, ’synopsis’,
’releaseDate’ are scalars, so they will be the GraphQL response’s leaf nodes. Fields
’author’ and ’editor’ are other objects so they act as intermediate nodes in the re-
sponse data. ’Related’ field is a List of other Book types. GraphQL specification
allows recursive references in the type definitions [Fac18a]. When objects are re-
quested from the GraphQL server, the specification states that the fields should
appear in the response in the same order as they were requested. Objects can also
be used as variable input values or field arguments.

4.5.3 Nullable types

GraphQL field’s value can be null by default, unless specifically denoted as a required
field [Fac18a]. In Listing 5 field ’title’ is marked as a required field. If the field is
queried from any Book type, a non-null value is guaranteed to be returned from the
server.

4.5.4 Interfaces

GraphQL specification supports declaring Interfaces which objects can implement
[Fac18a]. Listing 6 shows an example of using interfaces to define shared fields
between objects. The listing shows two interfaces which are both implemented on
Book and Article types. The implementing types define their own fields on top
of the interfaces. Listing 7 shows an example query for an ’entity’ which returns
EntityInterface typed object. To add more fields to the query which reference the
implementing objects and other interfaces, the query has to use the dot notation
shown in the listing.

Listing 6: Interface definition example
i n t e r f a c e T i t l e I n t e r f a c e {

t i t l e : S t r ing !
}
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i n t e r f a c e En t i t y I n t e r f a c e {
id : ID !

}

type Book implements En t i t y I n t e r f a c e & T i t l e I n t e r f a c e {
id : ID !
t i t l e : S t r ing !
i sbn : S t r ing

}

type A r t i c l e implements En t i t y I n t e r f a c e & T i t l e I n t e r f a c e {
id : ID !
t i t l e : S t r ing !
do i : S t r ing

}

Listing 7: Interface query example
query GetEntity ( $ id : ID ! ) {

en t i t y ( id : $ id ) {
id
. . . on T i t l e I n t e r f a c e {

t i t l e
}
. . . on Book {

i sbn
}
. . . on A r t i c l e {

doi
}

}
}

4.6 Introspection

GraphQL specification also defines an introspection schema that can be used for
querying the schema of a GraphQL server [Fac18a]. The introspection schema has
a __Schema type which contains all the types and directives of the server. A
__Type field is also available which can be used for querying information about a
single field. The introspection functionality of GraphQL can be utilized for instance
in developer tools that expose the API schema in an easily readable format. In
figure 1 a screenshot of the GraphiQL tool is presented. On the left side a query
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can be written which can be executed on the API. The result or errors are output
on the middle column. In the example a film is queried with a hashed ID. The fields
id, title, director and publishDate are used as the selection set for the film. A JSON
object is returned by the API of the movie "New Hope" with the selected fields. On
the right side a documentation column is present where the schema can be explored.
For instance in this example the entity Film is open to see which fields the Film
entity exposes.

Figure 1: GraphiQL tool for inspecting GraphQL APIs

4.7 Query execution

For executing a request the GraphQL server needs a schema and a request document
at minimum [Fac18a]. If variables are used in the request document, the request
should also include all the non-optional variables required by the request document.
When fulfilling the request, all validations against the server’s GraphQL schema
should pass. This means that all requested fields and their types are defined in the
request document the same way as defined in the schema. If validations don’t pass,
the request should return a list of errors and completely fail the original request.
Queries should select and return data from the server based on the fields defined
in the request document. Fields at same level can be resolved in parallel, but the
ordering in the result has to be the same as in the request document.
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Mutations typically perform side-effects in the server. After the side-effects are done,
a selection set is returned from the mutation’s return type. A good convention is
to return the modified object nested in a special mutation result type, which can
include other metadata fields later on if needed [Mer]. If a subscription is supplied
in the request document, a connection is established between the client and server
and new items in the event stream are sent to the subscriber.

4.7.1 Schema extension

The GraphQL specification defines extension types for Objects and Interfaces [Fac18a].
Schema extension can be used for extending local object types or interfaces, or types
in a remote schema. An example usage of schema extension is schema stitching which
combines multiple local or remote schemas together into one single schema. Schema
stitching is covered in more detail in chapter 6.2.1. Another example would be to
extend existing remote schema with new local functionality.

4.8 GraphQL server implementation

A GraphQL reference implementation is provided by Facebook, which is imple-
mented in Javascript [Gra19]. The reference implementation accepts a type schema
object which includes resolvers for all leaf nodes of defined GraphQLObjectsTypes.
Resolving data is a typical term used in GraphQL implementations and specifica-
tion, which means returning a value or object for a given field. Thus, functions that
return the values or objects for field definitions are called resolvers. Listing 8 shows
an minimal setup for a GraphQL server that returns book objects based on their id.
In the example the root query schema is constructed with one GraphQLObjectType
bookType. The imported getBook function is expected to match the schema defini-
tion of the bookType. Using a static type checker such as flow-typed or a javascript
dialect like TypeScript can help with matching the type definitions of the schema
and resolvers.

Listing 8: A minimal example of using the reference implementation in Javascript
ES6 syntax [Gra19]
import {

graphql ,
GraphQLSchema ,
GraphQLObjectType ,
GraphQLString
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GraphQLInt
} from ’ graphql ’ ;

import {getBook} from ’ . / models /book ’

const schema = new GraphQLSchema({
query : new GraphQLObjectType ({

name : ’Query ’ ,
f i e l d s : {

book : {
type : bookType ,
args : {

id : {
d e s c r i p t i o n : ’ i n t e r n a l id o f the book ’ ,
type : GraphQLNonNull (GraphQLString ) ,

} ,
} ,
r e s o l v e : ( root , { id }) => getBook ( id ) ,

}
}

})
} ) ;

const bookType = new GraphQLObjectType ({
name : ’Book ’ ,
d e s c r i p t i o n : ’A book with an ISBN code ’ ,
f i e l d s : ( ) => ({

id : {
type : GraphQLNonNull (GraphQLString ) ,
d e s c r i p t i o n : ’The i n t e r n a l i d e n t i f i e r o f the book ’ ,

} ,
t i t l e : {

type : GraphQLString ,
d e s c r i p t i o n : ’Book t i t l e ’ ,

} ,
synops i s : {

type : GraphQLString ,
d e s c r i p t i o n : ’ Synopsis ’ ,

} ,
i sbn : {

type : GraphQLString ,
d e s c r i p t i o n : ’ ISBN code ’ ,

} ,
pageCount : {

type : GraphQLInt ,
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d e s c r i p t i o n : ’ Page count ’ ,
} ,

} ) ,
} ) ;

export const BookSchema = new GraphQLSchema({
query : schema ,
types : [ bookType ] ,

} ) ;

4.9 Alternatives

GraphQL is commonly compared to API implementations using the SOAP protocol
or the REST architectural style.

4.9.1 REST, Representational State Transfer

GraphQL and REST APIs are considered as alternative solutions for each other.
Representational State Transfer (REST) is an architectural style defined by Fielding
in his doctoral dissertation [FT00]. REST architecture style maps domain entities
as resources, identified by resource identifiers. REST architecture can be applied to
any transport protocol, but REST is often associated with the HTTP protocol using
URIs as resource identifiers. A common way to apply REST architecture on HTTP
is to use HTTP Verbs GET, POST, PUT and DELETE to indicate which action should
be done on the resource. GET is used for fetching resource’s data, POST for creating
a resource, PUT for updating a resource, and DELETE for removing the resource. Al-
though the four HTTP verbs are commonly associated with corresponding CRUD
operations, the PUT and DELETE verbs are less used in practice [Fow10]. Each op-
eration returns the new state of the modified resource. HTTP status codes should
be used to inform the client what happened during the operation. Additional con-
straints to the architecture model are that requests are stateless, e.g. don’t depend
on the server’s state, and that the response’s cacheability is explicitly defined. Uni-
form interface principle in the REST definition, also known as Hypermedia as the
engine of application state (HATEOAS), states that the responses should include
information about possible actions on a resource, which makes the API locations
and actions discoverable from the clients.

REST principles are applied to HTTP endpoints in varying degrees. The Richardson
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maturity model of REST APIs explain the different levels in which the architecture
style can be applied on HTTP endpoints [Fow10]. In the lowest level the HTTP
endpoints don’t map entities as resources and custom remote procedure calls are
used to modify the entities. In the highest level the domain entities are presented
as resources, HTTP verbs are used for describing operation intent and links are
provided in the responses for possible resource actions.

GraphQL endpoint’s API can be explored using the schema introspection function-
ality of the specification. This is a common benefit listed in REST and GraphQL
comparisons. REST APIs can also be made discoverable by using the HATEOAS
principle or by creating API definitions using a specification such as the OpenAPI
[Swa19]. The OpenAPI definitions can then be explored using tools such as Swagger
UI. OpenAPI defines the schema of the data model, and also information about the
service like the service’s location. Another GraphQL Schema equivalent for JSON
would be the JSON Schema, which describes the format of a JSON document. JSON
schema can be used to describe JSON data models and to validate the produced data
on the server, or the received data on the client. The GraphQL schema is similarily
used to validate data on the server and also on the client [Fac18a]. Eventhough it’s
possible to implement a REST API that is explorable, has schema definitions and
good documentation, they are rarely implemented with all those features [Fow10].
In GraphQL all the mentioned features are implemented by default.

Many entities can be fetched in a single GraphQL query, which commonly isn’t
possible in REST APIs. This can be circumvented by custom solutions such as
Facebook Graph API’s batched API calls [Fac19]. The batch endpoint processes
multiple requests encoded as a JSON array of JSON request objects. The JSON
request objects define the endpoints, parameters and HTTP verbs of the operations.

Nemek argues in his presentation and blog post that implementing a properly de-
signed REST API and with the use of HTTP/2 protocol, data overfetching isn’t an
issue, because consecutive multiple requests are multiplexed with the newer trans-
port protocol [Nem18]. By adding hyperlink controls (HATEOAS) and adding ad-
dresses for linked data the JSON objects can be explored and fetched from different
endpoints. This means that REST endpoints can expose only minimal amount of
fields and all the required data can be fetched from multiple endpoints without
much overhead. Still, multiple rounds of multiplexed requests are required to fetch
any additional data about linked objects, compared to making a single request with
GraphQL which describes all the fields that should be resolved in the request.
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4.9.2 SOAP

Simple Object Access Protocol (SOAP) is a lightweight communication protocol
which uses XML as the data exchange format [GHM+07]. The protocol is con-
sidered light because it only defines the data structure and processing rules of the
messages, but states no guarantees or requirements about how the messages should
be delivered. XML data format on the other hand is a verbose data format which
adds network traffic compared to a solution that uses JSON. The specification de-
fines an XML structure that is used for communication between computer systems.
A SOAP message consists of a message header and a message body wrapped in an
SOAP envelope element. The SOAP header consists of parts that define how and
by who the message header should be consumed or processed. The SOAP headers
might be read by intermediary nodes, but the body is always meant for the end
recipient node. The body consists of the operation that is invoked by the requester,
or has the response of the requested operation. SOAP isn’t a query language, and
doesn’t define support for GraphQL like field selection. Compared to a GraphQL
API, SOAP works more like an RPC protocol where data is requested by calling
methods by using the SOAP messages. The SOAP operations map to functions, in-
stead of mapping to resources (REST) or entities and their fields (GraphQL). Similar
to GraphQL, a SOAP service is called through a single endpoint which processes
the XML SOAP requests.

XML Schema can be used as the GraphQL schema equivalent of SOAP endpoints.
XML Schema is typically used within a WSDL contract to define inputs and outputs
of an web service’s interface [CMRW07]. WSDL contract is a document that is used
to describe web service’s endpoints and interfaces. Although WSDL can be used to
describe other endpoints, it is typically used to describe SOAP web services.

4.9.3 Netflix’s Falcor

A more direct competitor to GraphQL would be Netflix’s Falcor library which uses
a virtual JSON object model definitions instead of a schema [Net19]. Resolvers
for the virtual JSON object’s fields are defined in a similar fashion as in GraphQL
server implementations. The Falcor client library is used to query fields from the
model. Setting the virtual object’s fields are also supported through the model.
The Falcor virtual JSON model isn’t typed whereas a GraphQL Schema is strongly
typed. Falcor is a single library whereas GraphQL is a language specification with
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many implementations.

5 Microservice architecture patterns

Taibi et al. gathered microservice architectural patterns in their systematic mapping
study [TLP18]. The study analysed 42 peer reviewed papers and two grey litera-
ture articles and combined all the found patterns in a pattern catalogue. Three
main categories of patterns seemed to emerge from the papers. Orchestration and
Coordination-based patterns describe ways to handle communication between mi-
croservices. Second category was related to microservice deployment methods. The
third category of patterns was related to data storage and communication. The
first and third categories will be presented in detail in subchapters 5.2 and 5.3.
There seems to be a concensus of using either containers or VMs for deployment of
microservices [TLP18]. Another common pattern for designing the architecture of
microservices is using Domain-driven design (DDD) [DRS17]. DDD itself doesn’t
describe functional details of the architecture such as the database setup or deploy-
ment options, but it concerns itself more with how to define separate subdomains
in the business domain [Eva03]. The identified subdomains can be used to define
how to split functionality between the microservices [DRS17]. Domain-driven de-
sign is thought to complement microservice architecture design well in many sources
[Ric18, DRS17, Fow14].

5.1 Domain Driven Design

Domain-driven design (DDD) is a collection of design patterns which can be used
to model the business domain of a software project, introduced by Eric Evans in
his book ’Domain-driven design’ [Eva03]. In DDD the software team and the do-
main experts form a common language, called ubiquitous language, which is used
to describe the business domain’s models and entities. The language has shared
names for all the entities in a problem domain. The model is used and refined in
discussions throughout the project, as it is the basis for all software implementa-
tions in the project. DDD is thought to fit microservice architecture well, because
business capabilities are modeled as separate bounded contexts without trying to
form unified shared entities between the contexts. A bounded context has a limited
self-contained view on its entities, which prevents creating highly coupled god classes
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in the project, which try to combine all the functionality of the entity across the
bounded contexts [Ric18, p.54-55].

5.1.1 Domains, subdomains and bounded contexts

Using domain driven design can help with separating concerns in the whole appli-
cation domain [Fow14]. In a large organization the whole business domain can be
splitted into separated areas, called subdomains, which will have their own concepts
and also partially shared concepts [DRS17]. The subdomain is the problem space of
the particular business area [Eva03, p.57]. A subdomain consists of tightly coupled
concepts of one business area. Inside a subdomain a smaller area can be drawn with
a fewer concepts, which represents the solution space of the problem. The solution
space is called bounded context [Ver13, p.57] and is used as the basis for the soft-
ware implementation [Fow14]. Difference to naive business capability modeling is
that bounded contexts don’t share their entities between other bounded contexts,
which suits microservice architecture design well. This means that although a com-
mon entity might exist all over the business domain, such as an entity customer,
the bounded context describes only part of the business entity which is relevant to
the problem space in question. Let’s consider the two bounded contexts in figure 2.
Two bounded contexts Customer service and Billing share three business entities
Customer, Product and Invoice. Both bounded contexts will have a model for Prod-
uct, but they will contain different fields. In Customer service the Product might
contain fields such as previousMaintenanceDate or warrantyInfo and Billing context
Product might contain dateOfSale and quantity.

5.1.2 Context map

Concepts that describe the same entity in the business domain are called shared
concepts. Shared concepts connect bounded contexts together. Eventhough the
shared concepts might be named the same, they might have slightly different mean-
ing between the different contexts. Customer is a typical shared concept between
bounded contexts and it will mean different things in it’s separate contexts, as shown
in figure 2. Strategies like adding ontologies to the bounded context models can re-
duce problems such as overlapping concepts with different naming and also differing
attribute names within the concepts [DRS17]. A context map is the graphical or
literal presentation of the connected bounded contexts. Maintaining a context map
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will prevent incompababilities between implementations of bounded contexts and
keep the overall model coherent [Eva03]. To make bounded contexts’ shared con-
cepts compatible, a translation service can be used to convert between the bounded
contexts. Typically the service itself is responsible of using this translational service
when it needs to use data from the other bounded contexts [Eva03].

�✁✂✄☎✆✝✞ �✁✂✄☎✆✝✞

✟✠✡☎☛☞✝

✌✍✎✏✑✒✓✔ ✕✓✔✖✗✘✓ ✙✗✚✚✗✛✜

✟✠✡☎☛☞✝

�✁✂✄☎✆✝✞ ✂✝✞✡☛☞✝

✝✆✢✣☎✤✝✝

✥✁✢✢☎✞✄ ✄☛☞✦✝✄

✥✧✣✝

★✧✤✆✝✠✄ ✢✞☎✡☛✩✝✞

✥✝✞✡☛☞✝ ✧✞✝✧

★✞☎✩✁☞✄ ★✞☎✩✁☞✄

✥✄☎✞✝

✪✝☞✝☛✢✄

Figure 2: Two bounded contexts with shared concepts which connect the bounded
contexts together.

5.1.3 Aggregates

Business entities can have complex associations to each other. In a system that
models a book-related business domain, there could be a book microservice and a
retailer microservice. A book microservice could track the list of retailers where the
book is sold at. The retailer microservice might want to use the same book-retailer-
relationship to show which books are in their inventory. In a monolithic application
these relationships can be tracked in a single linking database table. On a distributed
system such a linking table would tightly couple the microservices together and it
isn’t clear in which microservice the linking database table should be placed [Sar19].
In aggregate modeling the relationship is split in two parts: the retailer’s inventory
and the book’s soldAt references. By splitting the relationship into two parts the
data ownership becomes clear and the data updates can happen within a single
microservice. Data outside the writing microservice should be eventually updated
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to keep data consistent. Other entities in the retailer aggregate could be the address,
its staff, and the retailers reviews.

Aggregates are a collection of connected domain entities which form a functional
whole which can be updated and deleted together in a single transaction [Eva03].
Designing aggregates helps with figuring out the boundaries of data updates and
removals. Transactional data updates should never span across aggregates, and
anything else should be eventually updated if the aggregate update affects other
aggregates in some way. For instance if the inventory of the retailer is updated,
an asynchronous event could be used to update the corresponding book’s soldAt

references.

Aggregate modeling might also help with creating schema stitching compatible mi-
croservices. When creating a schema stitched GraphQL server, object references
in one schema can be replaced with actual objects using schema delegation. The
aggregate style relationship mapping works great both ways, because references on
both sides can be resolved with direct mapping to another microservice’s schema,
instead of making a costly inverse relationship query from another microservice.

5.1.4 Continuous integration and shared kernels

Eventhough the goal of DDD is to manage a complex application domain through
splitting it into smaller subdomains, sometimes sharing code can’t be avoided. In
the domain model this is shown as overlapping bounded contexts, and these areas
are called Shared kernels. Shared kernel’s appear commonly in the core domain of
the application. In DDD continuous integration (CI) should be used to sync the im-
plementations of the shared kernel between bounded contexts. A test suite will keep
the shared code-base working between different contexts, but also it’s a good indi-
cator of how consistent the model is between software teams and implementations
[Eva03].

5.2 API Gateway

API Gateway was identified by Taibi et al. as a popular orchestration and coordina-
tion based pattern in an application that uses microservices [TLP18]. API Gateway
is a service on top of microservices which exposes and combines the functionality of
microservices for client applications to use. API Gateway can provide customized
endpoints for different client applications in the microservice ecosystem. The API
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Gateway can also handle authorization and load balancing for the microservices.
Benefits of using an API Gateway was reported to be extensibility and backwards
compatability because of the additional level of freedom the customized API can
provide. The reported downsides were scalability issues and increased complexity in
the architecture. Because GraphQL enables clients to define their own customized
queries, a single GraphQL endpoint can be used by multiple clients, thus GraphQL
suits well to be used in the API Gateway pattern. Using GraphQL as the API
Gateway layer will be discussed in section 6.2.

5.3 Data Storage Patterns

Taibi et al. identified three data storage patterns in their microservice architecture
study [TLP18]. The most prominent pattern in the source case studies was to use
separate databases for every microservice. Having separate databases has the benefit
of making scaling and deployment easier, protecting data from getting accessed from
other microservices. The second identified pattern was to use a database cluster for
data storage where each microservice has only access to the database tables of their
problem domain. Using a database cluster can be benefitial for easier scalability
and when having high amounts of traffic, but the increased complexity and a shared
point of failure is a risk when using a database cluster [TLP18]. Also a single shared
database was used in a few case studies. A single database is typically present
when migrating from a monolithic application. Using a database cluster or a single
database can have the added benefit of increased data consistency through database
rules, which can help when combining data in a schema stitched GraphQL API.
Schema stiching will be discussed in chapter 6.

5.4 Command Query Responsibility Segregation

Command Query Responsibility Segregation (CQRS) is a software pattern, where
reading and writing data is done by separate models [Fow11]. Richardson’s definition
of CQRS is to maintain a separate view of queryable data by using events [Ric18,
p.228]. Typically data is written and read by a single model from the same data
store, whereas in CQRS the written and read data can be saved into different data
stores [Fow11]. CQRS can be a suitable architecture pattern for high throughput
systems where writing or reading data has to be separately optimized. Fowler writes
that CQRS is generally more suitable for complex domains and should not be used
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unless necessary. Most of business cases fit the CRUD (create, read, update, delete)
model which is a lot more easier for the developers to reason about, compared to
CQRS [Fow11].

5.5 Authorization patterns

In a microservices context the authentication typically happens in a separate service
outside the business logic layer. A Single Sign-on (SSO) service issues an authenti-
cation token for the user, which is saved locally in the client as a cookie or by other
means [Ide15]. The token can be a value token, which presents claims about the user
and provides a signature that can be verified with a public key by the application
server. Typically the JWT standard is used for implementing value tokens [Rig19].
The token can also be a reference token, which contains an opaque session id which is
translated into a value token in a microservice, or in a layer before the microservice
as suggested by Ideskog [Ide15]. JWT value tokens work well to minimize identity
related network traffic between the microservices and an identity service.

If a session is required by the application, a distributed session store should be used
with the application’s microservices [Ayo18]. An external database or key-value
storage can work as the distributed sessions store. The only requirement is that
the store is accessible from every microservice that needs access to the session data.
This results in more network traffic, but it might be considered safer than relying
completely on a value-based token, which can possibly be decrypted and the user’s
data extracted on the client side [Rig19].

5.6 Organizational patterns

DevOps is a modern set of practices where software testing, deployment and logging
are highly automated with using code and tools such as a continuous integration
(CI) pipeline [EGHS16]. The term DevOps comes from the combination of devel-
opment and operations. Traditionally development and operations might have been
responsibilities of different teams, whereas now a single team typically has both
of the responsibilities. Cloud computing platforms such as the AWS or Azure are
used for on-demand resources, where virtualization and containerization techniques
are used for hosting the application. CI pipelines are used to automatically test
and deploy new versions of the developed software. A CI pipeline pulls in changes
from version control, tests, builds and deploys the code. The automatized deploy-
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ment pipeline results in reproducible builds which in turn makes larger application
scaling possible, because new servers can be launched with little effort if needed.
Reproducible builds are important so server behaviour is predictable. Microservice
architectures rely on DevOps workflows for deployment and management [Fow19c].

5.7 Testing microservices

Additional testing complexity is added by the distributed nature of the microservices
architecture [Fow19d]. As with other architecture types, unit testing should be
utilized to test business functionality. Unit testing can be split into two categories
of sociable unit testing, where the module is tested through its interface and it’s state
is observed. The module uses other modules normally during the testing. Solitary
unit testing is done by replacing other modules with mockups and observing the
module’s behaviour and interaction with the test doubles [Fow19d]. Fowler states
that typically sociable unit testing is done on the business logic as the interactions
are often complex and mocking the behaviour can be difficult. Solitary testing is
used for external interfaces such as persistence layer code and REST endpoints.

Integration testing should be utilized to verify that the components inside a mi-
croservice function together correctly [Fow19d]. Integration testing can be done at
any level of granularity. In microservices, integration testing is typically used for
verifying integration code to other microservices in the ecosystem or with external
services. The tests should focus on the tested microservice. Instead of writing com-
prehensive acceptance tests for other microservices, the testing should be limited to
the tested microservice and not span to other microservices. Because microservices
rely on IPC with external components, network issues such as timeouts and errors
should be taken into account in the integration testing [Fow19d].

Component testing should be used for testing the microservice as a whole, where
external services are replaced with test mockups. Databases can be replaced with a
lightweight in-memory implementations [Fow19d].

Contract tests are run to verify that an outside microservice’s API works as ex-
pected [Fow19d]. Contract tests should be run on the consuming microservice in
the pipeline to detect faulty or regressed microservices. Consumer-driven contracts
is a development style where contract tests are written for a new service to define
which resources are expected from other services. The producing services are then
developed accordingly. End-to-end tests are done to verify that the microservice
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ecosystem works as a whole together. End-to-end testing can be used to detect
network issues for instance between the services [Fow19d].

Using a microservice architecture can make testing easier, because of clear bound-
aries between components and the possibility of mocking other components when
needed. Fowler recommends that microservice testing should concentrate on more
fine-grained testing, having unit tests the most, and end-to-end tests the least
[Fow19d].

6 Architecture Patterns with GraphQL

In this section architecture patterns that can be applied to GraphQL APIs are
presented. Some patterns are applicable to a microservice architectures in general
and some patterns are GraphQL specific, such as schema stitching (section 6.2.1).
Because GraphQL is a fairly new specification, we rely mostly on grey literature,
e.g. blog posts and websites, for information on combining microservice architec-
ture patterns with GraphQL. The presence of these patterns are discussed with the
interviewees to analyze the incidence of the patterns in real-world projects.

6.1 Validating GraphQL Schemas against DDD models

Many studies [DRS17, Fra17] explore ways of augmenting Domain Driven Design
methods with domain-specific languages (DSL) such as OWL or graphical represen-
tations like UML. The GraphQL schema describes the type system of the GraphQL
server, e.g. which entities and types can be requested from the server. If the
microservice is implemented from the DSL model of the business domain, the re-
sulting GraphQL schema’s entities and their attributes should match the domain’s
model. To minimize inconsistencies between the original model and the microser-
vice’s GraphQL schema, we suggest either automated tools to validate the model
against the schema, or using code-generation techniques to generate the schema
from the business model’s DSL. Schema validation can be problematic if the schema
reflects the DDD model directly [Ver13, p.137-138]. This will create API instabil-
ity because the GraphQL schema changes every time when the internal model gets
updated. In the interviews, mirroring business models in the GraphQL schema was
discussed.
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6.2 Using GraphQL as an API Gateway layer

API Gateway is a popular microservice architecture pattern and was used in many
case studies covered by Taibi et al. [TLP18]. A GraphQL service can be used as
the API Gateway or as a complementary endpoint to other RESTful endpoints in
an API Gateway [Gri18]. Figure 3 shows three suggestions how a GraphQL API
Gateway can be used with microservices.

Figure 3: Examples of using GraphQL API to combine microservices

Vernon describes in his book ’Implementing Domain-driven Design’ that using a
RESTful interface for a DDD model promotes loose coupling. The same principles
should also apply to an API Gateway. The decoupling of the HTTP interface from
the core domain model helps with keeping compatability with clients when imple-
mented correctly. Vernon says that directly exposing the core domain model should
be avoided because it might cause client breakage when the model is changed. Im-
plementing an API that translates to the core domain model for clients is considered
a better practice. In the book the recommendation is to define a format specification
which the RESTful HTTP interface will fulfill, so the clients can rely on the format
eventhough the core domain might change [Ver13, p.137-138]. It can be drawn from
these best practices that also a GraphQL API shouldn’t mirror the core domain
directly to prevent API breakage issues with clients. A fixed format specification
can help with keeping the GraphQL entities from changing too much eventhough
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the core domain changes. Schema changes due to changes in the domain model was
discussed in the interviews.

Griffiths suggests that for better client compatability a RESTful HTTP interface
and also an GraphQL API can be developed side-by-side [Gri18]. The suggested
method is to develop primarily the GraphQL API and expose the API also through
REST endpoints. The REST endpoints will call the GraphQL API with predeter-
mined queries to reduce code duplication. The reported downsides would be missing
the REST endpoint specific authorization, throttling, cache and load balancing func-
tionalities that an API Gateways typically can provide [Ama19]. For a GraphQL
API these API Gateway functionalities have to be typically implemented per service
in the GraphQL resolvers or the business logic layer.

6.2.1 Schema stitching microservices into one API gateway

In figures 3b and 3c architecture models are presented where an intermediate GraphQL
API connects and combines microservices in a layer below. The GraphQL API layer
fetches resources from the application’s microservices and sends them forward to
the requesting client. Otemuyiwa explains connecting a GraphQL API on existing
REST endpoints using the Apollo GraphQL library [Ote18]. An intermediate API
layer can be used for migrating and connecting old microservices together into a
single GraphQL API, without rewriting the old services. The GraphQL API layer
fetches data from the underlying microservices using HTTP. The clients will then
make calls to the GraphQL API instead of connecting to a RESTful API Gateway
or directly connecting to the microservices.

Apollo GraphQL library also provides other tools for combining other microservices.
If the microservices expose their functionality through a GraphQL API, a func-
tionality called Schema Stitching can be used to combine the different GraphQL
APIs together into a single API. This scenario is represented in figures 3a and 3b.
Schema stitching’s suggested use case is to make large codebases more manage-
able by separating an otherwise large API into separate smaller GraphQL services
[Apo19b]. Schema stitching can be used to combine local GraphQL schemas and
remote schemas together and also extending the types of the combined schemas with
new fields, or adding fields or entities from other schemas. Extending the combined
schema works with same principles as explained in chapter 4.7.1. Schema stitching
is implemented in the Apollo GraphQL library. Apollo library provides a delegate-
ToSchema function which can be used to add an entity from another schema into
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another extended schema’s entity. This can be useful for instance for populating
entity ID fields with the actual entities from other schemas. One example would
be to reference a user object with an ID in a separate schema, and populating the
actual user data into the entity from an identity API.

An example of schema stiching can be seen in listings 9 and 10. In listing 9 two
remote schemas and an schema extension is presented. The first two entities are
defined in separate remote APIs. The third schema extension type defines an addi-
tional author field in to the Book’s entity. Listing 10 shows an example how schema
delegation can be used in the stitching API’s resolver to fetch the author field from
the User schema’s API.

Listing 9: Example of an extended schema from another API
# Defined in GraphQL API 1
# A remote Book schema
type Book {

id : ID !
t ext : S t r ing
authorId : ID !

}

# Defined in GraphQL API 2
# A remote User schema
type User {

id : ID !
name : S t r ing
authorId : ID !

}

# Defined in the S t i t c h i ng API
extend type Book {

author : User
}

Listing 10: Javascript example of a resolver with schema delegation
Book : {

author : {
fragment : ‘ . . . on Book { authorId } ‘ ,
r e s o l v e ( book , args , context , i n f o ) {

re turn i n f o . mergeInfo . delegateToSchema ({
schema : ApiTwoSchema ,
opera t i on : ’ query ’ ,
f ie ldName : ’ userById ’ ,
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args : {
id : book . authorId ,

} ,
context ,
in fo ,

} ) ;
} ,

} ,
}

6.3 Communication strategies in a GraphQL API

Connections from a client to a GraphQL server are typically synchronous HTTP re-
quests where the request contains the GraphQL request document and a correspond-
ing JSON response is returned by the GraphQL server. GraphQL specification also
describes the subscription operation, which subscribes the client to receive events
from the server. Subscriptions require a sustained connection protocol between the
GraphQL server and client such as Websockets to work.

As described by Pancheco, compared to monolithic architectures where communi-
cation happens through function calls, in microservice architecture the latency and
processing time of requests become meaningful and have to be taken into account
[Pac18]. Selecting a light weight data format instead of using JSON can reduce time
which is used for parsing microservice requests.

Requests can be either synchronous or asynchronous between the GraphQL server
and microservices. In the interviews, the case project’s communication methods
between the GraphQL server and microservices were discussed.

6.3.1 Inter-process communication using GraphQL

GraphQL can also be leveraged as an inter-process communication protocol [Abh19].
A solution presented by Aiyer uses a Javascript library graphql-bindings, which gen-
erates a Javascript API, the bindings, from a GraphQL API. The bindings can be
created for a remote or local GraphQL API. The resulting API can be embedded
easily into GraphQL resolvers for instance, to fetch data or to run mutations from
other services, without having to define verbose request documents for each request.
Using a GraphQL API for inter-process communication will add overhead in parsing
the request documents and also in document size, compared to using simpler pro-
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tocols such as REST or Protocol Buffers [Goo19]. Also there’s an added overhead
of implementing a GraphQL API for a microservice. The added overhead can be
justified if the microservice’s GraphQL APIs are schema stitched in an API Gate-
way layer, which makes it possible to define the schemas only once per microservice.
Vernon states [Ver13, p.137-138] that the core domain model shouldn’t be exposed
directly by the API. Implementing a GraphQL API for a microservice can support
this separation of API and the core model, much like implementing a REST API
that doesn’t mirror changes in the core domain directly.

6.3.2 Event subscriptions via GraphQL subscriptions

If the GraphQL library supports it, a subscription request document can be sent
from the client to subscribe for push events for defined subscription fields. We
suggest that GraphQL subscriptions can be used to subscribe to domain events in the
microservice ecosystem. The pattern could be used for implementing a notification
system for instance. As with recommendations not to mirror the core domain model
in the API signature [Ver13, p.137-138], the same principles should most likely be
applied for subscriptions.

6.4 Authorization in the GraphQL API microservice stack

The official GraphQL documentation recommends placing authorization logic in the
business logic layer, which keeps all the authorization logic out of the API layer
[Facb]. This also makes it easier to develop multiple APIs alongside each other,
for example having a RESTful and GraphQL side-by-side as suggested by Griffiths
[Gri18] because the authorization logic doesn’t have to be duplicated in many places.
Placing the authorization logic in the business logic layer instead of the API layer
prevents differences in data access rights between GraphQL resolvers that use the
same business logic layer functions. The GraphQL documentation also states that
the business logic layer should receive the user object instead of an opaque user id
or token, which keeps all authentication logic out of the business logic layer.

Apollo blog’s stance on authorization is in line with GraphQL’s official documen-
tation. In complex server application the authorization logic should be placed in
the business logic layer [Daw18]. Implementing authorization logic in the business
layer is trivial in a monolithic application with a use of a security module in the
application framework. A distributed authorization method presented in Chapter
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5.5 is required for microservices to prevent duplicating authorization logic in the mi-
croservices [Ayo18]. Distributed session storage is also needed if calls to a particular
microservice are load balanced from the GraphQL API.

According to guidelines in the GraphQL documentation and Apollo Blog the autho-
rization logic should be placed below the API layer and populating the user context
should happen before resolving data in the business logic layer [Facb, Daw18]. Based
on these guidelines, populating the user context could happen inside a microservice
through a middleware module which accesses a distributed session storage and does
the user data fetching before resolving data in the business logic layer. This is a sim-
pler option, but it might result in code duplication because the middleware library
has to be recreated for every language used in the microservice ecosystem. This also
increases network traffic and reduces availability in microservices, because a syn-
chronous request has to be made to the identity server to fetch user data. Another
option would be to have an additional API layer which fetches the user data before
passing the request to the microservices, which is presented in figure 4. The user
authentication layer can also be part of the API gateway as presented by Richarson
[Ric18, p.354].

�✁✂✄☎✆✝ ✞✟✠ ✝✂✡☛✁

✞☞✌☎☛✍✌✎✏✂✌✎✑✍ ✝✂✡☛✁ ✒✡✓✁✂✌☛✔ ☞✔☛✁✓✂✌✂ ✕✂✔☛✓ ✑✍ ✌✑✖☛✍

✟✁✑✏☛✔✔☛✔ �✁✂✄☎✆✝ ✁☛✗☞☛✔✌ ✂✍✓

✘✑✁✙✂✁✓✔ ✎✌ ✌✑ ✌☎☛ ✚✎✏✁✑✔☛✁✛✎✏☛✔

✜✎✏✁✑✔☛✁✛✎✏☛✔ ✢✂✡☛✁

✜✎✏✁✑✔☛✁✛✎✏☛ ✞ ✜✎✏✁✑✔☛✁✛✎✏☛ ✣✜✎✏✁✑✔☛✁✛✎✏☛ ✤

Figure 4: Suggested authentication layer in a request pipeline, which fetches the
user data for the request.

6.4.1 Authentication and session mechanisms

Sending a JSON Web Token (JWTs) through an authorization HTTP header is
the recommended first solution as the authentication mechanism according to the
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GraphQL documentation [Faca]. Using JWTs doesn’t have the same cross origin
issues as session cookies when the GraphQL API is consumed from another domain.
JWTs through authorization headers are more easy to use with Single Page Apps
(SPAs) and mobile clients which access a cross-domain API. Open Web Applica-
tion Security Project (OWASP) recommends to use sessionStorage over localStorage
when saving the web token in a browser, to prevent access to the token after the
website is closed [Rig19]. For added security against token sidejacking, a random
fingerprint hash can be stored in the web token. The same unhashed fingerprint is
sent to the client via hardened cookie, which isn’t readable from Javascript. The
token is accepted if the token fingerprint matches the cookie’s fingerprint [Rig19].

If a cookie is used for storing the token, it is recommended to use hardened cookies
with HttpOnly flag, which prevents accessing the cookie from Javascript. This
protects the token from XSS attacks, but because cookies are sent automatically
with every HTTP request, the web application has to be protected against cross-site
request forgery (CSRF) [Rig19]. If cookies are used for token storage, the GraphQL
API gateway has to either implement sticky sessions, which means that sessions
are saved locally in the API gateway instance and the client is always served from
the same API gateway instance [Ayo18]. Another way is to store session data in
a disributed session storage that can be accessed from all API Gateway instances.
The incidence of JWTs or sessions were discussed in the interviews. Also the token
storage method was discussed.

6.5 Service discovery

Service discovery is a pattern where the client application or server acquires the
location of a microservice instance before requesting a resource. In client-side service
discovery the client connects directly to the acquired microservice location. In server-
side discovery the server routes the request to an available microservice instance.
In both patterns a service registry is used to keep track of microservice instances.
When a microservice is started, it registers itself to the service registry. The instance
is removed from the registry when it is shut down.

6.5.1 Accessing microservices in client

Client-side discovery can be used in a situation where the client connects directly to
multiple APIs. If client-side discovery is used, the microservice instance locations
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can be determined at runtime from a service registry. Client-side service discovery is
much less used compared to server-side or platform discovery [TLP18]. An example
where client-side discovery might be useful is a multiplayer game where the client
connects directly to a game server after querying the IP from a matchmaking service.

6.5.2 Server-side service discovery

Richardson presents an example of server-side discovery, where microservices do
a self-registration on a service registry [Ric18, p.80-85]. The service registry is
queried by the GraphQL server or API gateway, and the request is sent to the
returned instance location. The solution has benefits that it is fairly simple to
implement, and there’s little infrastructure configuration. Also there are no DNS
caching timeout issues where a stale server is still registered as a cached DNS entry.
Service registry can instantly remove stale servers. The drawbacks are that the
client and microservices get coupled with the service registry and service registry
client libraries have to be written for all clients and services.

Taibi et al. found that most of the service discovery related solutions presented
in the found articles used server-side service discovery [TLP18]. Server-side service
discovery adds a load balancing node between the client and services which increases
complexity. Instead of clients querying the service registry directly, the load balancer
queries the address of an service instance from the service registry and forwards the
original request to the service.

A platform provided service discovery is also typically used [Ric18, p.84-85]. A
solution like the internal DNS system in Kubernetes can be used to map instances
behind virtual hostnames. Server instances are launched within the platform, so
the services don’t have to implement self-registration. This makes the architecture
simpler than compared to server-side service discovery. A typical drawback of using
platform specific service discovery is that only services inside the platform can be
automatically registered in the service registry. Outside services have more manual
configuration if they are added to the load balancer.

6.5.3 Replacing service discovery with asynchronous messaging

Service discovery is associated with synchronous communication patterns, as it can
be used to raise the availability of a service with load balancing between multiple
service instances. Using a message broker effectively removes the need for service
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discovery, because clients and services connect indirectly through a message broker
to publish and consume messages. The services consume messages from the message
broker as they become available.

6.6 Integration testing GraphQL

HTTP endpoints can be integration tested using strategies such as the consumer-
driven contracts [Ric18, p.322-323]. Consumer-driven contracts are expected out-
puts defined in the consuming clients and services [Fow19b] which the providing
APIs should produce. For a typical HTTP endpoints the schema could be a JSON
schema or an XML schema which the provider is expected to fulfill. Extending the
providing service happens when the consumers, the clients that make the requests,
define new fields in the schema that is expected from the service.

We suggest that to use consumer-driven contracts in a GraphQL setting, the provid-
ing services should read the queries defined in the GraphQL clients and evolve their
schemas accordingly. Deprecating unused fields can be achieved by logging GraphQL
queries and keeping track which fields are used and which are not. Adding non-
existing object fields in a request document results in validation errors, so adding
new field proposals into the queries doesn’t work. Unless a workaround is used for
adding field proposals into the GraphQL queries, for instance using comments to
add field proposals, the proposals could done between the developers by regular
communication routes such as email.

Integration tests could be added for the GraphQL clients or servers. In clients the
integration tests would warn if the expected GraphQL API has changed. In servers
the integration tests could be used to keep the schema changes low to minimize
client breakage.

6.7 Patterns for protecting a public API

A public API is vulnerable to outside attacks like denial-of-service (DoS) attacks
and unintended API usage. Different strategies for protecting public GraphQL APIs
were identified from grey literature and interviews [Sto19, Apo19a]. The Apollo
GraphQL library supports a feature called Persisted Queries, which makes it possible
to predefine allowed queries in the server [Apo19a]. The persisted queries support
variables, so the query can still be parametrized. The queries are called using an
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identifier, instead of sending the whole query document to the server. This reduces
the size of the requests and also prevents unwanted API usage by limiting possible
usable queries to ones that are used by known clients. Using persisted queries
have the side-effect of adding coupling between the server and clients, because the
queries have to be defined at build-time. Persisted queries are also available in
other GraphQL server implementations, but it’s not part of the official GraphQL
specification.

Stoiber presents methods of analysing GraphQL queries for detecting malicous ex-
pensive queries aimed to overload the GraphQL server [Sto19]. Stoiber discusses
various methods of reducing query complexity. The simplest methods are to limit
the overall character length of the query and also limiting the length of requested
lists types. Stoiber also presents the importance of depth analysis of the GraphQL
query to prevent nested queries which get exponentially more complex when the
depth increases. The most advanced way of detecting expensive queries is to do cost
analysis on the queries. Libraries for implementing cost analysis is available and
typically make use of GraphQL directives to decorate the types in the GraphQL
schema with cost data [Sch19].

Circuit breaker is pattern which prevents a service from exhausting with open non-
resolving synchronous requests [Fow19a]. Synchronous requests typically create a
thread for each connection. The thread will wait until the response is returned and
after that the thread will exit. If a service becomes unresponsive and requests to
that service timeout, there is a possiblity that the calling service might exhaust with
open connections. A function which makes a synchronous call to a remote service
can be protected with a circuit breaker wrapper, which keeps track of timed out
requests. If a predefined threshold of timeouts are reached within a certain time
frame, the circuit breaker "trips" and fails all following requests instantly. The
ciruit breaker can be manually reset, or there can be an automatic detection of
correct behaviour in the remote service. Circuit breaker pattern could be applied to
GraphQL resolvers, which would prevent exhausting the GraphQL API with open
connections.

6.8 Command Query Responsibility Segregation with GraphQL

A few grey literature examples of using Command Query Responsibility Segragation
(CQRS) can be found [And19]. Anderson states that using CQRS can be benefitial
even for simple business cases and would make development easier, which contradicts
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the article written by Fowler [And19, Fow11]. Anderson gives a simple Java example
of a GraphQL server where User entities and Question entities can be viewed and
updated. Although they are modeled and updated as separate entities, they can be
returned as a single entity using GraphQL. It could be argued that Anderson is not
using CQRS in the example, but using data aggregation via an API Gateway instead,
because the User and Question models are still being updated and read from the
same database and single models. To fit the Richardson’s definition, the aggregated
User and Question data should be stored and kept up-to-date in a separate store
[Ric18, p.228].

In our interviews the usage of CQRS pattern was studied. To fulfill the CQRS
pattern the studied system needed to store a read-only copy of information in a
separate store from the database that is used for data updates. In one interview
the use of CQRS pattern was identified. The CQRS pattern was used for an entity
which was editable in an external service. Instead of aggregating the data directly
from an external service, a local copy was kept up-to-date and served to increase
throughput. Other local data could be aggregated to the entity using GraphQL.

7 Interview

We prepared a semi-structured interview to evaluate the incidence of proposed ar-
chitecture patterns and also to validate the proposed architecture patterns directly
by interviewees themselves. The interview process was conducted as a variation of
focused interview presented by Hirsjärvi and Hurme [HH09], called the theme inter-
view. The so called theme interview method is a semi-structured interview method
where the interview is driven by open ended questions, which revolve around the
pre-defined themes. The order and wording of the open ended questions are not
strictly defined. The interview was split into two parts. In the first part the themes
discussed are practical architectural solutions in a GraphQL microservice applica-
tion. Qualitative analysis is done for the answers to find incidence of the proposed
architectural patterns in chapter 6.

• General idea of the project

• General architecture of the project (how many microservices, was authentica-
tion used?)

• Why GraphQL was chosen instead of typical HTTP or RESTful endpoints
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• Is GraphQL used alongside HTTP or RESTful endpoints

• What has been the client developer experience with GraphQL API?

• How was the business logic split into microservices?

• Similarities in business models and GraphQL Schema

• API changes, breakage and feature deprecation

• Placement of GraphQL APIs in the microservice stack

• Messaging solutions between microservices and between the GraphQL API

• Testing in the GraphQL layers

• Authentication and authorization solutions

• How did GraphQL API find the services?

• Organizational patterns (workflows, deployment pipeline, developer interac-
tion between client and backend developers)

In the second part of the interview the following themes are discussed to validate
and identify the presented architecture patterns directly. The architecture patterns
are presented and explained briefly to the interviewee and then the patterns are
discussed if they are present in any known projects to the interviewee. A general
feasibility of the pattern is discussed and any variations of the pattern should be
uncovered.

• Validating GraphQL schemas against domain models

• Using GraphQL as an API gateway layer

• Schema stitching microservices into one API gateway

• Communication strategies in a GraphQL API

• Inter-process communication using GraphQL

• Event subscriptions via GraphQL subscriptions

• Authorization in the GraphQL API microservice stack
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• Authentication and session mechanisms

• Service discovery

• Integration testing GraphQL

• Circuit breaker pattern for queries

• CQRS pattern

• Attack prevention methods in public APIs

• Other solutions that weren’t mentioned here

Additional analysis of the interviews are done to find more insights into discussed
patterns and also uncovered patterns related to GraphQL.

8 Results

In total four interviews were conducted with experts who had real world experience of
using GraphQL and microservices together. Case A was an application for handling
customer related data, Case B was a content delivery platform, Case C was a high
throughput system implemented using event sourcing and Case D was a system
for handling technical devices, all using GraphQL in some layer of the microservice
ecosystem. Table 1 displays all the detected patterns used in the projects, which
were identified in the interviews.

The reasons to choose GraphQL in the projects were the following.

• Positive experiences with the API exploration tools which improves the client
development experience

• Possibility to develop the API with partial knowledge of the use cases and
then filling out missing pieces as more parts of the domain is modeled

• Developing a unified API with vastly varying consumer needs

• To test the new API query language instead of implementing REST endpoints

Nemek writes that developing a good REST API needs more careful domain mod-
eling and understanding use cases in advance, whereas using GraphQL reduces the
need for heavy API planning and mapping out API use cases. This supports the
notion of developing the API with only partial knowledge of the use cases [Nem18].
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8.1 Architectures

Cases B and D resembled the architecture layout shown in figure 3a the most. Case
A and C differed from the presented architecture models. In case A the client con-
nected directly to the microservices and consumed multiple GraphQL APIs (figure
5b). Case C didn’t follow the presented architectures because of the event-based ar-
chitecture that was being used. The event-based architecture is presented in figure
5a. The GraphQL API layer consumed processed event streams from microservices
and passed them forward to clients.

Event stream producer

GraphQL Gateway API 

GraphQL Client

Microservice A
with GraphQL 

Microservice B 
 with GraphQL

Event stream producer
Event stream producer

Event stream producer Message broker

Persistence layer

Persistence layer

a. Event-based microservice architecture with GraphQL API Gateway (Case C)

b. Connecting to multiple GraphQL microservices from client (Case A)

Figure 5: Additional architecture layouts in the case projects

8.2 Domain model

As Powell-Morse describes, business domains are typically more complex and con-
voluted compared to a technical project with clear technical specifications [PM19].
This seemed to be in line with our findings in the interviews, where a project with
a more technical problem domain used a more straight-forward approach to mod-
eling the domain. In these projects also the GraphQL schema seemed to follow
the domain model closely. In the more business oriented cases a practice closer to
DDD was used, although none of the business domain cases were complex enough
for use of bounded contexts with context maps. The business entities were modeled
as singular entities in a single domain, and not spread out across services. Thus,
straight-forward business capability modeling was the prevalent method of modeling
the business domains.
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Table 1: Interview data compiled into a pattern-case matrix

Pattern Case A Case B Case C Case D
Schema reflects modeled domain Yes Yes No Yes
Schema validation No Yes No No
API Gateway No Yes Yes Yes
Schema Stitching No Yes No Yes
GQL–microservice communica-
tion (Sync/Async/Both)

Sync Both Both Sync

Inter-process communication us-
ing GraphQL

No Yes No Yes

Event subscription No No Yes No
Authentication method JWT JWT JWT Session
Authorization delivery method
(Header/Cookie/Other)

Header Header Header Cookie

Authorization happens in Models Models GQL Database
Session Stateless Stateless Stateless Session
Service discovery Server Server Platform Platform
Integration testing GQL end-
points

No Yes Yes No

Circuit breaker No No No No
CQRS No Yes Yes No
Attack prevention methods
and feature limiting (Persisted
Queries, Query Cost Analysis)

- - PQ -

Other solutions - - Code Generation -
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8.3 API Gateway and schema stitching

As displayed in the case data matrix 1, most of the projects used GraphQL as an API
gateway layer. Two projects of the three API gateway cases used schema stitching to
implement the API gateway layer. In the two other projects that didn’t use schema
stitching, some problems with the most popular schema stitching implementation
was found which prevented the use of the pattern. For instance error propagation
through the stitched API didn’t work as expected in one of the projects.

8.4 Communication patterns

All projects used synchronous communication in some way, and most of the projects
used it prominently (A,B,D). Only the event-based system (C) used mostly asyn-
chronous communication methods using a message broker between microservices,
and in the GraphQL layer. Case B also used asynchronous communication between
microservices for coordination purposes, such as informing other services about up-
dated data.

Two of the projects used GraphQL as a communication method between microser-
vices (B,C). One project had GraphQL interfaces in the microservices, which used
the same APIs for direct communication between the microservices. The other case
microservices used the GraphQL API Gateway layer for fetching required data in-
directly from other microservices.

None of the projects used the circuit breaker pattern in the GraphQL API, which
prevents exhausting an API Gateway with open synchronous requests that would
timeout with high probability.

8.5 GraphQL subscriptions

Only the event-sourced case system C used GraphQL subscriptions for pushing the
event data for the application clients. Other cases used the standard query and
mutation root object types for data fetching and side-effects.

8.6 Authentication and authorization

Only one of the case projects used session cookies (D) and the others relied on JWTs
sent through the authorization header. The session cookie based authentication was
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handled in the API Gateway layer where the user context was saved into request
headers for the microservices to consume. The microservices live in a private network
that can only be accessed through the GraphQL API from outside. Because of the
simple user context, the user context data could be added directly into the HTTP
request headers. Security and authorization was implemented in the persistence
layer using database policies and rules. Two of the cases (A,B) used model-based
authorization and the event-based system (C) implemented a resolver-based autho-
rization. In resolver-based authorization the authorization logic is placed in the
GraphQL server, which dictates if the user can query or mutate a field. Only one of
the cases (B) used a distributed session store, eventhough the case’s authentication
mechanism was JWT.

8.7 Service discovery

All of the systems relied on platform provided service discovery, where the platform
provider automatically keeps track of launched microservice nodes and the microser-
vices are accessed either by a public URL or with private network hostname. Two of
the systems (A,B) used load balancers in front of the microservices with GraphQL
APIs to do load balancing and also rolling updates. In a rolling update the nodes
are deployed one-by-one and the load balancer switches traffic gracefully to the new
updated nodes without downtime.

8.8 Testing

In two of the systems some form of integration testing was done on the GraphQL
API (B,C). A query or mutation was run against the GraphQL API to test correct
responses. None of the projects did comprehensive integration testing of the APIs.
The testing in general seemed to follow a pattern of testing the business model
thoroughly with unit tests and testing critical parts of the API with integration or
end-to-end tests. One of the problems identified with integration testing is that a big
part of the system has to be replaced with mockups which makes the integration tests
not useful and hard to maintain. One reason to do less testing of the GraphQL APIs
was the trust in the strongly-typed schema validations that the GraphQL libraries
implement. The strong typing and validation rules omits the need for certain types
of faulty input value testing.
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8.9 CQRS

Two of the projects (B,C) used CQRS because of different reasons. The content
platform case (B) used an external content management system, from where a read-
only copy was propagated to a local persistence layer for better availability and
delivery. The event sourced case system (C) built views on the event stream data
which reflected the current state of the system. As Fowler writes, CQRS suits well
with event-based systems [Fow11]. Each microservice builds their own interpretation
of the event data which is passed forward to consumers.

8.10 API protection mechanisms

None of the cases applied attack prevention mechanisms on the GraphQL APIs,
although some methods were used for other purposes. Persisted queries were applied
in case C to limit public API functionality for users. No query cost analysis was
done on the requests on any of the cases. APIs were generally protected using
authentication methods for the API clients.

8.11 Organizational patterns

The case projects covered in the interviews followed the usual DevOps organizational
patterns. Variations of Scrum or Kanban agile methods were used to develop the case
projects. The deployment of the microservices and GraphQL APIs were handled by
the development teams. Continuous integration was implemented using automated
testing. If tests passed on a pull request, the projects deployed automatically a
staging version when the pull request was merged to the code main branch. Code
quality was maintained using pull requests and code review workflows using the
version control system. The GraphQL schema was used as a communication method
for changes in the business logic layer. The GraphQL schema definitions could be
kept in version control so code review would have to address also the changes in the
schema and possible API breakage could be detected.

Mixed methods of API evolution were detected from the projects. In one project
the schema changed during development a lot because of evolving requirements on
the domain model. The API breakage was acceptable, because the client application
was developed alongside the API. Many interviews presented the idea of handling
GraphQL API breakage using a rolling introduction of updated fields or objects.
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Updated features are brought alongside the deprecated fields or objects. After that
the schema change was applied on client side. When the clients have moved to using
the updated GraphQL schema, the deprecated features would be removed from the
GraphQL API. Only one case (C) claimed no API breakage by only introducing new
fields and objects to the schema. Feature deprecation wasn’t needed on the project
at the point of the interview.

8.12 Other patterns

One of the case projects made use of automatic schema generation from the database
structure. The tooling generated a usable GraphQL server from the structure of the
database using the PostGraphile library [Gil19]. Automatic schema generation was
considered a really helpful tool in the API development, making the development
faster and easier because of not having to write own resolvers for the data fetching,
but there were some downsides also. The field and object names in the generated
schema weren’t client-developer friendly, which could be solved with schema trans-
formations provided by the Apollo GraphQL library. Schema transformations is
a feature where a GraphQL schema’s object and field naming can be altered while
keeping the old schema’s functionality the same. The case project hadn’t yet adopted
the schema transformations because of added development costs of maintaining the
schema transforms. Otherwise all the case projects used only well-known software
patterns to implement their microservice ecosystem with GraphQL. GraphQL fit
well in the role of an API Gateway for most projects.

9 Discussion

By studying scientific research and grey literature, and comparing the findings to
the data extracted from interviews some common patterns can be formed for a
microservice architecture which uses GraphQL. Eventhough the case projects used
a microservice architecture and GraphQL, the problem domains weren’t too complex
and didn’t use DDD practices to model the business domain. A conclusion might be
drawn that most of the projects will have a simple problem domain and can get away
with using a simpler approach to modeling the business domain. The suggested link
between DDD aggregate modeling and GraphQL schema stitching could be studied
futher in a follow-up study.
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Based on the data, a typical architecture consists of 2-10 REST or GraphQL mi-
croservices exposed to public networks using a GraphQL API Gateway. The mi-
croservice ecosystem was typically flat, with no layered microservices. In the stud-
ied case projects, synchronous request-response communication pattern was most
prominently used in the GraphQL APIs, with the exception of the event-based ar-
chitecture which relied on asynchronous communication to push event streams to
clients. Only the event-based architecture used GraphQL subscriptions for push
based communication for clients. Asynchronous communication patterns were used
in two other projects to make data structures across microservices eventually con-
sistent. Some events were directly triggered from the GraphQL layer, but most of
the asynchronous events were published from the business models. The synchronous
communication points weren’t protected with methods such as the circuit breaker
pattern, which cuts connections to non-responsive microservices to prevent connec-
tion exhaustion. It could be that most of the projects are small enough to not ever
reach connection exhaustion and in a simple microservice architecture cascading
failures happen rarely. These advanced communication patterns are only needed in
huge ecosystems [Chr19].

Most of the projects used web tokens as the authentication method. This was the rec-
ommended authentication method suggested in the GraphQL documentation [Facb].
All projects except the event-based system placed authorization logic in the busi-
ness models. The event-based system placed authorization logic into the GraphQL
resolvers. Placing the authorization logic in the models was recommended in the
GraphQL documentation. It can be concluded that web tokens were succesfully
used in practice with GraphQL and authorization was done typically in the business
logic. Cookies and sessions were used only in one project. Using sessions will limit
the API accessibility for other than web clients and for cross-domain access.

Service discovery methods were typically provided by the application platform.
There was no clear suggestions for service discovery in the literature, but it was
clear from the interviews that a platform-based approach was most prominently
used. All the applications had the microservices behind a platform provided load
balancer. The microservices were more or less manually configured – no totally au-
tomatic scaling was done in none of the projects. It might be that the scale of the
projects were not big enough to justify automatic scaling.

Little contract, integration and end-to-end tests were done against the GraphQL
API. Some critical queries were tested in two cases (B,C). Most of the testing efforts
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were concentrated on unit testing in all the cases. This conforms to the test pyramid
principle of writing unit tests the most and writing end-to-end test the least [Voc19].

CQRS was used in two cases (B,C). CQRS pattern seemed to work well with
GraphQL for the projects. The CQRS pattern was suprisingly used in two of the
four projects, eventhough the pattern is supposed to be only for advanced use-cases.
The reasons to choose CQRS was because of using a 3rd party CMS as a service,
and in the other case used it complementary to the event streams. Ilyenko writes
that GraphQL query-mutation-subscription semantics fit well with the CQRS pat-
tern [Ily19]. The mutations are used to trigger commands, which push events to
an event store. A persistence layer reads events to store a queryable state, and
GraphQL subscriptions can be used to subscribe on the event streams on client-
side. GraphQL doesn’t seem to prevent the usage of the CQRS pattern as proven
by the case projects.

No GraphQL specific API protection mechanisms were used in the case projects,
like query cost analysis. Projects mostly relied on authorization as the way to
protect API functionality. API protection methods probably become more relevant
at the middle of the project, and when API attacks are considered a great risk for
application availability. Although the APIs were publicly accessible, none of the
projects advertised their API for public use, which makes exploitation less likely.

All the case project organizations used similar DevOps practices. Deploying code
automatically from main branch after completing automated tests succesfully was
present in all cases. Pull requests and code reviews were used to keep code clean.
Based on the findings we suggest that the similar setup can be expected in most of
existing projects and should be used on any new microservice and GraphQL projects.
Only effect of GraphQL in the organization seemed to be the added communication
on API changes through pull requests.

Using code generation was shown in one project (D) where a GraphQL API was
generated from a database schema automatically. Code generation wasn’t part of
the literary research part of this thesis, and would be an interesting subject for
additional research.

Criticism for the used interview process might be that the amount of interviews
did not meet the suggested minimum of 15 interviews, presented by Hirsjärvi and
Hurme [HH09]. The presented results should be taken as preliminary results, and
the subject should be more expansively mapped in a follow-up architecture study.
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10 Conclusion

In this thesis the GraphQL, a query language for APIs, was studied in the context
of the microservice architecture. The thesis was a combination of a literary study
and expert interviews. Most prevalent microservice architecture patterns were gath-
ered from peer reviewed studies and grey literature. Also patterns used with the
GraphQL API query language was searched from mostly grey literary sources. Four
expert interviews were held to detect which patterns were used in practice in projects
which had a microservice architecture and implemented GraphQL APIs.

Based on the data, a typical GraphQL microservice architecture consists of up to
10 REST or GraphQL microservices exposed to public networks via a GraphQL
API Gateway. The microservice ecosystem was typically flat 3-tier layout with
API gateway in front, microservices in the middle, and persistence layer in the end
(RQ1).

According to grey literature and the expert interviews, GraphQL language ecosys-
tem seems to bring excellent developer experience for microservice architectures. A
small learning and development investment has to be done on the part of back-
end developers, which can be justified with more relaxed API design requirements
upfront (RQ2).

Based on the expert interviews GraphQL was a viable alternative to using REST
APIs in a microservice ecosystem. There was no perceived limitations compared to
other API technologies (RQ3). GraphQL seemed to fit typical microservice patterns
well. GraphQL was most likely used in the role of an API Gateway in the project.
The GraphQL query-mutation-subscribe semantics seemed to fit well with an event-
sourced system using CQRS pattern. The GraphQL API authentication patterns
didn’t seem to differ from REST API authentication – same HTTP transport level
limitations were present in both architectures. To use cookie-based sessions with
direct API calls, the API has to exist on the same domain as the calling website.
Using web tokens via authorization header is more compatible with all kinds of
clients and cross-domain requests which suits the GraphQL philosophy of figuring
out the exact use-cases later on in the project.

One GraphQL specific pattern was uncovered in the case interviews, which was the
use of schema stitching in conjunction with the API Gateway pattern. Although the
feature is backed by the GraphQL specification in the schema extension sections,
the implementations were considered somewhat experimental. Still, schema stitching



50

was succesfully used in production setting in two of the four case projects. In two
other projects the technology was not seen reliable enough or lacking to be used in
the cases.

The following ideas seemed less investigated in research and grey literature and show
potential for follow-up studies.

• Measuring the API performance of the proposed combination of REST API
and HTTP/2 multiplexing with cascading object fetches, compared to using
GraphQL queries. The level of nesting in the GraphQL queries could be
measured and compared to equivalent cascading REST fetch.

• Comparing and gathering authentication and authorization implementations
used with GraphQL.

• Automatically generated GraphQL schemas for accessing database.

• Comparing caching mechanisms for GraphQL and REST endpoints.
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