
Benefits and challenges of Continuous Integration and
Delivery - A Case Study

Axel Wikström

Helsinki February 22, 2019

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/226768285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Axel Wikström

Benefits and challenges of Continuous Integration and
Delivery - A Case Study

Computer Science

February 22, 2019 33 pages + 1 appendix

continuous integration, continuous delivery

Continuous integration (CI) and continuous delivery (CD) can be seen as an essential part of modern
software development. CI/CD consists of always having software in a deployable state. This is
accomplished by continuously integrating the code into a main branch, in addition to automatically
building and testing it. Version control and dedicated CI/CD tools can be used to accomplish this.

This thesis consists of a case study which aim was to find the benefits and challenges related to the
implementation of CI/CD in the context of a Finnish software company. The study was conducted
with semi-structured interviews.

The benefits of CD that were found include faster iteration, better assurance of quality, and easier
deployments. The challenges identified were related to testing practices, infrastructure management
and company culture. It is also difficult to implement a full continuous deployment pipeline for
the case project, which is mostly due to the risks involved updating software in business-critical
production use.

The results of this study were found to be similar to the results of previous studies. The case com-
pany’s adoption of modern CI/CD tools such and GitLab and cloud computing are also discussed.
While the tools can make the implementation of CI/CD easier, they still come with challenges in
adapting them to specific use cases.

ACM Computing Classification System (CCS):
Software and its engineering → Software creation and management → Software verification and
validation
Software and its engineering→ Software notations and tools→ Software configuration management
and version control systems

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Terminology 2

2.1 Version control . 3

2.2 Testing . 5

2.3 CI pipeline and tools . 5

3 Methods 8

3.1 Case background and motivation . 8

3.2 Research methods . 10

4 Identified benefits 11

4.1 Faster iteration . 11

4.2 Assurance of quality . 11

4.3 Easier deployment . 12

5 Identified challenges 13

5.1 Testing . 13

5.1.1 Slow tests . 13

5.1.2 Non-deterministic (flaky) tests 13

5.1.3 Test coverage not good enough 14

5.2 Infrastructure management . 14

5.3 Pipeline complexity . 15

5.3.1 Culture issues . 15

5.4 Lack of Continuous Deployment . 16

5.4.1 Maintaining multiple versions 16

5.4.2 Customer specific configurations make automation harder . . . 17

5.5 Summary of interview findings . 18

iii

6 Discussion 19

6.1 Related work . 19

6.1.1 Benefits . 19

6.1.2 Challenges . 19

6.2 Testing . 21

6.2.1 Test prioritization . 21

6.2.2 Test selection . 22

6.2.3 Flaky tests . 22

6.2.4 Parallelization . 23

6.2.5 Availability of test results . 23

6.3 Infrastructure . 24

6.3.1 SaaS vs. self-hosted services 24

6.3.2 Containerization . 24

6.4 Culture . 25

6.5 Pipeline complexity . 25

6.5.1 GitLab as a CI tool . 25

6.5.2 Preventing broken builds . 26

6.6 Lack of Continuous deployment . 27

6.6.1 Splitting the monolith . 27

6.6.2 Rapid releases . 28

7 Conclusions and recommendations 29

Appendices

1 Interview structure

1

1 Introduction

Continuous integration (CI) and continuous delivery (CD) may nowadays be seen
as essential parts of the software development process. These practices have gained
a widespread popularity in the software industry during the recent years (Fitzgerald
and Stol, 2017). In contrast to traditional development methods where planning, de-
velopment, testing and deployment are performed in sequence, continuous practices
allow software organizations release software more quickly while still maintaining
quality. (Humble and Farley, 2010)

In a nutshell CD/CD consists of always having software in a deliverable state. This
is archived by automating the testing and deployment phases of the development
workflow. Continuous integration also implies that developers’ code is continuously
integrated into the main codebase. The main benefits of CI/CD is that software can
be developed more rapidly, while quality is still maintained. By making deployment
a common task, mistakes, such as configuration errors, are less likely to occur.
(Fowler, 2006; Humble and Farley, 2010)

Even though CI/CD is supposed to make rapid software development easer, adopting
CI/CD can be challenging. This can especially be the case if the organization is not
used to such practices from before. CI/CD practices are also relatively new, and thus
research on the topic is fairly recent. Even though high level aspects of continuous
practices haven been agreed upon by research, individual organizations may apply
these practices differently. (Leppänen et al., 2015; Mäkinen et al., 2016)

The tools for CI/CD are also evolving rapidly together with facilitating technologies,
such as containerization and cloud computing. Not much research has been done in
how the evolution of these tools relate to the ease of implementing CD.

This thesis consists of a case study of a software organization where CI/CD is
employed. The goal is to identify benefits and challenges in the specific context of
the case company, and to suggest ways to mitigate the identified challenges.

2

2 Terminology

There is yet a complete consensus to be formed about the definition of the terms
continuous integration, delivery and deployment (Luke and Prince, 2017; Shahin
et al., 2017a). Here follows the definitions which are used in this thesis, which seem
to be the most common ones used in academic literature.

Continuous Integration (CI) commonly means that a developer continuously in-
tegrates their changes with the main codebase (Fowler, 2006). In practice this can
be achieved though using the branching and merging features of a version control
system (VCS). Successful integration implies that the code compiles and works as
intended. The concept of continuous integration also commonly includes the exis-
tence of an automated build and testing process. This definition is also used in this
thesis. There are many CI tools available for this purpose that integrate with the
VCS. Some examples include Travis, Jenkins and GitLab.

Continuous Delivery (CD) can be seen as an extension of CI. CD is also mentioned
in first principle of the Agile Manifesto from 2001: “Our highest priority is to satisfy
the customer through early and continuous delivery of valuable software.” (Beck
et al., 2001). Some may refer to CD as an overall part of the Agile practice, but
in conjunction with CI, it usually means that the software is always ready to be
deployed, which requires an automated deployment process to be in place (Fowler,
2013). This is also the definition commonly used by vendors such as Atlassian and
Amazon (Atlassian; Amazon Web Services, 2017).

The final term; Continuous Deployment (CDep) refers to the software being
continuously deployed to a production environment without manual intervention
(Fowler, 2013; Atlassian; Amazon Web Services, 2017). Deployments can happen
several times per day. This practice is however not suitable for every kind of software
(Leppänen et al., 2015; Shahin et al., 2017a).

Other software development practices that are involved in CI are described below.
It is to be noted that the practices here are described in a general way, and organi-
zations adapt their own specific way of working. Since continuous practices are still
relatively new, a definite set of “best practices” do not exist. It is also to be noted
that practices are to be adopted in a way that fits the domain and nature of the
software.

3

2.1 Version control

A version control system (VCS) allows developers to effectively collaborate on writ-
ing code. Using version control is an essential pert of CI. Git is a commonly used
VCS that was initially developed for the Linux kernel project. Other VCS include
Subversion, Mercurial and CVS.

The set of files that are version controlled are called a repository. A specific revision
of the repository is called a commit. Many VCS, model the history of commits
as a directed acyclic graph. This allows developers to work on separate branches
independently. When the work is done, branches can be merged together. Most
repositories have a master branch (also called trunk or mainline).

Merge conflicts may occur when many people are working on the same file. One has
to manually decide which changes should be taken into use. A code base with well
separated modules can make merge conflicts less likely.

In a distributed VCS (DVCS) (e.g., Git), the developer has a local copy of the
repository on their machine. In contrast to a non-distributed VCS (e.g., Subversion),
committing and pushing the changes to a remote repository are separate operations.
Because of their flexibility DVCS are commonly used today.

Due to this flexibility, there is no standard workflow or branching model. A de-
velopment organization can use the VCS in a way which fits their needs. There
exists some common patters for working with branches. Typically developers work
on separate feature branches before merging them to master. The releases of the
software can also be reflected in the branching model.

Two common branching models are git-flow (Driessen, 2010) and trunk-based devel-
opment (Hammant, 2017). The crucial difference between them are how releases are
managed. In git-flow (Figure 1), development happens on a specific development
branch. A new branch is created for each major release. If bug fixes are made on a
release branch, they have to be merged back to the development branch.

In trunk-based development, development happens directly on the master branch.
Bug fixes are also committed to the master branch instead of the release branches.
The commits are then cherry-picked to the release branches. Cherry-picking means
that the changes of a commit are reproduced on another branch. Feature branches
may be used in trunk-based development, but they are advised to be short-lived in
order to avoid merge conflicts. They are mostly just used to allow code review and
automated testing to be performed. (Hammant, 2017)

4

Figure 1: The Git Flow branching model (Driessen, 2010)

5

Git is commonly used with a web-based git platform. Some examples are GitHub,
GitLab and Bitbucket. These platforms provide a user interface to browse the
repository along with tools for code review. Most git platforms can integrate with
CI platforms.

2.2 Testing

Software testing is a central concept to continuous development. Especially auto-
mated unit and integration tests can be seen as an essential part of a successful CI
implementation. As the complexity of the software increases, the risk of regressions
may also increase (Islam and Zibran, 2017). Continuous testing can be used to
prevent regressions. Much of the software testing process can be automated and
integrated into the CI pipeline.

Unit testing comprises of testing individual functions or classes in the codebase.
Unit testing is commonly done with unit testing framework. Examples of these are
JUnit for Java and RSpec for Ruby. Unit tests can be seen as a contract that the
implementing code has to fulfill.

While unit tests test the code in isolation, integration tests test multiple parts of
a system, such as an application and a database. Some refer to integration tests
as unit tests as well, because they can be made using a unit testing framework.
Integration tests usually take longer to run than unit tests.

Acceptance tests verify that the software can fulfill the required business needs,
which are high-level requirements which may be defined by, e.g., user stories. This
is done by testing a complete deployment of the system. The tests can be performed
against the user interface or a backend API.

2.3 CI pipeline and tools

These practices come together in a CI pipeline. Each revision of the software goes
through the pipeline. Typically this is accomplished using a CI tool, such as Jenkins
or GitLab. The CI tool integrated with the VCS so that the pipeline gets run for
each commit. At least the pipeline includes build and testing stages. If CD or
CDep is employed, the pipeline may have a manually or automatically triggered
deployment stage.

In some cases the pipeline may involve manual verification stages, such as accep-

6

Figure 2: Example of a CI pipeline

tance testing. In cases like this, the “pipeline” may be considered to extend outside
the CI tool. As an example from this case study, deployments to customers is done
with a custom tool, which is separate from the main CI tool. In addition to tests,
the pipeline can also include other stages. Dependency checks scan for known vul-
nerabilities and unapproved software licenses in the dependencies. Style checks aka.
“linting” can verify that the source code adheres to a commonly agreed code style.

Another tool in CI is information radiators (also known as build monitors or dash-
boards), which indicate the status of the pipelines on a visible monitor in the office
(Figure 3).

7

Figure 3: CI radiator used at the case company. The latest commit and build status
for each version branch is shown. Blue color indicates a currently ongoing build,
while green and red indicate passing and failing builds respectively. The yellow
color indicates a “warning” status which might for example mean that a security
vulnerability has been found in a dependency.

8

3 Methods

3.1 Case background and motivation

The case company is a Finnish software company which develops supply chain opti-
mization software for retail businesses. During the last years, it has seen a significant
growth in its number of employees. For software development, the collaboration may
become more challenging as the development teams grow. The increasing number
of customers also provides a challenge, as the software needs to be deployed to the
customers’ specific environments along with their custom configuration and integra-
tions.

This thesis concentrates on the development process of the planning-cloud project,
which takes place in Helsinki, Finland. Planning-cloud is a web application imple-
mented with various technologies including Java, JRuby on Rails, Ember and React.
The software is deployed as a monolithic WAR file running on the Tomcat server.

The project is developed by multiple teams. The main application is supported by
a custom in-memory database and deployment tool, which are developed by their
respective teams. In addition, a release management team manages the different
versions of the software. The release management team also does nightly black-box
and performance testing.

Multiple versions of planning-cloud are maintained simultaneously. Four to five dif-
ferent versions are supported at the same time. A form of trunk-based development
is used. Main development happens in the master branch which correspond the cur-
rent unreleased version. Feature branches are squash-merged1 into single commits
on the master branch. If a bugfix needs to be implemented into a previous version,
the commits are cherry-picked1 into the version specific branches.

When a new version is created, an alpha branch is created from master, and a
feature freeze is introduced for that version. When the alpha branch is deemed stable
enough, a beta and stable branch is created. The alpha branch is then deprecated.
This is shown in Figure 4.

At the time of starting this thesis, Jenkins was used for running the CI/CD pipeline.
At the time of writing, a transition of the CI pipeline from Jenkins to GitLab is in
progress.

1squashing and cherry-picking are features of the Git version control system.

9

Figure 4: A form of trunk-based development is used at the case company.

10

The CI pipeline produces a WAR file for each commit passing all tests. The files
are stored in an artifact repository (Sonatype Nexus).2 The custom deployment tool
deploys these to the staging and production environments and makes the appropriate
configurations to the software and runtime environment.

As the case company has grown, the teams and development processes have evolved.
The author was employed to look over the CD process and implementation at the
case company. The goal of this thesis is to conduct a case study in order to identify
the benefits and challenges of the CI process, and to find possible ways of addressing
the identified challenges.

3.2 Research methods

The main part of the study was done with semi-structured interviews. Semi-
structured interviews are common in case studies are suitable for qualitative research
(Gray, 2009). The questions used for the interview can be found in Appendix 1.

Team leads from the development teams and Release Management were chosen for
the interviews. In total 5 people were interviewed (referred to as S1-S5). The
interviewees’ experience at the company ranged from 3 to 8 years. The interviews
were conducted in Finnish.

The interviews were recorded. Challenges and benefits were identified by listening
to the recordings several times. The benefits and challenges were categorized as the
structure of this thesis. The categorization was changed multiple times during the
study, as new potential cause relationships between the challenges were discovered.
Transcripts and their English translations were only made for relevant sections to
be included in this thesis.

2The artifact repository is being replaced with a custom solution at the time of writing.

11

4 Identified benefits

The amount of benefits reported by the interviewees were relatively small compared
to the challenges. The focus of the semi-structured interviews quickly shifted to the
challenges during all of the interviews.

According to one of the team leads, Continuous Integration and its benefits is some-
thing that should be taken for granted in the software development process. CI
can be seen as a standard practice for a modern software organization, which is one
reason for it being implemented at the case company.

I don’t know how any software company could state that they do good work
without automatic testing. There has probably been automatic testing for
as long as I’ve been at [the case company]. I think not having tests isn’t
even an alternative. – S1

4.1 Faster iteration

A software development team is able to iterate on their project faster, as the CI
pipelines gives continuous feedback about possible defects in the code. The possi-
bility to automatically deploy the software also saves time. Automatic deployment
to staging environments also makes it faster to manually catch e.g., UI bugs.

4.2 Assurance of quality

A well maintained set of automated tests makes it more likely that regressions would
be found. From the perspective of the team developing the custom deployment tool
and the Release Management team, they can be assured that the deployment pack-
ages delivered by the CI pipeline had passed their automatic tests. The customers
are also more satisfied when there are less bugs. Developers also have started to
take more responsibility of their work.

12

4.3 Easier deployment

Previously Capistrano1 was used for both building and deploying the software. It
was slow, and there was often issues with it. The development of a separate custom-
made deployment tool has significantly decreased deployment issues.

If we compare to the situation where everything was done by hand, the
errors and problems related to deployment have decreased significantly.
Before the question “Why doesn’t my Capistrano deploy work?” was
asked almost daily, nowadays almost never because that tool is barely
used. [...] We do less useless work when we don’t build the packages
repeatedly. When we have a web-based tool anyone can utilize it. – S1

1Capistrano (https://capistranorb.com/) is a deployment tool written in Ruby.

13

5 Identified challenges

The challenges identified from the interviews were divided into four main categories.

5.1 Testing

5.1.1 Slow tests

Most of the challenges the interviewees identified had to do with the technical im-
plementation of the automated tests. The biggest issue is the time it takes to run
the tests. A problem with the test suite is that there is no distinction between unit
tests and integration tests. While unit tests are supposed to be fast, integration
tests take a long time to run since they interact with the database. Some tests also
have sleep statements in their code, adding several seconds to the execution time.
Because of this, it normally takes over one hour to run all the tests, which is way
above an acceptable duration.

Due to some technicalities with the JRuby platform, it take a log time to execute
single tests separately on a developer’s local machine. This is due to the time it
takes for the Java Virtual Machine to start and the Ruby code to be parsed. This
has been looked into by an interviewee (S3), but a way to significantly alleviate this
issue has not been found.

To alleviate to the tests taking a long time to run, they are run on multiple machines
in parallel. Cloud providers such as Amazon Web Services makes it easy to start new
test runner machines when needed. Using a queueing service makes it possible to
run the tests in parallel across multiple machines. The drawback is that this requires
work to implement. At the case company this has been successfully implemented
using a custom Rake task in combination with the NSQ2 queue service.

5.1.2 Non-deterministic (flaky) tests

Using sleep statements and concurrency features may result in the tests being non-
deterministic. This means that the tests will fail on random occurrences. When
the CI platform and the server the tests were run on was switched, some tests
started to fail more frequently. The solution to this is simply to write correct tests.

2https://nsq.io/

14

This however requires a thorough understanding of the concurrency features of the
programming language and testing framework used.

5.1.3 Test coverage not good enough

A consensus of the interviewees was that the current automated tests cannot suffi-
ciently assure the quality of the software and its readiness to be released.

S3 suggested that the proprietary database could be tested more thoroughly, as
much as commonly available database engines (such as SQLite) are tested. There
could also be teams dedicated to improve the tests.

5.2 Infrastructure management

The CI solutions needs servers to run on. Acquiring this infrastructure can be
difficult if the team managing the infrastructure is busy. The CI platform also needs
to access external services, such as an artifact repository. Getting the connections
to work between the CI servers and the external services has at times been difficult
as it has required efforts from the infrastructure team.

The use of cloud providers such as AWS alleviates these issues to some extent, since
it allows the person managing the CI software to also manage the infrastructure it
runs on. This makes it easier and faster to get new servers when needed.

The cloud does not however come without challenges, when concerns like security
has to be taken into consideration. The infrastructure team still manages the user
accounts, permissions and network architecture. This may slow down the develop-
ment.

During the last months we have been doing this transition to GitLab, and
it has been kind of difficult on an administrative level since there isn’t
that one person who is deciding what we should do. [...] When there
are separate entities, and it sometimes feels that they don’t work well
together and things move very slowly. Generally when we want to get
something done in this organization, someone has to dedicate almost all
of their working time to get the change pushed through from everywhere.
– S4

Infrastructure also needs to be actively maintained. Crucial internal services, such

15

as Git were running on old servers which warranty has expired. Transitioning in-
ternal services to AWS is being worked on, but it has been slow. An improvement
suggestion was to dedicate one or a few persons to drive the needed infrastructure
changes. It was also suggested that the SaaS versions of internal services (such as
GitLab) could be used instead of their self-hosted version.

5.3 Pipeline complexity

At the case company, there are many different services running that are involved in
the CD process. These services include multiple Git platforms and Jenkins instances,
a chatbot and a custom test deployment service. The complexity of maintaining
these was found to be a challenge.

The complexity of the planning-cloud software itself also makes it more challenging
to maintain the CI pipeline. Multiple modules in the repository have to be built
and packaged together. The modules are developed with different technologies and
languages, requiring the invocations of their respective build tools and package man-
agers (e.g., Maven, npm, bundler) to be orchestrated. The custom deployment tool
also is also responsible for specific parts of the deployment process.

5.3.1 Culture issues

One if the interviewees noted that the lack of people dedicated to maintain the CD
pipeline has led to a culture where issues are solved in a quick and unplanned way.
The CD architecture consisting of many small pieces, and the lack of a vision of the
big picture has also made it harder to maintain.

Many of these are made with kind of and ad-hoc approach, where nobody
had really thought of the big picture. Now we have the situation where
we have lots and lots of bits and pieces involved in the CI/CD process.
Reasoning about the big picture is difficult when nobody remembers what
pieces exist and what they are needed for. And now when we have started
moving them to AWS, there has been a lot to think about, in what order
and how they should be moved, so the complexity has been a bit of a
challenge here. And hopefully we are beginning - or actually have already
begun fixing this so the whole thing would be a simple as possible.– S1

16

S3 thought that there is a firefighting culture in delivering new features to customers,
and resolving problems related to them. S3 thinks that the developers spend too
much time on solving customer issues, and that reducing the feedback cycle from
tests could alleviate this.

Another thing which is especially appreciated in addition to making new
features is that you put out fires. In a way there is kind of an incentive to
not produce the best quality - but okay - to make new features, and then
when we get problems we try to solve them, and whoever solves them, as
well as the others get to feel good. [...] We have been discussing this for
a while, and I can’t say for sure, but some things that may help to some
extent is when all feedback cycles get shorter. Then it’s easier to test and
verify things. – S3

5.4 Lack of Continuous Deployment

Due to the nature of the software and contractual reasons, a full Continuous Deploy-
ment process cannot currently be employed at the case company. The software is
used in business critical processes, and thus updating the customers’ environments
is considered to involve too much risk. The customers do not want the software to
be updated without their permission, which is often also specified in their contract.
Because of this, some customers are still using over two year-old versions of the
software.

Some of our customers use our software for making nightly orders for
thousands of stores with at least over ten million euros. Updating those
systems requires a lot of validation work for a specific version in customer
projects. The software coming from Development and Release Manage-
ment is at the moment not of good enough quality in order for us to get
by with generic validation. [...] We still have to use customer specific
validation. – S5

5.4.1 Maintaining multiple versions

This leads to additional challenges since multiple versions of the software have to
be maintained simultaneously. Since the CI configuration and build scripts is stored

17

in the same repository together with the code, it has to be updated separately for
each version when changes are made to it. The build process and environment also
differs, so new features in the CI scripts have to be backported to older versions.

Often bug fixes can directly be cherry-picked to older versions, but sometimes addi-
tional implementation is necessary. The way the software is configured also differs
between versions, which further complicates deployment. There may also be a lot
of manual work (e.g., solving database migration issues) required when updating
customer environments.

There is also sometimes a mismatch releases and customers’ feature requests. This
causes customer specific branches to be created in addition to the stable version.
Often bug fixes are not cherry-picked to the customer specific versions.

Many customers have the case where there is some kind of schedule mis-
match between our versioning and [the needs of the customer] They want
some nice business features before they are in some release, [which leads
to] the features going into a custom branch, and bug fixes won’t be picked
into it. Some fixes may be picked, but something might be missed or
hard to adapt to the new features, or then there goes too much stuff
which hasn’t been tested, which leads to problems. – S5

5.4.2 Customer specific configurations make automation harder

Since the software is highly configurable, it can be hard to verify that changes, such
as updates to the database schema do not break functionality for the customers.
Moreover, it can be difficult, if not impossible to make automatic database migra-
tions that would cover every customer use-case.

Most of them [customer specific configurations] are such that migrations
cannot be decided in advance. For example if some database schema is
changed so that some data is not stored on product level anymore, but
is moved to product-location level. We cannot always say what would be
the reasonable default for all customers for some database field value, so
we need to go though it in the project and check what it needs to be in
that specific case, and then the changes are made by hand. It is things
like this we can probably never automate. – S2

18

The custom deployment tool is also lacking in functionality. It is too easy for users to
make invalid configurations. Sometimes there are also manual changes (e.g., changes
in Apache configuration) that need to be made with version updates that are not
handled by the custom deployment tool.

5.5 Summary of interview findings

The findings from the interviews are summarized in Table 1. The solutions listed in
the table are both ones that were suggested by the interviewees, and ones that have
been suggested by the author.

Table 1: Summary of interview findings
Benefits Mentioned by
Faster iteration S2, S3
Assurance of quality S1, S3, S5
Easier deployment S1, S2, S4
Challenges Solutions
Slow tests S2, S3 Parallelization, selection, prioritization
Flaky tests S2, S3, S5 Write better tests
Test coverage not good enough S2, S5 Improve testing strategy

Make acceptance tests continuous and improve visibility of their results
Infrastructure management S1, S4 Outsourcing, increase collaboration
Pipeline complexity S1, S4 Dedicated persons, clearer responsibilities
Culture issues S3, S4 Improve collaboration

Lack of Continuous Deployment S2
Maintaining multiple versions S1, S2, S5 Update customers faster, shorter release cycles, feature toggles, splitting the monolith
Customer specific configurations S2, S4, S5 More controlled changes to configuration schema, improve deployment tool UI

From the table it can be seen that in most cases, each topic was mentioned by
multiple interviewees. However, there was no topic that came up in all of the
interviews.

19

6 Discussion

6.1 Related work

Most research seem to focus on going from a non-CD to a CD process. This is differ-
ent from the context of this case study, where an existing CD process is improved.

A few literature reviews discuss the subject of this thesis. There findings of those
are similar to the ones in this case study. (Debbiche et al., 2014; Rodríguez et al.,
2017; Laukkanen et al., 2017; Hilton et al., 2017) In overall, the results of this study
do not seem to conflict with the results of existing studies.

6.1.1 Benefits

In his article, Chen (2015) identified six main benefits of CD. In a systematic map-
ping study by Rodríguez et al. (2017), a similar set of benefits is listed.

Some of the benefits mentioned by Chen (2015) can be directly related to the in-
terview findings. Those benefits are Improved productivity and efficiency, Reliable
releases, Improved customer satisfaction and Improved product quality.

However, the benefits Accelerated time to market and Building the right product were
not mentioned in the interviews. While CD can shorten the time between releases
and the feedback loop between the company and the customers, this has not been
the case at the case company, as the software is not continuously deployed. The lack
of continuous deployment was identified as a challenge in itself. Moreover, some of
the interviewees suggested that release cycles could be shorter. This is discussed
further in section 6.6.2.

6.1.2 Challenges

All of the challenges identified in this study could be matched with corresponding
challenges found in the case studies.

In a systematic literature review (Shahin et al., 2017b) of 69 papers, 20 challenges
related to continuous practices were identified. Ten out of those 20 challenges could
be matched to the ones found in this case study.

Some of the challenges mentioned by Shahin et al. (2017b) were not found in this
study. It can be difficult to state whether a specific challenge is explicitly present at

20

Table 2: Challenges mentioned in (Shahin et al., 2017b) compared to this study.
Challenge Present at case company
Lack of awareness and transparency x
Coordination and collaboration challenges x
Cost
Lack of experience and skill x
More pressure and workload from team members
Lack of suitable tools and technologies
General resistance to change
Skepticism and distrust on continuous practices
Difficulty to change established organizational policies and cultures x
Distributed organization
Lack of proper test strategy
Poor test quality x
Merging conflicts
Dependencies in design and code
Database schemas changes x
Team dependencies x
Customer environment x
Dependencies with hardware and other (legacy) applications
Customer preference x
Domain constraints x

21

the case company. Therefore the challenges seen at the case company, listed in Table
2, are ones that were directly inferred from the interviews. Some of the challenges
have been an issue at the case company earlier, but later resolved. An example of
this is “Lack of suitable tools”, which has been resolved by developing own tools
in-house.

“Skepticism and distrust on continuous practices” and “General resistance to change”
were observed by some studies. However, none of the interviewees in this study
seemed to show any skepticism towards continuous practices. Neither were cost
issues observed as a challenge.

Shahin et al. (2017b) mention that CD in some cases may cause “increased workload
and pressure from management” While the interviews didn’t mention the increase of
pressure as significant, it was mentioned that customers may want new features to be
released as early as possible. This has led to custom releases for specific customers
being made, and additional maintenance work is needed for those releases.

Supporting legacy software was not either mentioned by the interviewees, even
though integrating with other systems is a significant part of the planning-cloud
application. One reason for this might be that the integration work is mostly done
by technical project teams separated from the main development teams which were
interviewed.

6.2 Testing

The challenges related to testing are not unique to the case company. Multiple
literature reviews and case studies on CI/CD have identified the same challenges
related to testing (Debbiche et al., 2014; Laukkanen et al., 2017; Hilton et al., 2017).
Some of the literature reviews discuss the following mitigations to testing related
challenges.

6.2.1 Test prioritization

Test prioritization is a way to shorten the feedback time. This can be achieved by
e.g., prioritizing tests if they have failed recently, or based on the code changes.
However it seems like test prioritization has not been widely adopted in practice.
(Chen, 2017)

22

Humble and Farley (2010) recommend that the unit tests should be in the “commit
stage” of the CI pipeline, which with including the build stage preferably should
take under ten minutes. In the case project the testing stage is around 25 minutes
when the tests are parallelized. Since the test suites are run in parallel, a failure in
a single suite can be detected earlier. It is still advisable to keep the test stage as
short as possible, since the complete set of tests have to be run in any case.

Humble and Farley (2010) also suggest that the acceptance tests should be run in a
separate stage after the commit stage. At the case company, the equivalent would be
the black-box tests, which are run nightly. Humble and Farley (2010) assume that
acceptance test environments are a limited resource, and thus, not every commit
is necessarily tested. At the case company, a more continuous acceptance testing
could be implemented, which also means that the testing environments would be
used more efficiently.

6.2.2 Test selection

Test selection is another way to shorten the feedback time by omitting tests com-
pletely. This would be especially useful in a code repository with multiple modules.
If test results from different modules are known to be independent, the results for
each revision of a module could be stored. If a commit does not contain changes for a
specific module, the tests for that module could be skipped since it has already been
tested. The process of implementing this would however be manual, and one would
have to manually assure that the modules’ tests would be completely independent
from each other. In other words, this approach would not work well for integration
tests.

The are however ways to automate the test selection. A systematic review of test se-
lection techniques (Engström et al., 2010) could not conclude that any test selection
technique would be vastly superior. While there has been a lot of research about
test prioritization and test selection, neither of them seem to be widely adopted in
current field of software engineering.

6.2.3 Flaky tests

Flaky tests are caused mostly by concurrency problems in the test code. Luo et al.
(2014) list three main reasons for flaky tests.

23

• Async wait: Checking for a result may happen before it becomes available,
which is usually caused by sleep statements. This can be resolved by replacing
the sleep statements with a waitFor mechanism.

• Concurrency issues with multiple threads, which may be caused by absence
or incorrect use of guarding features, such as mutexes. The issue can lie either
in the test code, or the code that is being tested:

• Test order dependency: differing ordering of the tests by the unit testing
framework may cause tests to fail.

It is possible to develop automated tools for detecting flaky tests (Luo et al., 2014).
Currently at the case company, only manual strategies are used to deal with them.
When the CI pipeline is run more frequently, flaky tests are more likely to be de-
tected. Solving flaky tests should be highly prioritized by the development team.

6.2.4 Parallelization

For running tests in parallel, some ready-made solutions are available e.g., Knapsack
3 (for Ruby) and Test Load Balancer 4. Others have also had success with a similar
parallel approach (Gopularam et al., 2012). However there does not seem to exist
any widely used tools for parallelization.

6.2.5 Availability of test results

Rodríguez et al. (2017) points out that lack of transparency in testing activities can
be a problem. An improvement for the case company could be to unify the test
results from both the CI pipeline and the testing done by the Release Management
team. While it was not explicitly mentioned in any of the interviews, the author
did experience that the communication of testing efforts between the different team
could be improved. The black-box and user interface tests could also be integrated
into the CI pipeline, so that faulty build would be rejected and unable to be deployed,
as recommended by Humble and Farley (2010)

3https://github.com/ArturT/knapsack
4http://test-load-balancer.github.io/

24

6.3 Infrastructure

Challenges related to CI infrastructure has been mentioned in other studies (Shahin
et al., 2017b). Effort is required to set up the servers needed for the version control
system and CI platform. This is often done by a separate infrastructure or operations
team.

6.3.1 SaaS vs. self-hosted services

Services that support CI are often hosted on the software organization’s own servers,
but some companies offer their solutions as Software as a Service (SaaS), which is
usually backed by a cloud provider. Using SaaS means that the providing company
takes care of hosting the service. The clients do not need to think about managing
servers and network infrastructure.

For SaaS there is trade-offs with cost and suitability for the use case at the case
company. A more in-depth cost-benefit analysis on SaaS vs. the self-hosted version
of GitLab would be needed. One potential drawback is that the CI pipeline is quite
complex and heavily used. At first glance, it seems that the CI capabilities provided
by the SaaS version of GitLab are not sufficient for the case company’s use case.
The most limiting factor is that the SaaS license only includes a limited number of
minutes per month for which the CI pipeline can run.

6.3.2 Containerization

Containerization tools such as Docker have however made it easier to deploy ap-
plications, both in the cloud and on on-premise servers. Containerization allows
applications to be deployed without having to care about the underlying operating
system’s installed packages.

Cloud providers also have their own container services. One example is Amazon’s
Fargate, which takes care of provisioning the underlying infrastructure for running
Docker containers. The user only needs to specify the containers they want to run.

Many CI tools are available as readily deployable Docker images. This can make it
easier for organizations to set up their CI infrastructure. Docker is also utilized by
CI platforms to quickly set up environments for running builds and unit tests.

25

6.4 Culture

Most of the related research mentioned that collaboration and the lack of expertise
in CI/CD are two main organization related challenges in implementing CI/CD.

Shahin et al. (2017c) surveyed how CD adoption may impact development and
operations team structures. In most of the organizations surveyed, CD adoption had
led to increased collaboration between development and operations teams. It was
found that co-locating teams was one of the more common ways for organizations to
enable collaboration. The challenges at the case company related to infrastructure
management are mostly caused by limited collaboration between the Dev and Infra
teams. One cause for this might be that the Infra team is physically located on
a different floor, and thus makes collaboration harder. Shahin et al. (2017c) also
mention that some companies have separate Dev and Ops teams, with a facilitating
team between them. A similar pattern can be said to have emerged at the case
company.

The difficulties in collaboration may also be caused by unclear responsibilities be-
tween the teams. As mentioned in the interviews, the lack of dedicated persons
to maintain internal services has been a problem. The author suggests that grater
efforts are made to clarify the responsibilities in regard of managing internal devel-
opment infrastructure.

6.5 Pipeline complexity

CI/CD tools have to trade-off between simplicity and configurability (Hilton et al.,
2017). This shows itself as added complexity to the CI pipeline. In this section, the
author discusses his experiences with implementing GitLab as a CI tool.

6.5.1 GitLab as a CI tool

GitLab is a relatively new tool for supporting development teams. In addition to
providing Git repositories for software projects, it can also function as a CI server.
It also includes a simple issue tracking system. The author only found very few
mentions of GitLab in previous academic work.

Hilton et al. (2017) recommend that the CI process should be made as simple as
possible. They also mention that both simplicity and configurability is desired from

26

a CI tool, even though the two properties sometimes may conflict each other.

To mitigate the complexity of the CI pipeline at the case company, abstractions have
been made in the form of Python scripts that automate the common tasks related to
building and testing the application. Moreover, the switch from Jenkins to GitLab
has provided a simpler, but more flexible way to configure the CI pipeline. While
Jenkins is based on plugins that abstract away common tasks, GitLab is based on
running arbitrary commands and relying on their exit code to determine the status
of the pipeline. Jenkins’ Groovy-based scripting language was hard to maintain and
debug, and relies on global variables to determine the pipeline status. With GitLab,
the custom Python scripts can be called. The Python scripts can also be run with
a local debugger, which eases the development significantly.

Another aspect that add complexity is the caching of dependencies and build arti-
facts. For example, when a Java application is built, a set of .class files are produced.
These files are when running the unit tests. The application may use dependencies
from the Maven repository, which are stored in a local cache. The challenge comes
when these files have to be passed from a finished build stage to a newly started
runner machine which runs the unit tests. In GitLab, the files to be preserved
have to be specified manually. Experimentation and knowledge of the build tools
is needed to determine the files that need to be kept, although some CI solutions
provide ready-made configurations for specific technology stacks. A fast network is
also needed to keep the pipeline at a reasonable speed.

There has also been some reliability problems with the automatically scaling GitLab
runners, that have not yet been fully resolved. The current solution is based on
docker-machine and AWS, so the problem might lie in either those or in the GitLab
software itself. CI solutions in the cloud are sill relatively young and developing
rapidly, so hopefully in the future more stable solutions will be available.

Instead of waiting for the current tools to be updated, another option is to evaluate
other corresponding tools, or have developers at the case company look into resolving
issues with the tools currently used. It would be possible for the case company to
make contributions to the tools, since many of them are open-source.

6.5.2 Preventing broken builds

GitLab supports merge requests (similar to GitHub’s pull requests) which allow
code reviews to be performed before a branch is merged. Merge requests can also

27

integrate with the CI pipeline, so that only passing builds are allowed to be merged.
This avoids the commonly mentioned problem of “breaking the build” which prevents
new releases from being made until the failing pipeline is fixed. This happens from
time to time with the current pipeline implementation at the case company.

Git supports custom hook scripts which can be used to validate commits. For
example it can be enforced that each commit in the master branch has to include
an issue ID. Hook scripts have been extensively used in the case company’s current
git implementation to enforce a common workflow. For example, merge commits
are not allowed and thus prevented. Integrating the hook scripts in GitLab has
been a challenge. GitLab supports custom hooks, and even integration with merge
requests, such that the hook errors would be shown if a merge failed. There has
however been a bug that stopped this feature from working. A similar functionality
to the hook scripts could also be implemented with GitLab’s CI pipeline.

6.6 Lack of Continuous deployment

It is a common finding in related studies (Claps et al., 2015; Rodríguez et al., 2017;
Shahin et al., 2017a), that CDep cannot be employed due to customer or business
constraints.

Continuous Deployment is easier to implement when only a single version of the
software product has to be maintained. This is usually the case for public facing
web applications. Business-critical applications have different requirements, which
makes CDep harder to implement.

6.6.1 Splitting the monolith

Continuous deployment could be implemented for less business-critical parts of the
application, such as the user interface. This would however require the UI module
to be split from the main codebase, and the existing deployment tools to be updated
to accommodate that. Having separated modules also requires an API contract to
be defined between them. According to one interviewee, such approaches have been
discussed. Re-architecting the application would require significant effort from the
development teams.

28

6.6.2 Rapid releases

Mäntylä et al. (2015) and Vesikivi (2016) found that automatic deployments is an
enabler for having rapid releases. When there are less changes between versions, up-
dates may become less painful. On the other hand it also requires having customers
willing to update their software. Rapid releases may however conflict with the goal
of having high reliability (Mäntylä et al., 2015).

In an internal workshop study at the case company aimed at improving the time
between releases, it was found that poor QA and testing practices was the main
perceived risk associated with a more rapid release cycle. At the same time, QA
was also identified as the most important area to improve in. Splitting the monolith
was also suggested as a way to make iterations faster.

29

7 Conclusions and recommendations

This case study aimed to identify challenges and benefits related to the practices
of continuous integration and continuous delivery. The challenges and benefits that
were identified were similar to what has been found in previous research.

Implementing CI/CD has had numerous benefits for the case company. Having a
team dedicated to developing an automatic deployment tool has made deployment
faster and reduced problems related to deployment. The introduction of CI/CD has
also led to developers taking more responsibility in the quality of the product.

The identified challenges were mainly related to testing and collaboration within
the company. Automated tests may be slow and fail randomly if they are not
written with care. More effort should be put into ensuring the quality of the test
code, especially in how waiting for asynchronous results is handled. Moreover, time
should be spent on creating a testing strategy in order to improve the automated
tests, so that they can better verify the quality of the software.

Collaboration was seen as a challenge by other studies in addition to this case study.
In the case of the case company, the main challenge is a lack of dedicated persons to
maintain the CI/CD pipeline and infrastructure. There are also technical challenges
related to the complexity of the build process as whole, and the stability of the
CI/CD tools used. Additionally, the collaboration between the development and
infrastructure teams could be improved.

The critical use case of the software itself makes it hard to employ full continuous
deployment. Customers do not want to update their version of the software when
there is a risk of it breaking after the update. As multiple versions of the software are
maintained simultaneously, applying bug fixes and maintaining the CI pipeline for
each version requires additional effort. It is also hard to automate updates between
versions when customer specific configurations have been applied to the software.
Introducing a more rapid release cycle may alleviate this challenge by reducing the
amount of changes between software versions, and thus making updates easier.

30

References

Amazon Web Services. Practicing Continuous Integration and Contin-
uous Delivery on AWS: Accelerating Software Delivery with DevOps,
June 2017. URL https://d0.awsstatic.com/whitepapers/DevOps/

practicing-continuous-integration-continuous-delivery-on-AWS.pdf.

Atlassian. Continuous integration vs. continuous delivery vs. continuous deployment.
URL https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jef-
fries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, and Dave Thomas. Manifesto for Agile Software Development.
2001. URL http://www.agilemanifesto.org/.

L. Chen. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software,
32(2):50–54, March 2015. ISSN 0740-7459. doi: 10.1109/MS.2015.27.

Lianping Chen. Continuous Delivery: Overcoming adoption challenges. Journal of
Systems and Software, 128:72–86, June 2017. ISSN 0164-1212. doi: 10.1016/j.jss.
2017.02.013.

Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. On the
journey to continuous deployment: Technical and social challenges along the way.
Information and Software Technology, 57:21–31, January 2015. ISSN 0950-5849.
doi: 10.1016/j.infsof.2014.07.009.

Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. Challenges When
Adopting Continuous Integration: A Case Study. In Andreas Jedlitschka, Pasi Ku-
vaja, Marco Kuhrmann, Tomi Männistö, Jürgen Münch, and Mikko Raatikainen,
editors, Product-Focused Software Process Improvement, Lecture Notes in Com-
puter Science, pages 17–32. Springer International Publishing, 2014. ISBN 978-3-
319-13835-0.

Vincent Driessen. A successful Git branching model, January 2010. URL http:

//nvie.com/posts/a-successful-git-branching-model/.

31

Emelie Engström, Per Runeson, and Mats Skoglund. A systematic review on regres-
sion test selection techniques. Information and Software Technology, 52(1):14–30,
January 2010. ISSN 0950-5849. doi: 10.1016/j.infsof.2009.07.001.

Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering: A roadmap
and agenda. Journal of Systems and Software, 123:176–189, January 2017. ISSN
0164-1212. doi: 10.1016/j.jss.2015.06.063.

Martin Fowler. Continuous Integration, May 2006. URL https://martinfowler.

com/articles/continuousIntegration.html.

Martin Fowler. ContinuousDelivery, May 2013. URL https://martinfowler.com/

bliki/ContinuousDelivery.html.

B. P. Gopularam, C. B. Yogeesha, and P. Periasamy. Highly scalable model for
tests execution in cloud environments. In 2012 18th International Conference on
Advanced Computing and Communications (ADCOM), pages 54–58, December
2012. doi: 10.1109/ADCOM.2012.6563584.

David E. Gray. Doing Research in the Real World. SAGE Publications Ltd, Los
Angeles, second edition edition, March 2009. ISBN 978-1-84787-337-8.

Paul Hammant. Trunk Based Development, 2017. URL https://

trunkbaseddevelopment.com/.

Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.
Trade-offs in Continuous Integration: Assurance, Security, and Flexibility. In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, pages 197–207, New York, NY, USA, 2017. ACM. ISBN 978-1-
4503-5105-8. doi: 10.1145/3106237.3106270.

Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional,
Upper Saddle River, NJ, 1 edition edition, August 2010. ISBN 978-0-321-60191-9.

Md Rakibul Islam and Minhaz F. Zibran. Insights into Continuous Integration Build
Failures. In Proceedings of the 14th International Conference on Mining Software
Repositories, MSR ’17, pages 467–470, Piscataway, NJ, USA, 2017. IEEE Press.
ISBN 978-1-5386-1544-7. doi: 10.1109/MSR.2017.30.

32

Eero Laukkanen, Juha Itkonen, and Casper Lassenius. Problems, causes and solu-
tions when adopting continuous delivery—A systematic literature review. Infor-
mation and Software Technology, 82:55–79, February 2017. ISSN 0950-5849. doi:
10.1016/j.infsof.2016.10.001.

M. Leppänen, S. Mäkinen, M. Pagels, V. P. Eloranta, J. Itkonen, M. V. Mäntylä, and
T. Männistö. The highways and country roads to continuous deployment. IEEE
Software, 32(2):64–72, March 2015. ISSN 0740-7459. doi: 10.1109/MS.2015.50.

Emily Luke and Suzie Prince. No One Agrees How to Define CI or
CD | GoCD Blog, May 2017. URL https://www.gocd.org/2017/05/09/

continuous-integration-devops-research/.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An Empirical
Analysis of Flaky Tests. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 643–653,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3056-5. doi: 10.1145/2635868.
2635920.

Simo Mäkinen, Marko Leppänen, Terhi Kilamo, Anna-Liisa Mattila, Eero Laukka-
nen, Max Pagels, and Tomi Männistö. Improving the delivery cycle: A multiple-
case study of the toolchains in Finnish software intensive enterprises. Information
and Software Technology, 80:175–194, December 2016. ISSN 0950-5849. doi:
10.1016/j.infsof.2016.09.001.

Mika V. Mäntylä, Bram Adams, Foutse Khomh, Emelie Engström, and Kai Petersen.
On rapid releases and software testing: a case study and a semi-systematic lit-
erature review. Empirical Software Engineering, 20(5):1384–1425, October 2015.
ISSN 1382-3256, 1573-7616. doi: 10.1007/s10664-014-9338-4.

Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Teppola,
Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja, June M. Verner,
and Markku Oivo. Continuous deployment of software intensive products and
services: A systematic mapping study. Journal of Systems and Software, 123:
263–291, January 2017. ISSN 0164-1212. doi: 10.1016/j.jss.2015.12.015.

M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu. Beyond Continuous Deliv-
ery: An Empirical Investigation of Continuous Deployment Challenges. In 2017
ACM/IEEE International Symposium on Empirical Software Engineering and

33

Measurement (ESEM), pages 111–120, November 2017a. doi: 10.1109/ESEM.
2017.18.

M. Shahin, M. Ali Babar, and L. Zhu. Continuous Integration, Delivery and De-
ployment: A Systematic Review on Approaches, Tools, Challenges and Practices.
IEEE Access, 5:3909–3943, 2017b. ISSN 2169-3536. doi: 10.1109/ACCESS.2017.
2685629.

Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali Babar, and Liming Zhu.
Adopting Continuous Delivery and Deployment: Impacts on Team Structures,
Collaboration and Responsibilities. In Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software Engineering, EASE’17, pages
384–393, New York, NY, USA, 2017c. ACM. ISBN 978-1-4503-4804-1. doi:
10.1145/3084226.3084263.

Matti Vesikivi. Release management process in a software service company. June
2016.

Appendix 1. Interview structure

• What are your responsibilities

– Regarding the delivery of our software?

• What do you see as the benefits of CD (having the product in a deliverable
state, e.g., by using automated tests)

• What are challenging aspects of CD?

– Implementation

– Organizational

• How has the CD process evolved over time?

• Do you see any problems with the current implementation?

– Do you have any suggestions on how to solve them?

• Any other comments about CD?

