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ABSTRACT: Molecular structures of toroidal carbon nanotubes
(TCNTs) have been constructed and optimized at the density
functional theory (DFT) level. The TCNT structures have been
constrained by using point groups with high symmetry. TCNTs
consisting of only hexagons (polyhex) with armchair, chiral, and
zigzag structures as well as TCNTs with pentagons and heptagons
have been studied. The employed method for constructing general
polyhex TCNTs is discussed. Magnetically induced current densities
have been calculated using the gauge-including magnetically induced
currents (GIMIC) method. The strength of the magnetically induced
ring currents has been obtained by integrating the current density
passing a plane cutting the ring of the TCNT. The main pathways of
the current density have been identified by visualizing the current
density. The calculations show that the strength of the diatropic ring

current of polyhex TCNTs with an armchair structure generally increases with the size of the TCNT, whereas TCNTs with a
zigzag structure sustain very weak diatropic ring currents. Some of the TCNTSs with pentagons and heptagons sustain a strong
diatropic ring current, whereas other TCNT structures with pentagons and heptagons sustain paratropic ring currents that are,
in most cases, relatively weak. We discuss the reasons for the different behaviors of the current density of the seemingly similar

TCNTs.

1. INTRODUCTION

A torus is a topological object with genus 1; that is, colloquially
speaking, it has one hole. The Gaussian curvature integrated
over the surface of a torus is zero, implying that a cubic graph
that can be embedded on the surface of a torus may consist of
only faces with six sides, that is, hexagons. Alternatively, it may
contain faces smaller than a hexagon, which have to be
compensated by larger faces, for example, equal numbers of
pentagons and heptagons, fulfilling the general topology

Lo 1,2
relation in eq 1

faces
2 (6-n)=12(1~-g)
f (1)

where n;is the number of edges of the individual faces, and g is
the genus of the object. Structures of toroidal carbon
nanotubes (TCNTs) that contain not only hexagons but also
an equal number of pentagons and heptagons have been
reported in refs 3, 13 and discussed in detail in ref 14. TCNTs
have also been observed experimentally.">~"*

The fascinating topology of the TCNT's might also lead to
novel molecular magnetic properties,'”*" which means that
studies of magnetically induced current densities in TCNTs
are of interest. The magnetically induced current density is

-4 ACS Publications  © 2019 American Chemical Society

expected to flow mainly along the major ring of the torus when
a magnetic field is applied perpendicular to the torus. In chiral
TCNTs, the current density might, to some extent, follow the
carbon network, leading to a helical structure of the current
density. When that is the case, one of its vector components
forms a current pathway around the minor ring perpendicular
to the major ring.”"** The vector component of the current
density flowing around the minor ring would then induce a
magnetic field along the major ring, leading to a magnetic
anapole moment.”'”****** A inhomogenious magnetic field is
required for inducing an anapole moment in achiral tori,
whereas a uniform field is sufficient for inducing an anapole
moment in chiral tori.” The diatropic ring current around the
major ring gives rise to an induced magnetic field in the
opposite direction to the applied magnetic field, whereas the
induced magnetic moment has the same direction as the
applied one when the induced ring current is paratropic.
Planar organic molecules fulfilling the [4n + 2] 7-electron
count rule are, in general, aromatic.”>™>* The applicability of
the aromaticity concept has been extended to complex
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molecular rings consisting of annelated or connected smaller
rings.”*~>" Even though the main molecular ring is nonplanar
or even twisted, rin_§s can still fulfill the generalized Hiickel rule
for aromaticity.””>” The molecular aromaticity of complex
structures such as TCNTs is not determined merely by the
number of 7z electrons of the conjugation pathway, but
aromaticity may also be a topological property in a broader
sense.

In this work, we investigate the magnetically induced current
density of a number of TCNTs. We have studied TCNTs tiled
with only hexagons as well as TCNTs with pentagons and
heptagons that are known to sustain strong ring currents.”” In
Sections 2.1 and 2.2, we discuss the construction and
optimization of the molecular structures, respectively. The
methods used to calculate magnetically induced current
densities are presented in Section 2.3. The results are reported
in Section 3, and the main conclusions are drawn in Section 4.

2. COMPUTATIONAL METHODS

2.1. Polyhex Torus Construction. The surface of a torus
can be obtained from a planar parallelogram-shaped surface by
joining two opposite edges without twisting to form an open-
ended tube. The two ends of the tube are then connected to
yield a torus. Tiling the surface of a torus with hexagons can be
realized by cutting a parallelogram out of an infinite plane tiled
with regular hexagons. The corners of the parallelogram lie at
centers of hexagons, and the mapping onto the surface of the
torus is done in such a way that all four corners are mapped
onto the same point.”*~>® We here limit the graph-theoretical
discussion to the construction of TCNTs that consist of only
hexagons, which are called polyhexes. When constructing
TCNTs with an equal number of pentagons and heptagons,
their positions have to be carefully chosen to obtain regular
structures as those studied in this work.

The dual of a hexagonal tiling of a surface is a six-connected
triangulation. As proved by Negami,”’ every six-connected
triangulation of a torus has a unique embedding. A
parallelogram that is tiled with regular hexagons can be
uniquely defined by its edge vectors (m, n) and (p, q) in the
hexagonal lattice (Figure 1).>* The number of vertices is

(1,0)

Figure 1. Two basis vectors as used in this paper as well as three
examples for vectors (m, n) or (p, q). Note that different definitions of
the basis vectors are used in the literature.

2((m+n)q—n(p+ q)).58 While m, n, p, and q uniquely define
the tiling of tori, the reverse is not true since each tiling can be
generated by an infinite number of parameter sets. Exploiting
this degeneracy renders parametrization of the tiling of a torus
with only three integers feasible, which is less intuitive.””>*
The choice of m, n, p, and gq defines the minor radius r and
the major radius R of the torus, where the minor radius is the
radius of the tube that is bent to form a ring, whereas the
length of the tube determines the major radius. The minor

radius is equal to the length of the chiral lattice vector (m, n)
divided by 27 or 2zr = m* + mn + n*. The major radius of the
torus is equal to the length of the (p, q) lattice vector times the
sine of the angle between the (m, n) and (p, q) vectors divided
by 2.

The requirement to map the parallelogram onto the surface
of the torus in such a way that all corners coincide implies that
a general parallelogram has to be sheared to form a rectangle.
Deviations from 7/2 of the angle between the two lattice
vectors (m, n) and (p, q) lead to distortions of each hexagon
when forming the torus. The angle between (m, n) and (p, q)
can only be exactly 7/2 when the number of vertices is 4n with
integer n. The slightest deviation from /2 allows the
construction of tori with vertex counts of 4n + 2, whose
hexagons are deformed.

A 27r X 27R rectangle can be mapped onto the surface of a
torus as

x = (R + r,, cos(v))cos(w)
y=R+ Tay cos(v))sin(w)
z = r, sin(v) ®)

where v and w are angles corresponding to the radii R and r,
respectively.

The tube of the obtained torus has a circular cross section
when r = r,, = r,. TCNTs with a large minor radii r have been
found to have ellipsoidal cross sections,” which can be easily
understood because such a deformation leads to more uniform
bond lengths. Tori with ellipsoidal cross sections can be
generated by reducing the minor radius r,, and increasing r, in
eq 2. One of the main problems with the molecular structure of
TCNTs is that C—C bonds on the inside are very compressed,
whereas those on the outside are often much longer than
typical C—C single bonds. Small polyhex TCNTs are therefore
thermodynamically unstable.® More equal bond lengths are
obtained by introducing heptagons on the inside and
pentagons on the outside of the torus. The code we have
used for generating arbitrary polyhex TCNTs is freely
available.*”

2.2, Structure Optimization. A practical method for
obtaining good starting structures for large TCNTs is
optimizing the structure in a reduced space with a few degrees
of freedom. The largest polyhex TCNTs studied in this work
were preoptimized in a two-parameter space by using the
downhill simplex algorithm. One parameter is the isotropic
scaling factor for the whole molecule, and the second
parameter defines the extent of the elliptical distortion of the
cross section of the TCNT. The vertical component r, and the
horizontal component r,, of the minor radius are expressed as
r, = arand r,, = 2r — ar, respectively, where  is the parameter
that determines the shape of the cross section. The tube has a
circular cross section when a = 1. Single-point energies were
obtained with Turbomole®”®" by performing calculations at
the density functional theory (DFT) level using the Becke—
Perdew (BP86) functional and split-valence quality basis sets
augmented with polarization functions (def2-SVP).**™%7 The
accuracy of the molecular structures obtained in the two-
parameter optimization was assessed by comparing the
preoptimized structures and their energies with the corre-
sponding results for the fully optimized ones. The average
energy difference per carbon atom is about 1 mE,, showing
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Table 1. Number of Carbon Atoms (N), Lattice Vectors (m, n), (p, q), Ideal Point Group and the Point Group Used as
Symmetry Constraint in the Structure Optimization, HOMO—-LUMO Gap, and Net Currents of the 13 Studied Polyhex

point group

TCNTs”

series Nc (m, n), (p, q) parameters ideal

(I) 480 (4, 4), (=30, 30) D,
576 (4, 4), (=36, 36) Dsg,
672 (4,4), (42, 92) Dy
768 (4, 4), (—48, 48) Dgn
864 (4, 4), (=54, 54) Dgyp
960 (4, 4), (—60, 60) Dgon,

(H) 588 (7, 0), (—21, 42) D,
756 (7, 0), (—27, 54) Dy,
924 (7, 0), (=33, 66) Dsy,

(1) 756 (6, 3), (—36, 45) Dy
2016 (6, 0), (—84, 168) Dgyy,
2016 (6, 3), (—96, 120) Dy,
2016 (6, 6), (—84, 84) Dgyy,

optimized HOMO-LUMO gap (eV) ring current (nA/T)

Caon 0.20 84.4
Caer 0.18 112.8
Ciay 0.14 143.4
Cise 0.13 171.3
Conr 0.11 200.7
Can 0.10 2357
Do 0.16 9.5
Dy 0.31 17
Dy 0.17 11
D, 0.25 -11
Do

Dy 0.07 292.3
D 0.11 330.5

“The first series (I) consists of six (1, n) armchair TCNTs that permit a Clar structure. The second series (II) consist of three (1,0) zigzag TCNTs.
Series (III) consists of four TCNTs that have Clar structures. The first and third of series (III) are chiral, the second has a zigzag structure, and the

fourth is an armchair TCNT.

Table 2. Number of Carbon Atoms (N), Structural Parameters, Point Group, HOMO—LUMO Gap, and Net Currents of
9 Chuang-Armchair (Series (IV)), 5 Chuang-Zigzag"® (Series (V)), and 10 Dunlap-Armchair-Zigzag® (Series (VI) and (VII))

TCNTs

series N¢ structural parameters

(v) 192 (2,1,1,1), (1,0)
288 (2,1, 1,2),(1,0)
384 (2,1, 1,3),(1,0)
480 (2,1, 1,4),(1,0)
576 (2,1, 1,5),(1,0)
672 (2,1, 1, 6), (1,0)
768 2,1, 1,7),(1,0)
864 (2,1, 1,8),(1,0)
960 (2,1,1,9),(1,0)

V) 252 (1,2,2,1), (1, 1)
420 (1,2,2,2),(1,1)
588 (1,2,2,3),(1,1)
756 (1,2,2,4),(1,1)
924 (1,2,2,5),(1,1)

(VI) 480 2(4, 4), 1(8, 0)
576 3(4, 4), 1(8, 0)
672 4(4,4), 1(8, 0)
768 5(4, 4), 1(8, 0)
864 6(4, 4), 1(8, 0)
960 7(4, 4), 1(8, 0)

(vin) 672 2(4, 4), 2(8, 0)
768 3(4, 4), 2(8,0)
864 2(4, 4), 3(8,0)
960 3(4, 4), 3(8,0)

point group

Dy
Dg,

HOMO-LUMO gap (eV) ring current (nA/T)

1.33 -3.5
0.32 —0.6
0.29 2.4
0.52 =25
0.04 57.7
0.40 -2.2
0.23 -3.8
0.09 -19
0.31 =2.7
0.26 -84
0.07 —94.0
0.25 -12.9
0.36 -3.5
0.33 -1.5
0.16 73.7
0.18 117.8
0.08 —94.6
0.19 149.0
0.08 172.3
0.10 177.6
0.09 94.6
0.12 119.2
0.03 101.1
0.07 —4.1

that rather accurate molecular structures can be obtained by
optimizing the two structural parameters.

The meta-generalized-gradient approximation exchange-
correlation functional (TPSS),%® def2-SVP basis sets, and the
m3 integration grid were used in the DFT optimization of the
molecular structures of the TCNTs of series (I)—(II) and
(IV)—(VI1).°*~%° The molecular structures of the TCNTs of
series (III) were optimized at the BP86/def2-SVP level using
the m3 integration grid.”~*”*’ The semiempirical D3-BJ term
The

- . . . .70
was used for considering dispersion interactions.

15356

geometry optimizations were constrained by using point
group symmetries. In most cases, the ideal point group was
chosen, that is, the highest point group permitted by the bond
graph. As specified in Tables 1 and 2, a lower point group was
chosen in some cases for technical reasons. The Cartesian
coordinates of the optimized structures are given in the
Supporting Information.

2.3. Magnetically Induced Current Density. Molecules
exposed to an external magnetic field sustain magnetically
induced current densities, which are the fingerprint of

DOI: 10.1021/acs.jpcc.9b03769
J. Phys. Chem. C 2019, 123, 15354—15365


http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b03769/suppl_file/jp9b03769_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.9b03769

The Journal of Physical Chemistry C

molecular magnetic properties that can be obtained by
integrating the corresponding Biot—Savart expression.71’72
The magnetically induced current density susceptibility,
which we, in the following, call current density, were calculated
in the limit of zero magnetic field strength using the gauge-
including magnetically induced current (GIMIC) meth-
0d.”>”7> GIMIC uses basis set information, the atomic orbital
density matrix, and the magnetically perturbed atomic orbital
density matrices as input data, which are obtained by
performing nuclear magnetic resonance (NMR) shielding
calculations. The GIMIC program is an open-source tool for
calculating and analyzing current densities in open- and closed-
shell molecules. Details about the use of the GIMIC method
and its applications can be found on GitHub’® and in the
reviews by Sundholm et al.”>”>””

GIMIC is interfaced to a number of electronic structure
codes such as Turbomole or Gaussian.’”’® The NMR
shieldings and current densities were calculated®”®" at the
DFT level using gauge-including atomic orbitals (GIAO) to
ensure gauge origin independence and a rapid basis-set
convergence.””*" The TPSS/def2-SVP level was used in the
NMR shielding and current-density calculations.””***' The
performance of different functionals was also investigated by
performing current-density calculations using the M06-2X,**
Mo6,*> PBE0,* B3LYP,"*~*° TPSSh,® PBE,”” KT3," and
TPSS®® functionals.

When a magnetic field is directed perpendicular to a
molecular ring, the current density can flow around the ring,
forming a ring current whose strength can be used for assessing
the degree of aromaticity or used as a general measure of
electron delocalization. The net ring current can flow in the
diatropic, that is, classical direction, or in the paratropic
(opposite) direction. Molecules sustaining net diatropic ring
currents are aromatic, whereas antiaromatic molecular rings are
dominated by paratropic ring currents. Nonaromatic molecules
can sustain diatropic and paratropic ring currents of equal
magnitude.

In toroidal structures, the induced current density can be
decomposed into one vector component along the main ring of
the torus and a second one that flows around the cross section
of the nanotube. Helical current densities appear when there
are nonzero net current strengths in both directions.

The strength of the ring current can be determined by
performing numerical integration of the current density passing
chosen integration planes through the molecule or through
planes that cut chemical bonds. Here, the strength of the ring
current of the major ring of the TCNTSs has been determined
by placing the integration plane starting from the center of the
torus and extending at least 8 bohr from the outer edge of the
molecule. Detailed investigations of the ring current passing
individual chemical bonds are not relevant because, for
molecular cages and rings, the ring current does not necessarily
follow chemical bonds; instead, the current pathway is
determined by the topology of the molecule.*”**~*

When the surface of a torus lies in the xy plane, the net ring
current around the cross section of the nanotube can be
obtained by integrating the current density using a cylindrical
grid that covers only the positive part of the z coordinate and
intersects the torus. For TCNTSs with rotational symmetry, it is
sufficient to integrate over only a fraction of the grid. For
sufficiently high rotational symmetry, the remaining arc can be
replaced by a straight line, implying that a planar integration
grid can, in practice, be employed.

The current density and its pathways can be qualitatively
analyzed by visualizing the current density on a three-
dimensional (3D) grid using visualization programs such as
Paraview.”” Paraview can also provide contour plots by
visualizing the current density passing a given plane. Line
integral convolution (LIC) plots can be used for tracing
current vortices with a color scheme representing the current
strength. The figures were prepared using Gnuplot, VMD,
GIMP, and Paraview.”” %

3. RESULTS AND DISCUSSION

3.1. Investigated Structures. 3.7.1. Polyhex TCNTs. We
have studied four polyhex-zigzag (n, 0) TCNT structures,
seven polyhex-armchair (n, ), and two polyhex-chiral (6, 3)
structures. The polyhex-armchair TCNTs have acene-like
structures along the main ring of the torus. Ten of the studied
TCNTs have Clar structures. Clar structures exist in TCNTSs
when (m — n) mod 3 =0 A (p — q) mod 3 = 0.>* The studied
polyhex TCNTs have 4n 7 electrons, and the hexagons are not
distorted. The role of Hiickel’s aromaticity rule was assessed by
performing current density calculations on TCNTs with 4n
and [4n + 2] & electrons. The calculations on TCNT with 500,
748, and 1000 (4n) carbon atoms and 502, 750, and 1002 (4n
+ 2) carbon atoms showed that they sustain practically the
same ring-current strength. Therefore, we did not study
TCNTs with distorted hexagons more extensively.

While a straight carbon nanotube (CNT) with any (m, n)
can be realized with equal and ideal C—C bond lengths, this is
not possible for TCNTs that consist of hexagons only because
the inner and outer perimeters have significantly different
lengths. Therefore, large r and small R lead to the largest
deviation from ideal bond lengths, while in the limit of thin
tubes or for large R, little strain remains. Some of the smallest
studied polyhex tori are highly strained. The shortest C—C
bonds inside the tori are much shorter than the optimal C—C
distance of about 142 pm, and the longest C—C bonds on the
outside of the tori are much longer. Since the smallest polyhex
tori lie very high in energy as compared to I-Cy, fullerene, the
optimized structures will most likely break down when one
does not impose any symmetry constraints.

The stress can, to some extent, be relieved by distorting the
cross section of the tube toward an ellipse such that it is
elongated perpendicular to the torus and compressed in the
radial direction, which reduces the length difference between
the inner and outer perimeters. This effect has been previously
described and quantified based on molecular dynamics
simulations.® Here, we confirm it at the DFT level. The
cross section of the tori is able to become elliptical in the
geometry optimizations because the structures are constrained
only with respect to the point group symmetry.

The stress can also be released by forming dents on the
inside of a torus, leading to a longer inner perimeter, while the
length of the outer perimeter remains unchanged. This stress-
releasing mechanism has previously been described for
CNTs'% and TCNTs.*'%* The chiral Cyss (m, m, p, q) = (6,
3, — 36, 45) TCNT was found to have dents along the inner
perimeter when only the point group symmetry constraint was
imposed in the DFT optimization of the structure. The
employed structural parameters and point groups as well as the
obtained HOMO—-LUMO gaps of the studied polyhex
TCNTs are given in Table 1.

Three C,5;,3 TCNTs with different (m, n) parameters have
been studied. The TCNT structure with (m, n) = (6, 0) does
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not have any energy gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) for the assumed point group,
implying that nuclear shieldings and current densities cannot
be calculated for it. The armchair Cyy4 TCNT with (m, n) =
(6, 6) has a slightly larger HOMO—-LUMO gap of 0.11 eV
than that obtained for the intermediate chiral structure with
(m, n) = (6, 3), whose HOMO—LUMO gap is 0.07 eV. The
smaller C,5¢ TCNT with (m, n) = (6, 3) has a HOMO—
LUMO gap of 0.25 eV. Polyhex CNTs with Clar structures
have previously been found to lack a HOMO—-LUMO gap,
whereas the corresponding polycyclic aromatic hydrocarbons
(PAH) have large HOMO-LUMO gaps.'” Isotropic
distortions of CNT lead to increasing HOMO-LUMO
gaps.'”® The molecular structures of some of the studied
polyhex TCNTs are shown in Figure 2.

Figure 2. Structures of Cyg, of series (I), Cqy, of series (IT), C,g6 of
series (III), and C,p4 (6, 3) of series (III). The rest of the
investigated polyhex TCNT structures is depicted in the Supporting
Information.

3.1.2. TCNTs with Pentagons and Heptagons. More stable
TCNTSs with nearly equal C—C distances can be obtained by
introducing pentagons and heptagons.”~'**> Here, we limit
the discussion to two classes of TNCTs with pentagons and
heptagons. They are labeled “Dunlap” and “Chuang” after the
authors of refs 3 and 13, respectively, where the structures are
described in detail. The Chuang TCNTs consist of six
segments of straight nanotubes, and at each joint, there are
two pentagons on the outside and two heptagons on the inside
to reduce the strain. The point group is at least D,. This class
of TCNTs is characterized by six integers, (nys, 1177, nss, s), (m,
n), where n,s is the radial extent of one segment, n,, is the
inner height, ns is the outer height, s is the length of each
segment, and (m, n) is the chiral vector. For explanatory
diagrams, see ref 13. The Dunlap TCNTs consist of 12
segments, which are alternatingly armchair and zigzag; that is,
the point group is Dg, This class of TCNTs can be
characterized by six integers, s,(m,, n,), s,(m,, n,), which are
the lengths and the chiral vectors of the zigzag-like segment
and the armchair-like segment, respectively. There are similar
constructions where the number of segments can be chosen to
be any even number.’ However, we limit our study to TCNTs
with 12 segments. The molecular structures of some of the
studied Chuang and Dunlap TCNTSs are shown in Figure 3.
The employed structural parameters and point groups as well
as the obtained HOMO—-LUMO gaps and net currents of the
studied Chuang and Dunlap TCNTs are given in Table 2.

The binding energy per carbon atom calculated for the
polyhex series (I) and (II) in Figure 4 shows that the polyhex
TCNTs are much higher in energy than the Chuang and
Dunlap TCNTs with pentagons and heptagons. With
increasing size of the TCNT, the energy difference between
the two classes decreases. The TCNTs with pentagons and
heptagons have almost the same binding energy per carbon
atom, showing that most of the strain has been released.

Figure 3. Structures of Cyg of series (IV), Co,, of series (V), Coqq of
series (VI), and Cy of series (VII). The rest of the investigated
Chuang and Dunlap TCNT structures is depicted in the Supporting
Information.
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Figure 4. Binding energy per carbon atom for the studied TCNTs of
series (I)—(II) and (IV)—(VII). The value for the icosahedral Cg,

fullerene calculated at the same level of theory (i.e,, TPSS/def2-SVP)
is used as a reference shown with the horizontal line.

Among the considered classes, the TCNTs of series (VII) are
the most stable ones.

The calculations on TCNTs with pentagons and heptagons
are summarized in Table 2. The calculated HOMO—-LUMO
gaps for them do not show any systematic trends. The
HOMO-LUMO gaps for the Chuang-armchair structures
varies from 0.04 to 1.33 eV, which is very similar to the ones
obtained for the Chuang-zigzag TCNTs. For this class of
TCNT, the armchair and zigzag TCNTs have very similar
electronic properties. The HOMO—-LUMO gaps of the
studied Dunlap-armchair TCNTs are in the range of 0.03—
0.19 eV. The HOMO—-LUMO gap of the larger TCNTs is
generally somewhat smaller than that of the smaller TCNTs.

The electronic properties of series (I) and (VI) TCNTs are
similar because series (VI) consists of an increasing extent of
armchair segments and may be considered as stabilized
versions of the (n, n) polyhexes. The band gap of infinite
CNTs is zero when (m — n) mod 3 = 0. The band gap grows
with the inverse of the diameter of the CNT.'>'*'%® For
TCNTs, one can expect a very small HOMO—-LUMO gap
when (m — n) mod 3 =0 A (p — q) mod 3 = 0.°* The
HOMO-LUMO gap of TCNTs will ideally grow with
decreasing r and R as well as for TCNTs with elliptical cross
sections. However, the long and short C—C distances of the
small TCNTs will also affect the HOMO—-LUMO gap.
Vanishing HOMO—-LUMO gaps are expected for large
polyhex-armchair TCNTSs as for the corresponding CNTs.
Calculations on the largest TCNTs of series (I) yield
HOMO-LUMO gaps that approach zero. The three
TCNTs of series (II) have a nonvanishing HOMO—-LUMO
gap. The TCNTs of series (III) are predicted to lack HOMO—
LUMO gaps because they are of Clar type. Deviations from the
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symmetry rule of the CNTs may be explained by the small r
and the elliptical cross section of the TCNTs. Especially, the
smallest TCNT in series (III) has a very elliptic cross section
with dents along the inner perimeter, as shown in Figure 2.

3.2. Ring-Current Strengths. Calculations of the net ring-
current strength of the TCNTs show that the polyhex-armchair
(4,4), (p, 9) TCNTs sustain very strong diatropic ring currents
that increase with the size of the TCNT. The obtained ring-
current strengths are summarized in Table 1. The largest ring-
current strength of series (I) was obtained for Cyg, which
sustains a current strength of 235.7 nA/T. The polyhex-zigzag
(7, 0), (p, q9) TCNTs in series (II) sustain weaker net ring
currents whose strengths are only 1.1—9.5 nA/T, even though
the HOMO—-LUMO gap is not much wider than for the
polyhex-armchair TCNTs of series (I).

Most of the Chuang-armchair TCNTs in series (IV) and
(V) sustain weak paratropic ring currents. The absolute value
of the ring-current strength is generally smaller than 10 nA/T.
There are only three exceptions among the 14 studied Chuang-
armchair TCNTs. Cq4 (2, 1, 1, 5), (1, 0) in series (IV) is the
only one among them with a net diatropic ring current. The
Cuo (1,2,2,1), (1, 1) TCNT in series (V) sustains a strong
paratropic ring current of —94.0 nA/T. The paratropic ring-
current strength of Cggg (1, 2, 2, 3), (1, 1) in series (V) is
—12.9 nA/T. The obtained ring-current strengths can be
compared with the reference current strength for benzene of
11.8 nA/T.>"”® The ring-current strength as a function of the
size of the TCNTs is shown in Figure 5.
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Figure S. Strength of the ring current as a function of the size of the
torus for the TCNTs of series (I)—(IT) and (IV)—(VII).

The Dunlap-armchair-zigzag TCNTs with s,(4, 4), 1(8, 0)
with s, € {2,3,4,5,6,7} and s,(4, 4), 5,(8, 0) with s,, s, € {2,3}
tend to sustain strong diatropic ring currents. Two exceptions
are found among the 10 studied Dunlap-armchair-zigzag
TCNTs. The Cgy 4(4, 4), 1(8, 0) TCNT in series (VI) has
a small HOMO—-LUMO gap of 0.08 eV and sustains a strong
paratropic ring current of —94.6 nA/T. The Cys, 3(4, 4), 3(8,
0) TCNT of series (VII) has a small HOMO—LUMO gap of
0.07 eV and sustains a weak paratropic ring current of —4.1
nA/T. For the rest of the s,(4, 4), 1(8, 0) with s, €
{2,3,4,5,6,7} TCNTs in series (VI), the ring-current strength
increases with the size of the TCNT. The strongest ring-
current strength of 177.6 nA/T was obtained for the Cgy4
7(4, 4) ,1(8, 0) TCNT. Three of the studied TCNTs in the
s,(4, 4), s5,(8 0) with s, s, € {2,3} series (VII) sustain

diatropic ring currents of almost the same strength of about
100 nA/T. The calculations on TCNTs with pentagons and
heptagons are summarized in Table 2. The reason for the
different behavior of the current density of the TCNTs in
series (IV) and (V) as compared to the ones in series (VI) and
(VII) is discussed in Section 3.3.

Haddon calculated the ring-current magnetic susceptibility
of the Cyys 3(4, 4), 1(8, 0) TCNT of series (VI) using finite-
field London theory.” He obtained a value that is 130 times
larger than the benzene value. The present calculations yield a
net ring-current strength that is only 10 times larger than the
ring-current strength of benzene, suggesting that the computa-
tional approach used by Haddon exaggerates the current
strengths of TCNTs.

The calculations of the ring-current strengths of the TCNT's
in series (IIT) show that the small chiral C,;c TCNT sustains a
very weak paratropic ring current of —1.1 nA/T, which can be
explained by its highly elliptical cross section and dents along
the inner perimeter. The ring-current strength of the large
chiral C,,6 TCNT is 292.3 nA/T. The C,5,4 TCNT with an
armchair structure sustains a diatropic ring current of 330.5
nA/T, whereas the corresponding zigzag structure has no
HOMO-LUMO gap for the high-symmetry structure
belonging to the D, point group. We did not reduce the
symmetry constraints, even though optimization of its
structure using less severe symmetry constraints might yield
a HOMO-LUMO gap, because reducing the symmetry
constraints significantly increases the computational costs
and it can also lead to other problems.

The calculated current densities of the nonchiral TCNTs
show that the current density mainly follows the carbon
network along the major ring of the torus, which implies that
the current density has hardly any vector component that
forms a current pathway around the minor ring perpendicular
to the major ring. However, the current density of the chiral
Cy016 TCNT has a very strong ring-current strength of 3307
nA/T around the tube perpendicular to the torus, which is
expected to result in a magnetically induced anapole
moment.”192023.24

The calculated HOMO—-LUMO gaps and ring-current
strengths reported in Figure 6 show that TCNTs with a
HOMO-LUMO gap smaller than 0.2 eV sustain a strong net
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Figure 6. Net strength of the ring current as a function of the
HOMO-LUMO gap for the TCNT of series (I)—(II) and (IV)—
(VvII).

DOI: 10.1021/acs.jpcc.9b03769
J. Phys. Chem. C 2019, 123, 15354—15365


http://dx.doi.org/10.1021/acs.jpcc.9b03769

The Journal of Physical Chemistry C

ring current. However, this is a necessary condition but not a
sufficient one. The polyhex TCNTSs with armchair structures
sustain stronger ring currents than the TCNTs with zigzag
structures. The net current strength of TCNTs with an
armchair structure increases with increasing radius of the torus.
However, one must also bear in mind that acene-like structures
might lead to open-shell singlet states that have multi-
configuration character and cannot be properly treated at the
DEFT level using today’s functionals.

3.3. Current Density Flow. The current density flow in
the TCNTs is discussed for some of the studied molecules.
The current strength of the 3D vector field is depicted by
stream lines that are colored based on the strength, where
white means strong, and red represents weak current densities.
The strength of the current density passing through a plane
cutting the tube is shown in blue and red, where blue denotes
the perpendicular vector component to the plane of diatropic
ring currents, and red is the paratropic direction. Planes with
excess of red indicate that the TCNT sustains a net paratropic
ring current, and excess of blue indicates that it has a net
diatropic ring current (cf. Figure 7), whereas equal patches of

Figure 7. Current-density flow in C,q, of series (I).

red and blue can be interpreted as local current-density flows
leading to weak global ring-current strengths (cf. Figure 8).
The pictures were made with Paraview.

Figure 8. Current-density flow Cggq of series (II).

In the TCNTs of series (I), there is a strong diatropic ring
current on the outside, above, and below the torus (see Figure
7). The paratropic ring current on the inside is much weaker.
There are prominent atomic currents around the atoms on the
inside of the tube. The TCNTs of series (II) do not sustain
any strong global ring currents. They have mainly local atomic
and bond currents as seen in Figure 8.

The (6, 3), (=96, 120) and (6, 6), (—84, 84) TCNTs
sustain strong diatropic ring currents on the outside and inside
of the torus, as seen in Figure 9. In contrast to the TCNTSs of
series (I) and (II), there is a much stronger current density
flow inside the tube, which is probably due to the larger r.
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Figure 9. Current-density flow in Cyy,4 (6, 3), (=96, 120) (top row)
and C,g4 (6, 6), (—84, 84) (bottom row) of series (III).

Most strikingly, the current density flow in the (6, 3), (96,
120) TCNT is helical; that is, it has a vector component of the
current density parallel as well as perpendicular to the direction
of the tube, as visualized in Figure 10.

Figure 10. Horizontal slice through the chiral C,y5 (6, 3), (—96,
120). The plane is colored by the z-component of the current density,
that is, the component perpendicular to the direction of the tube.

The current-density flows of C,gp, Cs76 and Cgy, of series
(IV); Cas) Cizer Csssy and Cys6 of series (V); and Cygop Cszg
Cé7p Cresy and Cggy of series (VI) have also been inspected;
and two examples from each series are visualized. The current
densities of the TCNTs of series (VII) are not visualized and
discussed because they are similar to the ones for the TCNTs
of series (VI).

The current density of the TCNTs of series (IV) in Figure
11 shows that there is a weak diatropic ring current on the
outside and a weak paratropic current on the inside of the
torus, which almost cancel each other, implying that net global
ring current is weak. The only exception is Cg, whose
diatropic ring current is strong on the outside and reaches
inward, leading to a net diatropic ring current of 57.7 nA/T.

The members of series (V) have analogously two weak
cancelling diatropic and paratropic ring currents, as shown in
Figure 12. An exception is C,,, whose paratropic current is
much stronger on the inside and reaches further outward as
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Figure 11. Current-density flow in Cgy4 of series (IV) (top row) and
Cgy, of series (IV) (bottom row).

Figure 13. Current-density flow in Cg;¢ (top row) and Cg;, (bottom
row) of series (VI).
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Figure 12. Current-density flow in C,, (top row) and C,s4 (bottom
row) of series (V).

compared to the other TCNTs of series (V). The flow and
strength of the diatropic ring current look like the ones for the
other TCNTs of this series, leading to a strong net paratropic
ring current of —94.0 nA/T.

For most of the TCNTs of series (VI), the diatropic ring
current reaches very far inside the tube. The strongest pathway
is on the top and bottom of the tube, as shown in Figure 13.
The current density is weak at the hexagons on the outer edge
of the tube because they are almost parallel to the direction of
the applied magnetic field. This orientation is comparable to
the case when the magnetic field is parallel to the ring of a
benzene molecule. There is a very weak paratropic ring current
on the inside of the torus. Cg,, is an exception, whose
paratropic ring current is strong and reaches outward, leading
to a net paratropic ring current of —94.6 nA/T. The strongest
paratropic pathway follows the same route as in the other
molecules of series (VI), but the direction is reversed.

Current-density plots reveal significant differences in the
current density flow of the TCNTs in series (IV) and (VI).
The locations of the pentagons and heptagons at the corners of
the TCNT in series (IV) block the global current-density flow
around the torus, leading to local ring currents along the edges
between the corners. In C,g of series (VI), the heptagons
along the inside edge of the torus do not prevent the main
ring-current flow, allowing for a strong global diatropic ring
current.

3.4. Functional Dependence. The strengths of the
magnetically induced ring currents were calculated for the
TCNTs of series (VI) using a number of popular density
functionals. The obtained ring-current strengths as a function
of the size of the TCNT are shown in Figure 14. The
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Figure 14. Strength of the ring current as a function of the employed
DFT functional calculated for the TCNTs of series (VI).

employed functionals yield the same trend for the size
dependence of the ring-current strength. The ring currents
are diatropic and increase with the size of the TCNT, except
for Cg;,, which sustains a net paratropic ring current of —8.6
nA/T at the M06-2X level, and a ring-current strength of
—94.6 nA/T is obtained with the TPSS functional. The
strongest diatropic ring currents are obtained with the M06-2X
functional that has the largest amount of HF exchange,
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whereas the least diatropic ring currents are obtained with the
TPSS functional without HF exchange. The ring-current
strengths of Cg6 and Cgy, of series (VI) as a function of the
amount of HF exchange are shown in Figure 15.

200 (V) Cs% .
(V) Copp

150 s
[ N .
~ A
< 100
=
£ 50
&

3 0 .
E .
-50 v

100 [ ¥

0 0.1 0.2 0.3 0.4 0.5
HF exchange

Figure 15. Ring-current strength calculated as a function of the
amount of Hartree—Fock exchange in the DFT functional. The
current strengths are reported for the Cs;s TCNT of series (VI) and
the Cq;, TCNT of series (VI) that sustain strong diatropic and
paratropic ring currents, respectively.

Previous studies have shown that ring-current strengths
calculated for aromatic molecules ring currents using the
B3LYP functional, which has 20% HF exchange, are generally
in good agreement with strengths obtained at the second-order
Moller—Plesset perturbation theory level,"'9°~2 whereas for
very strongly antiaromatic molecules, B3LYP calculations
overestimate the strength of the paratropic ring current by
up to a factor of 3. Based on a previous experience on current-
density calculations, the current strengths of antiaromatic
molecules should be calculated using a functional with a larger
amount of HF exchange. However, the M06-2X functional
seems to exaggerate the diatropic contribution to the ring
currents.'"' For antiaromatic molecules, the strengths of the
paratropic ring currents calculated using the TPSS functional
are probably in absolute value too large. However, the general
trend for the size dependence of the ring-current strength of
the aromatic molecules is obtained with the TPSS functional,
which is used as the default functional in this study.

4. SUMMARY AND CONCLUSIONS

Molecular structures of large toroidal carbon nanotubes
(TCNT) with polyhex structures have been constructed by
using a method that has been described in detail in this work.
The TCNT structures were first optimized using a two-
parameter optimization method, where one parameter scales
all the C—C bonds of the constructed structures, and the
second parameter allows an elliptical shape of the nanotube.
The obtained structures are relatively accurate because the
total energy of the molecular structures of the polyhex TCNTSs
optimized using the two-parameter method is very close to the
energy of the structures that were fully optimized at the density
functional theory (DFT) level. The structure optimizations
show that the strain can be released by introducing dents on
the inside of the torus and by making the cross section of the
tube elliptical. TCNTs with pentagons and heptagons were

also studied. Their initial structures were constructed following
approaches described in the literature.”'’ The molecular
structure of the studied TCNT was optimized at the DFT level
using point groups with high symmetry, implying that they are
not necessarily minima on the potential energy surface. Some
of them are very high in energy because C—C distances on the
inside of the torus are much shorter than the optimal C—C
distance of, for example, I;-C4, fullerene and the C-C
distances on the outside are very stretched.

Magnetically induced current densities have been calculated
for the optimized molecular structures of the TCNT's using the
gauge-including magnetically induced current (GIMIC)
method. The current density flow has been quantified by
determining the strength of the magnetically induced ring
current around the torus. The ring-current strengths have been
obtained by numerically integrating the current density passing
a plane cutting the TCNT. The current densities have also
been visualized by showing the main current density pathways
in the TCNTs.

The calculations show that TCNTs with a HOMO—-LUMO
gap smaller than 0.2 eV can sustain a strong diatropic ring
current. This appears to be a necessary condition, whereas not
all TCNTs with a small HOMO—-LUMO gap sustain a strong
net ring current in the presence of magnetic fields. The
diatropic ring current of polyhex TCNTs with an armchair
structure increases with increasing size of the torus, whereas
the studied TCNTSs with an zigzag structure sustain weak ring
currents.

The 14 TCNTs with pentagons and heptagons that were
constructed as suggested by Chuang et al.'” sustain paratropic
ring currents with only one exception. The Cg;s TCNT of
series (IV) has a net diatropic ring current of $7.7 nA/T. The
strength of the paratropic ring current of these TCNTs is
generally weak. However, the C,, TCNT of series (V)
sustains a strong paratropic ring current of —94.0 nA/T.

The 10 TCNTs with pentagons and heptagons that were
constructed as suggested by Dunlap® sustain strong diatropic
ring currents with two exceptions. The ring current of the Cg;,
TCNT of series (VI) is strongly paratropic, and the Cyq
TCNT of series (VII) sustains a very weak paratropic ring
current. In the series (VI) characterized by the s,(4, 4), 1(8, 0)
with s, € {2,3,4,5,6,7} parameters, the ring-current strength
increases with the size of the torus. Regarding the TCNTs of
series (VIL), which is characterized by the s,(4, 4), 5,(8, 0) with
S, Sq € {2,3} parameters, the ring-current strength is practically
the same or about 100 nA/T with one exception. Visualization
of the current density shows that the orientation of the
pentagons and heptagons can block the global ring current,
leading to strong localized ring currents. This is probably the
main reason for the different ring-current strengths of the
TCNTs in series (IV) and (V) as compared to the ones of the
TCNTs in series (VI) and (VII).

In series (III), we investigated how the ring-current strength
depends on the structure of the TCNT. Large polyhex TCNTs
with 2016 carbon atoms were chosen to reduce the strain
effects. The zigzag C,416 did not have any HOMO-LUMO
gap for the assumed high-symmetry structure. The armchair
Cy016 TCNT sustains a ring current of 330.5 nA/T, whereas a
ring-current strength of 292.3 nA/T was obtained for the chiral
Cu16 (6, 3), (=96, 120) TCNT. The smaller chiral C¢4 (6, 3),
(=36, 45) TCNT has dents on the inside of the torus and does
not sustain any significant ring current.
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The size of the TCNT must be large enough to sustain a
ring current with a significant strength probably due to the
large strain and abnormal C—C distances for small ones. The
Cyy and Cygp TCNTs are the smallest investigated molecules
with a large ring-current strength. The calculations of the
strength of the magnetically induced ring currents of the
studied TCNT reveal some clear trends. However, several
exceptions were obtained for the investigated TCNT series.
The underlying reason for the discrepant behavior is not
known.

The performance of eight DFT functionals was investigated
by calculating the ring-current strength for the Cg;s 3(4, 4),
1(8, 0) TCNT that sustains a strong diatropic ring current and
for Cgy, 3(4, 4), 1(8, 0), whose ring current is paratropic. The
calculations show that the current density is systematically
shifted toward stronger diatropicity when increasing the
amount of Hartree—Fock exchange in the functional.
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