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Abstract

Motivation: Human genomic datasets often contain sensitive information that limits use and sharing

of the data. In particular, simple anonymization strategies fail to provide sufficient level of protection

for genomic data, because the data are inherently identifiable. Differentially private machine learning

can help by guaranteeing that the published results do not leak too much information about any indi-

vidual data point. Recent research has reached promising results on differentially private drug sensi-

tivity prediction using gene expression data. Differentially private learning with genomic data is chal-

lenging because it is more difficult to guarantee privacy in high dimensions. Dimensionality reduction

can help, but if the dimension reduction mapping is learned from the data, then it needs to be differen-

tially private too, which can carry a significant privacy cost. Furthermore, the selection of any hyper-

parameters (such as the target dimensionality) needs to also avoid leaking private information.

Results: We study an approach that uses a large public dataset of similar type to learn a compact

representation for differentially private learning. We compare three representation learning meth-

ods: variational autoencoders, principal component analysis and random projection. We solve two

machine learning tasks on gene expression of cancer cell lines: cancer type classification, and drug

sensitivity prediction. The experiments demonstrate significant benefit from all representation

learning methods with variational autoencoders providing the most accurate predictions most

often. Our results significantly improve over previous state-of-the-art in accuracy of differentially

private drug sensitivity prediction.

Availability and implementation: Code used in the experiments is available at https://github.com/

DPBayes/dp-representation-transfer.

Contact: antti.honkela@helsinki.fi or samuel.kaski@aalto.fi

1 Introduction

Privacy-preserving machine learning has the potential to enable the

research use of many sensitive datasets that would otherwise be out

of reach for the community. This is especially the case for medical

data, which almost always contain sensitive information traceable

back to the data subjects. As an example, it has been shown that

individuals can be identified from genomic data (Gymrek et al.,

2013) including mixtures from several individuals (Homer et al.,

2008). It is likely that functional genomics data such as gene expres-

sion data are also identifiable. Although different anonymization

strategies (Li et al., 2007; Machanavajjhala et al., 2007; Sweeney,

2002) can protect the privacy of the data subjects to some degree,

they do not have formal guarantees and can fail to provide sufficient

protection in practice (Ganta et al., 2008).

Differential privacy (DP) (Dwork et al., 2006; Dwork and Roth,

2014) is a framework that guarantees strict bounds for the amount

of leaked private information, even in the presence of arbitrary side

information. The guarantees are obtained by adding specific forms

of randomization to the computation process. In a machine learning

context this usually means adding noise either directly to the input

of the algorithm (input perturbation), to the output (output perturb-

ation) or modifying the algorithm itself, for instance, by perturbing

the optimization objective (objective perturbation).

The privacy guarantee is controlled by a ‘privacy budget’ param-

eter, usually denoted by � > 0; smaller � means stricter guarantees,
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and can be achieved by increasing the amount of noise. Formally, a

randomized mechanismM is said to be �-differentially private, if for

all pairs of neighboring datasets X;X0 differing (There are two

slightly different definitions of neighboring datasets. In bounded

case, the value of one sample is allowed to change. In unbounded

case, the addition or removal of one sample is allowed. Unbounded

�-DP guarantee implies bounded 2�-DP guarantee. This article uses

the bounded case.) on a single sample and all measurable subsets S

of possible outputs,

PrðMðXÞ 2 SÞ � e�PrðMðX0Þ 2 SÞ:

Intuitively, this means that changing one sample in the dataset

can change the output distribution only by a factor e�.

As an extension,M is said to be (�, d)-differentially private, if

PrðMðXÞ 2 SÞ � e�PrðMðX0Þ 2 SÞ þ d;

for all measurable S and all neighboring datasets X;X0. The condi-

tion with non-zero d > 0 is often easier to achieve than pure �-DP.

In this article, we are interested in DP learning for drug sensitiv-

ity prediction using gene expression data. First proposed by

Staunton et al. (2001), the drug sensitivity prediction problem has

attracted significant attention recently, including from a DREAM

challenge in 2012 (Costello et al., 2014) that provided standardized

evaluation metrics. The scale of the cytotoxicity assays needed has

kept the sizes of the available datasets relatively small from a ma-

chine learning perspective. Honkela et al. (2018) were the first to

apply DP learning to this problem. They needed to specifically limit

the sensitivity of the learning and the dimensionality of the input

data to make the learning feasible.

In abstract terms, our goal in this problem is DP learning of pre-

dictive models with high-dimensional input data, where both input

and output variables need DP protection. This is a case where DP

methods tend to run into trouble with moderate dataset sizes: the

amount of noise that needs to be added usually increases quickly

with the dimensionality, leading to output that is dominated by the

noise. This warrants the use of dimensionality reducing methods

with the aim of finding a good low-dimensional representation of

the original data. However, unless one uses a random projection

(RP) or some other ‘dummy’ method that does not depend on the

data, finding a good representation can also leak private informa-

tion. For this reason, the dimension reduction method itself would

also need to be made differentially private, which can completely in-

validate the noise magnitude savings obtained in any downstream

task like prediction.

Different solutions have been proposed for various special cases:

Kifer et al. (2012) solve sparse linear regression problems by using

an �-DP feature selection algorithm. Honkela et al. (2018) utilize ex-

ternal knowledge to select a relevant subset of features.

Kasiviswanathan and Jin (2016) show theoretical results on using

RPs to improve DP learning on high-dimensional problems.

Differentially private versions of methods such as principal compo-

nent analysis (PCA) (Chaudhuri et al., 2012; Dwork et al., 2014) or

deep learning (Abadi et al., 2016; Acs et al., 2019) exist and could

be used to learn a representation, but the noise cost can be imprac-

tically large for small but high-dimensional datasets.

We study a straightforward solution based on feature representa-

tion transfer, similar to self-taught learning of Raina et al. (2007).

By using an additional non-sensitive dataset to learn the representa-

tion, we can apply more advanced representation learning methods.

This approach has many advantages: we do not need labels for the

additional dataset, although in our case we make use of labels for a

different task; and only the main learning algorithm needs to be dif-

ferentially private, while the representation can be learned using any

non-DP method. Additionally, the public data can also be used for

optimizing any hyperparameters for the representation learning. In

this article, we consider PCA and variational autoencoders (VAEs).

Differentially private transfer learning was recently considered

by Wang et al. (2019) in a hypothesis transfer setting, where models

trained on several related source domains are used to improve learn-

ing in the desired target domain. This approach is only applicable to

a case where we have labeled data from multiple related learning

problems, which is not the case for drug sensitivity prediction.

Another related approach was considered by Papernot et al.

(2017), who propose differentially private semi-supervised know-

ledge transfer that uses an ensemble of ‘teacher’ models trained on

private data to label unlabeled public data, which is then used to

train a ‘student’ model that will be released. The method is flexible

in a sense that it can use any ‘black-box’ model as teachers and stu-

dent. However, it is limited to classification tasks. Furthermore, it

seems to require a large enough private dataset to train a sizeable en-

semble of private teacher models in addition to a small public data-

set. Papernot et al. (2017) note that a large ensemble is needed to

compensate for the noise injected to ensure privacy. Their reported

results use n ¼ 250 teacher models and it seems unlikely that a sig-

nificantly smaller number would lead to good results. Training so

many independent models using the data available in the tasks we

are interested in is clearly impossible.

Assuming there is labeled public data available, the importance

weighting approach of Ji and Elkan (2013) can be used for efficient

differentially private data publishing. Ji and Elkan (2013) report

that the method can reach accurate results already with a small priv-

acy budget, but their example has a much lower dimensionality than

any genomic dataset and it is unclear how the method would scale

to genomic data.

Yet another strategy is to learn a differentially private unsuper-

vised generative model for the data (including the target variable for

the prediction task of interest), use it to generate a synthetic version

of the data, and use a non-DP algorithm for the actual learning task

of interest. Several methods have been proposed for differentially

private data sharing (Acs et al., 2019; Xie et al., 2018; Zhang et al.,

2017) that could be used for generative model learning and data

generation. For the problem we are considering, however, this ap-

proach is problematic as it requires solving a more general and diffi-

cult learning task, good solution of which would typically require

orders of magnitude more private data than a direct solution of the

original prediction task.

The data needs of the alternative approaches to transfer learning

in a DP context are summarized in Table 1.

The rest of this article is organized as follows: In Section 2, we

formalize the problem setting and give an overview of our proposed

approach. Section 3 gives more details on the implementation of dif-

ferent parts of the proposed approach. And finally, in Section 4, we

conduct experiments with the approach on two different prediction

tasks on genomic data.

2 Approach

We assume a setting where we have a private dataset containing a

high-dimensional n � d feature matrix Xpriv and an n � 1 target vec-

tor Ypriv, where n is the number of samples and d is the number of

features. The goal is to learn a differentially private predictor from

Xpriv to Ypriv. As learning to predict Ypriv from high-dimensional

Representation transfer for differentially private drug sensitivity prediction i219
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Xpriv directly is typically not feasible, with moderate sample size and

a reasonable privacy budget, we opt for using public data to learn a

low-dimensional representation for Xpriv. Therefore, we also assume

a publicly available dataset of an m � d feature matrix Xpub and an

m � 1 auxiliary target vector Y 0pub for a related auxiliary prediction

task. Although a representation can be learned with Xpub only, the

availability of Y 0pub is useful for selecting the size of the representa-

tion and any other hyperparameters.

We make the following informal assumptions about the relation of

the public and the private data: (i) Xpriv and Xpub contain the same set

of features and are either draws from the same distribution or other-

wise distributed similarly enough that using the same mapping to com-

pute a representation is reasonable. (ii) Y 0pub may or may not be of the

same type as Ypriv, but the prediction tasks should resemble each other

enough that the prediction of Y 0pub can be used for optimizing the

hyperparameters for the main task of predicting Ypriv.

We propose the following procedure:

1. Use the public data to learn a dimension-reducing representation

mapping f : Rd ! R
r, where r� d, such that

f�1ðf ðXpubÞÞ � Xpub.

2. Obtain a low-dimensional representation Zpriv of the private fea-

ture data by applying f to Xpriv.

3. Learn a differentially private predictor g such that

gðZprivÞ � Ypriv.

4. Publish g� f .

An overview of the learning process is shown in Figure 1.

It is easy to see that the proposed process has the same DP-

guarantees as the learning algorithm of Step 3:

THEOREM 1. If Step 3 is (�,d)-DP w.r.t. Zpriv and Ypriv, then the whole pro-

cess is also (�,d)-DP w.r.t Xpriv and Ypriv.

PROOF. As the learning of f does not use private data, it does not leak any

private information. Since each row of Zpriv depends only on the corre-

sponding row of Xpriv, (�,d)-guarantees w.r.t. Zpriv translate directly to

guarantees w.r.t. Xpriv.

In the following section, we give some methods that can be used to

implement the DP predictor g and the representation mapping f. In

addition, we describe a procedure for tuning the hyperparameters of f.

3 Materials and methods

3.1 Differentially private prediction
Later in Section 4, we will consider prediction tasks that are either

real-valued regression or binary classification tasks. Linear regres-

sion will be applied to the former and logistic regression to the lat-

ter. For now, denote by X the feature matrix and by y the prediction

target vector (either real-valued or binary {�1, 1})

Logistic regression can be made differentially private with ob-

jective perturbation. The usual non-DP version of the problem can

be solved by minimizing the regularized negative log-likelihood

n�1
Pn

i¼1 log ð1þ eyiw
T xi Þ þ kwTw with respect to the weight vector

w, where xi and yi denote the ith sample in X and y, respectively and

k controls the strength of L2 regularization. In a method presented

by Chaudhuri and Monteleoni (2009), �-DP privacy is obtained by

adding a random bias term bTw/n (where b is a random vector

drawn from a distribution with density proportional to e��jjbjj=2) to

the optimization objective. The method requires that the samples in

the input feature data are bounded into a 1-sphere.

Like DP logistic regression, also a DP linear regression algorithm

can be obtained with an analogous objective perturbation method

(Kifer et al., 2012). However, since the underlying model belongs to

the exponential family, there is also an alternative output-

perturbation based �-DP method that does not require iterative opti-

mization: Compute the sufficient statistics (XTX; XTy and yTy) and

add noise to them via the Laplace-mechanism (Foulds et al., 2016).

We use Bayesian linear regression with sufficient statistic perturb-

ation and data clipping as described by Honkela et al. (2018).

3.2 Representation learning
RP (see e.g. Bingham and Mannila, 2001) projects the d-dimension-

al data to an r-dimensional subspace by multiplying it with a ran-

dom d � r projection matrix. This transformation has been shown

to preserve approximately the distances between data points

(Johnson and Lindenstrauss, 1984), which is often a desired prop-

erty for dimensionality reduction methods.

PCA finds an orthogonal linear transformation that converts the

data to coordinates that are uncorrelated and whose variance

decreases from first to last coordinate. When used for dimensional-

ity reduction, only the first r coordinates are kept—these correspond

to the r orthogonal directions in which the variance of the original

data is the highest.

VAE (Kingma and Welling, 2014) learns a generative decoder

model phðxjzÞ, where z is a latent representation of x, and an en-

coder model qnðzjxÞ that approximates the posterior distribution

phðzjxÞ. Both ph and qn are implemented as neural networks (typical-

ly MLPs) and optimized concurrently with variational inference.

We fix z to be low-dimensional, in which case the learned en-

coder qn can be used for dimensionality reduction by setting

f ðxÞ ¼ Ez�qnð	jxÞ½z
. (As usual, define qnð	jxÞ as a multivariate

Gaussian distribution parametrized by mean ln(x) and diagonal co-

variance Rn(x), in which case f ðxÞ ¼ lnðxÞ.)

3.3 Optimization of hyperparameters
For selecting the dimension of the representation and any other

hyperparameters of the representation-learning algorithm, we pro-

pose a combination of any parameter optimization approach (such

Table 1. Overview of DP transfer learning approaches and their

data needs

Approach Public data Private data

This article A lot, unlabeled Limited, labeled

Ji and Elkan (2013) Moderate, labeled Limited, labeled

Papernot et al. (2017) Moderate, unlabeled A lot, labeled

Wang et al. (2019) Optional Moderate, labeled

Fig. 1. The process of learning f and g. Since the learning of g is DP, the leak-

age of information outside of the ‘privacy wall’ is controlled
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as Bayesian optimization, random search or grid search) and a

cross-validation-like procedure for optimizing an auxiliary task of

predicting Y 0pub from Xpub. As no private data are used, the param-

eter optimization phase does not consume any of the available priv-

acy budget. In addition, if the auxiliary prediction task uses the

same method as the main prediction task, then the hyperparameters

could be optimized at the same time.

First the (public) data are divided into k disjoint subsets. Instead

of using one of the subsets as ‘validation’ data and the rest as ‘train-

ing’ data as in cross-validation, we use one of the subsets to simulate

the private data and the rest to simulate the public data. From now

on, these are referred to as pseudo-private and -public sets. The pro-

posed framework (from Section 2) is then applied to these, i.e. a rep-

resentation mapping f is learned from the pseudo-public data, f is

applied to the features of pseudo-private data, a predictor g is learn-

ed for the pseudo-private target variable and its accuracy is meas-

ured. As in k-fold cross-validation, this is repeated for all k possible

selections of the pseudo-private subset. For measuring the accuracy of

g, (actual) cross-validation can be used, i.e. the pseudo-private data

can be further divided into different learning and validation sets.

To mimic the case in which the public and private data do not

have exactly the same distribution, we also want the pseudo-public

and -private data to be sufficiently different. This guides the opti-

mizer towards selecting conservative hyperparameters that are more

likely to work well on a wide range of different private datasets. If

the auxiliary prediction task is classification and Y 0pub has multiple

classes, the subset division can be based on the classes: Form each

subset by selecting the samples from two (or more) classes. This

strategy is based on the assumption that samples belonging to differ-

ent classes have different distributions. Otherwise, for instance clus-

tering (based on either Xpub; Y 0pub or both) could be used for finding

a good subset division. An overview of the proposed hyperparameter

optimization method is shown in Figure 2.

4 Results

We conducted experiments with two prediction tasks using cancer

cell line gene expression data: cancer type classification and drug

sensitivity prediction.

4.1 Representation learning for DP cancer type

classification
We first demonstrate the method by classifying TCGA pan-cancer

samples according to the annotated cancer type (e.g. lung squamous

cell carcinoma) using RNA-seq gene expression data. In this task,

we use the data from The Cancer Genome Atlas (TCGA) project

(The TCGA authors, 2016) as both the private and public datasets.

We use this example because it can be performed within the large

TCGA dataset. Because most cancer type pairs are quite easy to

identify, we focus on a number of most difficult pairs.

We used pre-processed TCGA pan-cancer RNA-seq data avail-

able at https://xenabrowser.net/datapages/. After further pre-proc-

essing (filtering out low-expression genes, applying RLE

normalization) the dataset contains 10 534 samples, 14 796 genes

and 33 distinct cancer types. We pick two cancer types as private

data and the remaining cancer types form the public dataset.

The main and auxiliary prediction tasks are therefore both cancer

type classification tasks, but for distinct classes. For prediction, we

use the differentially private logistic regression algorithm by

Chaudhuri and Monteleoni (2009).

Although the split to private and public data could be done in

multiple ways, the prediction task would be quite easy in many of

those. Hence, we use the following procedure to produce several of

these splits: (i) Consider all
33
2

� �
possible splits and run a non-DP

version of the pipeline (as in Fig. 1) with PCA-based reduction to

eight-dimensional space. (ii) Build a sequence of cancer type pairs by

picking the pair that was the hardest to predict (i.e. has lowest classi-

fication accuracy), then from the remaining cancer types again the

pair that was hardest, and so on. The result is a sequence of 16 pairs

ordered by the prediction difficulty (see Table 2). (iii) Of these pairs,

select the 6 hardest, as well as those 2 of the remaining pairs that

had at least 200 samples in both classes.

The full testing pipeline, including the hyperparameter optimiza-

tion phase, was then run separately for each of the eight selected pairs

as a private dataset. In each case, the remaining 15 pairs form the

ks¼15 subsets that were used for optimizing the hyperparameters.

4.1.1 Methods

We compare three different representation learning methods: RP, PCA

and VAE (Kingma and Welling, 2014). VAE was implemented with

PyTorch (Paszke et al., 2017) and uses one to three hidden layers with

ReLU activation functions for both the encoder and the decoder. The

learning phase uses the Adam optimizer (Kingma and Ba, 2015) and is

given 1 h of GPU time with early stopping. The size of the representa-

tion (for RP, PCA and VAE) and other hyperparameters for VAE (the

number of layers, layer sizes, learning rate) are optimized with

GPyOpt (The GPyOpt authors, 2016). We also experimented with

optimizing a much larger set of hyperparameters, 12 in total, but

GPyOpt had difficulties in obtaining similar levels of performance.

For each of the eight test cases we ran the hyperparameter opti-

mization phase once, giving it 5 days of time. Then with the best

found hyperparameters we ran the final testing nine times with dif-

ferent random seeds, and report the mean prediction accuracy as

well as the standard deviation of the mean. In measuring the predic-

tion accuracy (both for hyperparameter optimization and for final

testing) we use 10-fold cross-validation.

4.1.2 Results

Figure 3 shows the final prediction accuracy in the selected eight

cases for � ¼ 1. Although none of the methods fully dominates the

others, VAE seems to get some edge, being clearly the best in about

half of the cases and doing decent job in the rest of the cases too.

The selected hyperparameters are listed in Table 3. Interestingly,

VAE seems to always end up with lower dimensionality of the repre-

sentation than the other two methods. This could be due to the fact

that VAE allows non-linear transformations which can help to

Fig. 2. The process of hyperparameter optimization. In this example, the aux-

iliary prediction task is assumed to be classification with multiple classes

(denoted by a, b, . . ., n), which are partitioned into subsets that consist of two

classes each. These are then used in a cross-validation-like hyperparameter

optimization procedure
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compress the relevant information in the data into a smaller number

of dimensions. On the other hand, it is not clear why RP also always

chooses lower dimension than PCA.

The prediction accuracy as a function of � in the Case 1 is shown

in Figure 4 and the corresponding hyperparameters are shown in

Table 4. As expected, larger � results in better accuracy. There is

some variability compared with Case 1 in Figure 3, which is mostly

likely due to the results having been computed with different hyper-

parameters. Due to the high computational cost, variability due to

hyperparameter adaptation is not included in the error bars.

The classification accuracies obtained under DP with � ¼ 1 are sig-

nificantly lower than using non-private logistic regression, which

attains accuracies between 85 and 100% depending on the case. The

reason here is probably that the datasets have few samples relative to

their complexity, making DP classification at this level of DP difficult.

4.2 Representation learning for DP drug sensitivity

prediction
Our main learning task is to predict the sensitivities of cancer cell

lines to certain drugs. In this task we use data from the Genomics of

Drug Sensitivity in Cancer (GDSC) project (Yang et al., 2013) as pri-

vate data. After pre-processing the data contains 985 samples, 11

714 genes and 265 drugs. The data are sparse in the sense that not

all drugs have been tested on all samples. For prediction we use the

differentially private Bayesian linear regression algorithm by

Honkela et al. (2018). The DP linear regression is applied for each

drug separately, using the full � budget as if it was the only drug we

are interested in. We then measure and report the average prediction

accuracy over all drugs.

As public data we use the gene expression measurements from

the TCGA data with cancer type classification as the auxiliary pre-

diction task. The private and public datasets are unified by removing

genes not appearing in both datasets. In addition, since the TCGA

gene expression data are RNA-seq-based while GDSC data are

based on microarrays, we apply quantile normalization to each gene

in the TCGA data to make it match the distribution of the gene in

the GDSC data. (Although this operation theoretically breaks the

privacy guarantees, in practice we can avoid the issue by assuming

that the expression distributions obtained with the microarray tech-

nology are public knowledge.) The non-private baseline uses GDSC

directly, without unifying to TCGA.

4.2.1 Methods

In addition to RP, PCA and VAE, we also compare to DP feature se-

lection by Sample and Aggregate framework (SAF) as presented by

Kifer et al. (2012), as well as to using a set of 10 pre-selected genes

that were used by Honkela et al. (2018) in the same prediction task.

In the case of SAF half of the privacy budget is reserved for feature

selection.

RP, PCA and VAE learning was performed in a similar manner

as in the cancer type classification task. For selecting the size of the

representation of SAF, we simply ran it with all possible sizes and se-

lect the best result (which is obviously unfair for the other methods

and would yield a weaker privacy guarantee).

Table 2. The list of cancer type pairs ordered in descending order

by the difficulty of classification

Case First cancer type Second cancer type

1 lung squamous cell carcinoma head and neck squamous cell

carcinoma

2 bladder urothelial carcinoma cervical and endocervical cancer

3 colon adenocarcinoma rectum adenocarcinoma

4 stomach adenocarcinoma esophageal carcinoma

5 kidney clear cell carcinoma kidney papillary cell carcinoma

6 glioblastoma multiforme sarcoma

adrenocortical cancer uveal melanoma

testicular germ cell tumor uterine carcinosarcoma

lung adenocarcinoma pancreatic adenocarcinoma

7 ovarian serous

cystadenocarcinoma

uterine corpus endometrioid

carcinoma

brain lower grade glioma pheochromocytoma and

paraganglioma

skin cutaneous melanoma mesothelioma

liver hepatocellular carcinoma kidney chromophobe

8 breast invasive carcinoma prostate adenocarcinoma

acute myeloid leukemia diffuse large B-cell lymphoma

thyroid carcinoma cholangiocarcinoma

Note: The pairs selected to be tested are numbered.
Fig. 3. Logistic regression prediction accuracy (the fraction of correctly classi-

fied samples) with � ¼ 1.0 in eight cancer type classification tasks (see

Table 2). Data: TCGA. Error bars show the SD of the mean accuracy over nine

independent runs of the testing phase

Table 3. Representation dimensions (repr-dim) and other selected

hyperparameters (log learning rate, the number of hidden layers,

the size of hidden layers) for different cases on cancer type

classification

Case RP PCA VAE

repr-dim log-lr layers layer-dim

1 7 10 5 –3.5 1 755

2 7 14 5 –4.8 1 1925

3 8 10 5 –5.3 2 2370

4 8 14 5 –5.3 2 1270

5 7 8 4 –4.3 1 260

6 8 10 5 –4.5 1 330

7 7 12 5 –3.7 2 1510

8 5 7 4 –3.8 1 88
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4.2.2 Results

Figure 5 shows the average prediction performance, measured by

Spearman’s rank correlation. Here PCA and VAE are the best by

some margin, both improving significantly over the results of

Honkela et al. (2018) with 10 pre-selected genes. On the other

hand, SAF is clearly the worst as the DP feature selection is essential-

ly random due to small privacy budget, and since it leaves only half

of the privacy budget for the main prediction task.

5 Discussion

Our results clearly demonstrate that representation learning with

public data can significantly improve the accuracy of differentially

private learning, compared with using a set of pre-selected dimen-

sions or doing differentially private feature selection. Whether it is

beneficial to use more advanced representation learning methods

such as VAEs instead of simple methods such as PCA or RPs

depends on the task. On some tasks that certainly seems to be the

case.

In our current approach, the representation is learned in an un-

supervised manner and the auxiliary supervised task is only used for

hyperparameter selection. A natural question that we leave for fur-

ther work is whether representation learning would also benefit

from having an integral auxiliary prediction task that would be

learned concurrently with the representation. The optimization tar-

get would in that case be a combination of unsupervised reconstruc-

tion error and supervised prediction error. This approach would

require an auxiliary target variable, as is the case in this work with

hyperparameter optimization.

In general, we believe DP learning can be important in opening

genomic and other biomedical datasets to broader use. This can sig-

nificantly advance open science and open data, and lead to more ac-

curate models for precision medicine. So far, the accuracy of DP

learning in most practical applications is not comparable to realistic

non-private alternatives. Our work makes an important contribu-

tion toward making DP learning practical.

One big open question is how the choice of Xpub and Y 0pub will

affect the results. If there is not enough variation in Xpub and the

learned representation relevant for the final prediction task, it is

Fig. 4. Logistic regression classification accuracy in cancer type classification

as a function of � for Case 1. The error bars denote the SEM when repeating

the DP learning but do not cover the uncertainty from hyperparameter

selection.

Table 4. Selected hyperparameters for different values of � in the

Case 1 of cancer type classification

� RP PCA VAE

repr-dim log-lr layers layer-dim

0.5 5 5 5 –4.6 1 725

0.7 6 14 5 –4.6 1 880

1 14 14 5 –4.1 1 395

1.5 9 9 5 –4.9 1 1570

2 10 11 10 –4.0 1 680

Note: See Table 3 for explanation of the columns.

Fig. 5. The accuracy of drug sensitivity prediction (Spearman’s rank correl-

ation coefficient between the measured ranking of the cell lines and the rank-

ing predicted by the models) with differentially private linear regression (� ¼
1.0) on the GDSC data. The dashed lines mark corresponding non-private

results. The results for ‘10 selected genes’ represent the previous state-of-

the-art DP method of Honkela et al. (2018)
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possible that important information may be lost. Examples of this

can be seen in our experiments where RP that does not use the pub-

lic data is occasionally more accurate than one of the representation

learning methods, even though it is overall the least accurate

method. Similarly, one needs to be careful to make sure that Y 0pub is

sufficiently informative on the hyperparameter selection. For ex-

ample, if the prediction task for Y 0pub is of very different level of diffi-

culty than for Ypriv, it may lead to selection of highly suboptimal

hyperparameters. If this becomes a problem, the selection of the

hyperparameters can be performed on private data similarly as one

would optimize hyperparameters of the DP learning, possibly at

extra privacy cost.

In this work, the representation learning was not performed

under DP. This is a clear limitation if the other dataset also needs

privacy protection. This can in theory be addressed easily, by simply

training the representation model under DP, but this will likely have

an impact on the accuracy of the final model. Ultimately we believe

that a clever combination of private and non-private data such as in

our article can lead to the best results.
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