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Large-scale brain modes reorganize between infant
sleep states and carry prognostic information
for preterms
Anton Tokariev 1,2,3, James A. Roberts 1, Andrew Zalesky4,5, Xuelong Zhao6, Sampsa Vanhatalo 2,3,

Michael Breakspear 1,7,9 & Luca Cocchi 1,8,9

Sleep architecture carries vital information about brain health across the lifespan. In parti-

cular, the ability to express distinct vigilance states is a key physiological marker of neuro-

logical wellbeing in the newborn infant although systems-level mechanisms remain elusive.

Here, we demonstrate that the transition from quiet to active sleep in newborn infants is

marked by a substantial reorganization of large-scale cortical activity and functional brain

networks. This reorganization is attenuated in preterm infants and predicts visual perfor-

mance at two years. We find a striking match between these empirical effects and a com-

putational model of large-scale brain states which uncovers fundamental biophysical

mechanisms not evident from inspection of the data. Active sleep is defined by reduced

energy in a uniform mode of neural activity and increased energy in two more

complex anteroposterior modes. Preterm-born infants show a deficit in this sleep-related

reorganization of modal energy that carries novel prognostic information.
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Changes in behavioral and cognitive states arise from
transitions in the configuration of functional brain net-
works1–3. Falling asleep and switching between sleep states

are archetypal cortical state transitions that are reflected in the
reorganization of patterns of functional interactions between
remote brain regions4,5. Importantly, the nature of sleep archi-
tecture in the early stages of life shapes brain development and
influences future behavior6,7. Understanding sleep patterns in
neonates thus carries important clinical potential8,9. However, the
neural principles underpinning sleep states early in life are poorly
understood. Advances in our knowledge of these fundamental
processes are therefore essential for improving brain health out-
comes with broader implications for behavior across the lifespan.

Here, we map whole-cortex functional interactions associated
with distinct sleep states in two groups of infants, born at term or
extremely preterm. We measured cortical activity when infants
were in states of active sleep (AS) and quiet sleep (QS). These
distinct states of vigilance are key components of the infants’
sleep-wake cycle, which gradually transform with neurodevelop-
ment into the alternating cycle of mature rapid eye movement
(REM) and non-REM sleep states such as deep sleep10. Using
high-density electroencephalography (EEG) and tools from net-
work science, we assess frequency-resolved reconfigurations in
whole-cortex functional connectivity as a function of sleep states
in these two groups of infants. This analysis provides a first
comprehensive characterization of abnormal sleep-related
reconfigurations of cortical connectivity following extreme pre-
term birth. To interrogate the notion that infants’ sleep states
shape the development of cortical pathways and related brain
functions, we test if changes in connectivity as a function of sleep
states in infants exposed to prematurity carry prognostic infor-
mation regarding behavioral performance at two years.

Moving beyond the characterization of cortical connectivity
patterns, we develop a novel biophysical model based on neural
field theory11. This is a well-established approach for modeling
brain dynamics at macroscopic scales12 in healthy states13,14 and
following pharmacological manipulation15. This model allows
study of the neural principles underpinning sleep-dependent

changes in cortical dynamics. Our results show that the emer-
gence of distinct sleep-related patterns of cortical connectivity
between infants born at term and extremely preterm are caused
by differences in the redistribution of energy in low-dimensional
modes of spatiotemporal neural activity.

Results
Analysis of infant sleep EEG. We analyzed multi-channel scalp
EEG data from two groups of infants: extremely preterm (EP, N=
42) and full-term healthy controls (HC, N= 52), with gestational
age (median ± interquartile range) of 26.6 ± 1.4 and 40.4 ±
1.7 weeks, respectively. EEG data in both groups were acquired at
term-equivalent age of 41.1 ± 2 weeks. Continuous epochs of EEG
were recorded in states of AS and QS (Fig. 1a). Cortical source
signals were reconstructed from these sensor data using a detailed,
realistic infant head model4. The neuronal signals representing
activity of cortical parcels were filtered into four frequency bands:
delta (0.4–1.5 Hz), theta (4–8 Hz), alpha (8–13 Hz), and low beta
(13–22 Hz). Following standard techniques for the study of
functional networks derived from electrophysiological data, we
studied a key “intrinsic mode” of connectivity, namely pair-wise
amplitude covariation16. Frequency-specific functional interac-
tions between cortical activity in these parcels were hence com-
puted as pairwise correlations between amplitude envelopes of
mutually orthogonalized neuronal signals17, resulting in func-
tional connectivity matrices for each frequency band and sleep
state (Fig. 1b). We statistically compared18 whole-brain functional
networks between sleep states and groups and correlated these
patterns of connectivity with neurocognitive outcomes (Fig. 1c).
We then established a biophysical model to explain these cortical
network configurations (Fig. 1d).

Effects of sleep state and preterm birth on brain dynamics.
Analysis of cortico-cortical functional connectivity shows that
across both infant groups, sleep states differ significantly in the
activity of two broadband networks comprising posterior and
anterior brain regions (family wise error rate (FWER)-corrected
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Fig. 1 Overview of data acquisition and analyses. a Multi-channel EEG were recorded at term-equivalent age from 46 infants born extremely preterm (EP)
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during AS is continuous with relative lower amplitude fluctuations, whereas EEG during QS presents as discontinuous (trace alternant), with high amplitude
signal bursts. Image reproduced with permission from Tokariev et al. (2019). b Using an infant head model, cortical source signals were computed from
band-pass filtered EEG. The parcellation scheme comprised 58 regions (29 bilaterally symmetric pairs). To assess functional interactions in the brain, we
computed correlation coefficients between amplitude envelopes (red lines) of parcel signals (gray lines). This led to connectivity matrices for every infant
for both sleep states and for each frequency band (lower panel). c Network-based statistics were used to detect patterns of connectivity that statistically
differ depending on group or sleep state or both factors. The change of the connectivity strength in the cortical patterns that showed significant interaction
was regressed against key neurodevelopmental outcomes of preterm-born infants at 2 years. d The geometry of the infant cortical surface (upper panel)
was used to compute cortical eigenmodes (lower panel), whose dynamics shape the organization of high-order cortical connectivity
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pFWER < 0.023 for all paired two-tailed t-tests; Fig. 2a for alpha
and left column on Supplementary Fig. 1 for other bands). AS is
characterized by stronger connectivity within a network com-
prising occipital, central, and temporal regions (Fig. 2a, b red),
extending to frontal cortex in the low beta band (Supplementary
Fig. 1). QS shows a more widespread increase in connectivity
throughout the cortex, with higher long-range connectivity and a
notable involvement of frontal brain regions (Fig. 2a, b blue).

To further characterize the spectral fingerprints of these effects,
we filtered the neural signals into (fast) carrier signals and their
(slow) amplitude fluctuations across a staircase of relatively
narrow bands (evenly spaced in logarithmic coordinates and
covering the carrier-amplitude frequency space), then repeated
the network-based contrasts. These analyses confirm the existence
of functional network effects in both quiet and active sleep states,
supported by fast carrier oscillations that are strongest in alpha

and beta frequencies (Fig. 2c), and whose amplitudes fluctuate
maximally on time scales of 5–11 seconds (0.09–0.19 Hz). The
strongest effects are seen for higher carrier frequencies in QS than
AS (~16 Hz vs. ~10 Hz). Interestingly, there exists a second effect
in QS centered over the delta band, composed of relatively short-
range edges that involve frontal regions and consistent with the
enhanced power of slow-wave activity classically seen in quiet/
deep sleep (Supplementary Fig. 1).

Across both sleep states, EP infants show significantly stronger
connectivity compared with HC with functional networks in the
alpha range encompassing occipital, temporal, central, and frontal
regions (pFWER < 0.0001, for all paired two-tailed t-tests; Fig. 3a,
b). These effects are also associated with stronger long-range
cortico-cortical connectivity in EP relative to HC (Fig. 3b).
Spectral analyses using narrow-band filters suggest this effect is
strongest in the alpha and beta range (Fig. 3c), although long-
range functional networks, significantly stronger in EP, are also
present in the delta and theta bands (Supplementary Fig. 1). EP
infants also show a reduction in connectivity between anterior
and posterior cortical regions in the theta band (pFWER= 0.01,
paired two-tailed t-test; Supplementary Fig. 1). When analyzed
according to the bank of narrow-band filters, the reduction in
functional networks is evident across the theta, alpha and beta
frequencies (Fig. 3c). However, when analyzed according to the
four pre-specified frequency bands, these effects only survive
FWER correction in the theta range (Supplementary Fig. 1).

Analysis of interactions between groups and sleep states shows
that long-range alpha connectivity between frontal and occipital
cortices plays a key role in supporting distinct sleep states that
differentiate EP from HC (violet in Fig. 4a, pFWER= 0.0004,
paired two-tailed t-test). Moreover, overlapping patterns of
occipital connectivity across a broad frequency range—including
theta, alpha, and low beta bands—show a group-by-sleep
interaction (orange in Fig. 4a and Supplementary Fig. 2a, all
pFWER < 0.0046, paired two-tailed t-test). For both fronto-
occipital and occipital connectivity patterns, the group-by-sleep
interaction is driven by an attenuated modulation of connectivity
strength between AS and QS in EP (Fig. 4a). Visual inspection of
the functional connectivity patterns suggests largely symmetric
(left-right) patterns (Figs. 2 and 4a). Formal comparison of the
aggregate connectivity within each of the hemispheres confirms
that there were indeed no statistically significant left-right
asymmetries in either of the groups or sleep states (false discovery
rate (FDR)-corrected pFDR > 0.2 for all four cases, paired two-
tailed Wilcoxon signed-rank test; Supplementary Fig. 3). Com-
parable results hold true for the low beta band (Supplementary
Fig. 2a).

Sleep-related brain dynamics in ex-preterms preempt out-
comes. We next asked if these group-by-sleep cortical networks
carry prognostic information for key developmental outcomes in
the EP group. Because of the central role of the occipital cortex in
the sleep state differences (Fig. 2a) and the differentiation of HC
from EP (Fig. 4a and Supplementary Fig. 2a), we tested whether
changes in connectivity across sleep states are linearly associated
with visual performance of EP at two years of age (online
Methods). To benchmark this against more complex brain
functions, we also tested the changes in connectivity against a
standard measure of social-emotional performance at two years.
These analyses reveal strong and significant (FDR-corrected)
negative correlations (partial two-tailed Pearson test controlling
for age at EEG recording) between sleep-induced changes in
alpha (Fig. 4b; R=−0.514, p= 0.003, 95% confidence interval
(CI) [−0.732, −0.202]) and beta (Supplementary Fig. 2b; R=
−0.461, p= 0.009, 95% CI [−0.698, −0.134]) connectivity in
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Fig. 2 Changes in cortico-cortical functional connectivity as a function of
sleep state. a The main effect of sleep state in the alpha band shows
significant connectivity differences in two main cortical networks (red: AS >
QS, blue: QS > AS; both pFWER < 0.0002, paired two-tailed t-test). Distinct
cortical regions are coded with different colors: temporal (green), central
(pink), occipital (black), and frontal (orange). b These networks have
different characteristic length distributions and distinct cortical region
distributions. Curves are distributions (kernel density estimates) of
functional connection lengths given by the fraction of edges p (normalized
to the whole network) for AS (red) or QS (blue). Bar plots show
participation of broad cortical areas in each sleep-related network. Filling of
the bars denotes the percentage of involved nodes within each region and
height denotes each region's share in the whole network. c Spectral
fingerprints of AS (left) and QS (right) sleep. Color scale shows effect
size (Cohen’s d) of sleep contrasts centered at different carrier and
amplitude frequencies (f). Darkest blue shade denotes frequency
combinations where there were no suprathreshold edges (null)
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posterior networks (comprising mostly occipital cortices) with
visual performance. No significant associations between sleep-
induced connectivity changes and visual behavior are detected for
low-frequency bands. A negative correlation is also apparent for
social-emotional performance, but the association is not statisti-
cally significant when accounting for multiple comparisons (all
puncorrected > 0.039; Fig. 4b and Supplementary Fig. 2b). The
regressions against socio-emotional indices and functional net-
works are not significant in any frequency band, nor are those for
visual outcome and functional networks in the theta band
(Supplementary Fig. 2b). These findings support the conjecture
that preterm birth has a major effect on the development of large-
scale neural networks underpinning behavior6, including later
neurocognitive performance that relies on visual function19.

Cortical eigenmodes shape early brain activity. It has been
recently shown that large-scale patterns of neural activity can be
modeled with cortical eigenmodes11,13,20. That is, that the geo-
metry of the cortex constrains the decomposition of neural
activity into spatiotemporal modes—analogous to the harmonics
of a musical instrument—whose linear superposition forms the
basis of whole-brain functional connectivity patterns. The

dynamic activity that each spatial mode carries can be modeled
through the application of neural field theory14,21. The functional
networks that differ between AS and QS have the appearance of a
long-wavelength anteroposterior pattern of activity that changes
between the two sleep states (Fig. 2a). To assess if this broad
anteroposterior pattern of cortical connectivity emerges from
changes in the activity of key low-dimensional modes, we applied
an eigenmode decomposition to a neonatal cortical mesh (see
Methods). Similar to the eigenmodes calculated on the adult
cortex11, these modes possess either a symmetric or antisym-
metric appearance, explaining increasingly complex patterns of
activity as the mode order increases (Fig. 5a and Supplementary
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Fig. 3 Changes in cortico-cortical functional connectivity as a function of
birth gestational age. a The main effect of group shows higher long-range
connectivity in the alpha band in EP infants compared with HC. The
corresponding widespread network is composed of temporal (green),
central (pink), occipital (black), and frontal (orange) cortices (pFWER <
0.0001, paired two-tailed t-test). b The line shows the distribution (kernel
density estimate) of functional connections lengths, where p is the fraction
of edges (normalized to the whole network). Bar plots show participation of
broad cortical areas in each sleep-related network. c Spectral fingerprints of
EP (left) and HC (right) infants. Colors show the effect size (Cohen’s d)
of group contrasts for all combinations of carrier vs. amplitude frequencies
(f). Darkest blue shade marks the cases where there were no
suprathreshold edges (null)
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Fig. 4). The first mode (m1) is uniform and global, whereas the
second mode (m2) is a left-right pattern reflecting the symmetry
of the brain’s hemispheres. The next two modes (m3 and m4)
capture long-range anteroposterior activity patterns, which mir-
ror the observed changes in cortical activity as a function of sleep
state (Fig. 2a).

The dominant anteroposterior orientation and lack of fine
spatial structure of the connectivity contrasts depicted in Figs. 2
and 4 suggests an explanation in terms of the relative weights of
these four low order modes. This is plausible because low order
modes are the most excitable, and hence carry the most energy22.
To test the hypothesis that changes in sleep-related connectivity
reflect changes in the weights of the eigenmodes, we developed a
parsimonious neural field model of cortical activity in which
simulated neural activity, Y, is a linear superposition of spatial
eigenmodes, each of which supports fast carrier oscillations that
fluctuate in amplitude on slower time scales. The functional
connectivity of these oscillations across the cortex emerges from
the spatial character of each corresponding mode. To achieve this,
we express Y as,

Y ¼
X

j

ajmjðx; y; zÞ cos ðνtÞ cos ðωtÞ þ σηðx; y; z; tÞ; ð1Þ

where Y= Y(x, y, z, t) is the modeled spatiotemporal cortical
activity at time t and position (x, y, z), aj are the mode weights, mj

are the mode spatial patterns, ν is the (low) frequency of
amplitude modulation, ω is the faster carrier frequency, η is
spatiotemporal Gaussian white noise, and σ is its standard
deviation (Fig. 5a). To model the effects in the alpha band, we set
ω to 10 Hz, with amplitude modulated on the slow time scale
of ~10 s (ν = 0.1 Hz). To match the sampling of the empirical
data, cortical dynamics were simulated for 300 s at 100 Hz
sampling frequency. We then determined the subject-specific
values of σ and the aj mode weights such that the modeled activity
best matches the empirical data. The best fitting parameters
minimize differences in the first two moments of the empirical vs.
the modeled distributions of functional connectivity values.
Connectivity only depends on the relative sizes of the oscillations
and the noise; the overall scaling of the model dynamics is set to
match the standard deviation (SD) of the empirical time series. As
there are no left-right asymmetries in our functional networks
(Supplementary Fig. 3), we further simplified the model by setting
the second mode to zero. We therefore focus on bilaterally
symmetric modes, estimating the coefficients for the first (m1),
third (m3), fourth (m4) modes (Fig. 5a). The face validity of our
model is highlighted by a strong overlap between individual
empirical and simulated patterns of cortico-cortical connectivity
(Fig. 5b and Supplementary Fig. 5). These results indicate that the
observed functional connectivity patterns across sleep states
(Fig. 2) arise from the distribution of energy in oscillatory
spatiotemporal modes and their ratio to unstructured noise.

Sleep states reflect redistribution of energy in brain modes.
Fitting the mode parameters to our empirical data reveals that
sleep state transitions predominantly reflect a change in the
weighting of the first mode with significant but weaker changes in
the coefficients of the third and fourth modes (Fig. 5c). Compared
to active sleep, quiet sleep is defined by higher energy in the first
uniform mode (F1,92= 1.6 × 102, p= 8.2 × 10−22, effect size η2=
0.615, mixed ANOVA) and slightly lower energy in the two
anteroposterior modes (mode three F1,92= 7.98, p= 0.006, η2=
0.08; mode four F1,92= 5.51, p= 0.021, η2= 0.057; mixed
ANOVA; Fig. 5c). Hence, the model indicates a shift in the
weighting of uniform to more complex antero-posterior activity
across sleep states, and a re-weighting of these broadly coherent
oscillations relative to the noise.

We found a significant sleep-by-group interaction confined
purely to the first mode (mixed ANOVA, F1,92= 7.76, p= 0.006,
η2= 0.03; Fig. 5c). This result suggests that dynamics in the first,
uniform mode underpins the different patterns of high order-
connectivity observed in HC vs. EP as a function of sleep states.
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(Methods). The brains depict the spatial distributions of the connectivity
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subjects. c Mode (mj) weights (a′j ) calculated across the three modes as a
function of sleep states and group. Gray lines link individual subject weights
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0.006, mode 4: p= 0.021). A sleep-by-group interaction is present in mode
1 (p= 0.006). Source data are provided as a Source Data file
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That is, a decrease of energy in this mode reveals relatively greater
energy in the higher order modes—and more so in HC than in EP
—and hence the correspondingly more complex spatiotemporal
patterns evident in Fig. 2. Importantly, this reduction in global
cortical energy in EP is also reflected in spectral power changes
across sleep states in empirical data (Supplementary Fig. 6).

Discussion
We combined connectivity analyses of high-density EEG with
biophysical modeling to study cortical dynamics associated with
sleep states in pre-term and full-term infants. We found that
sleep-related differences in connectivity patterns between infants
born at term vs. those born extremely preterm correlate with later
neurodevelopmental outcomes. Crucially, biophysical modeling
pinpointed a specific deficit in large-scale neuronal dynamics
underpinning these sleep-induced connectivity differences.
Understanding the neural basis of infant sleep is an important
endeavor for basic and translational neuroscience. Our work
establishes several new systems-level insights in this endeavor,
and holds potential for clinical translation.

We found that infant AS vs. QS states are characterized by
broadband differences in cortical connectivity. AS is associated
with increased functional connectivity in visual occipital regions
whereas QS involves a broader increase in long-range cortical
connectivity. These modulations of whole-cortex connectivity
across different sleep states support the proposal that sleep-
dependent patterns of brain activity play a key role in promoting
the development of large-scale cortical networks that underlie a
broad range of behaviors4,23. As a specific example of this, we find
that changes in occipital connectivity between AS and QS are
affected by extremely preterm birth, and the magnitude of this
alteration correlates with visual behavioral outcomes at two years
of age. That is, alterations in functional connectivity in visual
cortex due to preterm birth may impact on the maturation of
functional assemblies that are important for emerging visual
function. Although we find enhanced correlations in lower fre-
quencies during QS, as might be expected for activity during deep
sleep24, these do not correlate significantly with neurobehavioral
outcomes. Rather, our findings support the notion that syn-
chronization within the visual system at alpha and beta fre-
quencies is key for the development of perceptual function25,26.
The correlation of occipital functional connectivity with social-
emotional development at two years is not statistically significant,
suggesting some specificity to these functional-developmental
couplings. Intriguingly, the correlation between sleep-state related
functional network changes in the EP infants and visual function
at 2 years (Fig. 4b) is in the opposite direction to the between-
group effect with the HC infants. Without experimental control
over the exposure of EP infants to normal sensory experience in
the neonatal intensive care unit, it is not possible to infer whether
these effects are driven by preterm birth or the additional post-
natal exposures of EP infants. Future work, incorporating longer-
term (life-long) outcomes and other functional metrics could also
help disambiguate those preterm-related functional network
deficits that persist from those that can be modulated by envir-
onmental influences during childhood (e.g., inter-personal rela-
tionships, health interventions, education).

Computational modeling suggests that a redistribution of
energy in low-dimensional modes of spatiotemporal neural
activity supports the emergence of these sleep-related patterns of
cortical functional connectivity. Specifically, the broad increase in
cortical connectivity associated with QS emerges from an increase
of oscillatory energy in a globally uniform mode. The regional
increase in occipital connectivity in AS reflects a relatively greater
proportion of energy in higher-order oscillatory modes following

a reduction in the first mode. Of note, changes in the corre-
sponding more complex antero-posterior modes—whose geo-
metry mirrors the topology of the functional connectivity changes
—are small in comparison. The use of computational modeling
thus highlights changes in large-scale cortical activity that are not
immediately obvious from inspection of functional connectivity
changes viewed in isolation, but instead speak to more subtle
changes in whole brain oscillatory and stochastic activity.

Scalp EEG is most sensitive to source activity in adjacent
cortex. While sleep-related cortical reconfigurations are likely
driven by subcortical structures27, our findings permit a non-
invasive characterization of the cortical manifestations of these
subcortical modulations. Moreover, these results relate whole-
cortex dynamics to functional brain development. The physio-
logical mechanism for the transitions themselves—i.e., the
mechanisms for the dynamics of the mode weights—could in
principle be described using models of the ascending arousal
system28,29. These ascending neuromodulatory systems modulate
neuronal gain, increasing neuronal signal to noise in a manner
that supports abrupt phase transitions30. The present findings
thus provide a foundation for the development of a unified theory
of neural dynamics supporting sleep. The integration of invasive
and non-invasive neurophysiological recordings in preclinical
models of preterm birth could play an important role in over-
coming the inevitable limitation of scalp-only EEG in human
clinical data. Likewise, our eigenmode decomposition is currently
derived from cortical geometry only: The incorporation of
structural connectomes of infant brain into the decomposition13

could further refine and individualize the functional modes used
for our biophysical model. Such work requires further advances
in the accurate reconstruction of individual tractography data
from neonates. Given that geometry contributes substantially to
connectivity31, which shapes large-scale dynamics32, it is likely
that such resulting modes would differ only slightly from those
presently used.

Findings from the current work have substantial translational
potential, opening a novel diagnostic and prognostic window into
brain monitoring and prediction of developmental outcomes in
extremely preterm infants33. This information could be harnessed
to develop new bed-side tests needed for benchmarking inter-
ventions to improve the neurocognitive outcomes of preterm
infants, the globally biggest neonatal risk factor34. More broadly,
our framework shows how the reconfiguration of functional
networks across brain states can be recast as changes in large-
scale spatiotemporal modes of activity. Together with the rapid
penetration of brain network theory across clinical disorders35,
this suggests a fundamental role for neural field theory in
translational neuroscience.

Methods
Ethics. The study design and procedures have been approved by the Ethics
Committee of the Helsinki University Central Hospital (Finland). Informed written
consent was received from a guardian before inclusion of an infant into the study.

Subjects. Data were acquired at the Helsinki University Central Hospital (Fin-
land). Some data related to infants included in this cohort have been used for
previous independent publications4,7,36,37. Multi-channel EEG data were collected
from two cohorts of infants: extremely preterm (EP, N= 46) and full-term healthy
controls (HC, N= 67).

EEG data. EEG data were recorded with a NicOne EEG amplifier (Cardinal
Healthcare/Natus, USA) or a Cognitrace amplifier (ANT B.V., Enschede, The
Netherlands). EEG caps (sintered Ag/AgCl electrodes; Waveguard, ANT-Neuro,
Germany) had 19 or 28 scalp electrodes positioned according to the International
10–20 standard. The same 19 EEG channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3,
Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2) across all recordings were selected for
analyses. Further details regarding EEG acquisition in newborns can be found
elsewhere38.
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Sleep state selection. Each recording session continued until the infant had
undergone two sleep (vigilance) states: active sleep (AS) and quiet sleep (QS).
Vigilance state assessment was performed in our data through a combination of
electrophysiological and behavioral measures. Polygraphic channels (chin electro-
myogram, electrocardiogram, electrooculogram, and respiratory sensors) were used
for this purpose. EEG traces during AS exhibit continuous fluctuations, respiration
is irregular, and occasional eye movements are present. Conversely, EEG during QS
is characteristically discontinuous, and respiration is regular39 (Fig. 1a). Next, we
selected 5-min-long artifact-free EEG epochs from the most representative periods
of AS and QS. The selection of the epoch length was based on our previous studies
demonstrating that a continuous 5 minute recording duration provides a reliable
and stable estimate of the whole-brain functional network activity in infants4,7. To
avoid transitions between vigilance states, representative sleep epochs were selected
from within well-established patterns of corresponding behavior and brain activity,
and not close to the transition between QS and AS. Subjects that lacked sufficient
epoch lengths or had poor quality data (due to movement artifacts or loss of
contact) were excluded from further analysis. The final sample included 42 neo-
nates in the EP group and 52 neonates in the HC.

Neurodevelopmental assessment. The neurodevelopment of infants was assessed
at two years of corrected age using the structured Griffiths Mental Developmental
Scales40. These scales were chosen because they measure the cognitively demanding
domains of visual performance and social-emotional performance. The assessment
of visual and social-emotional performance in EP was chosen because of their
established, widespread clinical use plus their broad impact on lifelong neuro-
cognitive performance and quality of life, hence improving the translational
potential of our study41,42. While other outcomes such as gross motor development
and hearing are also affected in some infants, studies in ex-preterm infants have
shown that these are the most likely to be modified by a host of individual and
treatment interventions43.

EEG data pre-processing. EEG data were initially band-pass filtered into the
0.15–45 Hz frequency band, down-sampled to a sampling rate of 100 Hz and re-
referenced to the common average reference montage. For further analysis we
filtered the data into four frequency bands of interest: 0.4–1.5 Hz (delta, δ), 4–8 Hz
(theta, θ), 8–13 Hz (alpha, α), and 13–22 Hz (low beta, β). For band-pass filtering,
we applied in series a combination of low-pass and high-pass Butterworth filters
with the corresponding cut-off frequencies and stop-band attenuation of 20 dB.
Each filter was applied in both forward and backward directions to avoid intro-
ducing phase lags into the EEG signals. An overview of the entire analytic pipeline
is shown in Supplementary Fig. 9.

Source reconstruction. A realistic infant head model was used to compute cortical
source signals from multi-channel EEG4. Briefly, we generated scalp, skull, and
intracranial volume shells (2562 equidistant vertices in each) from segmented
anatomical magnetic resonance imaging data of a healthy full-term infant. In the
source space, we used a cortical template scaled to the infant size and spatially
smoothed to match the brain folding at term-equivalent age. The source space
comprised 8014 electrical dipoles (of fixed orientation orthogonal to the surface)
approximating the local neuronal activity. Tissue conductivities for intracranial
volume, skull, and scalp were taken as 1.79 S/m, 0.2 S/m, and 0.43 S/m, respec-
tively44,45. The head model included 19 scalp EEG electrodes placed according to
the empirical recordings. The forward solution (i.e., the operator that estimates the
contribution of cortical sources to scalp EEG) was computed using a symmetric
boundary element method implemented in the openMEEG package46. For the
noise covariance matrix, we used the identity matrix, which assumes equal noise
levels in EEG sensors. To compute cortical sources from EEG (the inverse solu-
tion), we applied dynamic statistical parametric mapping47 as implemented in the
Brainstorm software package48. The 8014 cortical sources were clustered into 58
parcels including 125 ± 26 (mean ± SD) sources each (Fig. 1b). The adopted brain
parcellation scheme was symmetric across hemispheres (29 parcels in each
hemisphere). The activity of each parcel was taken as the weighted mean activity of
all sources within it4.

Connectivity analysis. Pairwise functional interactions between cortical parcels
were estimated by computing Pearson correlation coefficients between amplitude
envelopes of the corresponding cortical signals. Pairs of signals were first ortho-
gonalized relative to each other in 2 s non-overlapping time windows17. This
procedure was performed in both directions: signal X was orthogonalized relative
to signal Y, and signal Y was orthogonalized relative to X. Two output correlation
coefficients were then averaged and used as the functional interaction estimate
between X and Y. The correlation coefficients between all possible parcel pairs led
to a full adjacency matrix having (58 × 57)/2= 1653 connections. The resulting
matrices were corrected by excluding connections which cannot be reliably esti-
mated using 19 recording EEG electrodes. To define such connections, we simu-
lated artificial parcel activity, where pairs of specific regions were synchronized at
one time, and that was used to compute synthetic EEG and to reconstruct back
parcel signals. We repeated this in 500 iterations for each pair of parcels. Finally, we
contrasted pairwise interactions of reconstructed parcels that were initially in

synchrony to the set of surrogate values from all non-synchronous parcels from all
iterations. This allowed us to generate a statistically based binary template where all
interactions below the 99th percentile of surrogates were rejected (zeros) as non-
reliable and all others (ones) were used for further analysis (for more details see
elsewhere4). Here, we excluded 32% of interactions from all adjacency matrices (the
same non-reliable interactions in all subjects), leaving 1128 connections in each for
further analysis. Finally, to reduce inter-individual differences in total connectivity
across subjects, each adjacency matrix was normalized by dividing each weight by
the global sum of the magnitude of the weights in the matrix.

Network-based statistics. The network-based statistic (NBS)18 was used to
estimate group and sleep main effects, as well as group-by-sleep interactions.
Analyses were carried out independently for each frequency band of interest. A
search t-statistic threshold of 3 (equivalent to p < 0.001, uncorrected) was initially
applied to all 1128 possible pairwise connections between cortical parcels. The size
of surviving sets of pairwise connections was recorded. Permutation testing was
used to estimate a corrected p-value for each pattern of connections (p < 0.05,
FWER-corrected at the level of the whole pattern). In each permutation, the
assignment of data to a given group or sleep state was randomized. For each of the
5000 permutations the size of the largest network was recorded, allowing for the
generation of a null distribution and FWER correction.

Assessment of effect size in the frequency domain. To study the spectral fin-
gerprints of sleep and gestational age effects, pre-processed EEG data were filtered
into 21 frequency bands covering the range 0.42–22 Hz. Central frequencies (f) of
these filters were spaced such that the (k+ 1)-th frequency was a fixed multiple of
the k-th frequency given by fk+1= 1.2 fk. The slowest carrier frequency f1 was set to
0.5 Hz and the ensuing highest frequency was f21= 19.2 Hz. Cut-off frequencies
were 0.85f and 1.15f, and stop-band frequencies were 0.5f and 1.5f. Band-pass
filtering was implemented by applying pairs of low-pass and high-pass Butterworth
filters. This yielded carrier oscillations with overlapping frequency bands of equal
width on a logarithmic scale. The amplitudes of these carrier frequencies were then
band-pass filtered into 15 frequency bands to estimate amplitude fluctuations at
different time scales49. Amplitude filters were designed according to the same
principles as for the carrier frequencies. The slowest amplitude frequency f1 was set
to 0.015 Hz and the ensuing highest frequency was f15= 0.19 Hz. This double filter
bank led to 21 × 15= 315 functional connectivity matrices per subject at each sleep
state. Connectivity analyses of the main effects of group and sleep state were
estimated using NBS with a search (height) t-statistic threshold of 2.5. Frequency
combinations (carrier and amplitude) for which there were no suprathreshold
edges were denoted null (Figs. 2c, 3c). Effect size was computed as Cohen's d (i.e.,
NBS-derived mean t-statistic divided by the square root of the total degrees of
freedom).

Brain-behavior correlations. For each sleep state (AS and QS) and EP infants with
follow-up neurocognitive examination (N= 32), we computed the mean con-
nectivity strength in cortical patterns showing a significant group-by-sleep inter-
action (Fig. 4a and Supplementary Fig. 2a). We then calculated subject-specific
differences in mean connectivity (AS minus QS). Finally, we computed correlation
coefficients (two-tailed Pearson’s correlation) indexing the linear association
between changes in functional connectivity and scores of visual and social-
emotional performance at two years of age. We used partial correlation analyses
(partialcorr function in Matlab), controlling for conceptional age of infants at the
time of EEG recording to account for neurodevelopment7. Resulting p-values from
the six brain-behavior tests (two behavioral measures and three frequency bands)
were corrected using a standard Benjamini-Hochberg false discovery rate (FDR)
correction procedure.

Eigenmode decomposition and computational model. Application of neural field
theory has recently shown that large-scale resting-state activity patterns are well
described by eigenmodes of the cortical surface11. Details regarding neural field
theory14,22 and solutions of neural field equations on cortical surfaces to obtain
eigenmodes20 have been extensively presented elsewhere11. Here, we briefly
describe the specific aspects of neural field theory employed, and the practical steps
to calculate eigenmodes.

Neural field theory is a continuum description of neural activity, built upon
standard (mean-field) approaches from physics and used to average over the
microscopic details of individual neurons50. This enables modeling of the dynamics
of large populations of neurons, where the relevant physiological quantities are
average membrane potentials and firing rates over local neural populations. For
comparison with EEG, the main quantity of interest is the excitatory cortico-
cortical activity field ϕee, representing the mean incoming spike rates at pyramidal
neurons. We are interested in spatiotemporal dynamics and hence use a
formulation in terms of partial differential equations, which retain spatial
information across the cortical sheet modeled here as a two-dimensional surface.
Importantly, the general form of the model adopted here can be used to accurately
predict resting-state EEG spectra14,51, including sleep52. It has been shown that, in
the absence of external inputs, resting-state cortical activity can be written as a sum
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of eigenmodes

ϕee ¼
X

j

mjðrÞe�iωj t ; ð2Þ

each with eigenfrequency ωj, and amplitude mj(r) at position r satisfying the
Helmholtz equation,

∇2mjðrÞ ¼ �k2j mjðrÞ; ð3Þ
where k2j is the eigenvalue and ∇2 is the Laplace-Beltrami operator on the cortical
surface. We used a cortical surface53 scaled to the infant size and spatially
smoothed to match the brain folding at term-equivalent age. We solve Equation (3)
for the eigenmodes using a finite element method implemented in Matlab54–56. The
first six eigenmodes are shown in Supplementary Fig. 4.

The existence of amplitude-amplitude correlations in the data requires the
oscillatory amplitudes to vary in time at each point. We assume the simplest form
of oscillatory amplitude modulation in Equation (1) of the main text, where each
mode is modulated with a (cosine) oscillation at a fixed low frequency ν (here, 0.1
Hz). This is equivalent to a beat, a linear superposition of two nearby frequencies.
Thus, each amplitude-modulated mode mjcos(ν)cos(ωt) in our final signal Y is a
sum of a pair of pure oscillatory modes 1

2mj cos ½ðω� νÞt� þ 1
2mj cos ½ðωþ νÞt�,

where we have also assumed that each amplitude-modulated mode has the same
carrier frequency ω (here, 10 Hz for alpha band oscillations).

We restricted our attention to the first four modes j= 1–4 (Supplementary Fig. 4)
on the basis that the dominant feature in Fig. 2a is a clear anteroposterior pattern,
with an absence of the finer spatial structure captured by modes j ≥ 5. Moreover, as
detailed in the main text, formal testing for a left-right asymmetry in the functional
connectivity patterns showed no significant effect (Supplementary Fig. 3). Hence, we
further simplified the model by setting mode weight a2= 0. This leaves four
parameters in Equation (1) that need to be estimated from the data: a1, a3, a4, and σ.

We fitted the model using a two-step procedure. First, because the correlation
dynamics only depend on the ratios of the aj to the noise amplitude σ, without loss
of generality we fixed σ= 1 and calculated the model functional connectivity over a
3-D grid of values of a′1, a′3, and a′4, where the primes denote the σ= 1 case. The
gridded values of a′j spanned the range 0-0.5 (steps of 0.0025). This range was
selected based on initial testing that showed that the best fits fall in the range
0< a′j < 0:5 (Supplementary Fig. 7). We summarized each pattern of functional
connectivity in the parameter space by calculating the first two moments (mean
and SD) of the distribution of edge weights. Then, for each subject, we calculated
the same summary statistics and found the corresponding parameters that
minimized the cost function,

Jða′1; a′3; a′4Þ ¼ ½μdata � μmodelða′1; a′3; a′4Þ�2 þ ½σdata � σmodelða′1; a′3; a′4Þ�2; ð4Þ
where μdata and σdata are the mean and standard deviation of the functional
connectivity weights across the empirical network, and μmodel and σmodel for the
model. We finally estimated the subject-specific σ and aj ¼ σa′j by finding the value
of σ such that Y(t) and the empirical time series have the same standard deviation
across time.

Data from all (N= 42) preterm infants were used in these analyses. For display
purposes, data from one outlier was omitted from Fig. 5c (see Supplementary Fig. 8
for all data points). This data point was included in all formal analyses.

Statistical analysis. Pairwise group comparisons for connectivity asymmetries
(Supplementary Fig. 3) were performed using two-tailed signed-rank Wilcoxon
tests. This non-parametric approach was adopted because data did not follow a
normal distribution (Shapiro-Wilk test). P-values were FDR corrected with
Benjamini-Hochberg procedure.

To test for significant differences in mode weights (Fig. 5c) and global
amplitudes (Supplementary Fig. 6), we used a mixed analysis of variance
(ANOVA).

Analysis software. MRI segmentation was performed using FSL57 and the head
model was computed using the openMEEG package46. Source reconstruction was
done using algorithms implemented in Brainstorm48. Brain networks were visua-
lized using the Matlab toolbox BrainNet Viewer58. Statistical analyses were per-
formed using standard and custom Matlab functions and JASP software (https://
jasp-stats.org).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data will be available upon reasonable request. The source data underlying Figs. 4, 5 and
Supplementary Figs. 2, 3, and 6 are provided as a Source Data file.

Code availability
Custom Matlab code implementing connectivity analysis, the biophysical model, and its
fitting to empirical data can be found here: https://github.com/babyEEG/Infant-Sleep.
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