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Abstract 

Species occurrences are influenced by numerous factors of which effects may be context 

dependent. Thus, the magnitude of such effects and their relative importance on species 

distributions may vary among ecosystems due to anthropogenic stressors, for example. To 

investigate context dependency in factors governing microbial bioindicators, we developed 
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species distribution models (SDMs) for epilithic stream diatom species separately in human 

impacted and pristine sites. We performed SDMs using boosted regression trees for 110 

stream diatom species, which were common to both data sets, separately in 164 human 

impacted and 164 pristine sites in Finland (c. 1000 km, 60˚ – 68˚ N). For each species and 

site group, two sets of models were conducted: climate model, comprising three climatic 

variables, and full model, comprising the climatic and six local environmental variables. No 

significant difference in model performance was found between the site groups. However, 

climatic variables had greater importance compared with local environmental variables in 

pristine sites, whereas local environmental variables had greater importance in human 

impacted sites as hypothesized. Water balance and conductivity were the key variables in 

human impacted sites. The relative importance of climatic and local environmental variables 

varied among individual species, but also between the site groups. We found a clear context 

dependency among the variables influencing stream diatom distributions as the most 

important factors varied both among species and between the site groups. In human impacted 

streams, species distributions were mainly governed by water chemistry, whereas in pristine 

streams by climate. We suggest that climatic models may be suitable in pristine ecosystems, 

whereas the full models comprising both climatic and local environmental variables should 

be used in human impacted ecosystems. 

 

Key words: land use gradient; climate; local environment; stream diatoms; species 

distribution modelling; boosted regression trees 
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Introduction 

Ecosystems are molded by a myriad of factors operating at multiple spatial scales (Cox et al. 

2016). This is especially true in open systems, such as rivers and streams, characterized by 

unidirectional flow and supply of substances from terrestrial areas (Allan and Castillo 2007). 

Large scale factors, such as climate and catchment land use, strongly influence the local 

stream habitat and thus the species diversity therein (Allan 2004, Pajunen et al. 2017). Due to 

the ongoing anthropogenic environmental change, streams are subjected to multiple stressors 

including changes in land use and associated habitat degradation and changing climatic 

conditions. This increasing stress is resulting in biodiversity loss and homogenization of 

communities (Rahel 2002, Olden et al. 2004, Filipe et al. 2013, Dar and Reshi 2014). As a 

consequence of global warming, the stream water temperatures are predicted to rise 

correspondingly (Webb 1996, Morrill et al. 2005) and changes in precipitation will alter 

hydrological conditions. The complex interactions between climate, land use and water 

physicochemistry challenge the future predictions of stream conditions. Earlier studies have 

mostly concentrated in changes in community composition between different gradients of 

human impact (e.g., Pan et al. 2004, Soininen et al. 2004, Hering et al. 2006), yet the 

knowledge about the responses of individual species (based on their occurrences) to 

environmental and climatic factors in different environments are still limited. To fill this gap 

in knowledge, we investigated whether the effect of climatic variables on the distribution of 

diatom species is more pronounced in pristine sites than in human impacted sites. 

 

The catchment land use affects stream physicochemistry (Foley et al. 2005) and even the past 

land use can have a long lasting imprint on stream conditions (Maloney et al. 2008, Walter 

and Merritts 2008, Maloney and Weller 2011). For example, land cover previously 

dominated by agriculture may sustain high nutrient loads from sediments to streams for a 
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long time period after a change in land use (Maloney and Weller 2011). Anthropogenic land 

use, comprising agriculture, development and urbanization, contributes to increased nutrient 

and ion concentrations (Taka et al. 2017), pollutants and turbidity (due to sediment load) in 

streams (Foley et al. 2005), and these effects cascade downstream (Levesque et al. 2017). 

Wang et al. (2008) found that nutrient loading and percent of urban land use were the most 

important drivers of deteriorating stream conditions. Climate also affects nutrient levels in 

streams as nutrient fluxes in a stream network are strongly driven by hydrology (Arvola et al. 

2015). Furthermore, riparian vegetation regulates stream temperature and light conditions by 

shading, acts as organic matter input and as an agent in sediment retention. Its removal leads 

to increased water temperature, sediment load and nutrient leaching (Studinski et al. 2012, 

Sweeney and Newbold 2014), but also to increased periphyton biomass due to greater light 

intensities (Von Schiller et al. 2007). Such effects of land use are likely to increase with 

projected higher air temperatures and precipitation in the future (e.g., Holmberg et al. 2006, 

Piggott et al. 2015). The relationship between land use and microbial stream communities 

strengthens towards downstream because of the continuous accumulation of substances in a 

river continuum (Tudesque et al. 2014). Moreover, stream microbes may show in some 

circumstances stronger relationship with the changes in land use than with physicochemical 

gradients, e.g., pH, substrates and nutrients (Liu et al. 2016, Jyrkänkallio-Mikkola et al. 

2017). This indicates that land use could provide a more robust measure of water chemistry 

variables – thus, reflecting stream chemistry at longer time scales than snapshot water 

samples. This implies that especially in the presence of human activities, microbial 

communities are strongly influenced by the relative proportions of local environmental 

factors (for example water chemistry) brought about by a certain type of land use.   
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Biological indicators, such as benthic diatoms, are widely used to assess the ecological status 

of freshwater ecosystems as they reflect water quality over a period of time (Sandin & 

Verdonschot, 2006). Many aquatic microbes, including diatoms, have species-specific 

responses towards water chemistry (Van Dam et al. 1994, Olapade and Leff 2005), but 

whether these responses stem from niche conservation or local adaption, is currently under 

debate (Finlay 2002, Wiens and Graham 2005). However, a clear evidence for niche 

conservation, i.e. the tendency of species to preserve inherited ecological characteristics, have 

been detected in lacustrine diatoms (Telford et al. 2006, Bennett et al. 2010). The relative 

importance of environmental variables (such as water chemistry and land use) affecting 

benthic diatoms can also vary between study regions and in different climatic zones (Charles 

et al. 2006, Jüttner et al. 2010), and are also influenced by the study scale (Verleyen et al. 

2009, Heino et al. 2014). This suggests a certain context dependency among the most 

influential factors driving microbial distributions. Furthermore, previous studies have shown 

a strong influence of climatic factors on the distributions of stream micro-organisms, which 

can even exceed the effect of local environmental variables (Pajunen et al. 2016). Climate can 

be seen as a crucial factor that has a strong impact on water temperatures and terrestrial 

vegetation patterns (Cox et al. 2016), and thus also on variation in in-stream variables 

(Frissell et al. 1986, Stevenson 1997). The effect of climate is likely to be more apparent in 

pristine environments where, in the absence of human impact, natural processes are able to 

dictate the supply of substances and the disturbance regime in streams. The variation in water 

chemistry among pristine streams are expected to be smaller than in human impacted 

environments (Castillo et al. 2012), thus the relative role of climatic factors affecting stream 

communities may be stronger. In contrast, in human impacted environments, local 

environment sets a strong filter for species due to the large variation in local environmental 

factors among streams due to the varying forms and intensity of human influence.  
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Additionally, in boreal regions where productivity is generally low even minor human 

activities can have a notable impact on stream water chemistry (e.g. sewage discharges from 

dispersed settlement).   

 

To investigate whether the distributions of commonly used microbial bioindicators are 

context dependent, i.e. species’ responses vary between species and among sites with 

different magnitude of human impact, we developed species distribution models (SDMs) for 

stream diatoms separately in human impacted and pristine streams. We hypothesized that 

climatic variables affect the distribution of diatom species more in pristine sites than in 

human impacted sites. As a corollary, the effect of local environmental variables on species 

distributions is stronger in human impacted sites where the ranges of water chemistry are 

longer than in pristine sites. In human impacted sites, the addition of local variables to 

climate models would thus greatly enhance the model performance.  

 

Methods 

Data sampling and analysis  

The data set comprised diatom (presence/absence), water chemistry and physical variable 

data collected from Finnish stream sites between 1986 and 2016 (328 sites in total) (Fig. 1). 

The samples were considered to be comparable as the sampling methods were identical and 

all sampling was performed during the base flow conditions in July to September. The sites 

were distributed relatively evenly across Finland and the measured environmental and 

climatic variables covered a wide range (Table 1). The most of the sampling sites (> 90 %) 

were located in headwater streams (orders 1 or 2), yet some samples were taken from larger 

rivers. More detailed information about the data set can be found in Eloranta (1995), Soininen 

et al. (2004) and Jyrkänkallio-Mikkola et al. (2017).   
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According to standard methods of benthic algae sampling in streams (Lowe and Pan 1996, 

Kelly et al.1998), each stream site was sampled for diatoms by collecting five to ten cobble 

sized stones along 10 m section comprising mainly riffle habitat. By collecting diatoms only 

from rock surfaces (i.e. epilithic diatoms), the potential effect of substrata on diatom 

communities could be ruled out in order to minimize the noise in the data (Lowe and Pan 

1996). Biofilm was removed from the stones by brushing them with a toothbrush and 

combined as one composite sample at each site. Water samples were taken simultaneously 

with diatom samples, and were subsequently analyzed for total phosphorus (TP), pH, 

conductivity and water color using national standards. For minority of the sites (< 10 %), 

water chemistry data were taken from the national water quality database, using results from 

the nearest sampling occasion and location. Current velocity, canopy shading and stream 

width were measured at each site along the site perpendicular to the flow and covering the 

whole stream section. Samples were cleaned from organic material in the laboratory using 

wet combustion with acid (HNO3:H2SO4; 2:1 or hydrogen peroxide [30%, H2O2]) and 

mounted in Naphrax or Dirax. A total of 250–500 diatom frustules per sample were identified 

to the lowest possible taxonomic level according to Krammer and Lange-Bertalot (1986–

1991) and Lange-Bertalot and Metzeltin (1996), and counted using phase contrast light 

microscopy (magnification 1000×). A species was considered to be present at a site when at 

least one valve was observed. 

 

Climatic and land use variables 

We compiled a set of environmental variables presumed to affect diatom distributions. 

Climatic variables were chosen based on their use in previous SDMs conducted for Finnish 

diatom data (Pajunen et al. 2016). The variables were growing degree days adjusted to 5 ˚C 

(GDD), season precipitation sum from May to September (PRECS) and water balance 
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(WAB; calculated according to Skov and Svenning 2004). GDD represents the aerial 

temperature and the energy requirements of the species, while PRECS and WAB represent 

the moisture availability in the environment, connected to the extent of recharge and run-off. 

The climatic data set covered the years 1981–2010 and was obtained as a 10×10 km 

resolution grid from the Finnish Meteorological Institute (Venäläinen and Heikinheimo 

2002). Using ArcGIS 10.3.1 software, site-specific catchment areas were created by 

calculating the patterns of flow direction and accumulation to each sampling point from 

digital elevation model (DEM; grid resolution 10×10 m, National Land Survey of Finland 

2013). Classifications of land use were obtained from CORINE Land Cover data (20×20 m, 

Finnish Environment Institute 2013). Artificial and agricultural land use were merged to 

represent anthropogenic land use. The local and climatic variables were tested for covariance 

with nonparametric Spearman’s rank correlation coefficient. All predictor variables had low 

collinearity (rs ≤ |0.50|, Appendix S1: Figs. S1–2).  

 

Species distribution models  

The data set (328 sites and in total 494 diatom species) was divided into two equal-sized 

groups: human impacted sites (n = 164, > 5% anthropogenic land use) and pristine sites (n = 

164, < 5% anthropogenic land use). The 5% threshold for anthropogenic land use was chosen 

also to cover the impacts of point source pollution, which were also present in otherwise 

relatively pristine areas. These potential point sources were either observed in the field or 

estimated from the ground documents. In Finland, anthropogenic land use is typically of 

relatively low intensity. Therefore, even a small increase in human impact can have a notable 

effect on stream conditions. Diatom species that occurred in both groups and at least at 5% 

and maximum at 95% of the sites were included in the statistical analyses. These thresholds 

were chosen in order to perform robust species distribution models.   
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Two sets of diatom species distribution models were conducted for each of the 110 species 

separately for human impacted and pristine sites: climate models and full models. In the 

climate models, species distributions were modelled only by the three climatic variables: 

GDD, PRECS and WAB. In addition to the climatic variables, the full models had six 

environmental predictors: TP, conductivity, pH, water color (mainly reflecting the humic 

content of the water), canopy shading and current velocity.  To account for the spatial 

concentration of the human impacted sites in the southern and western parts of Finland, we 

performed additional distribution models for subsampled data sets (n=100 sites and 104 

species in both impacted and pristine data sets, Appendix S2: Table S1 and Fig. S1) using the 

same settings. Due to the exclusion of sites especially in the northern regions, the full and 

subsampled data sets differed by 16 species. 

 

The SDMs were applied via the BIOMOD2 framework (Thuiller et al. 2016) fitted in R 

(version 3.3.3; R Development Core Team 2017) using boosted regression trees (BRT) as 

modelling algorithm. BRT is a machine learning technique, which has previously proven to 

be a robust method for creating SDMs for micro-organisms (Pajunen et al. 2016), as it is 

highly efficient at fitting nonparametric data, and can manage various types of predictor 

variables. It does not require prior data transformation and takes automatically into account 

the interaction effects between predictors (the principles of BRT in more detail: see Friedman 

2001, De’ath 2007, Elith et al. 2008). BRTs were performed with a maximum number of 

3000 trees, the interaction depth of 6 and the learning rate of 0.001.  

 

The performance of each model was assessed with a cross validation (CV) approach, where 

the models were fitted four times by using a random sample of 70% of the data and 

subsequently evaluated against the remaining 30%. The predicted and observed occurrences 
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of species were compared at each CV run by calculating the area under the curve of a 

receiver operating characteristic plot (AUC) (Fielding and Bell 1997) and true skill statistics 

(TSS) (Allouche et al. 2006). The models have at least intermediate predictive performance if 

AUC values are > 0.7 (following Swets 1998) and TSS values are > 0.4 (following Landis 

and Koch 1977).  

 

The importance of each predictor for a species in the models was assessed in BIOMOD2 by 

randomizing each variable individually and then projecting the model with the randomized 

variable while keeping the other variables unchanged. The model predictions containing the 

randomized variable were further correlated with those of the original models. Finally, the 

importance of the variable was calculated as one minus the correlation; higher values indicate 

predictors that are more important for the model (Thuiller et al. 2009). This analysis was 

repeated ten times. The differences in model performances and predictor relative importances 

between human impacted and pristine data sets were tested using paired t-test in R (version 

3.3.3; R Development Core Team 2017). As a supplemental analysis, the variation in the 

species occurrence data among climatic and local environmental variables was decomposed 

using the variance partitioning approach based on redundancy analysis (RDA) applying the 

package VEGAN (Oksanen et al. 2015) in R. The analysis was performed separately for 

human impacted and pristine data sets.  

   

Results 

Both climatic and full models performed satisfactorily in human impacted and pristine sites 

(species distribution model (SDM) averages AUC > 0.70 and TSS > 0.40) and all sets of 

SDMs (i.e. climate and full models in both site groups) had similar patterns in predictive 

performances (Appendix S1: Fig. S3). The inclusion of local environmental variables into the 
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models did not improve the model performance compared to the climate models in pristine 

sites (climate model AUC 0.710 and TSS 0.447; full model AUC 0.707 and TSS 0.435), 

whereas in human impacted sites it slightly did (climate model AUC 0.708 and TSS 0.442; 

full model AUC 0.725 and TSS 0.464). However, no significant difference in model 

performance was found between human impacted and pristine sites (paired t-test, all P > 

0.05). 

 

In the full models, climatic variables had on average greater variable importance (the sum of 

median (md) importance: climatic 55% and local environmental variables 41%) compared 

with local environmental variables in pristine sites. In human impacted sites local 

environmental variables were more important (climatic 38% and local environmental 

variables 50%, respectively) (Fig. 2). Water balance (WAB) was the most important variable 

in both site groups (md importance: human impacted 11% and pristine sites 12%), whereas 

growing degree days (GDD) was as important in pristine sites (md = 12%) (Figs. 2 and 3). In 

human impacted sites, conductivity had the second greatest relative importance (md = 9%) on 

species distributions (Fig. 2). Precipitation (PRECS) had the second greatest importance (md 

= 8%) in pristine sites and the third greatest (md = 8%) in human impacted sites. Total 

phosphorus (TP) had the third greatest importance (md = 6%) on species distributions in 

pristine sites.  

 

The relative importance of climatic and local environmental variables on individual species 

varied among species, but also between human impacted and pristine sites (Fig. 4, Appendix 

S1: Fig. S4). Overall variation between the two site groups was significant only for the 

relative importance of GDD (paired t-test; P < 0.001) being higher in pristine sites, whereas 

for other variables it was nonsignificant (paired t-test; P > 0.05). The between-site group 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

variation among the relative importance of variables on individual species was species-

specific: some species responded similarly to climatic and/or local environmental variables in 

both site groups, yet the responses of some other species varied greatly (e.g. Cocconeis 

placentula, Navicula rhynchocephala) (Fig. 5). 

 

The performances of the species distribution models conducted using the subsampled data 

sets were similar to the SDMs conducted for the full data sets (Appendix S2: Fig. S2). The 

models for the subsampled data sets showed that, on average, the local environmental 

variables were more important than climatic variables in impacted sites, whereas in pristine 

sites, the importance of  climatic and local environmental variables did not differ significantly 

(P=0.141, Appendix S2: Fig. S3). Compared with the results of the full data sets, GDD and 

conductivity were less important for the species distributions in the subsampled pristine data 

set (Appendix S2, Fig. S4) as were WAB and pH in the human impacted data set, whereas, 

the importance of TP increased in both pristine and impacted sites. Overall variation between 

the two subsampled site groups was significant only for the relative importance of GDD, 

WAB and shading (paired t-test; P < 0.05) (Appendix S2, Fig. S5). 

In RDA based variance partitioning, the climatic variables explained 5 % and local 

environmental variables 6 % of variation in both human impacted and pristine data sets 

(Appendix S1: Fig. S5). The joint effects explained 7 % of the variation in impacted sites and 

4 % in pristine sites. The majority of the total variation was left undetermined in both data 

sets.  

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Discussion 

Our study reveals a notable context dependency among the factors influencing the 

distributions of diatom species. The most important factors affecting diatom species 

distribution vary not only among species, but are also dependent on the degree of 

anthropogenic influence. Consistent with our hypothesis, the overall importance of climatic 

variables on species occurrence was greater in pristine streams than was the importance of 

local environmental variables. In contrast, the importance of local environmental variables 

was greatest in human impacted sites. We emphasize though, that water balance has a 

significant impact on stream diatom distributions in all stream environments, and its effect 

was stronger than the influence of any single local environmental variable not only in pristine 

locations, but also in human impacted sites. This corresponds to previous studies indicating 

that diatom species can be shaped by large-scale climatic (Weckström et al. 1997a, Pajunen et 

al. 2016) and historical factors (Vyverman et al. 2007).   

 

Although climate is the ultimate factor influencing stream diatom distributions both directly 

(temperature) and indirectly (productivity and hydrology) (Pajunen et al. 2016, 2017), the 

importance of local physicochemical factors seem to be highlighted in the streams influenced 

by anthropogenic activities. This can be partly explained by the long ranges of water 

chemistry variables (here conductivity and TP; see Table 1) related to anthropogenic land use 

and by the strong species responses towards these variables (i.e. species filtering along 

environmental gradients). The tolerances of individual diatom species towards local 

environmental factors have been widely studied and many species have restricted tolerances 

and preferences towards certain environmental variables (for example, nutrients [Winter and 

Duthie 2000], conductivity [Potapova and Charles 2003] and pH [Andrén and Jarlman 

2008]). For example, diatom communities in streams under human impact, such as 
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agriculture and point-source pollution, consist of species with a preference to high nutrient 

levels and tolerance towards pollutants (Lavoie et al. 2006, Moravcova et al. 2013). 

 

Recently, growing evidence of context dependency in species responses toward 

environmental and spatial factors have been documented among stream organisms (for 

example, diatoms [Heino et al. 2012], bryophytes [Heino et al. 2012] and macroinvertebrates 

[Heino et al. 2012, Hawkins et al. 2015, Tonkin et al. 2016]). Stream diatoms are 

simultaneously affected by abiotic and biotic forcing which relative importance differ among 

sites and regions (Clements et al. 2015). For instance, the occurrence of Frustulia 

rhomboides, a species often classified as acidophilous i.e. occurring at pH <7 (Van Dam et al. 

1994, Weckström et al. 1997b), was affected mainly by pH in pristine sites (relative 

importance = 32%). But in human impacted sites, it was mostly affected by conductivity 

(relative importance = 60%), while the relative importance of pH was negligible (1%, Fig. 5). 

Among-region variation in species-specific and community-level responses of diatoms to 

water chemistry has also been observed elsewhere (Charles et al. 2006, Jüttner et al. 2010, 

Chen et al. 2016). For example, Chen et al. (2016) found that diatom species indicating high 

nutrient conditions in U.S. streams occurred in low nutrient streams in China suggesting that 

diatom niches were not conserved. However, studies from different regions should be 

compared with caution as morphological taxonomic identification may contain locally 

adapted morphotypes of species (Rose and Cox 2014). Also, the spatial scale of the study 

may affect the relative importance of the most influential factors. The effect of climatic and 

dispersal-related factors operating at large spatial scales may become more important when 

the spatial scale is large (e.g., Soininen 2007, Vyverman et al. 2007, Benito et al. 2018). 

Thus, it can be envisaged that spatial signal in the communities and climatic effects on 
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species distributions need to be considered in diatom studies especially when operating at 

relatively large spatial scales. 

 

The species’ responses along anthropogenic gradients may also vary due to biotic interactions 

(such as competition), which intensity may vary along the shifts in community structure 

(Tilman 1977, Stelzer and Lamberti 2001). The species interactions and species occurrence 

on a site may be a result of metacommunity dynamics, such as species sorting and mass 

effects, and the processes structuring local communities may differ regionally (reviewed in 

Leibold et al. 2004).  Context dependency may also be a sign of genotypic plasticity, i.e. 

species can be adapted to local conditions through rapid genetic evolution, enabled by the fast 

life-cycle of microbes (Birch 1960). Or, it may reflect phenotypic plasticity, i.e. the 

tolerances towards environmental factors vary among different morphotypes of individual 

species, which results in variable responses (Rose and Cox 2014). Context dependency may 

also depend on the spatial extent of the study area. In this study we performed additional 

SDMs using subsampled data sets. The results of these two parallel modelling efforts using 

slightly different study areas (i.e. full data sets vs. subsampled data sets) showed, for 

example, a lower importance of GDD in the subsampled pristine data set. This result is most 

likely due to the exclusion of northern sites and thus removing species that are strongly 

impacted by GDD. The number of possible processes causing context dependency highlights 

the need to study this topic further in the near future.   

 

The moisture related factors, i.e. WAB and precipitation, were important both in human 

impacted and pristine sites. Precipitation and run-off are essential factors influencing aquatic 

biota, including stream diatoms, via weathering, transport of substances and flow regime 

(Stevenson et al. 1996, Leland and Porter 2000, Allan and Castillo 2007). In human impacted 
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streams, these climatic variables can enhance the effect of anthropogenic land use through 

run-off, which can consist of high amounts of allochthonous nutrients, organic matter, solids 

and pollutants (Pan et al. 2004, Death et al. 2015, Ponsati et al. 2016). The importance of 

climate is further emphasized by the fact that the impact of land use on water chemistry and 

further on diatom communities may weaken during summer base-flow conditions compared 

to wetter seasons (Pan et al. 2004). The hierarchical structure of environmental factors (for 

instance, climate influencing land cover which affects water physicochemistry) (Frissell et al. 

1986, Stevenson 1997) may become more evident in the absence of human impact. For 

example, the relative importance of GDD was significantly greater in pristine than in human 

impacted sites suggesting that both the direct (temperature) and indirect (for example 

catchment and in-stream productivity) effects of GDD are more essential drivers in more 

pristine systems (Fig. 3). However, the relative importance of climatic variables in the human 

impacted data set may be influenced by the fact that the anthropogenic land use is mostly 

situated in the southern and western regions of Finland where the growing season is the 

longest. Thus, the human impacted data set contains less sites with cold and dry climatic 

conditions, more typical in the northern regions, compared to the pristine data set. 

 

In conclusion, we found that the main drivers of epilithic stream diatom species distributions 

and also the species-specific responses to these drivers differed among human impacted and 

pristine environments. The effect of climate was important both in pristine and in human 

impacted streams in spite of wide gradients in local environmental variables and 

anthropogenic land use in the latter. However, the climatic influence was strongest in pristine 

streams, suggesting that climatic variables need to be considered in diatom models especially 

in regions where water chemistry gradients are only modest and stream physicochemistry is 

mainly dictated by natural landscape and the processes therein. The way that climatic and 
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environmental change will alter stream conditions in the future may be context dependent and 

differ among environments. Thus, it will be challenging to predict the distribution of micro-

organisms under future climate scenarios.    
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TABLE 1. The summary (minimum, maximum, range, median and standard deviation (Sd)) of the measured variables from 164 impacted (> 5 

% anthropogenic land use) and 164 pristine (< 5 % anthropogenic land use) stream sites in Finland.  

          Impacted sites          Pristine sites 

 

Variable 

 

Unit 

 

Min 

 

Max 

 

Range 

 

Median 

 

Sd 

 

Min 

 

Max 

 

Range 

 

Median 

 

Sd 

Growing degree days  

(GDD)
 

 

 

 

631.0 

 

1465.9 

 

834.8 

 

1193.1 

 

130.5 

 

531.7 

 

1450.6 

 

919.0 

 

953.8 

 

220.5 

Precipitation (PRECS) mm 273.2 343.1 69.9 310.4 12.2 253.8 346.9 93.1 313.7 25.5 

Water balance (WAB)
 

mm 269.9 573.4 303.5 364.0 63.5 272.8 624.1 351.3 332.0 95.7 

Total phosphorus (TP) µg L
-1

 2.0 356.9 354.9 48.5 49.4 0.1 182.5 182.4 18.3 24.9 

Conductivity 
 

µS cm
-1

 12.9 619.0 606.1 91.6 88.9 9.4 161.1 151.7 30 24.3 

pH 
 

 5.7 8.2 2.5 7.1 0.5 4.5 8.1 3.6 6.7 0.6 

Water color 
 

mg Pt L
-1

 5.0 375.0 370.0 90.0 74.9 2.5 625 622.5 100 87.0 

Shading % 0.0 100.0 100.0 39.8 26.4 0.0 100 100 35.5 26.0 

Current velocity m s
-1

 0.0 1.7 1.7 0.3 0.3 0.0 1.7 1.7 0.3 0.3 

Anthropogenic land 

use 

% 5.0 65.7 60.8 18.5 15.0 0.0 4.9 4.9 1.3 1.5 
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Figure legends 

 

FIG.1. Location of the sampling sites (n = 328) in Finland, Northern Europe, divided into 

two subgroups: human impacted sites (n = 164, > 5 % anthropogenic land use) and pristine 

sites (n = 164, < 5 % anthropogenic land use). The index map represents the location of 

Finland in the Northern Hemisphere. 

 

FIG. 2. Relative influence (%) of climatic and local environmental variables and the sums of 

both variable groups for diatom species (n = 110) distributions separately in human impacted 

sites (n = 164, > 5 % anthropogenic land use) and pristine sites (n = 164, < 5 % 

anthropogenic land use). Models were conducted using boosted regression trees and the full 

set of predictors. The abbreviations stand for growing degree days (GDD), precipitation 

(PRECS), water balance (WAB) and total phosphorus (TP). Error bars represent standard 

errors. 

 

FIG. 3. The most important variables for diatom species distributions in impacted and 

pristine sites. The y-axis represents the number of distribution models in which the variable 

was the most influential factor. The abbreviations stand for growing degree days (GDD), 

precipitation (PRECS), water balance (WAB) and total phosphorus (TP). 

 

FIG.4. Relationships between the relative importance of six predictors for diatom species 

distribution in human impacted and pristine sites. The models were conducted using boosted 

regression trees as modelling method and the full set of predictors. The full models consist of 

three climatic predictors (growing degree days (GDD), precipitation (PRECS) and water 

balance (WAB)) and six local environmental predictors (conductivity, total phosphorus (TP), 
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pH, water color, shading by the canopy and current velocity). The differences between the 

site groups are compared in each plot using paired t-test. Dashed lines demonstrate the 

diagonal line (0, 1). 

 

FIG. 5. Relationships between two predictor variables at the sites of occurrence of five 

diatom species in Finnish streams. Occurrences at impacted (> 5 % anthropogenic land use) 

sites are indicated by black dots and occurrences at pristine (< 5 % anthropogenic land use) 

sites by grey circles. The legends show the relative importance of each predictor on diatom 

species distributions separately at impacted and pristine sites. The abbreviations stand for 

growing degree days (GDD) and total phosphorus (TP).  
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