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Abstract  

Trees and other vegetation absorb and capture air pollutants, leading to the common perception 

that they, and trees in particular, can improve air quality in cities and provide an important 

ecosystem service for urban inhabitants. Yet, there has been a lack of empirical evidence 

showing this at the local scale with different plant configurations and climatic regions. We 

studied the impact of urban park and forest vegetation on the levels of nitrogen dioxide (NO2) 

and ground-level ozone (O3) while controlling for temperature during early summer (May) using 

passive samplers in Baltimore, USA. Concentrations of O3 were significantly lower in tree-

covered habitats than in adjacent open habitats, but concentrations of NO2 did not differ 

significantly between tree-covered and open habitats. Higher temperatures resulted in higher 

pollutant concentrations and NO2 and O3 concentration were negatively correlated with each 

other. Our results suggest that the role of trees in reducing NO2 concentrations in urban parks 

and forests in the Mid-Atlantic USA is minor, but that the presence of tree-cover can result in 

lower O3 levels compared to similar open areas. Our results further suggest that actions aiming at 

local air pollution mitigation should consider local variability in vegetation, climate, micro-

climate, and traffic conditions. 

 

Keywords: urban trees, air pollution, ecosystem services, urban vegetation, nitrogen dioxide, 

ozone 
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1. Introduction 

 

Air pollution is amongst the most recognized environmental problems around the world. 

Although concentrations of some air pollutants, such as nitrogen dioxide (NO2) and ground-level 

ozone (O3), have generally decreased within the past decades, their levels continue to exceed 

limits known to affect human health in many urban areas (Duncan et al., 2016; EEA, 2016; 

Pfister et al., 2014). The principal sources of NO2 are energy production, industry and road 

traffic (EEA, 2016), but in cities nitrogen oxides (NOx = NO + NO2) are mostly emitted from 

traffic-related combustion as NO, which is quickly oxidized by O3 to NO2 - or directly as NO2 

(Anttila et al., 2011). The latter has been a growing trend worldwide, including USA, due to 

increasing proportion of modern diesel engines (Anenberg et al., 2017). Elevated NO2 

concentrations can cause an increase in respiratory symptoms and infections in asthmatic 

individuals and children (Kampa & Castanas, 2008) and result in increased prevalence of atopic 

sensitizations, allergic symptoms, and diseases (Krämer et al., 2000). Ground-level O3 is formed 

in reactions where volatile organic compounds (VOCs) interact with NOx in the presence of 

sunlight (Calfapietra et al., 2013; Loreto & Schnitzler, 2010). Ozone concentrations are thus 

dependent on both emissions of NOx and VOCs. VOCs include anthropogenic sources such as 

traffic and manufacturing as well as natural compounds (biogenic VOCs) such as isoprene which 

are emitted by trees. In regions of high VOCs, ozone concentrations are highly sensitive to NOx 

levels and vice versa. Urban and suburban populations are exposed to higher than ambient 

concentrations of ground-level O3 especially during hot summer periods (Churkina et al., 2017) 

and in case of acute exposure inhabitants may suffer from reduced lung function and lung 

diseases (Uysal & Schapira, 2003). 
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A logical way to improve air quality is the reduction of emissions of air pollutants (Duncan et al., 

2016; EEA, 2016), but it has been suggested that urban vegetation, especially trees, which can 

absorb and capture air pollutants with their large leaf area, could be also used to clean polluted 

urban air (Beckett et al., 2000; Nowak et al., 2006). For example, gases such as NO2 (Chaparro-

Suarez et al., 2011; Hu et al., 2016; Rondón & Granat, 1994; Takahashi et al., 2005) and O3 (Hu 

et al., 2016; Manes et al., 2012; Wang et al., 2012) are absorbed from air through the stomata 

into the leaf interior of a plant. Such uptake of air pollutants by urban plants is often considered 

to result in effective ambient air quality improvement in city-scale and consequently to provide 

an important ecosystem service (e.g. Jim & Chen, 2008; Manes et al., 2012; Nowak et al., 2008). 

This has been emphasized especially in the interpretation of model studies (e.g. Baumgardner et 

al., 2012; Hirabayashi et al., 2012; Morani et al., 2011; Nowak et al., 2013; Selmi et al., 2016). 

 

Recently, the overall significance of this ecosystem service has been challenged by contradictory 

results from local-scale studies and related critical comments (Churkina et al., 2017; Gromke & 

Ruck, 2009; Harris & Manning, 2010; Pataki et al., 2011; Pataki et al., 2013; Vos et al., 2013). 

Although studies comparing locally measured pollutant concentrations e.g. in urban forests and 

in adjacent open areas have been scarce, an increasing number of such studies have been 

published (Brantley et al., 2014; Fantozzi et al., 2015; Harris & Manning, 2010; Setälä et al., 

2013; Tong et al., 2015; Viippola et al., 2016; Yin et al., 2011; Yli-Pelkonen et al., 2017). For 

instance, Setälä et al. (2013) and Yli-Pelkonen et al. (2017) did not find differences in gaseous 

pollutant concentrations between tree-covered and open near-road environments in hemi-boreal 
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climatic conditions, while Viippola et al. (2016) observed elevated gaseous PAH concentrations 

in road-side forests and parks compared to adjacent treeless areas during summer in Finland. 

 

Some recent studies have used a city-wide measurement network of passive or active air 

collectors and combined this data with environmental variables such as land use, vegetation 

coverage and traffic. For instance, Rao et al. (2014) used a land-use regression model combined 

with NO2 measurements at 144 sites in Portland, USA, and estimated a significant modelled NO2 

reduction due to tree canopy across the city. Irga et al. (2015) used portable active instruments 

for monthly air samples at eleven sites in Sydney, Australia, but found no observable trends in 

NO2 concentrations between the sites with a range of different traffic and greenspace densities. 

Caballero et al. (2012) used passive samplers to study spatial and temporal variations of NO2 

levels at 79 sites in the city of Elche in Spain and observed that the spatial distribution of NO2 

depended mainly on the urban structure and traffic configuration, but the role of tree-cover on 

pollution levels could not be assessed with the study setup. García-Gómez et al. (2016) applied 

passive samplers and active monitors in studying O3 and NO2 levels in three peri-urban forests 

and one rural forest dominated by Quercus ilex and nearby open areas in Spain and found lower 

O3 and NO2 concentrations under tree canopies in the rural site and in one peri-urban site for O3 

and in two peri-urban sites for NO2. Furthermore, Yin et al. (2011) studied six urban parks in 

Shanghai, China, and observed lower NO2 concentrations inside parks with tree-cover as 

compared to a single reference site without tree-cover. Thus, the literature shows that different 

climatic conditions, plant configurations, degree of urbanization and the scale of a study area 

yield variable measurement results regarding the potential of urban vegetation to reduce the 

levels of gaseous air pollutants. This makes the interpretation of the modelling results even more 
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challenging and indicates the need for more empirical field-study data on the topic, that can also 

be used in model improvement. 

 

Local temperature differences within a city and between tree-covered and open areas may also 

have an impact on air pollutant levels, as open areas receive more radiation that could influence 

photolysis reactions or heat the air locally, thereby affecting chemical reaction rates (Jacob, 

1999). Temperature differences within a city can be related to land-use changes caused by 

urbanization. On an urban-rural scale, this difference is known as the Urban Heat Island (UHI) 

effect, but variability exists within the urban area as well. As with air quality, this variability can 

be linked to heterogeneity in urban form and has been linked with the presence or lack of 

vegetation and impervious surfaces (Scott et al., 2017). Thus, controlling for local variations in 

temperature is an important consideration. 

 

The objective of our study was to explore the influence of urban tree-cover on the concentrations 

of gaseous air pollutants NO2 and O3 under early summertime conditions in Baltimore, MD, 

USA and thus provide much needed empirical evidence on the ability of urban vegetation to 

improve air quality. Based on previous findings from the above-mentioned studies, where the 

sampling sites were not in the close proximity to busy roads, we hypothesized that (1) air quality 

regarding the studied gaseous air pollutants in tree-covered urban areas is improved compared to 

adjacent open areas, and 2) the air quality improvement relates to temperature, amount of canopy 

cover and traffic volume. 

 

2. Methods 
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2.1. Sampling 

 

We measured the concentrations of NO2 and ground-level O3 using dry deposition passive 

collectors developed by the Swedish Environmental Research Institute IVL and temperature 

using 50 Maxim Integrated Products, Inc., “iButton” Model DS1923 Hygrochron 

thermometer/hygrometers. We installed the air collectors and thermometers either under tree 

canopies in tree-covered areas or in adjacent open areas in Baltimore, MD (39°17′57″N, 

76°36′34″W), eastern USA (Fig. 1). NO2 collectors and their analysis were provided by 

Metropolilab, Helsinki, Finland, and O3 collectors and their analysis by IVL. The sampling of 

NO2 and O3 is based on molecular diffusion. The gas is adsorbed to a filter paper inside the 

collector and the amount of gas is analyzed by extracting it from the filter to distilled water, after 

which the amount of gas is determined with a spectrophotometer (Ayers et al., 1998). The NO2 

sampling method has been used successfully in numerous studies with results corroborated by 

active air monitoring instruments (Ayers et al., 1998; Ferm & Rodhe, 1997; Klingberg et al., 

2017; Krupa & Legge, 2000; Caballero et al., 2012; HSY, 2014). The O3 collectors have proved 

to be reliable and accurate according to our own tests alongside municipal active O3 measuring 

instruments. iButton thermometers have an accuracy of 0.5 degrees C. The iButtons are shielded 

by a custom radiation shield that is naturally aspirated and made of White98 F-23, a commercial 

material manufactured by White Optics that is highly reflective for visible light and most often 

used in industrial lighting applications. 

 

2.2. Sampling sites and dates 
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We established twenty-five sampling sites in urban parks and forests in Baltimore (Fig. 1). Four 

of the sites were situated in park-like block courtyards. At each site we installed air collectors 

and thermometers at the sampling points in two habitats: in a tree-covered area and in an 

adjacent open area. The tree-covered areas were as largely tree-covered around the sampling 

point as possible, but often included some non-canopy-covered area within a 50 m radius from 

the sampling point. Similarly, the open areas were as widely open around the sampling point as 

possible, but often included some amount of trees within a 50 m radius from the sampling point, 

usually situated close to the perimeter of this circle. Within each site, we situated the sampling 

points (open and tree-covered) at the approximately same distance from the nearest major road, 

but not in close proximity to heavily trafficked roads, as the idea was to study ambient urban air 

pollutant levels in green areas and not pollution coming from a single source. Some sites were 

situated within the urban street grid with low traffic streets. At different sites, depending on the 

availability of suitable mounting structures and the location of habitats, the distance between the 

sampling point pairs (open and tree-covered) and the nearest major road varied; ranging between 

25 and 543 m (mean 136 m). The distance between the two sampling points (open or tree-

covered) within each site ranged between 23 and 187 m (mean = 79.4 m). The tree-covered 

habitats consisted of mainly broadleaved, mature trees. The open habitats were mainly lawns or 

grasslands. The soil surface at these open habitats was either completely pervious or partly 

impervious with some asphalt surfaces. 
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Figure 1. Locations of the twenty-five study sites (marked as dots) in Baltimore, MD, USA. The 

dot in a small map on the right depicts the location of greater Baltimore in USA. At each of the 

25 sites, air quality and temperature was measured in both tree-covered and open habitats. 

 

We mounted the air samplers under rain shields and the thermometers inside radiation shields 

and attached them to lamp posts or similar structures in the open areas and to tree trunks (directly 

under the canopy) in the tree-covered areas. We mounted the air samplers and thermometers 3-4 
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m above ground to prevent samplers being too close to ground surface where O3 gets depleted 

(Mills et al., 2010), yet representing the height in which humans are exposed to these pollutants. 

Measurements were carried out during early summer, from 5 May to 25 May, 2016 (20 days), 

when plant leaves were practically fully developed. 

 

We determined the percentage of canopy cover at each site from satellite images (using Google 

Earth Pro, version 7.1.2.2041) by measuring the area covered by tree canopy within 50 m radii 

from the sampling point in both habitats. The percentage of canopy cover ranged between 25 and 

100 % (mean = 63.9 %) in tree-covered habitats and between 0 and 73 % (mean = 23.8 %) in 

open habitats. Mean daily temperatures ranged between 14.5 and 16.3 °C (mean = 15.5 °C) in 

tree-covered habitats and between 15.4 and 17.5 °C (mean = 16.3 °C) in open habitats, being 

significantly lower in the tree-covered habitats than in the open habitats (5.2%, p<0.001, n = 23 

due to two lost thermometers). We determined traffic volume at each site by calculating the 

cumulative traffic volume from the largest streets within 200 m radii from the sampling point in 

the tree-covered area using traffic flow data (annual average daily traffic), obtained from 

Baltimore Metropolitan Council (2016) and Maryland Department of Transportation (2016). 

Traffic volume (motor vehicles day
-1

) ranged between 0 and 179,066 (mean = 36,138). We did 

not estimate traffic volume separately for open habitat sampling points as the open and tree-

covered habitat circles with 200 m radii would overlap to such extent that traffic volume would 

practically be the same. 

 

The sampling sites situated in remnant forest patches, parks and park-like block courtyards in 

residential areas were dominated by broad-leaf deciduous trees, including tree species (Fraxinus 
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spp., Ulmus americana, Fagus grandifolia, Prunus serotina, Robinia pseudoacacia and 

Ailanthus altissima) typical to Baltimore City. The sampling sites situated in the outskirts of the 

city additionally included dominant forest tree species (broad-leaf deciduous) (Quercus montana, 

Liriodendron tulipifera, Acer negundo, Fraxinus pennsylvania, Platanus occidentalis and Acer 

saccharinum) typical to forests outside of the city of Baltimore. A wind rose showing the 

prevailing wind direction and speed during the measuring period is shown in Fig. 2. The monthly 

average temperature in Baltimore in May 2016 was 16.0 °C, representing slightly lower 

temperatures than usually in May in Baltimore. 

 

Figure 2. Wind direction and speed during 5 May – 25 May, 2016 in Baltimore (Johns 

Hopkins Homewood Campus measuring station). 

 

2.3. Data analysis 
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We tested changes in NO2 and O3 concentrations using linear models, with NO2 and O3 modelled 

following a normal distribution. Two types of analyses were performed. First, we evaluated the 

concentrations of NO2 and O3 across the whole dataset using the following model structure; 

 

NO2 ~ habitat type + O3 + mean daily temperature, and 

O3 ~ habitat type + NO2 + mean daily temperature. 

 

Here habitat type represents a factor with two levels; tree-covered and open areas. Second, we 

evaluated the concentrations of NO2 and O3 per habitat type. This resulted in four analyses; 

 

NO2 tree ~ traffic volume + canopy covertree + O3 tree + mean daily temperaturetree 

NO2 open ~ traffic volume + canopy coveropen + O3 open + mean daily temperatureopen 

O3 tree ~ traffic volume + canopy covertree + NO2 tree + mean daily temperaturetree 

O3 open ~ traffic volume + canopy coveropen + NO2 open + mean daily temperatureopen 

 

The subscripts above relate to the measurements in that particular habitat type. Traffic volume 

was square-root transformed into a normal distributed variable, due to a few very high values. 

Model selection was performed in all six models by removing predictors, one at a time, if their p-

values were greater than 0.1. All data analyses were performed using R statistical software, 

version 3.4 (R Core Team, 2017). 

 

3. Results  
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While the mean NO2 concentration appears lower in tree-covered areas than in open areas (Fig. 

3), the difference is not statistically significant (Table 1). However, O3 concentrations were 

significantly lower in tree-covered areas compared to open areas (Table 1, Fig. 3). Across the 

whole dataset, both NO2 and O3 levels were significantly positively related with mean daily 

temperature, and NO2 and O3 levels were significantly negatively correlated with each other 

(Table 1). Traffic volume was retained in all four models dealing with NO2 and O3 per habitat 

type. NO2 in both the tree-covered and open areas increased significantly with traffic volume, 

while O3 in both the tree-covered and open areas decreased significantly with traffic volume 

(Fig. 4, Table 1). Additionally, NO2 concentrations in the tree-covered areas increased 

significantly with temperature and NO2 concentrations in the open areas decreased significantly 

with the percentage of canopy cover (Fig. 4, Table 1). 

 

Table 1. Linear model results (see Figs. 3 and 4), testing the effects of various variables on NO2 

and O3 levels across the whole dataset and per habitat type. The subscripts (tree or open) relate to 

the measurements in that particular habitat type. Coefficients with standard errors (in brackets) 

and p-values (below standard errors) are presented. The intercept included open habitat type in 

the first two models (whole dataset models). 

 

Variable  Intercept Habitat 

type 

NO2 / O3 

 

Mean daily 

temperature 

Canopy 

cover 

Traffic 

volume 

NO2 Coefficient 

SE 

p 

-33.787 

(11.874) 

0.007 

 -0.315 

(0.123) 

0.014 

4.490 

(0.825) 

<0.001 

  

        

O3 Coefficient 

SE 

p 

24.363 

(18.140) 

0.186 

-3.997 

(1.437) 

0.008 

-0.337 

(0.156) 

0.036 

2.382 

(1.212) 

0.056 
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NO2 tree Coefficient 

SE 

p 

-67.769 

(16.614) 

<0.001 

  5.501 

(1.080) 

<0.001 

 0.016 

(0.004) 

0.001 

        

NO2 open Coefficient 

SE 

p 

25.558 

(1.613) 

<0.001 

   -0.002 

(<0.001) 

<0.001 

0.030 

(0.004) 

<0.001 

        

O3 tree Coefficient 

SE 

p 

53.364 

(1.194) 

<0.001 

    -0.019 

(0.006) 

0.006 

        

O3 open  Coefficient 

SE 

p 

57.579 

(1.134) 

<0.001 

    -0.012 

(0.006) 

0.051 

  

 

 

Figure 3. Concentrations of (a) NO2, and (b) O3 in open and tree-covered areas (n = 25). The 

dashed grey line indicates the mean (labelled), the box indicates the first through third quartiles, 

and whiskers delineate the wide interquartile range, 1.5 times the first through third quartiles. 

Data points falling outside this range are shown as dots. 
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Figure 4. Relations between (a) NO2 concentrations in tree-covered areas and traffic volume 

(square-root transformed number of motor vehicles day
-1

, annual average of daily traffic, 

presented within 200 m radius from the sampling point in the tree-covered area); (b) NO2 

concentrations in open areas and traffic volume; (c) NO2 concentrations in tree-covered areas 
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and mean daily temperatures (C°) in tree-covered areas; (d) NO2 concentrations in open areas 

and canopy cover in open areas (m
2
, within the 50 m radius from the sampling point); (e) O3 

concentrations in tree covered-areas and traffic volume, and (f) O3 concentrations in open areas 

and traffic volume. See Table 1 for statistical results. 

 

4. Discussion 

 

Our study, performed in early summertime (May) in urban forest/park environments in the Mid-

Atlantic USA, suggests that the concentrations of NO2 are not significantly reduced in tree-

covered habitats compared to adjacent open habitats, but that O3 concentrations are. That NO2 

concentrations did not differ between tree-covered and open habitats is in contrast to our 

hypothesis and those earlier empirical studies (García-Gómez et al., 2016; Grundström & Pleijel, 

2014; Fantozzi et al., 2015; Klingberg et al., 2017; Rao et al., 2014; Yin et al., 2011), where 

some NO2 reduction by tree-canopy was detected. However, our finding that NO2 concentrations 

in the open habitats decreased with the increasing percentage of canopy cover (within a 50 m 

radius from the sampling point in the open habitat) may indicate some absorption of NO2 by the 

trees. On the contrary, our result that NO2 levels were not reduced in tree-covered habitats 

corroborates those empirical findings, where no clear reduction of NO2 levels by urban tree 

cover was observed either on city-level (Irga et al., 2015) or on local level in near-road 

environments (Setälä et al., 2013; Yli-Pelkonen et al., 2017), or where even higher 

concentrations of NO2 were reported inside the urban tree canopies than outside (Harris & 

Manning, 2010). Our findings showing air quality improvement by urban tree-cover in terms of 

O3 support our hypothesis and similar earlier empirical findings (García-Gómez et al., 2016; 
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Harris & Manning, 2010) and a number of city-scale modeling studies (e.g. Baumgardner et al., 

2012; Selmi et al., 2016), but are partly in contrast to local-level findings of e.g Grundström & 

Pleijel (2014), Fantozzi et al. (2015) and Yli-Pelkonen et al. (2017). Although data on O3 uptake 

rates by all the tree species in our study area is not available, broad-leaf deciduous trees are 

generally estimated to be relatively efficient in O3 removal (Manes et al., 2012). 

 

For instance, Harris & Manning (2010) used passive samplers and temperature loggers in 

Springfield, Massachusetts, USA, and found higher NO2 and lower O3 levels inside urban tree 

canopies than directly outside (30-45 cm) the canopies, at locations with varying distance from a 

major highway. They suggested that this is due to NOx/O3 chemistry related to gas interactions 

between soil and the air, as described by Fowler (2002). However, they did not find differences 

in temperature between inner and outer canopy locations and suggested that temperature had 

little or no effect on the pollutant levels. In contrast, our open sites were much farther from tree 

canopies and shade, and grow hotter during the day. Fantozzi et al. (2015) studied one site in 

Siena, central Italy, and found lower NO2 concentrations in a measurement transect under the 

canopies of Quercus ilex L., extending 1-10 m from a busy road, compared to a nearby open-

field transect. They observed reduced O3 concentrations inside the canopy transect only during 

post-summer rainfalls. Yli-Pelkonen et al. (2017) measured NO2 and O3 concentrations on 

average 25 m from busy roads at 10 sites in Helsinki, Finland, where NO2 concentrations were 

on average similar to and O3 concentrations clearly lower than in our study in Baltimore, but did 

not find differences between tree-covered and adjacent open road-side habitats. The variable 

results from different parts of the world indicate that the impact of vegetation on the 

concentration of gaseous air pollutants such as NO2 and O3 may largely depend on the type and 
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structure of local vegetation, climatic conditions, proximity to traffic pollution sources and 

regional and local ambient pollutant levels. 

 

It is well established that formation of O3 needs photolysis and is positively related to 

temperature (Cardelino & Chameides, 1990; Churkina et al., 2017; Finlayson-Pitts & Pitts, 1997; 

Paoletti et al., 2014), which was also detected in our study. As it is also likely that increased 

shade and the observed lower mean daily temperatures within the tree-canopies also reduce solar 

radiation under the canopies (Shashua-Bar & Hoffman, 2004; Renaud et al., 2011; Lehmann et 

al., 2014), this may result in decreased concentrations of O3 in tree-covered habitats compared to 

open habitats (Cardelino & Chameides, 1990). Thus, the observed lower O3 concentrations in the 

tree-covered habitats may not result solely from the O3 uptake by tree canopy, but also from the 

reduced solar radiation and temperatures. That NO2 levels in our study decreased with 

temperature across the whole dataset and in the tree-covered habitats may also indicate a slight 

NO2 uptake by the tree canopies, which were cooler than open areas. However, as NO2 levels did 

not differ significantly between tree-covered and open habitats, the reason for the weak 

relationship between NO2 concentration and temperature remains unsolved. 

 

Traffic volume's positive relation to NO2 levels and negative relation to O3 levels, as well as the 

negative relation between NO2 and O3 levels, indicate that NO2 in the study area originates 

mainly from road traffic (see e.g. Clements et al., 2009; Setälä et al., 2013; Yli-Pelkonen et al., 

2017) as higher traffic volume produces more NOx. While at low concentrations, NOx is a 

precursor to ozone formation, at higher concentrations (all else being equal), NOx catalyzes 

ozone destruction, which results in O3 depletion (e.g. Rodes & Holland, 1981). In all, the 
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interplay between traffic density, NO2 and O3 depends on an array of factors in urbanized 

settings, even at sites situated far from heavily-trafficked roads. 

 

The prevailing wind direction (long-term average) in May in Baltimore is from the south, but 

during the measuring period north-eastern winds dominated (Fig. 2). However, as our sampling 

sites were relatively far away from heavily-trafficked roads or neutrally situated within the street 

network, we did not place the sampling sites according to the prevailing wind direction. 

Furthermore, our relatively long sampling period is bound to diminish the impacts of short-term 

wind direction changes and thus the wind direction is unlikely to cause systematic bias in our 

measurement campaign. 

 

As has been noted in earlier studies, it is possible that reduced air flow within tree-covered areas 

in near-road environments (Belcher et al., 2012; Gromke & Ruck, 2009; Renaud et al., 2011; 

Wuyts et al., 2008) can increase pollutant levels within the canopy and thus have negative 

impacts on local air quality (Setälä et al., 2013; Viippola et al., 2016; Vos et al., 2013), while in 

open areas the polluted air mass is mixed by wind and diluted more rapidly. However, as in the 

current study in Baltimore the sampling sites were not in close proximity to heavily-trafficked 

roads, such "trapping effect" of highly polluted air mass under the canopies is unlikely and the 

actual uptake of the studied gaseous pollutants by tree canopies should be observable.  

 

Our results suggest that one should not take for granted the notion that urban trees provide 

overall air quality benefits. For instance, NO2 concentrations are not necessarily decreased in the 

tree-covered areas via absorption of NO2 by trees. However, tree-cover seems to provide air 
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quality improvement regarding O3, at least in the early summer conditions in Baltimore. This 

may not be the case during the heat wave periods in mid-summer, when elevated emissions of 

biogenic volatile organic compounds could, in combination with NOx emissions from traffic, 

contribute to increased O3 formation in urban areas (Churkina et al., 2017; Manes et al., 2012). 

However, as tree species in the study area are not strong emitters of reactive biogenic volatile 

organic compounds, their ozone forming potential is minor (Benjamin & Winer, 1998). 

 

5. Conclusions 

 

Our results, obtained from the period when gas exchange between foliage and the atmosphere is 

active in Baltimore, Mid-Atlantic USA, suggest that trees in urban forests and parks can result in 

reduced O3 levels, but that the impact of trees on NO2 concentrations is negligible. That O3 

concentrations were reduced under tree canopies was in line with our hypothesis and likely 

results from absorption of O3 by tree canopies, or from lowered temperatures and reduced solar 

radiation under tree canopies - or combination of these. That NO2 concentrations did not differ 

between tree-covered and open habitats was in contrast to our hypothesis and suggests that urban 

park and forest vegetation do not necessarily provide significant and uniform air quality 

improvement regarding NO2, as it is often stated by city-scale model calculations. 

 

Thus, urban inhabitants spending time in tree-covered areas in urban parks and forests may 

receive lower exposure to O3 concentrations, at least when temperatures are moderate, but the 

same conclusion does not hold for NO2. We stress that trees and other vegetation provide many 

other  ecosystem services for urban dwellers to enjoy, such as reduced temperatures under tree 
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canopies. Our results further suggest that actions aiming at local air pollution mitigation should 

consider local variability in vegetation, climate, micro-climate, and traffic conditions. We 

conclude that the key measure to reduce human exposure to NO2 and ozone, should be reduction 

of emissions from traffic, and placing recreational areas far from pollutant sources. 
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