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Abstract

Background: Congenital diaphragmatic hernia (CDH) is a prenatal defect in 
the integrity of the developing diaphragm, which results in pulmonary 
hypoplasia (PH) with alveolar immaturity. PH leads to life-threatening 
respiratory insufficiency at birth, thus remaining a major cause of neonatal 
mortality and long-term morbidity in CDH. Lipid-containing interstitial 
fibroblasts (LIFs) are critically important for fetal lung growth by stimulating 
alveolarization and surfactant phospholipid production in alveolar epithelial 
cells type II (AECII), which in turn increases alveolar maturation. Thymocyte 
antigen 1 (Thy-1) is a strongly expressed cell surface protein in LIFs, which 
plays a key role in alveolar lipid homeostasis by upregulating adipocyte 
differentiation-related protein (Adrp). Adrp is necessary for the intracellular 
uptake of neutral lipids into LIFs and their transport to AECII. Furthermore, 
LIFs express leptin (Lep), which binds to its receptor (Lep-R) on AECII, thus 
stimulating de novo synthesis and secretion of surfactant proteins.  
Objectives: As Thy-1-/- knockouts show a phenotype similar to PH in human 
CDH with impaired alveolar development and reduced proliferation of LIFs, 
one objective of this study was to identify disruptions in Thy-1 signaling in 
hypoplastic rat lungs with toxicological induced CDH, which may have an 
adverse effect on the expression and lipid content of pulmonary LIFs. In 
addition, as it has been demonstrated that retinoids positively affect the 
proliferation of LIFs and expression of Lep and Lep-R in developing rat 
lungs, another objective was to investigate if prenatal administration of all-
trans retinoic acid (ATRA) may have the potential to attenuate PH in this 
rodent CDH model by improving fetal alveolarization and surfactant 
production.  
Material and methods: Time-mated rats received either nitrofen or vehicle 
via oral-gastric lavage on embryonic day 9.5 (E9.5). For the first objective of 
this work, fetuses were sacrificed on E21.5, and dissected lungs were 
divided into controls (n=28) and CDH-associated PH (n=28). For the second 
objective, control and nitrofen-exposed dams were randomly assigned to 
either intraperitoneal ATRA (5 mg/kg/d) or placebo administration on E18.5, 
E19.5 and E20.5. Fetal lungs were harvested on E21.5, and divided into 
Control+Placebo (n=32), Control+ATRA (n=32), Nitrofen+Placebo (n=32) 
and Nitrofen+ATRA (n=32). Pulmonary gene expression levels of Thy-1,
Adrp, Lep and Lep-R were determined by qRT-PCR. Adrp, Lep and Lep-R
immunohistochemistry was combined with oil red O staining to assess 
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pulmonary protein expression and lipid content. Immunofluorescence double 
staining was performed to evaluate pulmonary LIF expression and 
localization by confocal laser scanning microscopy. Alveolarization was 
investigated using stereo- and morphometric analysis techniques. Surfactant 
phospholipid synthesis was analyzed by labeling for surfactant protein B (SP-
B). 
Results: Relative mRNA expression of Thy-1 and Adrp was significantly 
downregulated in hypoplastic rat lungs with nitrofen-induced CDH. Confocal 
laser scanning microscopy confirmed markedly decreased Thy-1
immunoflurescence in pulmonary LIFs of nitrofen-exposed fetuses with CDH, 
which was associated with markedly reduced cytoplasmatic lipid inclusions. 
Adrp immunoreactivity was clearly diminished in specimens with CDH-
associated PH, which was accompanied by impaired alveolar mesenchymal 
cell differentiation and overall reduction of LIFs. Maternal application of 
ATRA resulted in a significantly increased lung-to-body weight ratio of 
nitrofen-exposed fetuses, which was associated with upregulation of 
pulmonary Adrp transcripts and corresponding protein expression. 
Immunofluorescence double staining demonstrated markedly increased LIFs 
in interstitial compartments of distal alveolar walls in Nitrofen+ATRA, which 
was accompanied by an overall increase of lipid droplets in LIFs. A 
significantly enhanced radial alveolar count and decreased mean linear 
intercept was detected in nitrofen-exposed fetuses after prenatally 
administered ATRA. Relative mRNA expression of Lep and Lep-R was 
significantly upregulated in hypoplastic rat lungs following maternal ATRA
treatment. Light microscopy showed notably increased Lep and Lep-R
immunoreactivity in interstitial and alveolar epithelial cells of nitrofen-exposed 
fetuses that received ATRA application shortly before birth. 
Immunoflurescence revealed markedly increased alveolar SP-B protein 
expression in hypoplastic rat lungs after prenatal administration of ATRA. 
Conclusions: Disruption of the Thy-1/Adrp signaling cascade in hypoplastic 
rat lungs leads to a reduction of pulmonary LIFs with fewer lipid inclusions 
and impaired alveolar mesenchymal cell differentiation, which may contribute 
to decreased alveolar development and PH in the nitrofen-induced CDH 
model. Prenatal treatment with ATRA may therefore have a therapeutic 
potential in attenuating CDH-associated PH by increasing the expression of 
LIFs and thus Lep-mediated surfactant phospholipid synthesis, which in turn 
stimulate fetal alveolarization, distal airway maturation and de novo
surfactant production. 
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1 Introduction

Congenital diaphragmatic hernia (CDH) is characterized by a spectrum of 

developmental defects in the forming diaphragm, which are caused by 

disordered embryogenesis [Kluth et al., 1996a]. These malformations lead to 

an incomplete fusion of the diaphragmatic leaflets and subsequently to a 

hole in the diaphragm [Clugston and Greer, 2007]. As a consequence of this 

abnormal opening, the developing abdominal organs can protrude into the 

thoracic cavity, occupying space normally reserved to accommodate the 

growing lungs [Greer, 2013]. Because the process of CDH herniation occurs 

at the same time as bronchial subdivision and alveolarization, normal lung 

development is severely affected, resulting in pulmonary hypoplasia (PH) 

and persistent pulmonary hypertension of the newborn (PPHN) [Keijzer and 

Puri, 2010; Rottier and Tibboel, 2005]. Depending on the extent of this 

unfortunate combination, CDH patients often suffer from life-threatening 

respiratory distress at birth [Losty, 2014; Tovar, 2012]. Despite significant 

improvements in postnatal resuscitation and modern lung-protective 

strategies, CDH remains one of the major therapeutic challenges in modern 

neonatal intensive care, causing high mortality and long-term morbidity for 

survivors [Rocha et al., 2012; Peetsold et al., 2009].

Most of our current knowledge about the pathogenesis of CDH and 

the related morphological changes in hypoplastic lungs has originated from 

various experimental animal models [Chiu 2014; van Loenhout et al., 2009; 

Mortell et al., 2006]. Abnormal differentiation and malfunctioning of alveolar 

epithelial cells type II (AECII) have been demonstrated in the nitrofen-

induced CDH model, which contribute to the development of PH [Brandsma 

et al., 1994]. However, the exact molecular and cellular mechanisms causing 

impaired alveolarization and distal airway formation in hypoplastic lungs with 

CDH remain unknown. 
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Lipid-containing interstitial fibroblasts (LIFs) are critically important for 

fetal lung growth by stimulating differentiation of AECII and surfactant 

phospholipid production, which in turn increases alveolar maturation [Torday 

et al., 2003; McGowan and Torday, 1997]. Thymocyte antigen 1 (Thy-1) is a 

strongly expressed cell surface protein in LIFs, which plays a key role in 

alveolar lipid homeostasis by upregulating adipocyte differentiation-related 

protein (Adrp) [Varisco et al., 2012; McGowan and Torday 1997]. Adrp is 

necessary for the intracellular uptake of neutral lipids into LIFs and their 

subsequent transport to AECII [Schulz et al., 2002; Brasaemle et al., 1997].

Furthermore, LIFs express leptin (Lep), which binds to its receptor (Lep-R) 

on AECII, thus stimulating de novo synthesis and secretion of pulmonary 

surfactant proteins [Torday et al., 2002]. 

As Thy-1-/- knockout mice show a phenotype similar to PH in human 

CDH with impaired alveolar development and reduced proliferation of LIFs 

[Nicola et al., 2009], one objective of this study was to investigate the 

hypothesis that Thy-1 signaling is disrupted in hypoplastic rat lungs with 

toxicological induced CDH, which potentially may have an adverse effect on 

the expression and lipid content of pulmonary LIFs. In addition, as it has 

been demonstrated that retinoids (derivates of vitamin A) positively affect the 

proliferation of LIFs and expression of Lep and Lep-R in developing rat lungs 

[McGowan et al., 1995], another objective of this study was to investigate the 

hypothesis that prenatal in vivo administration of all-trans retinoic acid 

(ATRA) may have the potential to attenuate PH in this rodent CDH model by 

enhancing fetal alveolarization, which in turn may increase pulmonary LIF 

expression and thus surfactant production. The first indication that 

diaphragmatic defects may be associated with disruptions in retinoid 

signaling came from newborn rats with CDH whose mothers were bred on a 

vitamin A-deficient diet [Andersen, 1941]. Interestingly, the rate of CDH was 

found to be decreased when vitamin A was reintroduced into the maternal 

diet during midgestation [Wilson et al., 1953; Andersen, 1949]. 

Subsequently, similarities between retinoic acid receptor (RAR) double 

mutant mice and nitrofen-exposed fetal rats have suggested that nitrofen 

may interfere with the retinoid pathway [Mendelsohn et al., 1994]. 
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Further evidence for this theory was derived from the observation that 

the administration of vitamin A or ATRA to pregnant rats that had previously 

received nitrofen treatment showed a reduced incidence and severity of CDH 

in their offspring [Babiuk et al., 2004; Thebaud et al., 1999]. A series of in 

vivo and in vitro experiments have indicated that nitrofen may inhibit the 

activity of retinal dehydrogenase 2, a key enzyme necessary for the 

synthesis of ATRA that is expressed in the developing diaphragm and 

various other components of this important signaling pathway [Noble et al., 

2007; Chen et al., 2003; Mey et al., 2003]. In newborn infants, diaphragmatic 

defects have been associated with low retinol and retinol-binding protein 

levels, independent of their maternal retinol status [Beurskens et al., 2013; 

Beurskens et al., 2010; Major et al., 1998], supporting the idea that human 

CDH is linked with abnormal retinoid homeostasis. 





19

2 Review of the literature

2.1 Historical overview 

The diaphragm and allied defects have been a source of fascination for 

scientists and clinicians for many centuries [Puri and Wester, 1997; Irish et 

al., 1996]. The ancient Greeks already recognized the diaphragm as a 

distinct anatomical structure in the human body. One of the earliest known 

literary references was by Homer in the 9th century BC, precisely describing 

wounds suffered by warriors during the Trojan War [Derenne et al., 1994]. At 

that time, however, the diaphragm was not tied to any particular physical 

function and was associated with the region of the body responsible for 

thought. The initial physiological explanations of respiration by Empedocles 

(490-430 BC) as well as the concepts introduced by Plato (428-348 BC) and 

Hippocrates (460-370 BC) did not include any significant participation of the 

diaphragm [Potter, 2010; Bury, 1929; Leonard, 1908]. Aristotle (384-322 BC) 

was the first to link respiration to a particular organ and a specific movement 

of the thorax, but in his theory the diaphragm was just a barrier separating 

the thorax from the abdomen and played no role in respiration [Peck, 1970]. 

Herophilus (335-280 BC) and his contemporary Erasistratus (304-250 BC), 

who systematically performed scientific dissections of human cadavers and 

animal experiments at the medical school in Alexandria, demonstrated for 

the first time that the diaphragmatic muscle fibers were the agents of 

respiratory movement [Von Staden, 1989]. Galen of Pergamon (129-200 AD) 

developed the concept of interaction between ribcage and abdominal 

muscles in maintaining the position of the diaphragm, showing a clear 

understanding of the principle that the diaphragm can move upward during 

an isovolume maneuver as long as the ribcage is allowed to expand 

[Derenne et al., 1995].  
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The term diaphragmatic hernia was introduced in 1575 by the French 

surgeon Ambroise Paré, who described two autopsy cases of traumatic 

diaphragmatic defects [Paré, 1575]. Following a post mortem examination of 

a 24-year-old man, the French physician Lazare Rivière discovered the first 

case of CDH, which he published in 1679 [Bonet, 1679]. In 1701, Sir Charles 

Holt reported the first pediatric case of CDH [Holt, 1701]. A detailed 

description of the gross anatomy and pathophysiology associated with CDH 

was presented in 1754 by the Scottish physician George Macaulay, who 

noted a right-sided defect in a newborn child that died 1.5 hours after birth 

due to severe breathing difficulties [Cullis and Davis, 2018; Macaulay, 1754].

The Italian anatomist Giovanni Battista Morgagni differentiated in his 

monograph from 1761 various subtypes of CDH, including the anterior defect 

that bears his name [Zani and Cozzi, 2008; Morgagni, 1761]. In 1819, the 

French physician René Laennec demonstrated that the diagnosis of CDH 

could easily be made by chest auscultation and also suggested that 

laparotomy might be the correct approach for hernia repair [Laennec, 1819]. 

Sir Astley Paston Cooper published in 1827 the first comprehensive report 

on classification, symptoms and pathology of CDH [Cooper, 1827]. The first 

cohort series of patients with CDH was collected by Henry Bowditch in 1847 

at the Massachusetts General Hospital in Boston, emphasizing the clinical 

criteria for diagnosis [Bowditch, 1853]. In 1848, the Czech anatomist Vincent 

Alexander Bochdalek accurately described a posterolateral defect in the 

diaphragm, which carries his name today [Bochdalek, 1848]. However, his 

understanding of the embryological pathogenesis of CDH was incorrect as

he speculated that the hernia resulted from an intrauterine rupture of the 

membrane in the lumbocostal triangle. The Swedish surgeon Gustaf 

Naumann proposed in 1888 a 2-cavity approach after unsuccessfully 

operating on a 19-year-old patient with an infarcted bowel that had herniated 

through a diaphragmatic defect [Naumann, 1888]. The first, but unsuccessful 

repair in a 3-year-old infant with CDH was published in 1889 by the American 

physician Joseph O’Dwyer, precisely describing a thoracic approach 

[O’Dwyer, 1889]. 
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The first successful CDH operation was performed in 1902 by the 

German surgeon Lothar Heidenhain, who corrected a diaphragmatic defect 

in a 9-year-old boy with a favorable 18-year follow-up [Aue, 1920; 

Heidenhain, 1905]. In a comprehensive review from 1925, the American 

surgeon Carl Hedblom showed that 75% of untreated cases with CDH died 

in the newborn period, suggesting that an earlier intervention might improve 

survival [Hedblom, 1925]. After that, Bettman and Hess presented in 1929 

the youngest patient with incarcerated CDH, who had successfully been 

operated on aged 3.5 months [Bettman and Hess, 1929]. Greenwald and 

Steiner reviewed symptoms of infants and children with CDH, concluding that 

this condition might not be as infrequent as it was generally believed 

[Greenwald and Steiner, 1929]. Surgical repair of CDH remained often 

unsuccessful until 1940, when Ladd and Gross reported 9 of 16 patients 

surviving surgery, the youngest being 40 hours old [Ladd and Gross, 1940]. 

Robert Gross subsequently performed in 1946 the first successful repair in a 

neonate with CDH less than 24 hours after birth [Gross, 1946]. In 1950, Koop 

and Johnson proposed a transthoracic approach as a means of closing the 

CDH under more direct vision [Koop and Johnson, 1952]. As the surgical 

expertise improved further, several innovative techniques [Holcomb Jr, 1962; 

Neville and Clowes Jr, 1954] were developed to address large diaphragmatic 

defects, including the use of pedicled abdominal muscle flaps [Simpson and 

Gassage, 1971; Rosenkrantz and Cotton, 1964], reverse latissimius dorsi 

flaps [Bianchi et al., 1983] and prosthetic patches [Geisler et al., 1977; 

Shaffer, 1964]. Extracorporeal membrane oxygenation (ECMO) was 

introduced in 1976 by Robert Bartlett and successfully applied in neonates 

with CDH for the management of respiratory insufficiency [German et al., 

1977; Bartlett et al., 1976]. In 1990, Michael Harrison and his team 

performed the first successful in utero repair in a 24 1/2-weeks-old male 

fetus with severe CDH using a Gore-Tex patch [Harrison et al., 1990].
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Charles Stolar and co-workers presented in 1995 the concept of 

“gentle” ventilation in the management of CDH, characterized by 

preservation of spontaneous ventilation, permissive levels of hypercapnea 

and avoidance of high inspiratory airway pressures. This novel approach has 

subsequently reduced iatrogenic lung injury from barotrauma in CDH and 

resulted in improved survival with decreased need for ECMO (Wung et al., 

1995). The Dutch surgeons van der Zee and Bax reported in 1995 the first 

laparoscopic closure of a left-sided posterolateral CDH in a 6-month-old boy 

[van der Zee and Bax, 1995]. In order to stimulate the prenatal growth of 

hypoplastic lungs in fetuses with CDH, additional sophisticated strategies

were developed: placement of external metal clips on the fetal trachea by 

means of open hysterotomy [VanderWall et al., 1997; Harrison et al., 1996]

or fetoscopic neck dissection [Harrison et al., 1998] and internal tracheal 

occlusion with a detachable silicone balloon that was placed through a single 

uterine port using fetal bronchoscopy [Harrison et al., 2001]. A French team 

led by Francoise Becmeur published in 2001 the first thoracoscopic CDH

repair in three infants [Becmeur et al., 2001]. Although there is currently 

insufficient evidence to recommend fetal endoscopic tracheal occlusion

(FETO) as a part of routine clinical practice [Grivell et al., 2015], a few 

specialized fetal medicine centers in Europe, North and South America 

successfully perform this procedure [Persico et al., 2017; Belfort et al., 2017; 

Ruano et al., 2012; Dekoninck et al., 2011]. FETO has recently been 

reported to improve neonatal survival in CDH fetuses with severe PH 

compared with standard perinatal management, resulting in a survival rates

of 50% to 60% [Araujo Júnior et al., 2017; Al-Maary et al., 2016; Deprest et 

al., 2014a]. Further results from ongoing international randomized trials are 

anticipated in the near future [Deprest et al., 2014b].

Historically, a CDH that was diagnosed in the newborn period was almost 

uniformly fatal. The plethora of scientific discoveries and technical advances 

has contributed to the significant reduction in mortality of infant children with 

CDH.
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2.2 Congenital diaphragmatic hernia (CDH) 

2.2.1 Definition 

CDH is a prenatal defect in the integrity of the developing diaphragm that 

occurs during embryogenesis [Kluth et al., 1996b]. It is characterized by 

defective formation of the pleuroperitoneal membranes (PPMs) and/or 

incomplete fusion with the septum transversum (ST) [Clugston and Greer, 

2007]. In humans, closure of the pleuroperitoneal canal normally takes place 

around week eight of gestation by formation of a primordial diaphragm 

structure, which eventually separates the thoracic from the abdominal cavity 

prior to the major period of internal organ growth [Kluth et al., 1993].

However, in the instance of CDH, a significant proportion of the diaphragm is 

absent [Greer, 2013]. The resulting opening allows intrathoracic herniation of 

the abdominal viscera, causing mediastinal displacement to the contralateral 

side and thus severely compromises pulmonary development [Keijzer and 

Puri, 2010; Rottier and Tibboel, 2005].

2.2.2 Classification 

Traditionally, CDHs have been classified according to their presumed 

anatomical location and three different types of hernia can be distinguished 

[Pober, 2007]: 

Posterolateral (or Bochdalek) hernia 
This is the most common hernia type, comprising approximately 90-95% of 

all CDHs. About 80% are left-sided, 19% right-sided and 1% bilateral 

[Veenma et al., 2012; Clark et al., 1998]. Varying degrees of deficiency can 

be observed: an extremely large defect or complete absence of the hemi-

diaphragm including the posterior muscle rim is called diaphragmatic 

agenesis [Tsang et al., 1994; Bingham, 1959].
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Attempts of the CDH Study Group to more accurately categorize the severity 

of the defect has led to the introduction of a classification system that is 

based on intraoperative findings, comprising the anatomic spectrum from

small defects (A), which can be repaired primarily to total diaphragmatic 

agenesis (D) [Tsao and Lally, 2008]. 

Anterior retrosternal or parasternal (or Morgagni-Larry) hernia 
This hernia type is located in the most anterior portion of the diaphragm and 

results from a failure of the crural and sternal portions to fuse. It is usually 

accompanied by a hernia sac and comprises approximately 2% of all CDHs. 

Although some patients are asymptomatic with incidental discovery, acute or 

subacute pulmonary and gastrointestinal symptoms can indicate this 

diagnosis [Loong and Kocher, 2005]. 

Central (or septum transversum) hernia 
This is a very rare diaphragmatic defect, which primarily involves the non-

muscular or central tendinous portion of the diaphragm with presence of the 

entire muscular rim. 

Detailed examination of 181 autopsy records of children with congenital 

diaphragmatic defects at Boston Children's Hospital, however, has recently 

demonstrated wide phenotypic variations in size, shape, location and extent 

of organ displacement [Ackerman et al., 2012], suggesting that a clear 

distinction among the different subtypes of CDH can be problematic. 
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2.2.3 Epidemiology 

With an estimated incidence of 1 in 2,000 to 4,000 newborns, CDH is a 

relatively common birth defect that accounts for approximately 8% of all 

major congenital malformations [Stege et al., 2003; Skari et al., 2000; 

Langham Jr et al., 1996]. Recent population-based cohort studies from the 

USA [Shanmugam et al., 2017; Balayla and Abenhaim, 2014; Yang et al., 

2006; Dott et al., 1999; Torfs et al., 1992] and Western Australia [Colvin et 

al., 2005] have found prevalence rates ranging between 1.93 and 3.8 cases 

per 10,000 total births. Similar prevalence rates were reported by European 

registry-based studies, currently affecting between 2.3 and 2.7 cases per 

10,000 births [McGivern et al., 2015; Loane et al., 2011; Gallot et al., 2007].

However, the incidence of CDH in stillborns and therapeutic abortions seems 

to be less well documented. It can be estimated that roughly one third of all 

infants with CDH are stillborn, which is mainly a result of the associated fatal 

congenital anomalies [Stolar and Dillon, 2012] and adds a “hidden mortality” 

to the operative and postoperative deaths [Harrison et al., 1978]. A Swedish 

cohort study has observed an increasing number of terminations of CDH 

pregnancies of up to 23% [Burgos and Frenckner, 2017], which further 

supports the theory that the current mortality rate actually remained 

unchanged since the 1990s [Stege et al, 2003]. Overall, the true incidence of 

CDH is most likely considerably higher than seen in the neonatal surgical 

practice [Brownlee et al., 2009, Mah et al., 2009]. When stillborns are 

counted with live births, females appear to be more commonly affected than 

males [Stolar and Dillon 2012]. 
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2.3 Normal embryological development of the diaphragm

Due to the large number of complex spatiotemporal processes involving 

multiple cellular and tissue interactions, normal embryological development 

of the diaphragm remains incompletely understood [Merrell and Kardon, 

2013]. In humans, the diaphragm starts to develop at approximately four 

weeks of gestation, which is equivalent to embryonic day 12.5 in rats [Kluth 

et al., 1993]. Based merely on historic post mortem examinations of perinatal 

human specimens [Wells, 1954], it was believed over decades that the fully 

developed, dome-shaped, musculotendinous diaphragm is a composite 

structure that derives from the following four distinct embryonical

components: 

2.3.1 Septum transversum 

The anterior central tendon forms from an infolding of the ventrolateral body 

wall also known as ST, which is first seen as a thick mesodermal plate 

cranial to the pericardial cavity between the base of the thoracic cavity and 

the stalk of the yolk sac. The ST does not separate the thoracic and 

abdominal cavities entirely, but after the head folds ventrally around week 

four of gestation, it becomes a thick incomplete partition between the cavities 

with an opening on each side. Closure of these paired pericardioperitoneal 

canals normally occurs by week eight of gestation through fusion with the 

caudal PPMs and the primitive mediastinal mesenchyme ventral to the 

esophagus. Hereby, the right side usually closes before the left side [Moore 

et al., 2015; Wells, 1954]. 

2.3.2 Pleuroperitoneal membranes 

These membranes arise from an infolding of the posterolateral body wall.

Although they constitute large portions within the early fetal diaphragm, they 

represent only the relatively small dorsolateral portions of the fully developed 

structure. The PPMs merge with the dorsal mesentery of the esophagus and 
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with the dorsal part of the ST, which completes the partition between the 

thoracic and abdominal cavities and forms the primordial diaphragm [Moore 

et al., 2015; Wells, 1954]. 

2.3.3 Dorsal mesentery of the esophagus (or Mesoesophagus) 

The ST and the PPMs fuse with the dorsal mesentery of the esophagus and 

eventually form the median portion of the diaphragm. The crura of the 

diaphragm, a leg-like pair of diverging muscle bundles that cross in the 

median plane anterior to the aorta, evolve from myoblasts that grow into the 

dorsal esophageal mesentery [Moore et al., 2015; Wells, 1954].  

2.3.4 Muscular ingrowth from the lateral body walls 

Between gestational week 9 and 12, the lungs and pleural cavities enlarge 

significantly, thus invading into the lateral body walls. During this process,

the body wall tissue splits into an internal layer that contributes to the 

peripheral parts of the diaphragm and subsequently forms its muscular 

portion [Moore et al., 2015; Wells, 1954].  

The advent of labeling techniques for developmentally regulated molecules 

and the use of transgenic mouse models has made it possible to 

systematically elucidate multiple stages of diaphragm myogenesis during 

normal diaphragmatic development and in CDH models [Greer, 2013; Babiuk 

et al., 2003; Greer et al., 1999]. Hereby, the mesenchymal-derived 

pleuroperitoneal fold (PPF) has recently been identified as a key structure 

[Sefton et al., 2018; Merrell et al., 2015; Clugston et al., 2010a; Greer et al., 

2000; Allan and Greer, 1997]. However, it remains controversial if the muscle 

precursor cells and phrenic axons, which originate from the PPF, form the 

diaphragm alone or how much the posthepatic mesenchymal plate 

contributes to the closure of the pleuroperitoneal canal [Mayer et al., 2011; 

Babiuk and Greer, 2002]. 
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2.4 Normal prenatal development of the lung 

Although starting from different pathways and anlages, diaphragm and lung 

morphogenesis are interrelated [Kays, 2006]. In humans, normal airway 

formation begins around week four of gestation with outgrowth of two small 

buds of endodermally derived foregut cells and can be divided into five 

overlapping stages: embryonic, pseudoglandular, canalicular, saccular and 

alveolar [Smith et al., 2010; Rottier and Tibboel, 2005]. During these 

individual phases, which each involve coordinated growth and differentiation 

of the epithelial and mesenchymal components of the immature lung, the 

pulmonary system develops by dichotomous branching from two primitive 

endodermal buds to a functional organ with a large surface area and highly 

differentiated alveoli [Morrisey and Hogan, 2010]: 

2.4.1 Embryonic stage 

This is the stage of actual organogenesis. The embryonic lung and trachea 

originate from the caudal end of the laryngotracheal diverticulum by 

formation of an initial respiratory bud, which divides in humans at the end of 

the fourth week into two outpouchings [Burri, 1984]. These primary bronchial 

buds enlarge early in week five to form a primordial main bronchus and by 

the end of the sixth week they have grown laterally into the 

pericardioperitoneal canals as defined lobar and segmental portions of the 

airway tree [Burri, 1984]. At seven weeks, subsegmental branching is 

evident, which is driven by signals from the surrounding mesenchyme 

[Alescio and Cassini, 1962]. 

2.4.2 Pseudoglandular stage 

During this stage, cellular airway differentiation begins in a proximodistal 

pattern [Merkus et al., 1996]. Epithelial tubes lined with cuboidal epithelial 

cells undergo peripheral branching and lengthening, thus resembling an 
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exocrine gland with marked widening of distal airspaces at the expense of 

intervening mesenchyme. By 16 weeks, the branching morphogenesis is 

completed and 20 generations of conducting airways are laid down [Kitaoka 

H et al., 1996]. However, this fluid-filled primitive respiratory tree structure is 

too immature to support efficient gas exchange. 

2.4.3 Canalicular stage 

This period partially overlaps the pseudoglandular stage because cranial 

parts of the lung mature faster than caudal ones. Bronchi and terminal 

bronchioles further expand in diameter and length, which is accompanied by 

vascularization along the airways and multiplication of capillaries [deMello et 

al., 1997]. At 24 weeks, each terminal bronchiole has given rise to two or 

more respiratory bronchioles, each of which has divided into three to six 

crude alveolar air sacs [Burri, 1984]. Histologically, airway epithelial cells are 

differentiated into peripheral squamous cells and proximal cuboidal cells. 

2.4.4 Saccular stage 

During this period, many more alveolar sacs develop with substantial 

thinning of the interstitium during the terminal saccular stage. This results 

from apoptosis as well as ongoing differentiation of mesenchymal cells 

[Hashimoto et al., 2002]. In addition, the capillary network proliferates rapidly 

and begins to sprout into the mesenchyme around these sacs. By 26 weeks, 

the terminal sacs are mainly lined with differentiated squamous epithelial 

cells, called type 1 pneumocytes [Mercurio and Rhodin, 1976], and scattered 

precursors of AECII [Otto-Verberne et al., 1988], which ultimately become 

responsible for surfactant production. 
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2.4.5 Alveolar stage 

At the beginning of the alveolar stage, each respiratory bronchiole terminates 

in a cluster of thin-walled alveolar sacs, separated from one another by loose 

connective tissue. Sacs analogous to primordial alveoli appear at 32 weeks 

and represent future alveolar ducts [Burri, 1984]. The epithelial lining of these 

sacs attenuates to a thin squamous epithelial layer and type I pneumocytes 

become so thin that the adjacent capillaries bulge into the alveolar airspaces. 

By the late fetal period, true alveoli are present and the lung is capable of 

respiration because the alveolocapillary membrane is thin enough to allow 

sufficient gas exchange with mature AECII secreting pulmonary surfactant 

[Merkus et al., 1996]. 
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2.5 Pathogenetical and -physiological aspects of CDH

The etiology of the diaphragmatic defect is identified in less than 50% of 

patients with CDH, although numerous chromosomal aberrations and gene 

mutations have been linked to this congenital malformation [Slavotinek, 

2014; Longoni et al., 2014; Wynn et al., 2014]. From a surgical perspective, it 

is relatively easy to repair the defect in the diaphragm either by primary 

closure or reconstruction using a patch, but the main problem remains the 

associated disturbed lung development, resulting in severe PH and PPHN

[Ameis et al., 2017; Harting, 2017]. Both conditions occur to a variable extent 

in patients with CDH and due to the absence of sufficient lung-protective 

strategies, most of the newer treatment modalities such as exogenous 

surfactant, inhaled nitric oxide, high-frequency oscillation and ECMO have 

replaced high mortality rates with significant long-term morbidity in survivors, 

including bronchopulmonary dysplasia, chronic lung disease, 

gastroesophageal reflux, scoliosis and various neurodevelopmental deficits 

[Puligandla et al., 2015; Kotecha et al., 2012; van den Hout et al., 2011; 

Antonoff et al., 2011; Tsao and Lally, 2008]. Prenatally diagnosed CDH is 

often associated with larger defect sizes compared to those with a postnatal 

diagnosis, and consequently have higher morbidity and mortality [Burgos et 

al., 2018]. Moreover, a significant hidden mortality exists in CDH due to 

termination of pregnancy and intrauterine fetal demise, with an overall 

mortality rate of 45% in a recent population-based study from Sweden 

[Burgos and Frenckner, 2017]. Therefore, CDH represents one of the major 

therapeutic challenges not only in modern neonatal intensive care units, but 

also for other specialties involved [Danzer and Hedrick, 2014; Tovar, 2012]. 

In the past, it has been assumed that the different parts of the 

diaphragm fail to fuse properly [Broman, 1901]. Consequently, the 

pleuroperitoneal canal does not close and PH was believed to be the result 

of mechanical compression by herniation of abdominal viscera into the 

thoracic cavity [Wells, 1954]. It has also been suggested that a primary 

disturbance of the pulmonary development might negatively influence the 

formation of the fetal diaphragm, thereby causing CDH [Iritani, 1984].
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However, it has been demonstrated by combining teratogenic and transgenic 

animal models that these hypotheses are not true [Guilbert et al., 2000].

Moreover, Fgf10 knockout mice do not have any lungs but show 

normal diaphragmatic development [Sekine et al., 1999]. The so-called “dual-

hit hypothesis” implicates a primary disruption in bilateral lung development 

before closure of the diaphragm combined with a second ipsilateral insult 

caused by intrathoracic herniation and thus interference with fetal breathing 

movements [Keijzer et al., 2000; Jesudason et al., 2000]. Recently, a 

proliferative abnormality of the PPF has been postulated for the insufficient 

formation of the diaphragm [Clugston et al., 2010a; Greer et al., 2000; Allan 

and Greer, 1997]. Surprisingly, the origin of the diaphragmatic defect 

appears to lie in the mesenchymal component of the PPF, supporting the 

hypothesis that CDH occurs independently of myogenesis and lung 

formation [Babiuk RP 2002]. Likewise, Gata4 mosaic mutations in PPF-

derived muscle connective tissue fibroblasts result in the development of 

localized amuscular regions that are biomechanically weaker and more 

compliant, leading to CDH [Merrell et al., 2015]. Also, the recruitment of 

muscle progenitors from cervical somites to the nascent PPFs is uniquely 

mammalian and a key developmental innovation essential for the evolution of 

the muscularized diaphragm [Sefton et al., 2018]. Regardless of all these 

theories, the exact pathogenesis of CDH and associated pulmonary

malformation remains unclear. 

Hypoplastic lungs in CDH are characterized by immaturity and smaller 

size with a significantly decreased number of terminal airway generations, 

thickened alveolar walls, increased interstitial tissue, diminished alveolar 

airspaces and reduced gas-exchange surface area [Sabharwal et al., 2000; 

Brandsma et al., 1994]. In addition, abnormal differentiation and 

malfunctioning of AECII have been reported in a rat model of CDH-

associated PH, which in turn leads to surfactant deficiency [Brandsma et al., 

1994]. Yet, controversy remains whether surfactant synthesis and maturation 

are also disrupted in human neonates with CDH [Janssen et al., 2009; 

Boucherat et al., 2007; Janssen et al., 2003]. Nevertheless, data from the 

CDH Study Group has suggested that surfactant replacement for newborns
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with diaphragmatic defects does not actually provide significant outcome 

benefits in respect to survival rate, length of ECMO course, length of 

intubation, or subsequent need for supplemental oxygen [Colby et al., 2004; 

Van Meurs, 2004; Lally et al., 2004].  

Apart from the gas-exchange layer, well-documented changes are 

present in the vascular components consisting of arterial media hyperplasia, 

peripheral muscularization of smaller pre-acinar vessels and adventitial 

thickening [Sluiter et al., 2011; Taira et al., 1998; Yamataka and Puri, 1997]. 
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2.6 Animal models of CDH

Most of our current knowledge about the structural and morphological 

changes in hypoplastic lungs associated with CDH has originated from 

experimental animal models, in which the diaphragmatic defect is either 

surgically, transgenically or toxicologically created [Chiu, 2014; van Loenhout 

et al., 2009; Clugston et al., 2006; Mortell et al., 2006]. 

2.6.1 Surgical models 

Surgically created diaphragmatic defects in fetal lambs and rabbits are useful 

for investigating interventional treatment strategies such as in utero repair 

and tracheal occlusion [Jelin et al., 2011; Lipsett et al., 2000; De Paepe et 

al., 1999; Hedrick et al., 1994], but are less helpful in studying the earlier 

pathogenesis of PH in CDH as well as being more expensive and time-

consuming compared to rodent models. 

2.6.2 Genetic models 

Over the last two decades, several knockout models for genes involved in 

embryonic mouse development, such as for Wt1 [Moore et al., 1998; 

Kreidberg et al., 1993], Shh [Pepicelli et al., 1998], Gli2/Gli3 [Motoyama et 

al., 1998], Slit3 [Liu et al., 2003; Yuan et al., 2003], Fog2 [Ackerman et al., 

2005], Gata4/Gata6 [Merrell et al., 2015; Jay et al., 2007; Molkentin, 2000], 

Coup-TFII [You et al., 2005], Pdgfrα [Bleyl et al., 2007], Kif7 [Coles and 

Ackerman, 2013], Lox [Hornstra et al., 2003; Mäki et al., 2002], RARs 

[Mendelsohn et al., 1994], Robo1 [Xian et al., 2001] and Sox7 [Wat et al., 

2012] have been established, which show various phenotypes of CDH and

disruption in lung branching morphogenesis. However, until now only the 

Fog2 gene mutation has been identified in a patient with non-syndromic CDH 

[Bleyl et al., 2007]. 
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2.6.3 Nitrofen model 

Administration of the herbicide nitrofen (2,4-dichlorophenyl-p-nitrophenyl 

ether) to pregnant rodents has been found to cause different developmental 

anomalies in heart, lung and diaphragm [Ambrose et al., 1971]. Maternal 

exposure during midgestation results in CDH in approximately 70% and PH 

in 100% of the offspring [Noble et al., 2007]. Therefore, the toxicologically 

introduced nitrofen model has widely been used to investigate the CDH-

associated anomalies, as the timing of the diaphragmatic insult and bilateral 

PH are remarkably similar to the human situation [van Loenhout et al., 2009; 

Beurskens et al., 2007]. Nevertheless, the significance of these potential 

teratogenic effects has never been proven in humans so far. 

Although none of the available animal models for CDH are perfect in 

mimicking the human diaphragmatic defect, they all have provided new 

insights into the underlying pathogenesis and associated pathophysiological 

alterations in pulmonary development. 
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2.7 Involvement of all-trans retinoic acid (ATRA) and 
retinoid signaling during fetal lung development 

ATRA, one of the most biologically active metabolites of vitamin A, is an 

essential component of the complex gene network that regulates growth of 

several organ systems, including lung morphogenesis and formation of the 

diaphragm [Ross et al., 2000]. During fetal lung development, retinoids are 

crucial in each of the developmental stages [Montedonico et al., 2008b].

ATRA is known to be critically involved in the saccular phase through 

stimulation of AECII proliferation [Nabeyrat et al., 1998]. A previous research 

study has reported a 50% increase in the number of pulmonary alveoli in 

newborn rats after treatment with ATRA, suggesting an important role of 

retinoids during alveolarization [Massaro and Massaro, 1996]. Recent 

findings from animal experiments have revealed that disruption of retinoid 

signaling contributes to the formation of CDH and associated lung hypoplasia 

[Clugston et al., 2010b; Greer et al., 2003]. Furthermore, it has been 

demonstrated that prenatal administration of ATRA during late gestation 

upregulates pulmonary expression of several genes involved in the retinoid 

signaling pathway [Doi et al., 2009]. It has also been shown that ATRA 

reduces the severity of PH in nitrofen-induced hypoplastic lung explants 

[Montedonico et al., 2006] and rescues PH in calorie-restricted developing 

rat lungs [Londhe et al., 2013]. Additional evidence that prenatal 

administration of ATRA stimulates alveolarization in hypoplastic lungs has 

been provided by in vivo studies in rats with nitrofen-induced CDH

[Montedonico et al., 2008a], indicating that ATRA may have a therapeutic 

potential in attenuating CDH-associated PH. However, further research is 

needed to establish the exact molecular and cellular effects of ATRA 

treatment on fetal alveolar development. 
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2.8 Lipid-containing interstitial fibroblasts (LIFs) and their 
role in fetal lung development 

LIFs, also known as lipofibroblasts, because of their characteristic lipid 

inclusions, play an essential role in fetal lung development by inducing 

alveolar epithelial cell proliferation, growth and differentiation [McGowan and 

Torday, 1997]. Pulmonary LIFs, which are mainly expressed in the alveolar 

interstitium in close contact to AECII, have been shown to actively absorb, 

store and transport neutral lipids [McGowan and Torday, 1997]. Due to this 

capability, they are not only critically involved in the regulation of alveolar 

lipid homeostasis and differentiation of adjacent AECII, but also in the de

novo production of surfactant phospholipids by supplying one of the key 

components for their synthesis [Torday et al., 2003; McGowan and Torday, 

1997; Nunez and Torday, 1995]. Moreover, it has been revealed that 

proliferation of AECII and associated formation of alveoli depends on the 

amount of ATRA in LIFs [Dirami et al., 2004; Okabe et al., 1984]. In rodents, 

LIFs are first evident during the late canalicular stage of lung development 

with a significant increase over the last few days of gestation [Torday et al., 

1995; Tordet et al., 1981]. Thy-1 is a highly expressed cell surface protein in 

this specific subset of pulmonary fibroblasts, which are important for fetal 

alveolarization and alveolar maturation [Varisco et al., 2012]. The expression 

of Thy-1 has been found to increase continuously during the neonatal period, 

coinciding with the onset of alveolar formation [Varisco et al., 2012]. 

Interestingly, Thy-1-/- mice exhibit impaired alveolar development and 

reduced proliferation of pulmonary LIFs, which results in a PH-similar 

phenotype [Nicola et al., 2009]. It has also been reported that Thy-1 has the 

ability to enhance the lipid content of LIFs by upregulation of Adrp [McGowan 

and Torday, 1997]. Adrp is in turn necessary for the alveolar lipid 

homeostasis and associated pulmonary surfactant production by mediating 

the intracellular uptake of neutral lipids into LIFs and their subsequent 

transport to AECII [Schultz et al., 2002]. This functional lipogenic molecular 

marker, which clearly characterizes pulmonary LIFs, shows a significant 

increase in expression immediately before birth [Brasaemle et al., 1997]. 
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The paracrine stimulation of alveolar epithelial cell maturation also 

requires the expression of Lep by LIFs, a 16 kDa peptide product of the ob 

gene and its corresponding receptor Lep-R on AECII [Torday JS 2002]. Lep 

and Lep-R are strongly expressed by these two types of distal alveolar cells 

during the saccular stage of fetal lung development with a 7- to 10-fold 

increase prior to term [Henson et al., 2004; Torday et al., 2002]. Lep-deficient 

mice showed decreased alveolarization with reduced pulmonary surfactant 

phospholipid synthesis [Tankersley et al., 1996], similar to human and 

nitrofen-induced PH. Figure 1 displayes a schematic diagram of the relevant 

components in this signaling pathway. In addition, it has been demonstrated 

that Lep and Lep-R expression in developing lungs is regulated by retinoid 

signaling [McGowan et al., 1995], suggesting a therapeutic potential of ATRA 

in attenuating CDH-associated PH by stimulating alveolar maturation through 

an increased expression of pulmonary LIFs and thus proliferation of AECII. 

 

 
Figure 1  Schematic diagram summarizing how Thy-1 increases the lipid content of alveolar LIFs 

by upregulation of the lipogenic marker Adrp, which in turn stimulates the intracellular uptake of 

neutral lipids into LIFs. Lep and Lep-R then mediate the transport of these lipid droplets to AECII, 

which is necessary for phospholipid synthesis and subsequent pulmonary surfactant production. 
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3 Aims and objectives of the study 

The overall aim of this dissertation was to investigate the underlying 

molecular and cellular effects of prenatally administered ATRA in alveolar 

LIFs and AECII and its impact on fetal lung development and surfactant 

synthesis in the nitrofen-induced rat model of CDH. Based on previous 

studies [Montedonico et al., 2008a; Montedonico et al., 2006], it can be 

assumed that ATRA may have the ability to enhance alveolarization in fetal 

rats with experimentally induced diaphragmatic defects by increasing 

pulmonary LIFs and thus to attenuate CDH-associated PH. In order to prove 

this hypothesis, in vivo treatment studies with maternal application of ATRA 

shortly before birth were performed and effects on fetal alveolar maturation 

were assessed by using molecular genetic, immunohistochemical/-

fluorescence and stereo-/morphometric analysis techniques. 

The specific objectives of this work were: 

1. To identify potential disruptions of Thy-1 signaling in hypoplastic rat 

lungs with nitrofen-induced CDH, which may have an adverse effect 

on the lipid content of pulmonary LIFs and thus form the basis for a

therapeutic approach with ATRA at the end of gestation. 

2. To analyze the pulmonary Adrp expression levels in control- and 

nitrofen-exposed fetuses, which may be accompanied by an overall

reduction of LIFs in hypoplastic rat lungs with diaphragmatic defects 

that can potentially be reversed by ATRA. 

3. To evaluate the impact of prenatal ATRA application on the 

expression of pulmonary LIFs in hypoplastic rat lungs with nitrofen-

induced CDH, which in turn may stimulate fetal alveolarization in PH. 
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4. To examine if prenatally administered ATRA has the ability to 

upregulate leptin signaling in nitrofen-exposed rat fetuses with 

diaphragmatic defects, which may result in a significant increase of de

novo surfactant production. 

As CDH continues to be a relatively complex and rare birth defect with often 

unpredictable outcome, there is urgent need to foster further research 

activities in this field. An appreciation of CDH literature and scientific 

progress is therefore essential for both clinicians and basic scientists to plan 

future research projects. Until now, no detailed study has systematically 

analyzed the immense number of publications relating to CDH research and 

the true extent of the scientific output in this area remains unclear. 

Hence, an additional objective of this work was: 

5. To assess the global CDH research activity using a combination of 

validated scientometric methods and noval visualization techniques, 

which may help to establish future collaborations and thus to advance 

patient care. 
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4 Material and methods 

4.1 Animal model, drugs and experimental design (I-IV) 

4.1.1 Animal protocol and observational studies (I-IV) 

Pathogen-free Sprague-Dawley® rats (Harlan Laboratories, Shardlow, UK) 

were kept in a well-controlled environment (50-55% humidity, 19-21°C, 12-h

light period, food and water ad libitum). Following acclimatization, animals 

were mated overnight and females were checked daily for the presence of 

spermatozoids in the vaginal smear. The day of plugging was defined as 

embryonic day 0.5 (E0.5) and timed-pregnant subjects were randomly 

divided into two experimental groups (“Nitrofen” and “Control”). On E9.5, 

dams were briefly anesthetized with 2% volatile isoflurane (Piramal 

Healthcare Ltd, Morpeth, UK) and 100 mg nitrofen (2,4-dichlorophenyl-p-

nitrophenyl ether) (Wako Chemicals GmbH, Neuss, Germany) was 

administered in 1 ml olive oil via oral-gastric lavage, whereas control animals 

received vehicle alone.  

For all following studies (irrespective of the experimental design), fetuses 

were delivered via caesarean section under anesthesia and sacrificed by 

decapitation on the selected end point E21.5 (alveolar phase). After 

laparotomy, diaphragms were inspected under a Leica S8AP0 

stereomicroscope (Leica Microsystems AG, Heerbrugg, Switzerland) for 

diaphragmatic defects and whole lungs were microdissected via thoracotomy 

under sterile conditions. Specimens for stereo-/morphometric, lipid and 

immunohistochemical/-fluorescence analysis were fixed in 4% 

paraformaldehyde (PFA) (Santa Cruz Biotechnology Inc, Santa Cruz, USA) 

diluted in phosphate buffered saline (PBS) (Oxide Ltd, Basingstoke, UK) for 

24 hrs, whereas specimens for RNA isolation and subsequent quantitative 

real-time polymerase chain reaction (qRT-PCR) were snap-frozen in liquid 

nitrogen (and stored at -80°C) until further processing was carried out. 
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In order to obtain a representative number of samples for the 

observational studies, fetal lungs in each experimental group originated from 

at least four different dams (6-8/litter). Hence, a total of 56 specimens were 

used, which can be divided into Controls (n = 28) and nitrofen-induced CDH-

associated PH (n = 28).

4.1.2 In vivo treatment studies with ATRA (III, IV)

On E18.5, control and nitrofen-treated rats were randomly assigned to one of 

the four treatment groups: Control+Placebo, Control+ATRA,

Nitrofen+Placebo and Nitrofen+ATRA. Based on previous studies, 5 mg/kg 

ATRA (Sigma Aldrich, Saint Louis, USA) was dissolved in 1 ml cottonseed oil 

and injected intraperitoneally under short anesthesia once daily on E18.5, 

E19.5 and E20.5 [Montedonico et al., 2008] to achieve sufficient tissue levels 

in the fetuses without exposing them to toxicological dosages [Morriss-Key, 

1999; Chen et al., 1995], whereas control animals received dissolvent alone.

Dams were anesthetized on E21.5 and body weight of delivered fetuses was 

measured before their whole lungs were dissected (Figure 2). Moreover, all 

specimens were weighed before further processing was accomplished.

Figure 2 Experimental design for in vivo treatment studies with ATRA and Placebo. 
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Fetuses for the in vivo treatment studies originated from at least six different 

dams (4-6/litter). In total, 128 fetal lung samples were used, which can be 

divided into Control+Placebo (n = 32), Control+ATRA (n = 32), 

Nitrofen+Placebo (n = 32) and Nitrofen+ATRA (n = 32). 
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4.2 Preparation of fetal lung specimens for stereo-/ 
morphometric, lipid and immunohistochemical/-
fluorescence analysis (I-IV) 

The PFA-fixed lung specimens were washed overnight in ice-cold PBS to 

remove exterior debris, embedded in O.C.T. compound mounting medium 

(VWR International Ltd, Dublin, Ireland) and snap-frozen in liquid nitrogen.

Frozen blocks were stored at -80°C until cryosectioning was performed. All 

lung specimens were cut transversely at a thickness of 10 μm using a 

CM1900 cryostat (Leica Microsystems GmbH, Nussloch, Germany) at -20°C 

and serial sections were mounted on SuperFrost® Plus microscopy glass 

slides (VWR International Ltd, Dublin, Ireland).  
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4.3 Molecular genetic analysis (I-IV) 

4.3.1 Total RNA isolation (I-IV) 

After thawing and homogenization, total RNA was extracted from snap-

frozen lung specimens with the acid guanidinium thiocyanate-phenol-

chloroform extraction method using a TRIzol® reagent (Invitrogen™ by Life 

Technologies™, Carlsbad, USA) according to the manufacturer’s protocol. 

Concentration and purity of total RNA was determined with a NanoDrop ND-

1000 UV-vis® spectrophotometer system (Thermo Scientific Fisher, 

Wilmington, USA). 

4.3.2 Complementary DNA synthesis (I-IV) 

Reverse transcription of 1 μg total RNA was carried out with a LightCyler®

480 Instrument (Roche Diagnostics GmbH, Mannheim, Germany) at 85°C for 

3 min (denaturation), at 44°C for 60 min (annealing), and at 92°C for 10 min 

(reverse transcriptase inactivation) using a Transcriptor High Fidelity cDNA 

Synthesis Kit® (Roche Diagnostics GmbH, Mannheim, Germany) according 

to the manufacturer’s protocol. The resulting complementary DNA was then 

used for qRT-PCR. 

4.3.3 Quantitative real-time polymerase chain reaction (I-IV) 

Pulmonary gene expression of Thy1, Adrp, Lep and Lep-R was quantified 

with a LightCyler® 480 System (Roche Diagnostics GmbH, Mannheim, 

Germany) using a LightCyler® 480 SYBR® Green I Master Mix (Roche 

Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s 

protocol. Primer sequences for target and reference genes were designed 

with the online tool Primer3 (http://primer3.ut.ee) using rat nucleotide 

sequences from the open access GenBank® database 

(http://www.ncbi.nlm.nih.gov/genbank). A genomic service provider (Eurofins 

MWG Operon, Ebersberg, Germany) synthesized all selected primers. 
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Gene-specific primer sequences are listed in Table 1. After an 

initialization phase at 95°C for 5 min, 55 amplification cycles were carried 

out. Each cycle included an initial denaturation step at 95°C for 10 sec, an

annealing step at 60°C for 15 sec and an elongation step at 72°C for 10 sec. 

The final elongate temperature was 65°C for 1 min. Relative mRNA 

expression levels were determined using the comparative cycle threshold 

method and results were normalized to the expression of our housekeeping 

gene β-actin. All qRT-PCR experiments were run in duplicate for each 

sample and primer pair. 

Table 1  Gene-specific primer sequences for quantitative real-time polymerase chain reaction. 

Gene Sequence (5’-3’) Product size (bp)
Thy-1

Forward
Reverse

Adrp
Forward
Reverse

Lep
Forward
Reverse

Lep-R
Forward
Reverse

β-actin
Forward
Reverse

TTG CCT TCT AAG CCA GAT GC
AGC AGC GCT CTC CTA TCT TG

CTC TCG GCA GGA TCA AAG AC
CGT AGC CGA CGA TTC TCT TC

ATG GGA CAG CCA AAC AAA AG
TCC TGA GCC ATC CAG TCT CT

TGA CAC CAA AAC CCT CAT CA
ATG AAG TCC AAA CCG GTG AC

TTG CTG ACA GGA TGC AGA AG
TAG AGC CAC CAA TCC ACA CA

174

171

168

181

108
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4.4 Oil red O staining (I-III) 

Lipid content in pulmonary tissue was assessed by staining with oil red O 

(ORO). Thawed, frozen sections were immersed in 100% propylene glycol 

(Sigma Aldrich, Saint Louis, USA) for 5 min before ORO staining was 

performed. The ORO solution was prepared by slowly dissolving 0.7 g ORO 

powder (Sigma Aldrich, Saint Louis, USA) in 100 ml propylene glycol, while 

heating to 100°C for a few minutes. The resulting solution was filtered twice 

and cooled down before further use. Sections were immersed in ORO 

solution for 7 min, followed by 3 min in 85% propylene glycol. After 

counterstaining with hematoxylin for 30 sec, sections were coverslipped 

using Mowiol® (Sigma Aldrich, Saint Louis, USA) and independently 

evaluated by two investigators who were unaware of the respective 

experimental group. 
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4.5 Immunohistochemistry (I-IV) 

4.5.1 Immunohistochemical staining (I-IV) 

Localization of alveolar LIFs was ascertained by labeling for Adrp, a 

functional lipogenic marker protein characterizing this specific subset of lung 

fibroblasts and downstream target of Thy-1. The distribution of alveolar Lep 

and Lep-R proteins was evaluated by specific immunohistochemical staining 

in order to localize their exact cellular expression. Thawed frozen sections 

were incubated with PBS containing 1.0% Triton X-100 (Sigma Aldrich, Saint 

Louis, USA) for 20 min to improve cell permeabilization. In order to avoid 

masking of antigenic sites, sections were immersed in heated Target 

Retrieval Solution® (DAKO Ltd, Cambridgeshire, UK) in a microwave oven at 

750 W for 15 min. Endogenous peroxidase activity was blocked using 

Peroxidase Block® (DAKO Ltd, Cambridgeshire, UK) according to the 

manufacturer’s protocol for 5 min. To prevent nonspecific absorption, 

sections were blocked with 10% normal goat serum (Sigma Aldrich, Saint 

Louis, USA) for 30 min, followed by incubation with affinity-purified rabbit 

polyclonal anti-Adrp (sc-32888, 1:50) (Santa Cruz Biotechnology Inc, Santa 

Cruz, USA), anti-Lep (ab3583, 1:100) and anti-Lep-R (ab5593, 1:250) 

antibodies (Abcam plc, Cambridge, UK) at 4°C overnight. On the next day, 

sections were washed in PBS + 0.05% Tween and incubated with 

horseradish peroxidase-conjugated anti-rabbit secondary antibodies (K4011, 

1:100) (DAKO Ltd, Cambridgeshire, UK) at room temperature for 30 min. 

The antibody-antigen complexes were then visualized by staining with 

diaminobenzidine (DAB) + Substrate Buffer® and DAB + Chromogen®

(DAKO Ltd, Cambridgeshire, UK) for 30 sec. After counterstaining with 

hematoxylin (Sigma Aldrich, Saint Louis, USA) for 10 sec, sections were 

coverslipped using DPX Mountant for histology (Sigma Aldrich, Saint Louis, 

USA). All sections were independently evaluated by two investigators who 

were unaware of the respective experimental group with a Leica DM LB 

research microscope (Leica Microsystems GmbH, Wetzlar, Germany) using 

the image and data management software Leica IM50, version 1.20 (Leica 

Microsystems AG, Heerbrugg, Switzerland). 



49

4.5.2 Immunofluorescence double staining (I-III)

The distribution of pulmonary LIFs was evaluated by immunofluorescence 

double staining for alpha smooth muscle actin (αSMA), which is known to be 

absent in this specific subset of lung fibroblasts, and lipid droplets. In order to 

localize Thy-1 expression and to determine lipid content in alveolar LIFs,

immunoflurescence double staining with specific Thy-1 antibodies and ORO 

was performed. Thawed frozen sections were blocked with 10% normal goat 

serum for 30 min, followed by incubation with either affinity-purified mouse 

anti-αSMA (M0851, 1:500) (DAKO Ltd, Cambridgeshire, UK) or anti-Thy-1

(ab225, 1:100) (Abcam plc, Cambridge, UK) antibodies and ORO solution at 

4°C overnight. On the next day, sections were washed in PBS + 0.05% 

Tween and incubated with Alexa Fluor® 488 goat anti-mouse secondary 

antibodies (A11029, 1:100) (Bio-Sciences Ltd, Dun Laoghaire, Ireland) for 30 

min. The sections were counterstained with DAPI (10236276001, 1:1000) 

(Roche Diagnostics GmbH, Mannheim, Germany) for 10 min to visualize 

double-stranded DNA. Following coverslipping with fluorescent mounting 

medium (DAKO Ltd, Cambridgeshire, UK), two investigators unaware of the 

respective experimental group independently evaluated all sections with a 

LSM 700 confocal laser scanning microscope (Carl Zeiss MicroImaging 

GmbH, Jena, Germany). The acquired images were meticulously analyzed 

using the image processing and analysis software program ZEN (Carl Zeiss 

MicroImaging GmbH, Jena, Germany). 
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4.6 Assessment of fetal lung stereo-/morphometry (IV) 

Two independent-blind investigators unaware of the experimental group 

performed fetal lung stereo-/morphometry, which was objectively assessed 

by determining radial alveolar count (RAC) and mean linear intercept (MLI) 

on hematoxylin- and eosin-stained (Sigma Aldrich, Saint Louis, USA) 

sections. Fifty randomly selected, non-overlapping fields from serial sections 

were investigated under a Leica DM LB research microscope (Leica 

Microsystems GmbH, Wetzlar, Germany). Each field was viewed at 40-fold 

magnification, and the image was digitized and projected on a computer 

screen using a Leica DC300F digital camera (Leica Microsystems AG, 

Heerbrugg, Switzerland). For each field, the number of alveoli was counted 

visually and RAC was performed by identifying respiratory bronchioles, as 

previously described [Randell et al., 1989]. Briefly, the number of distal air 

sacs that were transacted by a line drawn from a terminal respiratory 

bronchiole to the nearest pleural surface was counted. No counts were made 

if the respiratory bronchiole was nearer to the edge of the slide than to the 

nearest connective tissue septum. The MLI represents the average alveolar 

diameter, alveolar septal thickness (AST) and tissue density, which is the 

proportion of the field occupied by tissue (area occupied by tissue/area 

occupied by lung tissue + alveoli). All images were independently analyzed 

by two investigators who were unaware of the respective experimental group 

with ImageJ 1.47a (National Institute of Health, Bethesda, USA), a public 

domain, Java™-based image processing and analysis software program. 
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4.7 Determination of fetal surfactant phospholipid 
synthesis (IV) 

Fetal surfactant phospholipid synthesis was determined by labeling for 

surfactant protein B (SP-B), which plays an essential role in alveolar stability 

and thus contributes to the biophysiological function of the lung [Weaver and 

Conkright, 2001; Hawgood et al., 1998]. Thawed frozen sections were 

incubated with PBS containing 1.0% Triton X-100 (Sigma Aldrich Ltd, Arklow, 

Ireland) for 20 min to improve cell permeabilization. In order to prevent 

nonspecific absorption, sections were blocked with 10% normal goat serum 

(Sigma Aldrich, Saint Louis, USA) for 30 min, followed by incubation with 

affinity-purified rabbit polyclonal anti-SP-B antibodies (sc-7702-R, 1:100) 

(Santa Cruz Biotechnology Inc, Santa Cruz, USA) at 4°C overnight. On the 

next day, sections were washed in PBS + 0.05% Tween and incubated with 

Alexa Fluor® 647 goat anti-rabbit secondary antibodies (A21244, 1:200) (Bio-

Sciences Ltd, Dun Laoghaire, Ireland) at room temperature for 30 min. The 

sections were counterstained with DAPI (10236276001, 1:1000) (Roche 

Diagnostics GmbH, Mannheim, Germany) for 10 min to visualize double-

stranded DNA. Following coverslipping with fluorescent mounting medium 

(DAKO Ltd, Cambridgeshire, UK), two investigators unaware of the 

respective experimental group independently evaluated the sections with a 

LSM 700 confocal laser scanning microscope (Carl Zeiss MicroImaging 

GmbH, Jena, Germany). All images were analyzed with ZEN (Carl Zeiss 

MicroImaging GmbH, Jena, Germany), an image processing and analysis 

software program. 
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4.8 Statistical analyses (I-IV) 

Data were analyzed using GraphPad Prism 5 (GraphPad Software Inc, La 

Jolla, USA) and tested for Gaussian distribution with a Kolmogorov-Smirnov 

test. All results are presented as means ± standard error of the mean (SEM). 

Statistical differences between two experimental groups were compared 

using an unpaired Student’s t test when the data had normal distribution or a

Mann-Whitney U test when the data deviated from normal distribution. In 

order to determine any statistical differences between four experimental 

groups, one-way ANOVA with Tukey’s test for post-test analysis was 

performed. A P value < 0.05 was considered as statistically significant. 

4.9 Ethical considerations (I-IV) 

All animal procedures were carried out according to the current guidelines for 

management and welfare of laboratory animals. The experimental protocol 

was approved by the research ethics committee of the Royal College of 

Surgeons in Ireland (Ref. REC668b) as well as by the Department of Health 

and Children (Ref. B100/4378) under the Cruelty to Animals Act, 1876 (as 

amended by European Communities Regulations 2002 and 2005). 
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4.10 Information source and literature-based search (V)

In order to identify all peer-reviewed scientific publications relating to CDH 

research, a comprehensive search strategy was designed for the Web of 

Science™ database (Clarivate Analytics, Boston, USA). This online 

subscription-based research platform, which provides temporal coverage 

from the year 1900 to present, was accessed on 20 June 2017. The following 

linked search terms were used taking into account alternative nomenclature 

for CDH:”congenital* diaphragm* hernia*” OR ”congenital* diaphragm*

defect*” OR “fetal* diaphragm* hernia” OR “pediatric* diaphragm* hernia*” 

OR “foetal* diaphragm* hernia” OR “paediatric* diaphragm* hernia*” OR 

”agenes* diaphragm*” OR ”agenes* hemidiaphragm*” OR “Bochdalek* 

hernia*” OR “Morgagni* hernia*”. A “title” rather than “topic” search was 

performed to determine only the most relevant research items. No language 

restrictions were imposed. Results from 2017 were excluded from the search 

to ensure complete data acquisition because the incorporation of several 

parameters into the database requires a certain time. 

4.10.1 Selection categories and data analysis (V) 

The retrieved data on CDH-related publications was critically evaluated and 

classified with regard to subject category, document type, journal title, 

publication date and language. Total research output of countries, 

institutions, individual authors and collaborative networks was determined 

and systematically analyzed. The “citation report” function was applied to

assess semi-qualitative research aspects including citation rate and h-index. 

The h-index is an established metric, which incorporates a citation index and 

the overall scientific output of authors or institutions, thus quantifying 

importance, impact and significance of individual research contributions 

[Hirsch, 2005]. It can be calculated, if h of all publications received at least h

citations each. In this study, the h-index has also been used to estimate to 

productivity of publishing countries. 
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The relationship of two or more authors from different countries, who 

contributed to a joint publication, was defined as a cooperation article.

Complete bibliographic data was downloaded as plain text files and extracted 

into an electronic datasheet in a standardized manner. Choropleth mapping 

(i.e. differences in color values to represent geographical data) and network 

diagrams were employed to visualize results.
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5 Results 

5.1 Observational studies (I, II)  

5.1.1 Relative mRNA expression levels of Thy-1 and Adrp in fetal rat 
lungs (I, II) 

As Thy-1 and its downstream target Adrp are both molecular markers 

characterizing LIFs, pulmonary gene expression levels of Thy-1 and Adrp

were analyzed by qRT-PCR. Relative mRNA expression of Thy-1 and Adrp

was significantly downregulated in hypoplastic rat lungs with nitrofen-induced 

CDH on E21.5 compared to controls (Figure 3).

Figure 3  Relative mRNA expression of Thy-1 (a) and Adrp (b) was significantly downregulated 

in fetal rat lungs with CDH-associated PH compared to control lungs (0.09 ± 0.02 vs. 0.22 ± 0.04; 

***P = 0.0002 and 0.08 ± 0.01 vs. 0.23 ± 0.09; ***P = 0.0009, respectively).  
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5.1.2 Thy-1 protein expression in pulmonary LIFs of fetal rats (I) 

In order to confirm the qRT-PCR results, immunoflurescence double staining 

with Thy-1 and ORO was performed to evaluate Thy-1 protein expression in 

pulmonary LIFs on E21.5. Confocal laser scanning microscopy confirmed 

markedly decreased Thy-1 immunoflurescence in this specific subset of 

alveolar fibroblasts in hypoplastic rat lungs with diaphragmatic defects 

compared to controls (Figure 4). 

 

 
Figure 4  Thy-1 expression and lipid content in pulmonary LIFs of fetal rat lungs. 

Immunofluorescence double staining with Thy-1 and ORO demonstrated markedly decreased 

Thy-1 expression and lipid inclusions in this specific subset of alveolar fibroblasts (arrows) in fetal 

rat lungs with CDH-associated PH (b) compared to control lungs (a). Representative cryostat 

sections of fixed lung tissue stained with specific Thy-1 antibodies (yellow staining), ORO (red 

staining) and DAPI (blue staining) are shown (Magnification x40; Scale bars = 75 μm). 
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5.1.3 Adrp protein expression and cytoplasmatic lipid content in 
pulmonary LIFs of fetal rats (I, II) 

To further validate these findings and to identify lipid inclusions in pulmonary 

LIFs, their expression was ascertained on E21.5 by labeling for the functional 

lipogenic marker protein Adrp combined with specific ORO lipid staining. 

Adrp immunoreactivity was strikingly diminished in alveolar interstitial cells of 

lungs with CDH-associated PH compared to controls, which coincided with 

impaired alveolar mesenchymal cell differentiation (Figure 5). Moreover, this 

was associated with fewer cytoplasmatic lipid droplets in interstitial alveolar 

compartments of nitrofen-exposed rat fetus with diaphragmatic defects 

(Figure 6). 

 

 
Figure 5  Adrp protein expression in fetal rat lungs. Adrp immunohistochemistry (arrows) was 

markedly diminished in alveolar interstitial cells of fetal rat lungs with CDH-associated PH (b) 

compared to control lungs (a), as determined by specific labeling for the functional lipogenic 

marker Adrp, which coincided with impaired alveolar mesenchymal cell differentiation. 

Representative cryostat sections of fixed lung specimens labeled with specific Adrp antibodies 

(brown staining) and hematoxylin (blue staining) are shown (Magnification x40; Scale bars = 50 

μm).  
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Figure 6 Cytoplasmatic lipid content in fetal rat lungs. Specific lipid staining with ORO showed 

markedly reduced lipid droplets (arrows) in the alveolar interstitium of fetal rat lungs with CDH-

associated PH (b) compared to control lungs (a). Representative cryostat sections of fixed lung 

tissue are shown (Magnification x40; Scale bars = 50 μm).

 

5.1.4 Pulmonary LIF expression in fetal rat lungs (II)

Following immunofluorescence double staining, confocal laser scanning 

microscopy showed absence of αSMA expression as well as markedly 

reduced lipid inclusions in pulmonary LIFs on E21.5, thus clearly 

demonstrating notably decreased expression of this specific subset of 

fibroblasts in the alveolar interstitium of hypoplastic rat lungs with CDH

compared to controls (Figure 7).
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Figure 7  Pulmonary LIF expression in fetal rat lungs. Confocal laser scanning microscopy 

revealed absence of αSMA expression with markedly reduced lipid inclusions in pulmonary LIFs, 

thus demonstrating a markedly decreased expression of this specific subset of fibroblasts 

(arrows) in alveolar interstitium of CDH-associated PH (b) on E21.5 compared to controls (a). 

Representative cryostat sections of fixed lung specimens double stained with αSMA (green 

staining), ORO (red staining) and DAPI (blue staining) are shown (Magnification x40; Scale bars 

= 50 μm). 
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5.2 In vivo treatment studies with ATRA (III, IV) 

5.2.1 Effect of prenatally administered ATRA on fetal lung-to-body 
weight ratio (IV) 

As fetal body and lung weight is a reflection of overall development, the in 

vivo effect of maternal ATRA application on body and lung weight was 

examined in E21.5 rat fetuses. In nitrofen-exposed fetuses, there was a 

significant increase in lung-to-body weight ratio after prenatal administration 

of ATRA shortly before birth compared to the placebo group (2.14 ± 0.03% 

vs. 1.78 ± 0.05%; P < 0.01) (Figure 8). The difference in lung-to-body weight 

ratio between control and nitrofen-exposed fetuses that only received 

placebo treatment was also statistically significant (2.21 ± 0.03% vs. 1.78 ± 

0.05%; P < 0.0001). 

Figure 8  Effect of maternal ATRA application on fetal lung-to-body weight ratio. 

Prenatal administration of ATRA resulted in nitrofen-exposed fetuses in a 

significantly increased lung-to-body weight ratio compared to the placebo group 

(**P < 0.01, vs. Nitrofen+Placebo; #P < 0.0001, vs. Control+Placebo).
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5.2.2 Effect of prenatally administered ATRA on pulmonary gene 
expression levels of Adrp in fetal rats (III) 

As Adrp is a downstream target of Thy-1 signaling and known functional 

lipogenic marker characterizing LIFs [Schultz et al., 2002], pulmonary gene 

expression levels of Adrp were analyzed on E21.5 by qRT-PCR. Relative 

mRNA expression of pulmonary Adrp was significantly increased in 

Nitrofen+ATRA compared to Nitrofen+Placebo (0.31 ± 0.02 vs. 0.08 ± 0.01; 

P < 0.0001), whereas there were no significant differences between 

Control+ATRA and Control+Placebo (0.24 ± 0.01 vs. 0.21 ± 0.02; P = 

0.1319). 

5.2.3 Effect of prenatally administered ATRA on alveolar protein 
expression of Adrp in fetal rats (III) 

In order to determine whether the increased amounts of Adrp transcripts 

after prenatal treatment with ATRA were also translated to the protein level, 

Adrp expression and distribution were investigated on E21.5 by specific 

labeling with Adrp antibodies directly on pulmonary tissue sections. Light 

microscopy confirmed the qRT-PCR results showing markedly increased 

Adrp immunoreactivity mainly in distal alveolar interstitium of Nitrofen+ATRA 

compared to Nitrofen+Placebo, whereas there were no differences between 

Control+ATRA and Control+Placebo (Figure 9).
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Figure 9  Effect of maternal ATRA application on alveolar protein expression of Adrp in fetal rats. 

Adrp immunoreactivity (arrows) was markedly increased in distal alveolar interstitium of 

Nitrofen+ATRA (d) compared to Nitrofen+Placebo (c), whereas there were no differences 

between Control+ATRA (b) and Control+Placebo (a). Representative cryostat sections of fixed 

lung tissue stained with specific Adrp antibodies (brown staining) and hematoxylin (blue staining) 

are shown (Magnification x40; Scale bars = 100 μm). 

 

 



63 
 

5.2.4 Effect of prenatally administered ATRA on lipid content and LIFs 
in fetal rat lungs (III) 

The presence of lipid droplets, which are characteristic for pulmonary LIFs 

[Brasaemle et al., 1997], was evaluated by ORO staining directly on tissue 

sections of E21.5 rat lungs. Light microscopy indicated a notably increased 

expression of cytoplasmatic lipid inclusions in alveolar interstitial cells of 

Nitrofen+ATRA compared to Nitrofen+Placebo, whereas there were no 

differences between Control+ATRA and Control+Placebo (Figure 10). 

 

 
Figure 10  Effect of maternal ATRA application on lipid content in fetal rat lungs. Expression of 

cytoplasmatic lipid droplets (arrows) was markedly increased in alveolar interstitial cells of 

Nitrofen+ATRA (d) compared to Nitrofen+Placebo (c), whereas there were no differences 

between Control+ATRA (b) and Control+Placebo (a). Representative cryostat sections of fixed 

lung specimens stained with ORO are shown (Magnification x40; Scale bars = 50 μm). 
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Immunofluorescence double staining for αSMA, which is characteristically 

absent in LIFs [Torday et al., 2003], and ORO was used to assess 

pulmonary LIF expression and localization in E21.5 rat fetuses. Confocal 

laser scanning microscopy demonstrated markedly increased LIFs in 

interstitial compartments of distal alveolar walls of Nitrofen+ATRA compared 

to Nitrofen+Placebo, whereas there were no differences between 

Control+ATRA and Control+Placebo (Figure 11). 

 

 
Figure 11  Effect of maternal ATRA application on pulmonary LIFs in fetal rats. The expression of 

this specific subset of lung fibroblasts (arrows) was markedly increased in interstitial 

compartments of distal alveolar walls of Nitrofen+ATRA (d) compared to Nitrofen+Placebo (c), 

whereas there were no differences between Control+ATRA (b) and Control+Placebo (a). 

Representative cryostat sections of fixed lung tissue double stained with αSMA (green staining), 

ORO (red staining) and DAPI (blue staining) are shown (Magnification x40; Scale bars = 75 μm). 
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5.2.5 Effect of prenatally administered ATRA on alveolarization in fetal 
rat lungs (IV) 

Stereo-/Morphometric analysis of fetal rat lungs revealed a significant 

progression in alveolar development after prenatal administration of ATRA. 

Nitrofen-exposed fetuses that received ATRA application shortly before birth 

showed enhancement of alveolarization on E21.5 (Figure 12), which was 

expressed in a significant increase in RAC (6.66 ± 1.3 per mm2 vs. 5.70 ± 1.2 

per mm2; P < 0.0001) and decrease in MLI (42.44 ± 1.5 μm vs. 45.06 ± 1.3 

μm; P < 0.0001) compared to Nitrofen+Placebo, whereas there was no 

significant differences between Control+Placebo and Control+ATRA (Figure 
13). The differences in RAC (10.05 ± 1.4 per mm2 vs. 5.70 ± 1.2 per mm2; P

< 0.0001) and MLI (41.23 ± 1.6 μm vs. 45.06 ± 1.3 μm; P < 0.0001) between 

control and nitrofen-exposed fetuses that only received placebo treatment 

were each statistically significant. 
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Figure 12  Effect of maternal ATRA application on alveolarization in fetal rat lungs. Prenatal 

administration resulted in a marked increased alveolarization in Nitrofen+ATRA (d) compared to 

Nitrofen+Placebo (c), whereas there were no differences between Control+ATRA (b) and 

Control+Placebo (a). Representative cryostat sections of fixed lung specimens stained with 

hematoxylin (blue staining) and eosin (pink staining) are shown (Magnification x40; Scale bars = 

100 μm). 
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Figure 13  Effect of maternal ATRA application on lung stereo-/morphometry in fetal rats.

Prenatal administration of ATRA resulted in nitrofen-exposed fetuses in a significantly increased 

radial alveolar count (a) and decreased mean linear intercept (b) on E21.5 compared to placebo-

treated lungs  (***P < 0.0001, vs. Nitrofen+Placebo; #P < 0.0001, vs. Control+Placebo).

5.2.6 Effect of prenatally administered ATRA on pulmonary gene 
expression levels of Lep and Lep-R in fetal rats (IV) 

As Lep and its receptor Lep-R are both molecular markers characterizing 

alveolar maturation, pulmonary gene expression levels of Lep and Lep-R

were analyzed by qRT-PCR on E21.5. Nitrofen-exposed lungs of rat fetuses 

that received ATRA application shortly before birth exhibited a significantly 

increased relative mRNA expression of Lep (4.65 ± 0.67 vs. 2.38 ± 0.67; P < 

0.05) and Lep-R (1.73 ± 0.10 vs. 0.83 ± 0.12; P < 0.05) compared to 

Nitrofen+Placebo. 
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5.2.7 Effect of prenatally administered ATRA on alveolar protein 
expression of Lep and Lep-R in fetal rats (IV) 

To further validate whether the increased amounts of pulmonary Lep and 

Lep-R mRNA transcripts after prenatal treatment with ATRA were also 

translated to the protein level, alveolar Lep and Lep-R protein expression 

was evaluated in fetal rat lungs on E21.5 by labeling with specific Lep and 

Lep-R antibodies. Light microscopy confirmed the qRT-PCR results showing 

markedly increased Lep and Lep-R immunoreactivity in interstitial and 

alveolar epithelial cells of Nitrofen+ATRA compared to Nitrofen+Placebo 

(Figure 14). 

 

 
Figure 14  Effect of maternal ATRA application on alveolar protein expression of Lep and Lep-R 

in fetal rats. Prenatal administration of ATRA resulted in nitrofen-exposed fetuses in a markedly 

increased Lep (b) and Lep-R (d) immunoreactivity in interstitial and alveolar cells (arrows) 

compared to placebo-treated lungs (a and c, respectively). Representative cryostat sections of 

fixed lung tissue stained with specific Lep or Lep-R antibodies (brown staining) and hematoxylin 

(blue staining) are shown (Magnification x40; Scale bars = 100 μm). 
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5.2.8 Effect of prenatally administered ATRA on surfactant 
phospholipid synthesis in fetal rat lungs (IV) 

Immunoflurescence staining with SP-B was performed to examine pulmonary 

surfactant production in E21.5 rat fetuses. Confocal laser scanning 

microscopy demonstrated notably increased alveolar SP-B protein 

expression (Figure 15) and significantly increased SP-B count (Figure 16) 

after prenatal administration of ATRA in Nitrofen+ATRA compared to 

Nitrofen+Placebo. 

 

 
Figure 15  Effect of maternal ATRA application on surfactant phospholipid synthesis in fetal rat 

lungs. Prenatal administration of ATRA resulted in nitrofen-exposed fetuses (b) in a markedly 

increased alveolar SP-B staining on E21.5 compared to placebo treatment (a), as determined by 

specific labeling for the surfactant phospholipid marker SP-B. Representative cryostat sections of 

fixed lung specimens stained with SP-B antibodies (red staining) and DAPI (blue staining) are 

shown (Magnification x40; Scale bars = 50 μm). 
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Figure 16  Effect of maternal ATRA application on SP-B count in fetal rat lungs. Prenatal 

administration of ATRA resulted in nitrofen-exposed fetuses in a significantly increased SP-B

count compared to placebo-treated lungs (***P < 0.0001, vs. Nitrofen+Placebo; #P < 0.0001, vs.

Control+Placebo).
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5.3 Scientometric analysis of the global research activity 
(V) 

 
5.3.1 Global publication volume (V) 

A total of 3,669 publications on CDH were identified, originating from 76 

countries (Figure 17). North America and Europe constituted the two 

scientific centers in the field of CDH-related research. In contrast, the vast 

majority of African countries had an extremely low or no scientific output on 

CDH. Globally, the largest number of scientific articles relating to CDH was 

published by the USA [n = 1,250; (34.1%)], the United Kingdom [n = 279; 

(7.6%)] and Canada [n = 215; (5.9%)]. Most CDH papers were written in 

English [n = 3,432; (93.5%)], followed by French [n = 87; (2.4%)] and 

German [n = 81; (2.2%)]. 

 

 
Figure 17  Choropleth mapping visualizing the global publication volume in the field of CDH 

research. 
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5.3.2 International research collaborations (V) 

Clinicians and basic scientists in 53 (69.7%) of the identified 76 countries 

that published CDH-related work were involved in international research 

collaborations (Figure 18). The USA combined the highest number of 

cooperation articles on CDH (n = 152), followed by Belgium (n = 115) and 

the Netherlands (n = 93). The most productive collaborative network in the 

field of CDH research was established between the United Kingdom/Belgium 

(n = 53), followed by Belgium/Spain (n = 47) and the United Kingdom/Spain 

(n = 34). Luxembourg (n = 3), Venezuela (n = 2), Dominica, Iceland, 

Indonesia, Malta, Peru, St. Kitts & Nevis, Sudan and Ukraine (n = 1/each) 

only had joint CDH papers, whereas Turkey had with 3/92 (3.3%) the 

smallest percentage of cooperative items in relation to its total output. CDH 

researchers in 23 (30.3%) countries were not involved in any international 

collaborations. Of those, South Korean investigators released the largest 

number of CDH publications (n = 28), followed by authors from Iran (n = 11) 

and Tunisia (n = 8). 

 

 
Figure 18  Network diagram of international collaborations and cooperation publications 

relating to CDH. 
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5.3.3 Citation rate and country-specific h-index (V) 

The 215 identified CDH publications from Canada had the highest average 

citation rate per published item (22.8), followed by articles from the 

Netherlands (20.7) and USA (20.2). The USA had the highest country-

specific h-index in the field of CDH-related research (72), followed by 

Canada (40) and the United Kingdom (38). In contrast, many scientific 

papers from African, Middle Eastern and Eastern European countries 

received extremely few citations and thus these countries frequently had a h-

index of 1 or 0. 

 

 

5.3.4 Most productive research institutions and authors (V) 

All 3,669 scientific publications on CDH were evaluated in relation to their 

institutions of origin and contributing authors. The identified CDH articles 

were affiliated with a total of 2,187 institutions and 10,210 authors. The ten 

most productive CDH research institutions in the world were located in the 

USA, the Netherlands, Belgium, France, Ireland, the United Kingdom and 

Canada (Figure 19a). The ten most productive authors (appearing anywhere 

in the author list) in the field of CDH-related research came from the USA, 

Belgium, the Netherlands, Ireland, Spain and Germany (Figure 19b). 

 

 
Figure 19  Ten most productive institutions (a) and authors (b) in the field of CDH-related 

research. 



74

5.3.5 Scientific subject categories and document types (V) 

Subject categories are defined standard categories in the Web of Science™ 

database, which represent general areas of science. These categories were 

distributed by the Journal Citation Reports™ for each scientific journal and its 

publications. Most articles relating to CDH research were assigned to the 

subject category “PEDIATRICS” (n = 1,723), followed by “SURGERY” (n = 

1,474) and “OBSTETRICS/GYNECOLOGY” (n = 449). Other common 

categories were “GENERAL INTERNAL MEDICINE” (n = 370), 

“RADIOLOGY/NUCLEAR MEDICINE/MEDICAL IMAGING” (n = 259), 

“RESPIRATORY SYSTEM” (n = 212), “GENETICS” (n = 188), 

“CARDIOVASCULAR SYSTEM/CARDIOLOGY” (n = 96), 

“RESEARCH/EXPERIMENTAL MEDICINE” (n = 74) and “GASTRO-

ENTEROLOGY/HEPATOLOGY” (n = 66). 

Document types of the 3,669 identified CDH publications were 

classified as 2,576 original articles (70.2%), 494 meeting abstracts and 

proceedings (13.5%), 332 editorials and letters (9.0%), 149 reviews (4.1%) 

and 118 others (3.2%). 

5.3.6 Publication and citation trend (V) 

The first CDH-related paper was published in 1910 and the number of 

subsequent scientific publications increased almost annually, associated with 

a steady increase in citations (Figure 20). Until 1970, there was low 

publication activity, comprising of 161 articles. From 1970 onwards, the 

number of published items increased constantly with a steep rise in the early-

mid 1990s, interrupted by a brief drop in the late 1990s/early 2000s, 

comprising a total of 3,508 articles (i.e. 95.6% of all scientific publications on 

CDH were published after 1970). Overall, authors published 19-fold more 

articles relating to CDH in 2016 than in 1970. Between 1922 and 2016, the 

3,669 identified CDH publications received a total of 51,253 citations and an 

average of 533.9 citations per year (range, 0-3,215). 
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Figure 20  Overall number of CDH publications and received citations in the time span 1900 to 

2016. 

 

 

5.3.7 Notable scientific journals and publications (V) 

All scientific journals listed in the Web of Science™ database were examined 

in regard to their individual output relating to CDH research and citation rates 

of relevant items were determined. The 3,669 CDH-related articles were 

published in 573 different journals with an average citation rate of 14.0 

(range, 0-414) per publication (h-index: 85). The “Journal of Pediatric 

Surgery” was identified as the most productive journal (n = 649), whereas 

“The Journal of Pediatrics” had with 33.1 the highest average citation rate 

per published CDH paper (Figure 21). 
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Figure 21  Ten most productive journals with regard to CDH publications and average citation 

rate per published article. 
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Table 2 lists the ten most-cited articles in the field of CDH research between 

1910 and 2016. 

Table 2  Ten most-cited publications in the field of CDH research. 

Rank Publication
Total 
citations

Citations 
per year

1 Cantrell JR, Haller JA, Ravitch MM. A syndrome of congenital 
defects involving the abdominal wall, sternum, diaphragm, 
pericardium, and heart. Surg Gyn Obstet 1958;107:602-614.

414 6.90

2 Metkus AP, Filly RA, Stringer MD, et al. Sonographic predictors 
of survival in fetal diaphragmatic hernia. J Pediatr Surg
1996;31:148-152.

351 15.95

3 Harrison MR, Keller RL, Hawgood SB, et al. A randomized trial 
of fetal endoscopic tracheal occlusion for severe fetal congenital 
diaphragmatic hernia. N Engl J Med 2003;349:1916-1924.

300 20.00

4 Stege G, Fenton A, Jaffray B. Nihilism in the 1990s: the true 
mortality of congenital diaphragmatic hernia. Pediatrics
2003;112:532-535.

269 17.93

5 Kitagawa M, Hislop A, Boyden EA, et al. Lung hypoplasia in 
congenital diaphragmatic hernia. A quantitative study of airway, 
artery, and alveolar development. Br J Surg 1971;58:342-346.

244 5.19

6 Boloker J, Bateman DA, Wung JT, et al. Congenital 
diaphragmatic hernia in 120 infants treated consecutively with 
permissive hypercapnea/spontaneous respiration/elective 
repair. J Pediatr Surg 2002;37:357-365.

224 14.00

7 Harrison MR, Jester JA, Ross NA. Correction of congenital 
diaphragmatic hernia in utero - 1. The model: intrathoracic 
balloon produces fatal pulmonary hypoplasia. Surgery
1980;88:174-182.

210 5.53

8 Difiore JW, Fauza DO, Slavin R, et al. Experimental fetal 
tracheal ligation reverses the structural and physiological-effects 
of pulmonary hypoplasia in congenital diaphragmatic hernia. J
Pediatr Surg 1994;29:248-257.

209 8.71

9 Lipshutz GS, Albanese CT, Fekdstein VA, et al. Prospective 
analysis of lung-to-head ratio predicts survival for patients with 
prenatally diagnosed congenital diaphragmatic hernia. J Pediatr 
Surg 1997;32:1634-1636.

204 9.71

10 Deprest J, Gratacos E, Nicolaides KH, et al. Fetal tracheal 
occlusion (FETO) for severe congenital diaphragmatic hernia: 
evolution of a technique and preliminary results. Ultrasound 
Obstet Gynecol 2004;24:121-126.

201 14.36
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6 Discussion 

PH is considered to be one of the main reasons of neonatal mortality and 

long-term morbidity in infants with CDH [Keijzer and Puri, 2010; Rottier and 

Tibboel, 2005]. Decades of research have focused on attempts to improve 

lung maturation in these patients, which has led to the widespread use of 

exogenous surfactant, inhaled nitric oxide, high-frequency oscillation and 

ECMO [Garriboli et al., 2012]. However, more recently it became clear that 

these therapeutic options do not significantly reduce CDH-associated 

mortality rates nor provide considerable outcome benefits [Guner et al., 

2018; Snoek et al., 2016; Putnam et al., 2016; Lally et al., 2004]. Due to the 

absence of sufficient lung-protective strategies, most of these newer 

treatment modalities have therefore merely replaced mortality with a higher 

rate of chronic lung disease and impaired neurodevelopment [Madderom et 

al., 2013; Wynn et al., 2013; Rocha et al., 2012]. Despite the necessity to 

find an optimal treatment for lung immaturity in CDH, extensive research in 

the field has not succeeded yet. 
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6.1 Methodology 

The exact pathogenesis of CDH-associated PH remains incompletely 

understood because of the myriad of involved spatiotemporal processes 

comprising multiple, complex molecular and cellular interactions. Based on 

findings from experimental animal studies, it has been demonstrated that 

decreased alveolar formation and reduced synthesis of pulmonary surfactant 

contributes to the development of PH in CDH [Utsuki et al., 2001; Alfonso et 

al., 1996]. Alveolarization and maturation of distal airspaces is an essential 

phase in developing fetal lungs that requires well-coordinated expression of

many regulatory factors, which in turn stimulate alveolar growth and 

surfactant production [Herriges and Morrisey, 2014; Morrisey and Hogan, 

2010; Roth-Kleiner and Post, 2003]. Most of our current understanding about 

this important stage during pulmonary growth and associated changes in 

hypoplastic lungs with diaphragmatic defects has originated from different 

animal models [Chiu, 2014; van Loenhout et al., 2009; Mortell et al., 2006].

In the present work, the well established nitrofen model was used to 

investigate CDH-associated disturbances during alveolar formation, as the 

timing of the diaphragmatic insult and bilateral PH are remarkably similar to 

the human situation [van Loenhout et al., 2009; Beurskens et al., 2007].

However, although maternal exposure of the herbicide nitrofen to pregnant 

rodents during midgestation has been found to result in CDH in 

approximately 70% and PH in 100% of the offspring [Noble et al., 2007], a

major shortcoming of this model is the fact that the potential teratogenic 

effects of nitrofen have not been proven to induce diaphragmatic defects and 

lung hypoplasia in humans so far [Keijzer and Puri, 2010]. Therefore,

collaborative research studies utilizing genome-wide arrays and next 

generation sequencing technics may be more useful to identify potential new 

CDH-related genes in humans. 
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6.2 Role of LIFs as a potential target to enhance fetal 
alveolar development and lung maturation in the 
nitrofen CDH model 

Pulmonary LIFs, which are mainly expressed in the alveolar interstitium and 

have been shown to account for approximately 50% of all resident alveolar 

wall cells in immature lungs [Kaplan et al., 1985], playing a crucial role in 

alveolar development by promoting alveolar epithelial cell differentiation and 

de novo production of surfactant phospholipids [Rehan et al., 2006; Torday 

et al., 2003; McGowan and Torday, 1997]. This specific subset of lung 

fibroblasts normally arises in fetal rat lungs during the late canalicular stage 

of pulmonary development with a significant increase over the last few days 

of gestation [Tordet et al., 1981]. It has been indicated that pulmonary LIFs 

contain large, cytoplasmatic lipid droplets, which enable their histological 

detection within the walls of developing fetal alveoli [Torday and Rehan, 

2011; Brasaemle et al., 1997]. During the onset of alveolarization, these lipid 

inclusions were found to be associated with the expression of Thy-1, a 25-37

kDA heavily N-glycosylated, glycophosphtidylinositol-anchored cell surface 

protein that has recently been revealed as a regulator of alveolar LIF 

differentiation and lipid homeostasis in developing lungs [Varisco et al., 

2012]. Furthermore, LIFs are characterized by a relatively high expression of 

Adrp shortly before birth [Schultz et al., 2002], which is a known downstream 

target of Thy-1 and most pronouncedly expressed in fetal and newborn lungs 

[Londos et al., 1999]. Adrp is a functional lipogenic marker of fully 

differentiated pulmonary LIFs that controls the intracellular uptake of neutral 

lipids in this specific subset of lung fibroblasts and their subsequent transport 

to AECII [Schultz et al., 2002]. Consequently, Adrp reflects the content of 

lipid droplets in alveolar LIFs [Magra et al., 2006] and is also a physiological 

determinant for the synthesis of surfactant phospholipids in AECII [Torday 

and Rehan, 2011]. Treatment strategies aiming to increase the expression of 

pulmonary LIFs therefore represent a promising therapeutic approach to 

enhance fetal alveolar development and thus lung maturation in CDH-

associated PH. 
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In the present study, αSMA and ORO staining was combined to 

evaluate the distribution of LIFs in fetal rat lungs in detail. Given the fact that 

this specific subset of lung fibroblasts is characterized by an absence of 

αSMA expression [Torday et al., 2003], it is not surprising that confocal laser 

scanning microscopy showed absent αSMA immunofluorescence as well as 

markedly reduced lipid inclusions in the alveolar interstitium of CDH-

associated PH compared to controls on E21.5. At first glance, this finding 

may appear in contrast to results from previous studies [Santos et al., 2007; 

Okazaki et al., 1997], which reported no significant differences in αSMA 

staining between hypoplastic lungs and control group in the rat model of 

nitrofen-induced CDH. However, the current experiments focused merely on 

the identification and localization of LIFs in the alveolar walls of fetal rat 

lungs, while other investigators used αSMA staining mainly to analyze 

changes in vascular smooth muscle cells of pulmonary arteries that 

eventually cause PPHN [Jesudason et al., 2006; Taira et al., 1998; 

Yamataka and Puri, 1997]. 
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6.3 Disruption of Thy-1 signaling and Adrp expression in 
hypoplastic rat lungs with nitrofen-induced CDH is 
associated with an overall reduction of pulmonary LIFs

The present study demonstrated a significant downregulation of pulmonary 

Thy-1 transcripts in fetal rat lungs with CDH-associated PH compared to 

controls, which in turn suggests a disruption of Thy-1 signaling in the nitrofen

model. Immunohistochemistry confirmed this finding by showing a markedly 

decreased Thy-1 protein expression in alveolar LIFs, which was associated 

with an overall reduction of cytoplasmatic lipid droplets in this specific subset 

of lung fibroblasts. Two recent studies [Gosemann et al., 2012; Doi et al., 

2010] have provided additional evidence for this intriguing theory by proving 

that further downstream components of the Thy-1 signaling pathway 

[parathyroid hormone-related protein (PTHrP), PTHrP receptor and 

peroxisome proliferator-acivated receptor gamma] were also significantly 

downregulated in nitrofen-induced hypoplastic lungs during late gestation, 

while their relative mRNA expression peaked normally in control lungs. 

Hence, these discoveries suggest that upregulation of Thy-1 signaling during 

this important stage of fetal lung development may be essential for 

alveolarization and associated distal airway maturation in rats with CDH-

associated PH. Moreover, qRT-PCR revealed a significant reduction of 

pulmonary Adrp transcripts, which was further validated by specific 

immunohistochemical evaluation illustrating strikingly diminished Adrp 

immunoreactivity in alveolar LIFs. Taken together, these results verified that 

the quantitative decrease in pulmonary mRNA expression of Thy-1 and Adrp

in the nitrofen rat model was for the most part certainly also translated to the 

protein level. Immunofluorescence double staining ultimately confirmed an 

overall reduction of LIFs in the alveolar interstitium of CDH-associated PH 

with markedly reduced lipid inclusions, thus suggesting an impaired alveolar 

lipid homeostasis and abnormal LIF functioning in nitrofen-exposed rat lungs 

during the critical time period of fetal alveolarization and alveolar maturation. 
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6.4 Molecular and cellular effects of prenatally 
administered ATRA on pulmonary hypoplasia in the 
nitrofen CDH model 

Because most newborn infants with CDH die primarily of respiratory failure 

secondary to severe PH, any therapeutic approach should be focused on 

reducing PH and promoting lung growth. Retinoids are known to play a key 

role during lung morphogenesis [Maden, 2004], including formation of 

primordial alveoli and maturation of distal airspaces [Simon and Mariani, 

2007; Maden and Hind, 2004; McGowan et al., 2000; Massaro and Massaro, 

1996]. Although it is widely accepted that disruption of retinoid signaling 

contributes to the pathogenesis of hypoplastic lungs and diaphragmatic 

defects [Coste et al., 2015; Clugston et al., 2010b; Montedonico et al., 

2008b; Nakazawa et al., 2007; Mendelsohn et al., 1994], most studies have 

only focused on the severity of CDH along with possible reductions in the 

incidence by administration of vitamin A and its derivates [Babiuk et al., 

2004; Thébaud et al., 1999]. Prenatal application of ATRA, which is one of 

the most biologically active metabolites of vitamin A within the retinoid 

signaling pathway, has been demonstrated to accelerate the proliferation of 

alveolar cells and thus having the potential to attenuate PH in nitrofen-

induced CDH [Sugimoto et al., 2008]. However, the exact molecular and 

cellular effects of ATRA treatment on fetal alveolar growth remain poorly 

understood. 

6.4.1 Effects of maternal ATRA application on fetal lung-to body 
weight ratio, Adrp signaling and LIF expression in hypoplastic rat 
lungs with nitrofen-induced CDH 

We observed in this study that in vivo administration of ATRA resulted in a 

significantly increased lung-to-body weight ratio compared to placebo 

treatment. Furthermore, mRNA transcripts of Adrp, a known downstream 

target of Thy-1 signaling and functional lipogenic marker characterizing 

pulmonary LIFs [Schultz et al., 2002], were significantly increased in 

hypoplastic lungs of nitrofen-exposed fetuses after prenatal application of 
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ATRA, which again was associated with markedly increased Adrp 

immunoreactivity mainly in the distal alveolar interstitium. In addition, the 

occurrence of cytoplasmatic lipid droplets in alveolar interstitial cells was 

notably increased in nitrofen-induced hypoplastic lungs after prenatal 

administration of ATRA compared to placebo treatment, which was 

accompanied by a marked increase of LIFs in the mesenchymal and 

interstitial compartments of distal alveolar walls.  

6.4.2 Effects of maternal ATRA application on fetal alveolarization and 
maturation in hypoplastic rat lungs with nitrofen-induced CDH 

In the alveolar region of immature lungs, ATRA has been shown to be stored 

in LIFs [Dirami et al., 2004; Shenai and Chytil, 1990; Okabe et al., 1984] and 

is utilized to regulate the expression of many retinoid-responsive genes, 

which in turn initiates the formation of alveolar septa, proliferation of AECII 

and associated synthesis of pulmonary surfactant proteins [Massaro and 

Massaro, 2010; Chytil, 1996; Mangelsdorf and Evans, 1995]. As normal 

functioning LIFs are able to synthesize ATRA [McGowan et al., 1995], it was 

not surprising that we did not find any structural or morphological differences 

between Control+ATRA and Control+Placebo. Stereo- and morphometric 

analysis of fetal lungs, a well established technique that allows accurate 

study of forming alveoli [Bolender et al., 1993], has revealed a significant 

progression in alveolar development after prenatal administration of ATRA. 

Nitrofen-exposed fetuses that received ATRA application shortly before birth 

showed enhanced radial alveolar count and decreased mean linear intercept 

compared to placebo treatment. These findings are consistent with previous 

studies, demonstrating that prenatal administration of ATRA stimulates 

alveolarization in nitrofen-induced hypoplastic lungs [Montedonico et al., 

2008a; Montedonico et al., 2006]. Taken together, this highlights that ATRA 

is not only essential for alveolar growth, but also has the potential to rescue 

failed alveolar formation [Massaro and Massaro, 2003]. 
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As there were no significant differences between nitrofen-exposed 

fetuses that had CDH compared to those who did not have CDH, our results 

confirmed that the therapeutic effects of prenatal treatment with ATRA occur 

independently of the diaphragmatic defect. However, it remains unclear 

whether ATRA has a direct effect on AECII or may function indirectly through 

a mechanism involving epithelial-mesenchymal interactions [Schuger et al., 

1993]. 

6.4.3 Effects of maternal ATRA application on fetal Lep signaling and 
synthesis of surfactant phospholipids in hypoplastic rat lungs 
with nitrofen-induced CDH 

Lep has been found to be critically involved in the regulation of distal airway 

development [Huang et al., 2008]. The lungs are one of the few organs in the 

fetus that express Lep and its functional receptor Lep-R [Bergen et al., 2002], 

which are mutually expressed by pulmonary LIFs and AECII [Torday et al., 

2002]. The expression of Lep and Lep-R has been shown to arise just before 

the onset of AECII maturation, beginning during the late canalicular stage of 

fetal lung development with a significant increase over the last few days of 

gestation [Henson et al., 2004; Torday et al., 2002]. In a recent study, it has 

been demonstrated that Lep upregulates the intracellular expression and 

extracellular secretion of surfactant proteins in AECII [Chen et al., 2013]. 

Additionally, Lep-deficient mice exhibit decreased alveolarization with 

reduced pulmonary surfactant phospholipid synthesis [Tankersley et al., 

1996]. Lep has been reported to increase the maturation of AECII and 

expression of surfactant protein B [Kirwin et al., 2006], which is accompanied 

by an increase in fetal lung weight. These findings highlight the important 

role of Lep and Lep-R during prenatal lung growth by promoting alveolar 

epithelial cell differentiation and de novo surfactant production, suggesting 

them as potential physiological markers of fetal lung maturity [Chen et al., 

2013; Kirwin et al., 2006]. 
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Previous studies have indicated that Lep and Lep-R expression in 

developing lungs is regulated by retinoid signaling [McGowan et al., 1995]. In 

this way, ATRA may promote alveolar development by accelerating the 

differentiation and subsequent proliferation of AECII [Belloni et al., 2000]. In 

the present study, it was found that mRNA transcripts of Lep and Lep-R were 

significantly increased in fetuses with nitrofen-induded PH after prenatal 

administration of ATRA compared to placebo treatment. This work also 

demonstrated that Lep and Lep-R immunoreactivity were markedly increased 

in interstitial and alveolar epithelial cells of nitrofen-exposed fetuses after 

maternal ATRA application compared to placebo treatment, which was 

accompanied by a notably increased SP-B expression in AECII. These 

results confirmed that the quantitative increases in Lep and Lep-R mRNA 

transcripts were translated to the protein level, thus indicating that ATRA 

upregulates Lep signaling in nitrofen-induced hypoplastic rat lungs, which in 

turn stimulates the synthesis of pulmonary surfactant phospholipids. 
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6.5 Use of retinoids during pregnancy 

The use of retinoids during pregnancy is controversial and currently 

restricted by the Food and Drug Administration because of its teratogenic 

side effects on various developmental aspects of the embryo [Desai et al., 

2007]. For instance, birth defects induced by ATRA embryopathy may 

include central nervous system abnormalities (e.g. facial nerve palsy, 

microencephaly, hydrocephalus), external ear abnormalities (e.g. microtia), 

cardiovascular abnormalities (e.g. transposition of the great vessels, 

hypoplastic left heart syndrome, ventricular septal defects, tetralogy of 

Fallot), craniofacial dysmorphia (e.g. midface hypoplasia, cleft palate and 

lip), eye abnormalities (e.g. ocular hypertelorism), thymus gland 

abnormalities and bone abnormalities (e.g. syndactyly) [Nau 2001; Lammer 

et al. 1985]. However, it has been reported that pregnant women with acute 

leukemia have been successfully treated with ATRA during the second and 

third trimester of pregnancy with no adverse effects on the newborn [Agarwal 

et al., 2015; Valappil et al., 2007]. This allows a possible time window for its 

use in pregnant women during late gestation when alveolarization of fetal 

lungs begins.  
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6.6 Scientometric analysis 
 
Between 1910 and 2016, a total of 3,669 publications on CDH were indexed 

in Web of Science™ database, originating from 76 countries. The absolute 

number of CDH papers has increased nineteen-fold since the 1970s, 

associated with an equally steep increase of citations and replicating the 

same trend as shown in previous scientometric studies on other pediatric 

conditions [Friedmacher et al., 2019; Schöffel et al., 2017]. Advances in 

postnatal resuscitation and introduction of new therapeutic strategies in the 

1990s and 2000s, respectively, most likely contributed to the steep increase 

of CDH research in these two decades. Not surprisingly, only a small number 

of North American and European countries were responsible for the majority 

of CDH-related research, which not only generated most of the scientific 

articles, but also papers high in quality. Of these, the USA, Canada, the 

United Kingdom, France and the Netherlands were the five leading countries 

with regard to the total number of CDH publications, average citation rate 

and h-index. This mirrors the worldwide trend for a greater volume of 

scientific articles to originate from high-income countries [Groneberg-Kloft et 

al., 2008; Braun et al., 1995], and further, for authors from these countries to 

dominate key roles in authorship. In comparison, the lack of publications 

from low- and middle-income countries reflects a pattern in all fields of 

medicine: that survival of infants with serious conditions such as CDH is 

often not feasible in countries with low resources or in healthcare systems, 

where medical professionals are too busy with clinical pressures to commit 

time to research. As significant progress cannot be made by a single 

researcher, there is currently a global movement in science towards 

strategically designed national or international collaborations in order to 

improve overall patient care [Greene, 2007]. This is particularly relevant for 

rare disorders like CDH as shown by the increasing number of cooperation 

papers and collaborative networks in this field. 
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The most productive collaborative network on CDH was established 

between the United Kingdom and Belgium. These findings can partly be 

explained by the efficient and well-funded academic structure in both 

countries, allowing leading experts more frequently to cooperate with their 

international colleagues [Wagner and Jonkers, 2017; Adams, 2013]. All of 

the most productive institutions and authors were either based in North 

America or Europe.

What have been the topics of the most-cited CDH work so far? Four 

out of the ten most-cited articles were directly linked with the intriguing 

concept of in-utero intervention for fetuses with CDH, reporting pioneering 

work from its experimental beginnings, subsequent evolution of this 

technique and a randomized controlled trial. Although there is currently 

insufficient evidence to recommend FETO as a part of routine clinical 

practice [Grivell et al., 2015], a few specialized fetal medicine centers in 

Europe, North and South America successfully perform this procedure 

[Persico et al., 2017; Belfort et al., 2017; Ruano et al., 2012; Dekoninck et 

al., 2011]. Recently, it has been reported that FETO improves neonatal 

survival in CDH fetuses with severe PH compared with standard perinatal 

management [Araujo Júnior et al., 2017; Al-Maary et al., 2016]. Today, FETO 

results in a survival rate of 50% to 60% [Deprest et al., 2014a]. Further 

results from ongoing international randomized trials are anticipated in the 

near future [Deprest et al., 2014b]. Two further papers dealt with prenatal 

predictors for postnatal CDH survival. With the advent of routine maternal 

ultrasound scanning, CDH can now be diagnosed prenatally in up to 60% of 

cases [Benachi et al., 2014]. Nowadays, the observed-to-expected lung 

area-to-head circumference ratio measured on 2D ultrasonography is 

routinely used by fetal medicine centers around the world as a good indicator 

of neonatal prognosis and chronic lung disease in survivors with CDH [Senat 

et al., 2018; Snoek et al., 2017]. Other valuable prognostic parameters are 

extent of liver herniation and observed-to-expected fetal lung volume on 

magnetic resonance imaging [Russo et al., 2017; Kastenholz et al., 2016].

However, gestational age at diagnosis should be taken into account when 

estimating postnatal morbidity and mortality [Bouchghoul et al., 2015].
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Other highly cited themes were: CDH-associated mortality, pulmonary 

hypoplasia and lung-protective therapies. During the last two decades, CDH 

survival rates have slightly but significantly improved [Morini et al., 2017].

Whereas some specialized centers have reported survival rates of close to 

90%, pooled results from the CDH Study Group indicated that today’s overall 

survival rate is approximately 70% [Harting and Lally, 2014]. Defective lung 

alveolarization appears to be a common and potentially actionable 

phenotype in both patients and animal models of CDH [Donahoe et al., 

2016]. These findings have revealed opportunities for the development of 

novel targeted treatment options, particularly in the pre- and postnatal 

stages, when therapeutic drugs combined with appropriate ventilation 

strategies and ECMO can have maximum clinical impact on surviving 

patients. 
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6.7 Limitations 

One of the main limitations of this study was the use of a toxicologically 

introduced animal model due to lacking access to postmortem tissue from a 

human biobank. Although the nitrofen model is a well-established part of 

modern CDH research that has provided important insights into the 

underlying pathogenesis and associated pathophysiological alterations in 

pulmonary development, the potential teratogenic effects of this herbicide 

have never been proven to play a role in human cases. As some strains of 

rodents appear to have a higher susceptibility to nitrofen than others, which 

for instance makes its application difficult to investigate in genetically 

modified mice [Beurskens et al., 2007], pathogen-free Sprague-Dawley rats 

were used to achieve the highest possible rate of diaphragmatic defects and

bilateral PH in the offspring. Even though the fundamental mechanisms by 

which these changes are induced in this CDH model are not fully 

understood, disturbances of the retinoid signalling pathway appear to be very 

likely [Montedonico et al., 2008b; Greer et al., 2003]. 

 Another noteworthy limitation of this study was the fact that 

differences in pulmonary Thy-1, Adrp, Lep, Lep-R and SP-B protein 

expression between the experimental groups were only quantified by 

immunohistochemical staining of representative tissue sections. A major 

problem with Western blot analysis is not the method itself, but the 

availability of high-quality antibodies. Despite all being affinity-purified, none 

of the tested commercial antibodies provided accurate results with regard to 

detection of specific protein levels. This is a known issue with this technique 

[Gilda et al., 2015], why the present study mainly focused on the precise 

evaluation of the cellular protein expression. 
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The main limitations of the scientometric analysis was most likely related to 

the used search engine. Although the Web of Science™ database is a well-

established platform in citation analysis and one of the most comprehensive, 

accurate and unbiased resources for literature searching, not all journals, 

institutions or individual authors that published CDH-related research are 

necessarily listed. The use of other search engines such as 

PubMed/MEDLINE would likely have resulted in marginally different figures. 

Additionally, the choice of database may have caused a potential language 

bias towards scientific articles from English-speaking countries [Van 

Leeuwen et al., 2001] and it is also known that authors and reviewers tend to 

be biased towards their native language in their citation practice [Link, 1998; 

Campbell, 1990]. As the applied search strategy was based on a title rather 

than a topic search to identify all papers which focused primarily on CDH 

research, a few relevant research items may not have been recognized by 

the automated computer search. Another possible bias may be the analysis 

of citation frequency and h-index as measures of scientific quality rather than 

using journal impact factors as a surrogate [Garfield, 2001]. In turn, it must 

be considered that self-citation by authors can considerably manipulate the 

h-index. Unfortunately, the Web of Science™ database does not provide a 

separate function for this type of large dataset, which would allow calculation 

of the h-index excluding self-citations. Nevertheless, this metric is a proven 

tool to compare different countries, institutions and authors working in one 

specific field [Bartneck and Kokkelmans, 2011]. 
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6.8 Future considerations 

A sound understanding of the etiology and pathogenesis of CDH together 

with PH and PPHN is fundamental in order to prevent these children from the 

devastating sequelae of this congenital malformation. Recent advances in 

prenatal intervention by minimally invasive techniques such as FETO and 

regenerative tissue engineering combined with stem cell therapy offer 

encouraging potential for future treatment strategies [De Coppi and Deprest, 

2017; Shieh et al., 2017; Al-Maary et al., 2016; DeKoninck et al., 2015; 

Jeanty et al., 2014; Di Bernardo et al., 2014; Deprest et al., 2014a; Pederiva 

et al., 2013; De Coppi and Deprest., 2012; Deprest and De Coppi, 2012]. 

Translational research therefore represents an essential element in our quest 

for new treatment options for CDH-associated PH, which will mainly depend 

on multi-institutional and international collaborations [Lally and Skarsgard, 

2017]. However, investigations of novel medical therapies and 

pharmaceutical compounds that have the ability to arrest or reverse PH in 

animal models of CDH require the application of standardized research 

methodologies [Eastwood et al., 2015]. The experiments performed in this 

work have allowed us to identify pulmonary LIFs as a potential target for 

prenatal treatment with ATRA to improve alveolar development in 

hypoplastic rat lungs with nitrofen-induced diaphragmatic defects. Further 

functional studies will need to be carried out in order to get a more 

comprehensive scientific knowledge of the underlying molecular and cellular 

effects of ATRA application during fetal alveolarization as well as the impact 

on the involved epithelial-mesenchymal interactions. Additional points for 

future research studies could be isolation, in vitro co-culture with ATRA and

subsequent transplantation of “retinoic acid-enriched” pulmonary LIFs. To 

test the impact of this modified subset LIFs on immature lungs, one could 

create fluorescent-labeled cells and administer them to nitrofen-exposed rat 

fetuses prenatally. Probably the best way of administration with direct 

delivery of these cells to the hypoplastic lungs would be endoscopical 

microinjection into the trachea followed by FETO. Afterwards, pulmonary 
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tissue could be isolated and microscopically investigated for morphology and 

localization of the labeled LIFs. Moreover, isolated lung cells could be sorted 

by fluorescence-activated cell sorting to determine their differentiation 

pattern. Another option could be the injection of ATRA-treated and 

fluorescent-labeled LIFs into the trachea of nitrofen-exposed lung explants. It 

may be possible to follow these cells for a certain amount of time using live 

imaging combined with confocal laser scanning microscopy and study their 

individual behavior in vitro over several hours. 

International multicenter consortiums and national research networks 

have addressed many critical knowledge gaps pertaining to CDH care. Most 

importantly, they have identified variability in both CDH practice and outcome 

among participating centers. Using combined data from these groups, 

national or international consensus guidelines for multidisciplinary CDH 

treatment may be produced to standardize best practices for patients with 

CDH, from prenatal diagnosis to hospital discharge, based on the best 

available clinical evidence. In addition, collaborations with global initiatives 

such as CDH International may help to foster further research activities and 

strengthen support groups.
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7 Conclusions

PH, characterized by a significantly decreased number of terminal airway 

generations and alveolar immaturity, is one of the main reasons for the 

potential life-threatening respiratory insufficiency in newborns with congenital 

diaphragmatic defects, leading to high neonatal mortality and long-term 

morbidity. The objectives of this dissertation were to investigate the 

underlying molecular and cellular alterations in pulmonary LIFs and AECII at 

the end of gestation in the nitrofen-induced rat model of CDH, which form the 

basis for a therapeutic approach with ATRA. Alterations in Thy-1 signaling 

and its downstream target Adrp in hypoplastic rat lungs with toxicologically 

induced diaphragmatic defects were systematically evaluated in two 

observational studies, and resulting changes in the amount of cytoplasmatic 

lipid droplets in LIFs and overall expression of this specific subset of lung 

fibroblasts were examined. The effects of prenatally administered ATRA on 

fetal alveolarization and surfactant phospholipid synthesis in nitrofen-

exposed rat fetuses with CDH-associated PH were assessed in two in vivo

treatment studies using molecular genetic, immunohistochemical/-

fluorescence and stereo-/morphometric analysis techniques. Based on the 

results of these studies, the following conclusions can be drawn: 

1. Disruption of Thy-1 signaling in hypoplastic rat lungs leads, through a 

disturbed uptake of neutral lipids into pulmonary LIFs at the end of 

fetal gestation, to markedly reduced cytoplasmatic lipid content in this 

specific subset of lung fibroblasts, which is associated with an 

impaired alveolar development and PH in the nitrofen-induced CDH 

model. (I) 
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2. Decreased pulmonary Adrp expression during late gestation is 

accompanied by an overall reduction of LIFs in hypoplastic rat lungs, 

thereby suggesting that disruption of Adrp-regulated alveolar 

mesenchymal cell differentiation and lipid homeostasis in nitrofen-

exposed fetuses with diaphragmatic defects may cause impaired 

alveolar formation and eventually PH through disturbed LIF 

functioning. (II) 

3. Maternal application of ATRA shortly before birth increases the fetal 

expression of LIFs and alveolarization in hypoplastic rat lungs with 

nitrofen-induced CDH, suggesting that ATRA may have a therapeutic 

potential in attenuating CDH-associated PH by stimulating alveolar 

formation and distal airway maturation through increased expression 

of pulmonary LIFs. (III) 

4. Prenatally administered ATRA upregulates Lep signaling in 

hypoplastic rat lungs, which in turn increases de novo production of 

pulmonary surfactant in nitrofen-exposed fetuses with diaphragmatic 

defects and thus may reduce experimentally induced PH by increased 

synthesis of surfactant phospholipids at the end of gestation. (IV)

In addition, this study draws the first detailed map of the global CDH 

research architecture based on an in-depth analysis of the scientific 

output from 1910 to 2016: 

5. During this time span, CDH-related research has progressed from 

simple empirical observations to accumulation of best clinical 

evidence, becoming much more multidisciplinary with main research 

endeavors concentrating in a few high-income countries. Great strides 

in basic science and biomedical technology have contributed to a 

number of revolutionary new discoveries in the pathogenesis and 

pathophysiological mechanisms of CDH.  
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Collaborative research has led to substantial progress in prenatal 

diagnostics and interventions, implementation of standardized 

neonatal treatment protocols and most recently regenerative medicine 

therapy. All these advances hold now the promise of improving CDH 

patient care and outcome in the 21st century. International 

collaborations should therefore be strengthened to allow further 

evolution in this field. (V) 
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